1
|
Su Y, Li S, Li X, Zhou JY, Chauhan VP, Li M, Su YH, Liu CM, Ren YF, Yin W, Rimer JD, Cai T. Tartronic Acid as a Potential Inhibitor of Pathological Calcium Oxalate Crystallization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400642. [PMID: 38647258 DOI: 10.1002/advs.202400642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Kidney stones are a pervasive disease with notoriously high recurrence rates that require more effective treatment strategies. Herein, tartronic acid is introduced as an efficient inhibitor of calcium oxalate monohydrate (COM) crystallization, which is the most prevalent constituent of human kidney stones. A combination of in situ experimental techniques and simulations are employed to compare the inhibitory effects of tartronic acid with those of its molecular analogs. Tartronic acid exhibits an affinity for binding to rapidly growing apical surfaces of COM crystals, thus setting it apart from other inhibitors such as citric acid, the current preventative treatment for kidney stones. Bulk crystallization and in situ atomic force microscopy (AFM) measurements confirm the mechanism by which tartronic acid interacts with COM crystal surfaces and inhibits growth. These findings are consistent with in vivo studies that reveal the efficacy of tartronic acid is similar to that of citric acid in mouse models of hyperoxaluria regarding their inhibitory effect on stone formation and alleviating stone-related physical harm. In summary, these findings highlight the potential of tartronic acid as a promising alternative to citric acid for the management of calcium oxalate nephropathies, offering a new option for clinical intervention in cases of kidney stones.
Collapse
Affiliation(s)
- Yuan Su
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Si Li
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xin Li
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Science, Nanjing University, Nanjing, 210036, China
| | - Jing-Ying Zhou
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Vraj P Chauhan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Meng Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ya-Hui Su
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Chun-Mei Liu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi-Fei Ren
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Science, Nanjing University, Nanjing, 210036, China
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ting Cai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
2
|
Liu WW, Dong HJ, Zhang Z, Ma XH, Liu S, Huang W, Wang X. Analyzing chemical composition of Sargentodoxae caulis water extract and their hypouricemia effect in hyperuricemic mice. Fitoterapia 2024; 175:105926. [PMID: 38537887 DOI: 10.1016/j.fitote.2024.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Hong-Jing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Zhe Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xin-Hui Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wei Huang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
3
|
Singh RP, Mishra A, Chandel SS, Agarwal M, Chawra HS, Singh M, Dubey G. Unlocking New Approaches to Urolithiasis Management Via Nutraceuticals. Curr Pharm Biotechnol 2024; 25:1124-1131. [PMID: 37608670 DOI: 10.2174/1389201024666230821122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Urolithiasis, commonly known as kidney stones, is characterized by the formation of hard deposits in the urinary tract. These stones can cause severe pain and discomfort, and their management typically involves a combination of medical interventions and lifestyle modifications. According to the literature, 30% and 50% of urolithiasis cases recur. Between 9 and 12% of persons in industrialised countries are predicted to have urolithiasis at some time. Due to the high frequency of stone formation, recurrent nature, and prevalence in adults, it has a significant impact on society, the person, and the health care system. Adopting the best prophylactic measures is crucial in light of these developments to decrease the impact of urolithiasis on individuals and society. In recent years, there has been growing interest in the potential role of nutraceuticals in the management of urolithiasis. Nutraceuticals, such as herbal extracts, vitamins, minerals, and probiotics, have gained recognition for their potential in promoting urinary health and reducing the risk of urolithiasis. These compounds can aid in various ways, including inhibiting crystal formation, enhancing urine pH balance, reducing urinary calcium excretion, and supporting kidney function. Additionally, nutraceuticals can help alleviate symptoms associated with urolithiasis, such as pain and inflammation. While medical interventions remain crucial, incorporating nutraceuticals into a comprehensive management plan can offer a holistic approach to urolithiasis, improving patient outcomes and quality of life. Therefore, nutraceuticals may be a desirable choice for treating and avoiding recurring urolithiasis for patients and medical professionals. Therefore, the present study has focused on nutraceuticals' role in preventing urolithiasis.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Anurag Mishra
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | - Mohit Agarwal
