1
|
Cheng FY, Chen C, Wang FY, Zhao BH. Combining nutraceuticals and a mediterranean diet for managing metabolic dysfunction associated with steatotic liver disease. World J Hepatol 2025; 17:104622. [PMID: 40308825 PMCID: PMC12038409 DOI: 10.4254/wjh.v17.i4.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025] Open
Abstract
This study was performed by Cano Contreras et al, who explored the effects of alpha-lipoic acid (ALA) and Silybum marianum (SM) supplementation combined with a mediterranean diet (MD) on metabolic dysfunction-associated steatotic liver disease (MASLD). The randomized controlled design and use of transient elastography provide methodological strengths, whereas the focus on a Mexican cohort addresses a critical gap in regional MASLD research. Although improvements in visceral fat and controlled attenuation parameters (CAP) were observed, key metabolic markers, including transaminases and lipid profiles, showed no significant changes, raising concerns about the intervention's comprehensive metabolic impact. The reliance on CAP and the absence of mechanistic biomarker analysis limit insights into the antioxidant and anti-inflammatory pathways of ALA and SM. Future research should explore synergistic effects with other nutraceuticals, such as vitamin E and polyphenols, and include extended follow-up and patient stratification to assess long-term benefits and personalized therapeutic outcomes. Addressing these limitations could solidify the role of nutraceuticals in MASLD management and enable the development of more effective and sustainable interventions.
Collapse
Affiliation(s)
- Fei-Yong Cheng
- Department of Hepatobiliary Surgery, Zhuji People's Hospital, Zhuji 311800, Zhejiang Province, China
| | - Cong Chen
- Department of General Surgery, Zhuji Third People's Hospital, Zhuji 311825, Zhejiang Province, China
| | - Feng-Yong Wang
- Department of General Surgery, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| | - Bo-Huan Zhao
- Department of General Surgery, Zhuji Traditional Chinese Medicine Hospital, Zhuji 311899, Zhejiang Province, China.
| |
Collapse
|
2
|
Zhang Y, Hao H, Li H, Duan Q, Zheng X, Feng Y, Yang K, Shen S. Cellular Metabolomics Reveals Differences in the Scope of Liver Protection Between Ammonium-Based Glycyrrhizinate and Magnesium Isoglycyrrhizinate. Metabolites 2025; 15:263. [PMID: 40278392 PMCID: PMC12029898 DOI: 10.3390/metabo15040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Despite the well-established liver-protective efficacy of monoammonium glycyrrhizinate (MONO), diammonium glycyrrhizinate (DIAM), and magnesium isoglycyrrhizinate (MAGN), which has been translated into clinical practice, their clinical differentiation remains elusive owing to their structural similarities and overlapping therapeutic effects. Methods: The present study delves into the pharmacokinetics, cellular-level liver-protective potencies, and underlying mechanisms of action of these three compounds through a comprehensive analysis. Results: The findings reveal that both DIAM and MAGN exhibit superior bioavailability and hepatoprotective profiles compared to MONO. Notably, an investigation of the metabolic pathways mediating liver protection in normal human liver cells (LO2), utilizing an ultra-performance liquid chromatography-time of flight tandem mass spectrometry (UPLC-TOF-MS/MSe) platform, demonstrated that MAGN augments antioxidant components, thereby favoring its application in drug-induced liver injury (DILI). Conversely, DIAM appears to be a more suitable candidate for addressing non-alcoholic fatty liver disease (NAFLD) and viral hepatitis. Conclusion: This study contributes novel perspectives on the mechanisms of action and potential clinical utilities of DIAM and MAGN in liver disease prevention and management.
Collapse
Affiliation(s)
- Yihua Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China;
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Han Hao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
| | - Hui Li
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Qiong Duan
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Xiaoming Zheng
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Yan Feng
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Kun Yang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China;
| |
Collapse
|
3
|
Kalaskar MG, Prabhu S, Ayyanar M, Redasani VK, Firke SD, Khan MMG, Khadse SS, Jain PG, Surana SJ, Gurav S. Investigating the protective effects of luteolin and gallic acid from Luffa acutangulavar. amara (Roxb.) C. B. Clarke. Fruit pericarp against alcohol-induced liver toxicity: Extraction, bioactivity-guided fractionation, molecular docking, and dynamics studies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119377. [PMID: 39855431 DOI: 10.1016/j.jep.2025.119377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luffa acutangula var. amara (Roxb.) C.B. Clarke, known as 'Katu Koshataki' in Ayurveda, is a traditional medicinal plant in India. The juice of these fruits is recommended for chronic alcohol-induced liver diseases. AIM OF THE STUDY This study aimed to validate the hepatoprotective and antioxidant properties of Luffa acutangula var. amara fruit pericarp ethanolic extract (EOLA) against ethanol-induced chronic hepatotoxicity in rats, isolate bioactive phytochemicals and in silico evaluation. MATERIALS AND METHODS Ethanolic extract of L. acutangula var. amara fruit pericarp was evaluated in chronic alcohol-induced hepatitis (20% ethanol orally twice daily for 28 days) at doses of 100 and 200 mg/kg p.o. Additionally, in vivo anti-inflammatory and antioxidant potential were assessed. Luteolin and gallic acid were isolated using bioactivity guided fractionation. Furthermore, these phytochemicals were assessed for hepatoprotective potential using molecular docking and molecular dynamics studies against different targets. RESULTS The EOLA demonstrated efficacy in stabilizing elevated biochemical markers and antioxidant levels associated with ethanol-induced hepatotoxicity in rats, and it preserved the normal architecture of hepatocytes in histological analyses compared to the ethanol control group. The EOLA was subjected to fractionation using hexane: chloroform (8:2 → 2:8), followed by chloroform: methanol (8:2 → 2:8) to yield a total eight fractions. The fractions 1, 2, and 3 showed potent antioxidant potential, yielding luteolin and gallic acid as LAC-1 and LAC-3 from fractions 1 and 8, respectively. Gallic acid and luteolin were investigated using molecular docking and molecular dynamic simulation techniques to assess their interactions with key proteins such as Cytochrome P450 2C9, Superoxide Dismutase, Glutathione Peroxidase, Glutathione S-Transferase, Catalase, Peroxisome Proliferator-Activated Receptor-ϒ, Vanin-1, and Cannabinoid Receptor CB2. The metabolites exhibit strong binding stability, with a root mean square deviation range of less than 2.8 Å. CONCLUSIONS It can be concluded that the fruit pericarp of L. acutangula var. amara could be used as a functional food for reducing the liver damage caused by alcohol and other factors.
Collapse
Affiliation(s)
- Mohan G Kalaskar
- Department of Pharmacognosy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425 405, India.
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, 683 104, India.
| | - Muniappan Ayyanar
- Department of Botany, AVVM Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, Tamil Nadu, 613 503, India.
| | - Vivekkumar K Redasani
- Department of Pharmaceutical Chemistry, YSPM's Yashoda Technical campus, Faculty of pharmacy, Satara, Maharashtra, 415 001, India.
| | - Sandip D Firke
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425 405, India.
| | - Md Mujeeb G Khan
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425 405, India.
| | - Saurabh S Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425 405, India.
| | - Pankaj G Jain
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425 405, India.
| | - Sanjay J Surana
- Department of Pharmacognosy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425 405, India.
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, 403 001, India.
| |
Collapse
|
4
|
dos Santos TC, Silva HP, Lima KR, Salvador MLN, Cândido GDS, Pimenta LCJP, Bertolini NO, Ribeiro LB, Fagundes FG, Orlando DR, Borges BDB, Dias-Peixoto MF, Machado ART, Dobbss LB, Pereira LJ, Andrade EF. Humic Acid Derived from Vermicompost Improves Bone Mineral Content and Alters Oxidative Stress Markers in Ovariectomized Mice. Biomedicines 2025; 13:495. [PMID: 40002908 PMCID: PMC11853275 DOI: 10.3390/biomedicines13020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Estrogen depletion alters bone mineralization and oxidative stress. Antioxidants like humic acids (HA) may help mitigate bone demineralization and redox imbalances. Thus, this study evaluated the effects of HA on bone mineral composition and oxidative stress markers in an experimental menopause model. Methods: Twenty-four female C57BL/6 mice were divided into four groups (n = 6/group): Sham; Sham + HA; Ovariectomized (OVX); and OVX + HA. The menopause model was induced by bilateral ovariectomy at the beginning of the experiment. HA derived from biomass vermicompost was administered daily by gavage for 28 days. After euthanasia, femurs and fragments of the gastrocnemius muscle, liver, and kidney were collected. Bone elemental composition was analyzed using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Superoxide dismutase (SOD), catalase (CAT), and hydrogen peroxide (H2O2) activities were assessed in muscle, renal, and hepatic tissues. Data were analyzed using two-way ANOVA and Bonferroni's post hoc test. Results: Untreated OVX mice exhibited a significant reduction in femoral calcium content (p < 0.05). However, HA treatment increased calcium levels and improved the Ca/P ratio (p < 0.05). H2O2 activity was reduced in the liver and kidney of OVX + HA mice compared to untreated animals (p < 0.05). CAT activity in muscle increased in the OVX + HA group compared to the OVX (p < 0.05). Conclusions: HA treatment improved femoral elemental composition and modulated oxidative stress markers in an experimental menopause model.
Collapse
Affiliation(s)
- Thays Cristina dos Santos
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Hellen Paulo Silva
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Karen Rodrigues Lima
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Maria Luiza Nonato Salvador
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Geraldo de Sousa Cândido
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Laura Cristina Jardim Pôrto Pimenta
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Natália Oliveira Bertolini
- Department of Physical Education, University Center of Lavras (UNILAVRAS), Lavras 37200-000, Minas Gerais, Brazil;
| | - Luciana Botelho Ribeiro
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Filipe Gomes Fagundes
- Department of Exact Sciences, Universidade do Estado de Minas Gerais, João Monlevade 35930-314, Minas Gerais, Brazil; (F.G.F.); (A.R.T.M.)
| | - Débora Ribeiro Orlando
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Bruno Del Bianco Borges
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Marco Fabrício Dias-Peixoto
- Postgraduate Program in Health Sciences (PPGCS), Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39803-371, Minas Gerais, Brazil;
| | - Alan Rodrigues Teixeira Machado
- Department of Exact Sciences, Universidade do Estado de Minas Gerais, João Monlevade 35930-314, Minas Gerais, Brazil; (F.G.F.); (A.R.T.M.)
| | - Leonardo Barros Dobbss
- Institute of Agrarian Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí 38610-000, Minas Gerais, Brazil;
| | - Luciano José Pereira
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Eric Francelino Andrade
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| |
Collapse
|
5
|
Abdel-Aziz N, El-Bahkery A, Ibrahim EA. The synergistic effects of citicoline and silymarin on liver injury and thyroid hormone disturbances in γ-irradiated rats. Mol Biol Rep 2025; 52:176. [PMID: 39883250 DOI: 10.1007/s11033-025-10255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Exposure to ionizing radiation is inevitable due to its extensive use in industrial and medical applications. The search for effective and safe natural therapeutic agents as alternatives to chemical drugs is crucial to mitigate their side effects. This study aimed to evaluate the effects of citicoline as a standalone treatment or in combination with the anti-hepatotoxic drug silymarin in protecting against liver injury caused by γ-radiation in rats. METHODS AND RESULTS The rats were exposed to γ-radiation (7 Gy) and treated with citicoline (300 mg/kg/day) and/or silymarin (50 mg/kg/day). The results showed that citicoline alleviated liver damage in irradiated rats by reducing hepatic malondialdehyde levels, serum aspartate aminotransferase activity, and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor-kappa B (NF-κB). It also increased acetylcholine (ACh) levels and the gene expression of the anti-inflammatory protein α7 nicotinic acetylcholine receptor (α7nAChR). Additionally, citicoline improved serum triiodothyronine (T3) levels, thyroid hormone receptor beta (TRβ) gene expression, and iodothyronine deiodinase type 1 activity in hepatic tissues of irradiated rats. Furthermore, citicoline enhanced the effects of silymarin on thyroxine (T4), TRβ, ACh, and α7nAChR when co-administered in irradiated rats. Histopathological analysis confirmed these findings, demonstrating improved liver tissue structure. CONCLUSIONS Citicoline mitigates γ-radiation-induced liver damage by reducing oxidative stress, activating the cholinergic anti-inflammatory pathway, and modulating thyroid hormone metabolism. These findings support the use of citicoline as a safe standalone treatment or as an adjuvant with silymarin for managing liver damage and thyroid hormone disturbances caused by γ-irradiation.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Azza El-Bahkery
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows. BMC Genomics 2025; 26:10. [PMID: 39762777 PMCID: PMC11702196 DOI: 10.1186/s12864-024-11067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and explore its potential regulatory mechanisms. RESULTS We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver. CONCLUSIONS Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease and offers a scientific basis for developing more effective treatment strategies.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yongxia Mao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
7
|
Hamed AM, Elbahy DA, Ahmed ARH, Thabet SA, Refaei RA, Ragab I, Elmahdy SM, Osman AS, Abouelella AMA. Comparison of the efficacy of curcumin and its nano formulation on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in Wistar rats. Heliyon 2024; 10:e41043. [PMID: 39759349 PMCID: PMC11696662 DOI: 10.1016/j.heliyon.2024.e41043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background and objective Insulin resistance is a primary feature of type 2 diabetes. This study compared the effects of curcumin and its nanoformulation on insulin resistance, fasting blood sugar, liver function, GLUT4, lipid profile, and oxidative stress in the liver and pancreas in a diabetic model. Methods Thirty male Wistar rats were divided into five groups: a control group, a diabetic group, a diabetic group treated with metformin (40 mg/kg), a diabetic group treated with curcumin (100 mg/kg), and a diabetic group treated with curcumin NPs (100 mg/kg). Diabetes was induced by injecting dexamethasone daily for 14 days. Treatment with curcumin and curcumin NPs was administered by gavage for 14 days. Body weight and fasting blood sugar levels were measured on days 1, 14, and 28. Results The metformin, curcumin, and curcumin NPs groups showed significantly greater body weight gain than the untreated diabetic group (P < 0.001). In diabetic rats treated with curcumin and curcumin NPs, insulin resistance decreased by approximately 40 %, while fasting blood sugar levels dropped by 35-40 % (P < 0.001). The levels of liver enzymes (AST, ALT), cholesterol, triglycerides, LDL, and the oxidative stress marker MDA in liver and pancreatic tissues were reduced by 30-50 %. Additionally, beneficial markers such as albumin, HDL, antioxidants (GSH, SOD), and GLUT4 levels were increased by 25-45 % (P < 0.001). Nano-curcumin consistently showed greater improvements than curcumin, especially in reducing oxidative stress and supporting liver and pancreatic health. Conclusion This study demonstrates that curcumin NPs has a superior effect on reducing oxidative stress and improving metabolic parameters in diabetes compared to curcumin. by enhancing the bioavailability and stability of curcumin, the nanoformulation showed stronger therapeutic potential for managing high blood sugar, cholesterol issues, and liver health, positioning curcumin NPs as a promising alternative to conventional treatments for diabetes and its complications.