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Himmat Singh Chawra
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mithilesh Singh
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Gaurav Dubey
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| |
Collapse
|
4
|
Yang B, Wang G, Li Y, Yang T, Guo H, Li P, Li J. Hydroxycitric acid prevents hyperoxaluric-induced nephrolithiasis and oxidative stress via activation of the Nrf2/Keap1 signaling pathway. Cell Cycle 2023; 22:1884-1899. [PMID: 37592762 PMCID: PMC10599177 DOI: 10.1080/15384101.2023.2247251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Nephrolithiasis is a common and frequently-occurring disease in the urinary system with high recurrence. The present study aimed to explore the protective effect and underlying mechanism of hydroxycitric acid (HCA) in hyperoxaluria-induced nephrolithiasis in vitro and in vivo. Crystal deposition and pathophysiological injury in rat models of glyoxylate-induced nephrolithiasis were examined using H&E staining. Cell models of nephrolithiasis were established by oxalate-treated renal tubular epithelial cells. The levels of oxidative stress indexes were determined by ELISA kits. Cell proliferation in vivo and in vitro was evaluated using a cell counting kit-8 (CCK-8) assay and Ki-67 cell proliferation detection kit. Cell apoptosis was measured by flow cytometry and TUNEL staining. The protein levels were examined by western blotting. Our results showed that HCA administration significantly reduced crystal deposition and kidney injury induced by glyoxylate. HCA also alleviated oxidative stress via upregulating the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) and reducing the malondialdehyde (MDA) content. Moreover, HCA treatment promoted cell proliferation and inhibited apoptosis of renal tubular epithelial cells exposed to hyperoxaluria. Of note, Nrf2 activator dimethyl fumarate (DMF) exerted the same beneficial effects as HCA in nephrolithiasis. Mechanistically, HCA prevented crystal deposition and oxidative stress induced by hyperoxaluria through targeting the Nrf2/Keap1 antioxidant defense pathway, while knockdown of Nrf2 significantly abrogated these effects. Taken together, HCA exhibited antioxidation and anti-apoptosis activities in nephrolithiasis induced by hyperoxaluria via activating Nrf2/Keap1 pathway, suggesting that it may be an effective therapeutic agent for the prevention and treatment of nephrolithiasis.
Collapse
Affiliation(s)
- Bowei Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuhang Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Haixiang Guo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiongming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
5
|
Del Carmen Cano García M, Cobos RC, Bohorquez ÁV, Díaz PM, Castillo YY, Ruiz CR, Gutiérrez-Tejero F, Polo MÁA, Martín MA. A randomized, double-blind, placebo-controlled clinical trial of the use of hydroxycitric acid adjuvant to shock wave lithotripsy therapy in patients with calcium stones. Stone fragmentation results. Urolithiasis 2023; 51:83. [PMID: 37249658 PMCID: PMC10228427 DOI: 10.1007/s00240-023-01456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Our objective was to improve the results of extracorporeal shock waves lithotripsy using hydroxycitric acid (HCA) like adjuvant therapy. Double blind randomized clinical trial using hydroxycitric acid versus placebo (ID NCT05525130). Multicenter study of adjuvant exposure to a food supplement with hydroxycitric acid (HCA), vs. placebo in patients with calcium oxalate and calcium phosphate lithiasis with indication for extracorporeal shock wave lithotripsy (ESWL). 81 patients were included in the study to compare the effect of HCA versus placebo. Stone fragmentation, the main efficacy variable. Other variables analyzed were stone size, Hounsfield Unit Stone and tolerability. Statistical study with SPSS, statistical significance p ≤ 0.05. Eighty-one patients were included, 40 in the intervention group with HCA and 41 in the control group with placebo. The average stone area was 174,36 mm2 (SD: 32,83 mm2) and the average hardness was 1128,11 (SD: 257,65), with no statistically significant differences between groups. Significant statistical differences were obtained in the analysis of the population by intention to treat and by protocol of the main variable, no fragmentation vs. fragmentation where 100% of the patients, who were given ESWL and took HCA, presented fragmentation while 17% of the patients with placebo did not reach fragmentation (p = 0.03). The adjuvant use of HCA in patients for whom ESWL has been indicated, facilitates stone fragmentation in all cases, which is not achieved in up to 17% of the patients who did not use HCA. We recommend the use of HCA in patients prior to shock wave treatment to improve their fragmentation in calcium stones.
Collapse
Affiliation(s)
- María Del Carmen Cano García
- IBS Granada, Granada, Spain
- San Cecilio University Hospital, Avda. de la Investigación, S/N, 18016, Granada, Spain
| | | | | | | | - Yaiza Yañez Castillo
- San Cecilio University Hospital, Avda. de la Investigación, S/N, 18016, Granada, Spain
| | | | | | - Miguel Ángel Arrabal Polo
- IBS Granada, Granada, Spain.