Collapse
Affiliation(s)
- Amany M. Hamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Dalia A. Elbahy
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed RH. Ahmed
- Department of Pathology, faculty of medicine, Sohag University, Sohag, Egypt
| | - Shymaa A. Thabet
- Central Research Center, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Islam Ragab
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | | | - Ahmed S. Osman
- Department of Biochemistry, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Azza MA. Abouelella
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
8
|
Ali MH, Rehman OU, Talha M, Fatima E, Fatima L, Zain A, Haisbuzzaman MA. Efficacy and safety of the FGF19 analog aldafermin for the treatment of nonalcoholic steatohepatitis: a GRADE assessed systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:7072-7081. [PMID: 39649867 PMCID: PMC11623846 DOI: 10.1097/ms9.0000000000002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is increasingly concerning due to its rising prevalence. It encompasses conditions from simple steatosis to severe nonalcoholic steatohepatitis (NASH), posing risks such as fibrosis, cirrhosis, or hepatocellular carcinoma if untreated. This systematic review and meta-analysis aims to assess aldafermin, an FGF19 analog, for efficacy and safety in NASH patients. Methods Eligible studies were identified by searching PubMed, Cochrane Library, and Google Scholar, resulting in 1115 studies. Three RCTs were included. The risk of bias was assessed using the Cochrane Risk of Bias tool, and data synthesis utilized Review Manager software. The certainty of evidence was evaluated with the GRADE approach. Results In the 3 mg dose group, aldafermin significantly improved various parameters. The ELF score decreased notably (pooled MD: -0.46, 95% CI: -0.64 to -0.28; P<0.00001). Additionally, fibrosis improvement without NASH worsening showed a pooled MD of 8.15 (95% CI: -3.62 to 19.93; P<0.17), and fibrosis improvement with NASH resolution displayed a pooled MD of 10.16 (95% CI: 1.68-18.64; P=0.02). Furthermore, significant reductions were noted in absolute AST levels (pooled MD: -13.40, 95% CI: -18.66 to -8.14; P<0.00001) and absolute ALT levels (pooled MD: -19.92, 95% CI: -27.08 to -12.75; P<0.00001), suggesting improved liver function. Conclusion The meta-analysis indicates that aldafermin, particularly, the 3 mg dose, shows significant efficacy in improving liver histology and biochemical markers in NASH patients compared to placebo, along with a satisfactory safety profile.
Collapse
Affiliation(s)
- Mohammad Haris Ali
- Department of Medicine, Shaikh Khalifa Bin Zayed Al-Nahyan Medical College, Lahore, Pakistan
| | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Muhammad Talha
- Department of Medicine, Shaikh Khalifa Bin Zayed Al-Nahyan Medical College, Lahore, Pakistan
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Laveeza Fatima
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Ahmad Zain
- Department of Medicine, UCHealth Parkview Medical Center, Pueblo, Colorado, USA
| | | |
Collapse
|
9
|
Das S, Mukherjee U, Biswas S, Banerjee S, Karmakar S, Maitra S. Unravelling bisphenol A-induced hepatotoxicity: Insights into oxidative stress, inflammation, and energy dysregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124922. [PMID: 39260547 DOI: 10.1016/j.envpol.2024.124922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/08/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bisphenol A (BPA), a prevalent plastic monomer and endocrine disruptor, negatively impacts metabolic functions. This study examines the chronic effects of eco-relevant BPA concentrations on hepatotoxicity, focusing on redox balance, inflammatory response, cellular energy sensors, and metabolic homeostasis in male Swiss albino mice. Chronic BPA exposure resulted in reactive oxygen species (ROS) accumulation, altered hepatic antioxidant defense, lipid peroxidation, and NOX4 expression, leading to reduced cell viability. Additionally, BPA exposure significantly upregulated hepatic pro-inflammatory cytokine genes (Tnf-α, Il-1β, Il-6), NOS2, and arginase II, correlating with increased TLR4 expression, NF-κB phosphorylation, and a dose-dependent decrease in IκBα levels. BPA-induced NF-κB nuclear localization and inflammasome activation (NLRP3, cleaved caspase-1, IL-1β) established an inflammatory milieu. Perturbations in hepatic AMPKα phosphorylation, SIRT1, and PGC-1α, along with elevated p38 MAPK phosphorylation and ERα expression, indicated BPA-induced energy dysregulation. Furthermore, increased PLA2G4A, COX1, COX2, and PTGES2 expression in BPA-treated liver correlated with hyperlipidemia, hepatic FASN expression, steatosis, and visceral adiposity, likely due to disrupted energy sensors, oxidative stress, and inflammasome activation. Elevated liver enzymes (ALP, AST, ALT) and apoptotic markers indicated liver damage. Notably, N-acetylcysteine (NAC) priming reversed BPA-induced hepatocellular ROS accumulation, NF-κB-inflammasome activation, and intracellular lipid accumulation, while upregulating cellular energy sensors and attenuating ERα expression, suggesting NAC's protective effects against BPA-induced hepatotoxicity. Pharmacological inhibition of the NF-κB/NLRP3 cascade in BAY11-7082 pretreated, or NLRP3 immunodepleted hepatocytes reversed BPA's negative impact on SIRT1/p-AMPKα/PGC-1α and intracellular lipid accumulation, providing mechanistic insights into BPA-induced metabolic disruption.
Collapse
Affiliation(s)
- Sriparna Das
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sambuddha Banerjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
10
|
Liu X, Cai Y, Zhang Y, Zhang H, Tian S, Gong Y, Song Q, Chen X, Ma X, Wen Y, Chen Y, Zeng J. Artesunate: A potential drug for the prevention and treatment from hepatitis to hepatocellular carcinoma. Pharmacol Res 2024; 210:107526. [PMID: 39617278 DOI: 10.1016/j.phrs.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Liver cancer represents a multifactorial, multistage, and intricately progressive malignancy. Over the past decade, artesunate (ART), initially renowned for its anti-malarial efficacy, has been the focus of over 3000 studies uncovering its diverse pharmacological actions, including anti-inflammatory, immunoregulatory, metabolic regulatory, anti-fibrotic, and anti-cancer properties. This review highlights ART's role in the multistep progression from hepatitis to cancer and its underlying regulatory mechanisms, revealing signal transducer and activator of transcription 3 (STAT3) and ferroptosis (a novel form of programmed cell death) as promising therapeutic targets. ART demonstrates efficacy in inhibiting hepatitis virus infections, modulating inflammation, and facilitating recovery from inflammatory processes. During stages of hepatic fibrosis or cirrhosis, ART reverses fibrotic and cirrhotic changes by suppressing hepatic stellate cell activity, regulating inflammatory pathways, inhibiting hematopoietic stem cell proliferation, and inducing ferroptosis. Additionally, ART hinders hepatocellular carcinoma (HCC) cell proliferation, invasion, and metastasis, induces apoptosis and autophagy, combats drug resistance, and enhances chemosensitivity. Collectively, ART exhibits multi-step actions across multiple targets and signaling pathways, highlighting its potential as a clinical candidate for the prevention and treatment of liver cancer, from hepatitis and hepatic fibrosis to advanced HCC.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yilin Cai
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yuanhao Zhang
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Hetian Zhang
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Sisi Tian
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yuxia Gong
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qinmei Song
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaotong Chen
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
11
|
Chen J, Yang S, Luo H, Fu X, Li W, Li B, Fu C, Chen F, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz alleviates NAFLD-induced hepatic inflammation in mice by modulating the TLR4/MyD88/NF-κB pathway. Int Immunopharmacol 2024; 141:113014. [PMID: 39191120 DOI: 10.1016/j.intimp.2024.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) not only could cause abnormal lipid metabolism in the liver, but also could cause liver inflammation. Previous studies have shown that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could alleviate animal liver inflammatory damage and alleviate NAFLD in mice caused by high-fat diet(HFD), but regulation of liver inflammation caused by NAFLD has rarely been reported. In this study, an animal model of non-alcoholic fatty liver inflammation in the liver of mice was established to explore the protective effect of PAMK on the liver of mice. The results showed that PAMK could alleviate the abnormal increase of body weight and liver weight of mice caused by HFD, alleviate the abnormal liver structure of mice, reduce the level of oxidative stress and cytokine secretion in the liver of mice, and downregulate the mRNA expression of TLR4, MyD88, NF-κB and protein expression of P-IκB, P-NF-κB-P65, TLR4, MyD88, NF-κB in the liver. These results indicate that PAMK could alleviate hepatocyte fatty degeneration and damage, oxidative stress and inflammatory response of the liver caused by NAFLD in mice.
Collapse
Affiliation(s)
- Junyi Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shuzhan Yang
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Hanxia Luo
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Cheng Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Feiyue Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
12
|
Gao L, Fang H, Zhao Z, Luo W, Gong J, Gong J. Synergistic impact of Composite Dietary Antioxidant Index and physical activity on fatty liver disease. Front Nutr 2024; 11:1486700. [PMID: 39564208 PMCID: PMC11573580 DOI: 10.3389/fnut.2024.1486700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Background The relationship between dietary antioxidants and fatty liver disease remains a topic of debate. This study aimed to examine the association between the Composite Dietary Antioxidant Index (CDAI) and nonalcoholic fatty liver disease (NAFLD)/metabolic-associated fatty liver disease (MAFLD). Methods The study analyzed data from the 2003-2018 cycles of the National Health and Nutrition Examination Survey. The study included 16,321 individuals aged 20-85 years. Food and nutrient intake data were based on the 24-h recall method. Multivariate logistic regression models were employed to examine the relationship between CDAI and NAFLD/MAFLD. Results In the fully adjusted multivariate logistic regression model, CDAI demonstrated a significant negative correlation with NAFLD and MAFLD. Mediation analysis showed that inflammatory factors partially mediated the relationship between CDAI and NAFLD/MAFLD prevalence. The combination of high CDAI levels with effective physical activity was associated with a greater reduction in NAFLD/MAFLD prevalence than high CDAI levels alone. Conclusion Our study highlighted a negative association between CDAI and NAFLD/MAFLD, mediated by inflammatory factors. Additionally, participants with characteristics of active physical activity and high levels of CDAI were more strongly correlated with the reduced prevalence of NAFLD/MAFLD. Further research in clinical cohorts should be conducted to comprehensively investigate the impact of CDAI on NAFLD/MAFLD prevalence.
Collapse
Affiliation(s)
- Linxiao Gao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoyu Fang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Luo
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Bafail D, Bafail A, Alshehri N, Alhalees NH, Bajarwan A. Impact of Coconut Oil and Its Bioactive Metabolites in Alzheimer's Disease and Dementia: A Systematic Review and Meta-Analysis. Diseases 2024; 12:272. [PMID: 39589946 PMCID: PMC11592914 DOI: 10.3390/diseases12110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) is the most common form of dementia and affects approximately 50 million individuals worldwide. Interest in coconut oil (CO) as a potential dietary intervention has surged owing to its substantial medium-chain triglyceride (MCT) content. Therefore, sustaining cognitive function and potentially slowing the progression of AD are crucial. This systematic review and meta-analysis evaluated the effects of CO and its bioactive metabolites on AD and dementia. Methods: The review protocol is registered in PROSPERO (CRD42023450435). Relevant research articles published between January 2015 and June 2023 were systematically searched. Seven studies met the predetermined eligibility criteria. Thematic analysis was utilized to synthesis the data about the qualitative features, while meta-analysis was employed for the quantitative findings. A meta-analysis was conducted to assess the standardized mean difference (SMD) and the corresponding 95% confidence interval (CI). Forest plots were generated using Review Manager 5.3 (RevMan 5.3). Results: The analysis revealed that all studies showed consistent results regarding the effects of CO on cognitive scores, with little variability in the true effects of CO on cognitive scores across the studies included in the meta-analysis. Conclusions: CO improved cognitive scores in patients with AD compared with those in the control group (p < 0.05). The results of this study add to the increasing amount of evidence indicating that MCTs found in CO might be a way to improve abilities and potentially slow the advancement of AD. The findings of this study may encourage the development of targeted dietary strategies and interventions for individuals at risk of or diagnosed with AD.
Collapse
Affiliation(s)
- Duaa Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Abrar Bafail
- Nuclear Medicine Department, Le Centre Hospitalier Régional Universitaire, 37000 De tours, France;
| | - Norah Alshehri
- Pharmaceutical Care Department, East Jeddah General Hospital, Ministry of Health, Jeddah 22253, Saudi Arabia;
| | - Noura Hamdi Alhalees
- Drug Information Department, Ministry of Health King Abdullah Medical Complex, Jeddah 23816, Saudi Arabia;
| | - Ahmad Bajarwan
- Engineering Management, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
14
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Filip R. Flavonoids and Their Role in Preventing the Development and Progression of MAFLD by Modifying the Microbiota. Int J Mol Sci 2024; 25:11187. [PMID: 39456969 PMCID: PMC11508831 DOI: 10.3390/ijms252011187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing prevalence and serious health consequences of metabolic-associated fatty liver disease (MAFLD), early diagnosis and intervention are key to effective treatment. Recent studies highlight the important role of dietary factors, including the use of flavonoids, in improving liver health. These compounds possess anti-inflammatory, antioxidant, and liver-protective properties. Flavonoids have been shown to affect the gut microbiota, which plays a key role in liver function and disease progression. Therefore, their role in preventing the development and progression of MAFLD through modulation of the microbiome seems to be of interest. This narrative review aims to consolidate the current evidence on the effects of selected flavonoids on MAFLD progression, their potential mechanisms of action, and the implications for the development of personalized dietary interventions for the management of liver disease.
Collapse
Affiliation(s)
- Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
15
|
Liu X, Xia N, Yu Q, Jin M, Wang Z, Fan X, Zhao W, Li A, Jiang Z, Zhang L. Silybin Meglumine Mitigates CCl 4-Induced Liver Fibrosis and Bile Acid Metabolism Alterations. Metabolites 2024; 14:556. [PMID: 39452937 PMCID: PMC11509150 DOI: 10.3390/metabo14100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Silybin meglumine (SLB-M) is widely used in treating various liver diseases including liver fibrosis. However, research on its effects on bile acid (BA) metabolism is limited. This study investigated the therapeutic effects of SLB-M on liver fibrosis and BA metabolism in a CCl4-induced murine model. METHODS A murine liver fibrosis model was induced by CCl4. Fibrosis was evaluated using HE, picrosirius red, and Masson's trichrome staining. Liver function was assessed by serum and hepatic biochemical markers. Bile acid (BA) metabolism was analyzed using LC-MS/MS. Bioinformatics analyses, including PPI network, GO, and KEGG pathway analyses, were employed to explore molecular mechanisms. Gene expression alterations in liver tissue were examined via qRT-PCR. RESULTS SLB-M treatment resulted in significant histological improvements in liver tissue, reducing collagen deposition and restoring liver architecture. Biochemically, SLB-M not only normalized serum liver enzyme levels (ALT, AST, TBA, and GGT) but also mitigated disruptions in both systemic and hepatic BA metabolism by increased unconjugated BAs like cholic acid and chenodeoxycholic acid but decreased conjugated BAs including taurocholic acid and taurodeoxycholic acid, compared to that in CCl4-induced murine model. Notably, SLB-M efficiently improved the imbalance of BA homeostasis in liver caused by CCl4 via activating Farnesoid X receptor. CONCLUSIONS These findings underscore SLB-M decreased inflammatory response, reconstructed BA homeostasis possibly by regulating key pathways, and gene expressions in BA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zifan Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Wen Zhao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Anqin Li
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
16
|
Jaffar HM, Bader ul Ain H, Tufail T, Hanif A, Malik T. Impact of silymarin-supplemented cookies on liver enzyme and inflammatory markers in non-alcoholic fatty liver disease patients. Food Sci Nutr 2024; 12:7273-7286. [PMID: 39479680 PMCID: PMC11521666 DOI: 10.1002/fsn3.4348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing public health concern characterized by fat accumulation and severe disorders like nonalcoholic steatohepatitis (NASH), which are influenced by obesity, inflammatory processes, and metabolic pathways. This research investigates the potential of silymarin-supplemented cookies in managing NAFLD by evaluating their impact on liver enzyme activity, inflammatory markers, and lipid profiles. A clinical trial in Lahore, Pakistan, involved 64 NAFLD patients. Participants were divided into placebo and three treatment groups, with the latter receiving silymarin-supplemented cookies for 3 months. The study assessed liver enzyme levels and inflammatory markers, at baseline and after the intervention, utilizing statistical analyses to evaluate differences. The lipid profile and renal function test (RFT) were also measured at baseline and after 3 months in each group for safety assessment. After 3 months, the treatment groups indicated more significant decreases in liver enzymes compared to the placebo group (p ≤ .05). Treatment 3 showed significant reductions in alanine aminotransferase (ALT) (64.39-49.38 U/L) and aspartate aminotransferase (AST) (61.53-45.38 U/L). Treatment 3 also showed improvements in alkaline phosphatase (ALP) levels and the AST/ALT ratio. Additionally, the treatment group demonstrated a significant reduction in inflammatory markers. Treatment 3 showed a significant decrease in C-reactive protein (CRP) (6.32-3.39 mg/L) and erythrocyte sedimentation rate (ESR) (38.72-23.86 mm/h), indicating that individuals with NAFLD may benefit from the intervention's potential benefits in lowering inflammation. The study revealed that an intervention significantly improved the inflammatory markers, liver enzymes, and lipid profiles of NAFLD participants, suggesting potential benefits for liver health.