- San Cecilio University Hospital, Avda. de la Investigación, S/N, 18016, Granada, Spain.
| | - Miguel Arrabal Martín
- IBS Granada, Granada, Spain
- San Cecilio University Hospital, Avda. de la Investigación, S/N, 18016, Granada, Spain
| |
Collapse
|
6
|
Jia Q, Huang Z, Wang G, Sun X, Wu Y, Yang B, Yang T, Liu J, Li P, Li J. Osteopontin: An important protein in the formation of kidney stones. Front Pharmacol 2022; 13:1036423. [PMID: 36452224 PMCID: PMC9703462 DOI: 10.3389/fphar.2022.1036423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
The incidence of kidney stones averages 10%, and the recurrence rate of kidney stones is approximately 10% at 1 year, 35% at 5 years, 50% at 10 years, and 75% at 20 years. However, there is currently a lack of good medicines for the prevention and treatment of kidney stones. Osteopontin (OPN) is an important protein in kidney stone formation, but its role is controversial, with some studies suggesting that it inhibits stone formation, while other studies suggest that it can promote stone formation. OPN is a highly phosphorylated protein, and with the deepening of research, there is growing evidence that it promotes stone formation, and the phosphorylated protein is believed to have adhesion effect, promote stone aggregation and nucleation. In addition, OPN is closely related to immune cell infiltration, such as OPN as a pro-inflammatory factor, which can activate mast cells (degranulate to release various inflammatory factors), macrophages (differentiated into M1 macrophages), and T cells (differentiated into T1 cells) etc., and these inflammatory cells play a role in kidney damage and stone formation. In short, OPN mainly exists in the phosphorylated form in kidney stones, plays an important role in the formation of stones, and may be an important target for drug therapy of kidney stones.
Collapse
Affiliation(s)
- Qingxia Jia
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xia Sun
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bowei Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tongxin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianhe Liu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Chaiyarit S, Thongboonkerd V. Oxidized forms of uromodulin promote calcium oxalate crystallization and growth, but not aggregation. Int J Biol Macromol 2022; 214:542-553. [PMID: 35752338 DOI: 10.1016/j.ijbiomac.2022.06.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022]
Abstract
Roles of an abundant human urinary protein, uromodulin (UMOD), in kidney stone disease were previously controversial. Recently, we have demonstrated that oxidative modification reverses overall modulatory activity of whole urinary proteins, from inhibition to promotion of calcium oxalate (CaOx) stone-forming processes. We thus hypothesized that oxidation is one of the factors causing those previously controversial UMOD data on stone modulation. Herein, we addressed effects of performic-induced oxidation on CaOx crystal modulatory activity of UMOD. Sequence analyses revealed two EGF-like calcium-binding domains (65th-107th and 108th-149th), two other calcium-binding motifs (65th-92nd and 108th-135th), and three oxalate-binding motifs (199th-207th, 361st-368th and 601st-609th) in UMOD molecule. Analysis of tandem mass spectrometric dataset of whole urinary proteins confirmed marked increases in oxidation, dioxidation and trioxidation of UMOD in the performic-modified urine samples. UMOD was then purified from the normal urine and underwent performic-induced oxidative modification, which was confirmed by Oxyblotting. The oxidized UMOD significantly promoted CaOx crystallization and crystal growth, whereas the unmodified native UMOD inhibited CaOx crystal growth. However, the oxidized UMOD did not affect CaOx crystal aggregation. Therefore, our data indicate that oxidized forms of UMOD promote CaOx crystallization and crystal growth, which are the important processes for CaOx kidney stone formation.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Wang S, Ju Y, Gao L, Miao Y, Qiao H, Wang Y. The fruit fly kidney stone models and their application in drug development. Heliyon 2022; 8:e09232. [PMID: 35399385 PMCID: PMC8987614 DOI: 10.1016/j.heliyon.2022.e09232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.
Collapse
Affiliation(s)
- Shiyao Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yingjie Ju
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Lujuan Gao
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Huanhuan Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiwen Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| |
Collapse
|
9
|
Correlation between Ion Composition of Oligomineral Water and Calcium Oxalate Crystal Formation. CRYSTALS 2021. [DOI: 10.3390/cryst11121507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ion content of drinking water might be associated with urinary stone formation, representing a keystone of conservative nephrolithiasis management. However, the effects of specific ions on calcium oxalate crystal formation and their mechanism of action are still highly controversial. We report an investigation of the effects of oligomineral waters with similar total salt amount but different ion composition on calcium oxalate (CaOx) precipitation in vitro, combining gravimetric and microscopic assays. The results suggest that the “collective” physicochemical properties of the aqueous medium, deriving from the ion combination rather than from a single ionic species, are of importance. Particularly, the ability of ions to strengthen/weaken the aqueous medium structure determines an increase/decrease in the interfacial energy, modulating the formation and growth of CaOx crystals.