Collapse
Affiliation(s)
- Hafiza Madiha Jaffar
- Faculty of Allied Health SciencesUniversity Institute of Diet & Nutritional Sciences, University of LahoreLahorePakistan
| | - Huma Bader ul Ain
- Faculty of Allied Health SciencesUniversity Institute of Diet & Nutritional Sciences, University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet & Nutritional Sciences, University of LahoreLahorePakistan
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Asif Hanif
- Allied Health SciencesThe University of LahoreLahorePakistan
| | - Tabarak Malik
- Department of Biomedical SciencesJimma UniversityJimmaEthiopia
- Present address:
Division of Research & DevelopmentLovely Professional UniversityPhagwaraPunjab144001India
| |
Collapse
|
17
|
Liu L, Wang B, Ma Y, Sun K, Wang P, Li M, Dong J, Qin M, Li M, Wei C, Tan Y, He J, Guo K, Yu XA. A review of Phyllanthus urinaria L. in the treatment of liver disease: viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma. Front Pharmacol 2024; 15:1443667. [PMID: 39185304 PMCID: PMC11341462 DOI: 10.3389/fphar.2024.1443667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the pathological production of liver disease in utility particularly complexity, the morbidity and mortality of liver disease including viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma (HCC) are rapidly increasing worldwide. Considering its insidious onset, rapid progression and drug resistance, finding an effective therapy is particularly worthwhile. Phyllanthus urinaria L. (P. urinaria), an ethnic medicine, can be applied at the stages of viral hepatitis, liver fibrosis/cirrhosis and HCC, which demonstrates great potential in the treatment of liver disease. Currently, there are numerous reports on the application of P. urinaria in treating liver diseases, but a detailed analysis of its metabolites and a complete summary of its pharmacological mechanism are still scarce. In this review, the phytochemical metabolites and ethnopharmacological applications of P. urinaria are summarized. Briefly, P. urinaria mainly contains flavonoids, lignans, tannins, phenolic acids, terpenoids and other metabolites. The mechanisms of P. urinaria are mainly reflected in reducing surface antigen secretion and interfering with DNA polymerase synthesis for anti-viral hepatitis activity, reducing hepatic stellate cells activity, inflammation and oxidative stress for anti-liver fibrosis/cirrhosis activity, as well as preventing tumor proliferation, invasion and angiogenesis for anti-HCC activity via relevant signaling pathways. Accordingly, this review provides insights into the future application of natural products in the trilogy of liver diseases and will provide a scientific basis for further research and rational utilization of P. urinaria.
Collapse
Affiliation(s)
- Linhua Liu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Yibo Ma
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Junlin Dong
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meirong Qin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Mingshun Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunshan Wei
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Jinsong He
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keying Guo
- Department of Biotechnology and Food Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Xie-an Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| |
Collapse
|
18
|
Yang Z, Song S, Li L, Yuan Z, Li Y. Association between the composite dietary antioxidant index and metabolic dysfunction-associated steatotic liver disease in adults: a cross-sectional study from NHANES 2017-2020. Sci Rep 2024; 14:13801. [PMID: 38877074 PMCID: PMC11178812 DOI: 10.1038/s41598-024-63965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a predominant liver disease worldwide, lacking approved drugs for clinical intervention at present. The composite dietary antioxidant index (CDAI) is used to assess the anti-inflammatory properties of diets, with higher CDAI indicating greater exposure to antioxidants. Therefore, our study aimed to explore the relationship between CDAI and MASLD in order to identify potential therapeutic approaches. We collected data from 12,286 participants in the National Health and Nutrition Examination Survey (NHANES) database from 2017 to 2020 for analysis. The correlation between CDAI and MASLD status, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM) was evaluated by adjusting for confounding variables using weighted binary logistic regression model, linear regression model, and restricted cubic spline (RCS) regression. The median CDAI in this study was - 0.3055 (interquartile range [IQR], - 2.299 to 2.290). The CDAI was higher in the population characterized by being young, female, higher income, absence of diabetes, and non-MASLD. After multivariable adjustment, the results of the weighted linear regression model suggested that higher CDAI may be associated with a decrease in CAP values; the results of the RCS regression model indicated significant non-linear relationships between MASLD status, CAP, LSM, and CDAI. The CDAI corresponding to the inflection points of the relationship curves between MASLD status, CAP, LSM, and CDAI were 0.349, 0.699, and 0.174, respectively. After further stratification by gender, we found that the relationship between MASLD status, CAP, and CDAI was significantly linear for females, whereas for males, it was non-linear, and the CDAI values corresponding to the inflection points in the curves for males were 1.325 and 0.985, respectively. We found that higher CDAI may be associated with decreased CAP values, particularly significant in females, suggesting that the intake of complex dietary antioxidants may ameliorate hepatic steatosis and reduce the occurrence of MASLD. Therefore, promoting dietary patterns rich in antioxidants may be an appropriate strategy to reduce the incidence of MASLD.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Disease, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Shupeng Song
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lufeng Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhe Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Li A, Wang R, Zhao Y, Zhao P, Yang J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024; 14:325. [PMID: 38921460 PMCID: PMC11205353 DOI: 10.3390/metabo14060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.
Collapse
Affiliation(s)
- Anqi Li
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuqiang Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Peiran Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Jing Yang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| |
Collapse
|
20
|
Ahn YJ, Kim B, Kim YH, Kim TY, Seo H, Park Y, Park SS, Ahn Y. Enzyme-Treated Zizania latifolia Ethanol Extract Improves Liver-Related Outcomes and Fatigability. Foods 2024; 13:1725. [PMID: 38890953 PMCID: PMC11171771 DOI: 10.3390/foods13111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Long-term hepatic damage is associated with human morbidity and mortality owing to numerous pathogenic factors. A variety of studies have focused on improving liver health using natural products and herbal medicines. We aimed to investigate the effect of enzyme-treated Zizania latifolia ethanol extract (ETZL), which increases the content of tricin via enzymatic hydrolysis, for 8 weeks on liver-related outcomes, lipid metabolism, antioxidant activity, and fatigue compared to a placebo. Healthy Korean adult males aged 19-60 years were randomized into ETZL treatment and placebo groups, and alcohol consumption was 24.96 and 28.64 units/week, respectively. Alanine transaminase, a blood marker associated with liver cell injury, significantly decreased after 8 weeks compared to the baseline in the ETZL treatment group (p = 0.004). After 8 weeks, the treatment group showed significant changes in the levels of high-density lipoprotein and hepatic steatosis index compared to the baseline (p = 0.028 and p = 0.004, respectively). ETZL treatment tended to reduce antioxidant-activity-related factors, total antioxidant status, and malondialdehyde, but there was no significant difference. In the multidimensional fatigue scale, ETZL treatment showed a significant reduction in general fatigue and total-fatigue-related values after 8 weeks compared to the baseline (p = 0.012 and p = 0.032, respectively). Taken together, the 8-week treatment of enzyme-treated Zizania latifolia ethanol extract demonstrated positive effects on liver-related outcomes, lipid metabolism, and mental fatigue without adverse effects on safety-related parameters.
Collapse
Affiliation(s)
- Yu-Jin Ahn
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea;
| | - Boyun Kim
- Department of Smart-Bio, Kyungsung University, Busan 48434, Republic of Korea;
| | - Yoon Hee Kim
- R&D Center, BTC Corporation, Ansan 15588, Republic of Korea
| | - Tae Young Kim
- R&D Center, BTC Corporation, Ansan 15588, Republic of Korea
| | - Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Yejin Ahn
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
21
|
Kozlov AV, Javadov S, Sommer N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants (Basel) 2024; 13:602. [PMID: 38790707 PMCID: PMC11117742 DOI: 10.3390/antiox13050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives that include free radicals such as superoxide anion radical (O2•-) and hydroxyl radical (HO•), as well as non-radical molecules hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hypochlorous acid (HOCl) [...].
Collapse
Affiliation(s)
- Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
22
|
Yang X, Zheng H, Niu J, Chen X, Li H, Rao Z, Guo Y, Zhang W, Wang Z. Curcumin alleviates zearalenone-induced liver injury in mice by scavenging reactive oxygen species and inhibiting mitochondrial apoptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116343. [PMID: 38657456 DOI: 10.1016/j.ecoenv.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Curcumin (CUR) is a compound extracted from turmeric that has a variety of functions including antioxidant and anti-inflammatory. As an estrogen-like mycotoxin, zearalenone (ZEN) not only attacks the reproductive system, but also has toxic effects on the liver. However, whether CUR can alleviate ZEN-induced liver injury remains unclear. This paper aims to investigate the protective effect of CUR against ZEN-induced liver injury in mice and explore the molecular mechanism involved. BALB/c mice were randomly divided into control (CON) group, CUR group (200 mg/kg b. w. CUR), ZEN group (40 mg/kg b. w. ZEN) and CUR+ZEN group (200 mg/kg b. w. CUR+40 mg/kg b. w. ZEN). 28 d after ZEN exposure and CUR treatment, blood and liver samples were collected for subsequent testing. The results showed that CUR reversed ZEN-induced hepatocyte swelling and necrosis in mice. It significantly reduced the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice (p < 0.05). In addition, CUR significantly reduced hepatic ROS, malondialdehyde, hydrogen peroxide and apoptosis levels in mice (p < 0.05). Quantitative RT-PCR and Western blot results showed that CUR significantly reduced the expression of Bax and Caspase3, and reversed the increase of Nrf2, HO-1 and NQO1 expression in the liver of mice induced by ZEN (p < 0.05). In conclusion, CUR alleviated ZEN-induced liver injury in mice by scavenging ROS and inhibiting the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Hao Zheng
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Junlong Niu
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Xiaoshuang Chen
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Hongfei Li
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Zhiyong Rao
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Yongpeng Guo
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Wei Zhang
- Animal Nutrition Control Laboratory of Henan Agricultural University, China.
| | - Zhixiang Wang
- Animal Nutrition Control Laboratory of Henan Agricultural University, China.
| |
Collapse
|
23
|
Ioniuc I, Lupu A, Tarnita I, Mastaleru A, Trandafir LM, Lupu VV, Starcea IM, Alecsa M, Morariu ID, Salaru DL, Azoicai A. Insights into the Management of Chronic Hepatitis in Children-From Oxidative Stress to Antioxidant Therapy. Int J Mol Sci 2024; 25:3908. [PMID: 38612717 PMCID: PMC11011982 DOI: 10.3390/ijms25073908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Recent research has generated awareness of the existence of various pathophysiological pathways that contribute to the development of chronic diseases; thus, pro-oxidative factors have been accepted as significant contributors to the emergence of a wide range of diseases, from inflammatory to malignant. Redox homeostasis is especially crucial in liver pathology, as disturbances at this level have been linked to a variety of chronic diseases. Hepatitis is an umbrella term used to describe liver inflammation, which is the foundation of this disease regardless of its cause. Chronic hepatitis produces both oxidative stress generated by hepatocyte inflammation and viral inoculation. The majority of hepatitis in children is caused by a virus, and current studies reveal that 60-80% of cases become chronic, with many young patients still at risk of advancing liver damage. This review intends to emphasize the relevance of understanding these pathological redox pathways, as well as the need to update therapeutic strategies in chronic liver pathology, considering the beneficial effects of antioxidants.
Collapse
Affiliation(s)
- Ileana Ioniuc
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Ancuta Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Irina Tarnita
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Alexandra Mastaleru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (D.L.S.)
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Vasile Valeriu Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Iuliana Magdalena Starcea
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Mirabela Alecsa
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (D.L.S.)
| | - Alice Azoicai
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.I.); (I.T.); (L.M.T.); (I.M.S.); (M.A.); (A.A.)
| |
Collapse
|
24
|
Shalapy NM, Liu M, Kang W. Protective effects of hepatic diseases by bioactive phytochemicals in Fusarium oxysporum - A review. Heliyon 2024; 10:e26562. [PMID: 38455549 PMCID: PMC10918022 DOI: 10.1016/j.heliyon.2024.e26562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Lately, liver diseases were categorized as one of the most prevalent health problems globally as it causes a severe threat to mankind all over the world due to the wide range of occurrence. There are multiple factors causing hepatic disorders, such as alcohol, virus, poisons, adverse effects of drugs, poor diet, inherited conditions and obesity. Liver diseases have various types including alcoholic liver disease, non-alcoholic fatty liver disease, autoimmune hepatitis, liver cancer, hepatocellular carcinoma, liver fibrosis and hepatic inflammation. Therefore, it is imperative to find effective and efficacious agents in managing liver diseases. Fusarium oxysporum, an endophytic fungus and containing many bioactive compounds, could be served as a forked medication for enormous number and types of maladies. It was characterized by producing biochemical compounds which had rare pharmacological properties as it may be found in a limit number of other medicinal plants. The majority of the past researches related to Fusarium oxysporum recited the fungal negative field either on the pathogenic effects of the fungus on economical crops or on the fungal chemical components to know how to resist it. The present review will highlight on the bright side of Fusarium oxysporum and introduce the functional activities of its chemical compounds for treating its target diseases. The key point of illustrated studies in this article is displaying wide range of detected bioactive compounds isolated from Fusarium oxysporum and in other illustrated studies it was elucidated the therapeutical and pharmacological potency of these biologically active compounds (isolated from medicinal plants sources) against different types of liver diseases including non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and others. It was demonstrated that F. oxysporum contains unique types of isoflavones, flavonoids, phenols and another active chemical compounds, and these compounds showed recently a fabulous clinical contribution in the therapy of liver injury diseases, which opens new and unprecedented way for evaluating the maintaining efficacy of Fusarium oxysporum bioactive compounds in dealing with hepatic complications and its remedy impacting on liver diseases and injured hepatocytes through recommending implement a practical study.