Collapse
|
10
|
Yang B, Li J, Wang B, Wang G, Li P, Guo H, Li Y, Yang T. Hydroxycitrate prevents calcium oxalate crystallization and kidney injury in a nephrolithiasis rat model. Urolithiasis 2021; 50:47-53. [PMID: 34410446 DOI: 10.1007/s00240-021-01283-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/23/2021] [Indexed: 10/20/2022]
Abstract
Hydroxycitrate (HCA) is a derivative of citric acid, and previous studies of HCA have revealed its ability to inhibit the formation of calcium oxalate crystals in vitro. To date, there has been little evidence proving that HCA has the same effectiveness in vivo. The present study was designed to investigate the ameliorating effect of HCA on calcium oxalate deposition and renal impairment in a male rat model. Male Sprague-Dawley rats were randomly divided into four groups: a control group, a model group (glyoxalic acid), a CA group (glyoxalic acid + CA), and an HCA group (glyoxalic acid + HCA). Kidney stone formation was induced by injection of glyoxalic acid (60 mg/kg). The results showed that serum and urinary parameters were significantly improved by HCA treatment. In addition, differences in the formation of calcium oxalate crystals between groups were observed, and HCA was superior to CA in inhibiting crystal accumulation. The ultrastructure of renal tubules and glomeruli occurred in the model group, and the above lesions were significantly reduced in the HCA group. Both OPN and SOD expression levels were promoted by HCA, while CA only promoted OPN. In this article, we provided data on whether HCA affected kidney stones and the expression levels of OPN and SOD in a male rat model.
Collapse
Affiliation(s)
- Bowei Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, KunmingYunnan Province, 650101, China
| | - Jiongming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, KunmingYunnan Province, 650101, China.
| | - Bin Wang
- Department of Urology, People's Hospital of Yuxi City, YuxiYunnan Province, 653100, China
| | - Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, KunmingYunnan Province, 650101, China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, KunmingYunnan Province, 650101, China
| | - Haixiang Guo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, KunmingYunnan Province, 650101, China
| | - Yuhang Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, KunmingYunnan Province, 650101, China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, KunmingYunnan Province, 650101, China
| |
Collapse
|
11
|
Sivaguru M, Saw JJ, Wilson EM, Lieske JC, Krambeck AE, Williams JC, Romero MF, Fouke KW, Curtis MW, Kear-Scott JL, Chia N, Fouke BW. Human kidney stones: a natural record of universal biomineralization. Nat Rev Urol 2021; 18:404-432. [PMID: 34031587 DOI: 10.1038/s41585-021-00469-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
GeoBioMed - a new transdisciplinary approach that integrates the fields of geology, biology and medicine - reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture. Evidence suggests that ≥50% of the total volume of individual stones have undergone repeated in vivo dissolution and recrystallization. Amorphous calcium phosphate and hydroxyapatite spherules coalesce to form planar concentric zoning and sector zones that indicate disequilibrium precipitation. In addition, calcium oxalate dihydrate and calcium oxalate monohydrate crystal aggregates exhibit high-frequency organic-matter-rich and mineral-rich nanolayering that is orders of magnitude higher than layering observed in analogous coral reef, Roman aqueduct, cave, deep subsurface and hot-spring deposits. This higher frequency nanolayering represents the unique microenvironment of the kidney in which potent crystallization promoters and inhibitors are working in opposition. These GeoBioMed insights identify previously unexplored strategies for development and testing of new clinical therapies for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jessica J Saw
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elena M Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy E Krambeck
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James C Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael F Romero
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyle W Fouke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew W Curtis
- Carl Zeiss Microscopy LLC, One North Broadway, White Plains, NY, USA
| | | | - Nicholas Chia
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bruce W Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation (Review). Int J Mol Med 2021; 48:149. [PMID: 34132361 PMCID: PMC8208620 DOI: 10.3892/ijmm.2021.4982] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Kidney stone disease is one of the oldest diseases known to medicine; however, the mechanisms of stone formation and development remain largely unclear. Over the past decades, a variety of theories and strategies have been developed and utilized in the surgical management of kidney stones, as a result of recent technological advances. Observations from the authors and other research groups suggest that there are five entirely different main mechanisms for kidney stone formation. Urinary supersaturation and crystallization are the driving force for intrarenal crystal precipitation. Randall's plaques are