Collapse
Affiliation(s)
- Nashwa M. Shalapy
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Cairo, Egypt
| | - Ming Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China
| |
Collapse
|
25
|
Liu S, Zhao Y, Li S, Li Y, Liu L, Sheng J, Tian Y, Gao X. Network pharmacology combined with an animal model to reveal the material basis and mechanism of Amomum villosum in alleviating constipation in mice. Gene 2024; 897:148064. [PMID: 38065427 DOI: 10.1016/j.gene.2023.148064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Constipation is a prevalent gastrointestinal disorder, with its prevalence showing an annual upward trend. There are many factors involved in the occurrence of constipation, such as abnormal smooth muscle contraction and disorders of gastrointestinal hormone secretion. Amomum villosum (A. villosum) has been proven to be effective in improving digestive system diseases, but there is no report on improving constipation. Therefore, we used network pharmacology prediction combined with animal experiments to explore the key active components of A. villosum and their pharmacological mechanisms. The results of network pharmacological prediction showed that β-sitosterol was the key laxative compound of A. villosum, which may play a laxative role by activating the adrenoceptor alpha 1 A-myosin light chain (ADRA1A-MLC) pathway. Further animal experiments showed that β-sitosterol could significantly shorten the time to first black stool; increase faecal weight, faecal number, and faecal water content; and promote gastrointestinal motility. β-sitosterol may promote intestinal motility by upregulating the expression of ADRA1A and myosin light chain 9 (Myl9) mRNA and protein in the colon, thereby activating the ADRA1A-MLC signalling pathway. In addition, it is possible to improve constipation symptoms by regulating serum neurotransmitters and gastrointestinal motility-related factors, such as the serum content of 5-hydroxytryptamine (5-HT) and acetylcholinesterase (AchE) and the mRNA expression of 5-hydroxytryptamine receptor 4 (5-HT4), stem cell factor (SCF), stem cell factor receptor (c-Kit) and smooth muscle myosin light chain kinase (smMLCK) in the colon. These results lay a foundation for the application of A. villosum and β-sitosterol in constipation.
Collapse
Affiliation(s)
- Shuangfeng Liu
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Zhao
- Division of Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Sijin Li
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Puer 665099, China
| | - Yanan Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
26
|
Rycyk-Bojarzyńska A, Kasztelan-Szczerbińska B, Cichoż-Lach H, Surdacka A, Roliński J. Human Neutrophil Alpha-Defensins Promote NETosis and Liver Injury in Alcohol-Related Liver Cirrhosis: Potential Therapeutic Agents. J Clin Med 2024; 13:1237. [PMID: 38592082 PMCID: PMC10931661 DOI: 10.3390/jcm13051237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Neutrophils are thought to play a pivotal role in the pathogenesis of many inflammatory diseases, such as hepatitis, liver cirrhosis, etc. Activated human neutrophils release human neutrophil peptides (HNP1-3) or alpha-defensins that are antimicrobial peptides in azurophil granules. Furthermore, HNP1-3 build a scaffold of neutrophil extracellular traps (NETs) and promote the process of programmed cell death called NETosis. Our study aimed to investigate the role of alpha-defensins in the pathogenesis of alcohol-related liver cirrhosis (ALC). Methods: The concentrations of alpha-defensins in the plasma of 62 patients with ALC and 24 healthy subjects were measured by ELISA. The patients with ALC were prospectively recruited based on the severity of liver dysfunction according to the Child-Pugh and Model of End-Stage Liver Disease-Natrium (MELD-Na) scores, modified Maddrey's Discriminant Function (mDF), and the presence of ALC complications. Results: The concentrations of alpha-defensins in plasma were significantly higher in the ALC patients than in the controls. The plasma levels of HNP1-3 correlated with the MELD and mDF scores. ALC subgroups with MELD > 20 and mDF > 32 displayed significantly higher HNP1-3 concentrations. The plasma levels of HNP1-3 revealed a good predictive AUC for hepatic encephalopathy and ascites development (0.81 and 0.74, respectively) and for patient survival (0.87) in those over 40 years of age. Conclusion: These findings suggest that alpha-defensins play an important role in the assessment of ALC.
Collapse
Affiliation(s)
- Anna Rycyk-Bojarzyńska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Beata Kasztelan-Szczerbińska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Agata Surdacka
- Department of Clinical Immunology, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.); (J.R.)
| |
Collapse
|
27
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
28
|
Bellanti F, Mangieri D, Vendemiale G. Redox Biology and Liver Fibrosis. Int J Mol Sci 2023; 25:410. [PMID: 38203581 PMCID: PMC10778611 DOI: 10.3390/ijms25010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatic fibrosis is a complex process that develops in chronic liver diseases. Even though the initiation and progression of fibrosis rely on the underlying etiology, mutual mechanisms can be recognized and targeted for therapeutic purposes. Irrespective of the primary cause of liver disease, persistent damage to parenchymal cells triggers the overproduction of reactive species, with the consequent disruption of redox balance. Reactive species are important mediators for the homeostasis of both hepatocytes and non-parenchymal liver cells. Indeed, other than acting as cytotoxic agents, reactive species are able to modulate specific signaling pathways that may be relevant to hepatic fibrogenesis. After a brief introduction to redox biology and the mechanisms of fibrogenesis, this review aims to summarize the current evidence of the involvement of redox-dependent pathways in liver fibrosis and focuses on possible therapeutic targets.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
29
|
Zhao Y, Dai E, Dong L, Yuan J, Zhao Y, Wu T, Kong R, Li M, Wang S, Zhou L, Yang Y, Kong H, Zhao Y, Qu H. Available and novel plant-based carbon dots derived from Vaccaria Semen carbonisata alleviates liver fibrosis. Front Mol Biosci 2023; 10:1282929. [PMID: 38116381 PMCID: PMC10729316 DOI: 10.3389/fmolb.2023.1282929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
Background: Liver fibrosis represents an intermediate stage in the progression of liver disease, and as of now, there exists no established clinical therapy for effective antifibrotic treatment. Purpose: Our aim is to explore the impact of Carbon dots derived from Vaccaria Semen Carbonisata (VSC-CDs) on carbon tetrachloride-induced liver fibrosis in mice. Methods: VSC-CDs were synthesized employing a modified pyrolysis process. Comprehensive characterization was performed utilizing various techniques, including transmission electron microscopy (TEM), multiple spectroscopies, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). A hepatic fibrosis model induced by carbon tetrachloride was utilized to evaluate the anti-hepatic fibrosis effects of VSC-CDs. Results: VSC-CDs, exhibiting a quantum yield (QY) of approximately 2.08%, were nearly spherical with diameters ranging from 1.0 to 5.5 nm. The VSC-CDs prepared in this study featured a negative charge and abundant chemical functional groups. Furthermore, these particles demonstrated outstanding dispersibility in the aqueous phase and high biocompatibility. Moreover, VSC-CDs not only enhanced liver function and alleviated liver damage in pathomorphology but also mitigated the extent of liver fibrosis. Additionally, this study marks the inaugural demonstration of the pronounced activity of VSC-CDs in inhibiting inflammatory reactions, reducing oxidative damage, and modulating the TGF-β/Smad signaling pathway. Conclusion: VSC-CDs exerted significant potential for application in nanodrugs aimed at treating liver fibrosis.