recognized as the origin of calcium oxalate stone formation. Sex hormones may be key players in the development of nephrolithiasis and may thus be potential targets for new drugs to suppress kidney stone formation. The microbiome, including urease-producing bacteria, nanobacteria and intestinal microbiota, is likely to have a profound effect on urological health, both positive and negative, owing to its metabolic output and other contributions. Lastly, the immune response, and particularly macrophage differentiation, play crucial roles in renal calcium oxalate crystal formation. In the present study, the current knowledge for each of these five aspects of kidney stone formation is reviewed. This knowledge may be used to explore novel research opportunities and improve the understanding of the initiation and development of kidney stones for urologists, nephrologists and primary care.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
13
|
Adelman A, Shilo Y, Modai J, Leibovici D, Dror I, Berkowitz B. Do organic substances act as a degradable binding matrix in calcium oxalate kidney stones? BMC Urol 2021; 21:46. [PMID: 33765979 PMCID: PMC7995742 DOI: 10.1186/s12894-021-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcium oxalate (CaOx) stones are considered to be highly resistant to chemolysis. While significant organic matter has been identified within these stones, which is presumed to bind (inorganic) CaOx particles and aggregates, most chemolysis efforts have focused on methods to attack the CaOx components of a stone. We examine the feasibility of inducing chemolysis of CaOx kidney stones, within hours, by specifically attacking the organic matrix present in these stones. METHODS In contrast to previous studies, we focused on the possible "brick and mortar" stone configuration. We systematically tested, via in vitro experiments, the ability of an extensive range of 26 potential chemolysis agents to induce relatively fast disintegration (and/or dissolution) of a large set of natural CaOx stone fragments, extracted during endourological procedures, without regard to immediate clinical application. Each stone fragment was monitored for reduction in weight and other changes over 72 h. RESULTS We find that agents known to attack organic material have little, if any, effect on stone chemolysis. Similarly, protein and enzymatic agents, and oral additive medical treatments, have little immediate effect. CONCLUSIONS These findings suggest that the organic and inorganic constituents present in CaOx stones are not structured as "brick and mortar" configurations in terms of inorganic and organic components.
Collapse
Affiliation(s)
- Adi Adelman
- Department of Urology, Kaplan Medical Center, 7661041, Rehovot, Israel
| | - Yaniv Shilo
- Department of Urology, Kaplan Medical Center, 7661041, Rehovot, Israel
| | - Jonathan Modai
- Department of Urology, Kaplan Medical Center, 7661041, Rehovot, Israel
| | - Dan Leibovici
- Department of Urology, Kaplan Medical Center, 7661041, Rehovot, Israel
| | - Ishai Dror
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Brian Berkowitz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
14
|
Prajapati S, Tomar B, Srivastava A, Narkhede YB, Gaikwad AN, Lahiri A, Mulay SR. 6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation. Life Sci 2021; 271:119193. [PMID: 33577856 DOI: 10.1016/j.lfs.2021.119193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
AIMS Mineralization of crystalline particles and the formation of renal calculi contribute to the pathogenesis of crystal nephropathies. Several recent studies on the biology of crystal handling implicated intrarenal crystal deposition-induced necroinflammation in their pathogenesis. We hypothesized that 6,7-dihydroxycoumarin (DHC) inhibit intrarenal crystal cytotoxicity and necroinflammation, and ameliorate crystal-induced chronic kidney disease (CKD). MAIN METHODS An unbiased high content screening coupled with fluorescence microscopy was used to identify compounds that inhibit CaOx crystal cytotoxicity. The ligand-protein interactions were identified using computational models e.g. molecular docking and molecular dynamics simulations. Furthermore, mice and rat models of oxalate-induced CKD were used for in-vivo studies. Renal injury, crystal deposition, and fibrosis were assessed by histology analysis. Western blots were used to quantify the protein expression. Data were expressed as boxplots and analyzed using one way ANOVA. KEY FINDINGS An unbiased high-content screening in-vitro identified 6,7-DHC as a promising candidate. Further, 6,7-DHC protected human and mouse cells from calcium oxalate (CaOx) crystal-induced necroptosis in-vitro as well as mice and rats from oxalate-induced CKD in either preventive or therapeutic manner. Computational modeling demonstrated that 6,7-DHC interact with MLKL, the key protein in the necroptosis machinery, and inhibit its phosphorylation by ATP, which was evident in both in-vitro and in-vivo analyses. SIGNIFICANCE Together, our results indicate that 6,7-DHC possesses a novel pharmacological property as a MLKL inhibitor and could serve as a lead molecule for further development of coumarin-based novel MLKL inhibitors. Furthermore, our data identify 6,7-DHC as a novel therapeutic strategy to combat crystal nephropathies.
Collapse
Affiliation(s)
- Smita Prajapati
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yogesh B Narkhede
- Department of Bioengineering, Bourn's College of Engineering, University of California, CA 92521, USA
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Lahiri
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
15
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Effects of Various Inhibitors on the Nucleation of Calcium Oxalate in Synthetic Urine. CRYSTALS 2020. [DOI: 10.3390/cryst10040333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new synthetic urine was adopted in this work to study the nucleation kinetics of calcium oxalate using a batch crystallizer for various supersaturations at 37 °C. In the studied new synthetic urine, three additional components (urea, uric acid and creatinine) within the normal physiological ranges were added to the commonly-used synthetic urine to simulate human urine more closely. The interfacial energy for the nucleation of calcium oxalate was determined based on classical nucleation theory using the turbidity induction time measurements. The effects of various inhibitors, including magnesium, citrate, hydroxycitrate, chondroitin sulfate, and phytate, on the nucleation of calcium oxalate were investigated in detail. Scanning electron microscopy was used to examine the influences of these inhibitors on the preferential nucleation of the different hydrates of calcium oxalate crystals.
Collapse
|
17
|
Yang C, Liu Q, Meng X, Cao L, Liu B. Depuration of cadmium from Chlamys farreri by ZnSO 4, EDTA-Na 2 and sodium citrate in short time. CHEMOSPHERE 2020; 244:125429. [PMID: 31809923 DOI: 10.1016/j.chemosphere.2019.125429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
In view of high content of cadmium (Cd) in Chlamys farreri, a commercial edible shellfish species, depurating Cd from Chlamys farreri is an important topic nowadays, especially in short time. Therefore, three kinds of additives were introduced into seawater respectively, i.e. ZnSO4, EDTA-Na2, sodium citrate, to depurate Cd from Chlamys farreri. The alteration of Cd content in separate organs was investigated under several treatments with high depuration efficiency. The results showed that Cd was depurated exceeding 20% within 12 h by the combination of 0.15 g/L sodium citrate, 0.28 g/L ZnSO4, and 0.42 g/L EDTA-Na2. No obvious increase of Cd was observed in the adductor muscles, while Cd decreased in the other part, so the reduction of Cd in the whole organism of Chlamys farreri may occur. Cd reduction was found in the following organs: the digestive gland, kidney, gill, and mantle. Furthermore, Cd migration to gonad from other tissues was noticed.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qingkang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China; Pilot National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
18
|
Kim D, Olympiou C, McCoy CP, Irwin NJ, Rimer JD. Time-Resolved Dynamics of Struvite Crystallization: Insights from the Macroscopic to Molecular Scale. Chemistry 2020; 26:3555-3563. [PMID: 31742800 DOI: 10.1002/chem.201904347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The crystallization of magnesium ammonium phosphate hexahydrate (struvite) often occurs under conditions of fluid flow, yet the dynamics of struvite growth under these relevant environments has not been previously reported. In this study, we use a microfluidic device to evaluate the anisotropic growth of struvite crystals at variable flow rates and solution supersaturation. We show that bulk crystallization under quiescent conditions yields irreproducible data owing to the propensity of struvite to adopt defects in its crystal lattice, as well as fluctuations in pH that markedly impact crystal growth rates. Studies in microfluidic channels allow for time-resolved analysis of seeded growth along all three principle crystallographic directions and under highly controlled environments. After having first identified flow rates that differentiate diffusion and reaction limited growth regimes, we operated solely in the latter regime to extract the kinetic rates of struvite growth along the [100], [010], and [001] directions. In situ atomic force microscopy was used to obtain molecular level details of surface growth mechanisms. Our findings reveal a classical pathway of crystallization by monomer addition with the expected transition from growth by screw dislocations at low supersaturation to that of two-dimensional layer generation and spreading at high supersaturation. Collectively, these studies present a platform for assessing struvite crystallization under flow conditions and demonstrate how this approach is superior to measurements under quiescent conditions.
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Chara Olympiou
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|