Collapse
Affiliation(s)
- Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ertong Dai
- Qingdao Eighth People’s Hospital, Qingdao, Shandong, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruolan Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuxian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Long Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingxin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Awla NJ, Naqishbandi AM, Baqi Y. Preventive and Therapeutic Effects of Silybum marianum Seed Extract Rich in Silydianin and Silychristin in a Rat Model of Metabolic Syndrome. ACS Pharmacol Transl Sci 2023; 6:1715-1723. [PMID: 37974616 PMCID: PMC10644432 DOI: 10.1021/acsptsci.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Metabolic syndrome (MetS) has become an increasing global health problem, which leads to cardiovascular diseases and type 2 diabetes. Silybum marianum extracts have been reported to possess several biological activities. In this study, an ethyl acetate extract prepared from S. marianum seeds of the Iraqi Kurdistan region was analyzed to identify its chemical constituents. Subsequently, its potential for the prevention and treatment of MetS was studied in a rat model induced by a high-fat/high-fructose diet (HFD/F). Silydianin and silychristin were the most abundant flavonolignan constituents (39.4%) identified in the S. marianum extract (SMEE). HFD/F-induced rats treated with SMEE exhibited preventive effects including reduced serum triglyceride levels (TG), decreased glucose levels in an oral glucose tolerance test (p < 0.001), attenuated weight gain, and reduced blood pressure compared to the untreated control group. Therapeutic application of SMEE after inducing MetS led to lowering of TG (p < 0.001) and glucose levels, in addition to reducing weight gain and normalizing blood pressure (p < 0.005). Thus, S. marianum extract rich in silydianin and silychristin may be useful for preventing and attenuating MetS, and further research and clinical trials are warranted.
Collapse
Affiliation(s)
- Naza Jalal Awla
- Department
of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Alaadin M. Naqishbandi
- Department
of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Younis Baqi
- Department
of Chemistry, Faculty of Science, Sultan
Qaboos University, P.O. Box 36,
Postal Code 123 Muscat, Sultanate of Oman
| |
Collapse
|
31
|
Zhang C, Sui Y, Liu S, Yang M. Anti-Viral Activity of Bioactive Molecules of Silymarin against COVID-19 via In Silico Studies. Pharmaceuticals (Basel) 2023; 16:1479. [PMID: 37895950 PMCID: PMC10610370 DOI: 10.3390/ph16101479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection drove the global coronavirus disease 2019 (COVID-19) pandemic, causing a huge loss of human life and a negative impact on economic development. It is an urgent necessity to explore potential drugs against viruses, such as SARS-CoV-2. Silymarin, a mixture of herb-derived polyphenolic flavonoids extracted from the milk thistle, possesses potent antioxidative, anti-apoptotic, and anti-inflammatory properties. Accumulating research studies have demonstrated the killing activity of silymarin against viruses, such as dengue virus, chikungunya virus, and hepatitis C virus. However, the anti-COVID-19 mechanisms of silymarin remain unclear. In this study, multiple disciplinary approaches and methodologies were applied to evaluate the potential mechanisms of silymarin as an anti-viral agent against SARS-CoV-2 infection. In silico approaches such as molecular docking, network pharmacology, and bioinformatic methods were incorporated to assess the ligand-protein binding properties and analyze the protein-protein interaction network. The DAVID database was used to analyze gene functions, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment. TCMSP and GeneCards were used to identify drug target genes and COVID-19-related genes. Our results revealed that silymarin compounds, such as silybin A/B and silymonin, displayed triplicate functions against SARS-CoV-2 infection, including directly binding with human angiotensin-converting enzyme 2 (ACE2) to inhibit SARS-CoV-2 entry into the host cells, directly binding with viral proteins RdRp and helicase to inhibit viral replication and proliferation, and regulating host immune response to indirectly inhibit viral infection. Specifically, the targets of silymarin molecules in immune regulation were screened out, such as proinflammatory cytokines TNF and IL-6 and cell growth factors VEGFA and EGF. In addition, the molecular mechanism of drug-target protein interaction was investigated, including the binding pockets of drug molecules in human ACE2 and viral proteins, the formation of hydrogen bonds, hydrophobic interactions, and other drug-protein ligand interactions. Finally, the drug-likeness results of candidate molecules passed the criteria for drug screening. Overall, this study demonstrates the molecular mechanism of silymarin molecules against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China;
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
32
|
Zheng Y, Ying H, Shi J, Li L, Zhao Y. Alanyl-Glutamine Dipeptide Attenuates Non-Alcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice by Improving Gut Microbiota Dysbiosis. Nutrients 2023; 15:3988. [PMID: 37764772 PMCID: PMC10534574 DOI: 10.3390/nu15183988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) manifests as a persistent liver ailment marked by the excessive buildup of lipids within the hepatic organ accompanied by inflammatory responses and oxidative stress. Alanyl-glutamine (AG), a dipeptide comprising alanine and glutamine, is commonly employed as a nutritional supplement in clinical settings. This research aims to evaluate the impact of AG on NAFLD triggered by a high-fat diet (HFD), while concurrently delving into the potential mechanisms underlying its effects. The results presented herein demonstrate a notable reduction in the elevated body weight, liver mass, and liver index induced by a HFD upon AG administration. These alterations coincide with the amelioration of liver injury and the attenuation of hepatic histological advancement. Furthermore, AG treatment manifests a discernible diminution in oil-red-O-stained regions and triglyceride (TG) levels within the liver. Noteworthy alterations encompass lowered plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) concentrations, coupled with elevated high-density lipoprotein cholesterol (HDLC) concentrations. The mitigation of hepatic lipid accumulation resultant from AG administration is aligned with the downregulation of ACC1, SCD1, PPAR-γ, and CD36 expression, in conjunction with the upregulation of FXR and SHP expression. Concomitantly, AG administration leads to a reduction in the accumulation of F4/80-positive macrophages within the liver, likely attributable to the downregulated expression of MCP-1. Furthermore, AG treatment yields a decline in hepatic MDA levels and a concurrent increase in the activities of SOD and GPX. A pivotal observation underscores the effect of AG in rectifying the imbalance of gut microbiota in HFD-fed mice. Consequently, this study sheds light on the protective attributes of AG against HFD-induced NAFLD through the modulation of gut microbiota composition.
Collapse
Affiliation(s)
- Yigang Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
33
|
Moghtadaie A, Mahboobi H, Fatemizadeh S, Kamal MA. Emerging role of nanotechnology in treatment of non-alcoholic fatty liver disease (NAFLD). EXCLI JOURNAL 2023; 22:946-974. [PMID: 38023570 PMCID: PMC10630531 DOI: 10.17179/excli2023-6420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevailing health challenge that requires urgent innovative interventions. This review explores the role of nanotechnology as a promising potential in the treatment of NAFLD. It delineates the limitations of the current management strategies for NAFLD and highlights the new nanotechnology-based treatments including nanoemulsions, liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanoparticles, and zinc oxide nanoparticles. Despite the optimism surrounding the nanotechnological approach, the review underscores the need to address the limitations such as technical challenges, potential toxicity, and ethical considerations that impede the practical application of nanotechnology in NAFLD management. It advocates for collaborative efforts from researchers, clinicians, ethicists, and policymakers to achieve safe, effective, and equitable nanotechnology-based treatments for NAFLD. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Atie Moghtadaie
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahboobi
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Fatemizadeh
- Department of Gastroenterology and Hepatology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
34
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Zhang CY, Liu S, Yang M. Treatment of liver fibrosis: Past, current, and future. World J Hepatol 2023; 15:755-774. [PMID: 37397931 PMCID: PMC10308286 DOI: 10.4254/wjh.v15.i6.755] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/25/2023] Open
Abstract
Liver fibrosis accompanies the progression of chronic liver diseases independent of etiologies, such as hepatitis viral infection, alcohol consumption, and metabolic-associated fatty liver disease. It is commonly associated with liver injury, inflammation, and cell death. Liver fibrosis is characterized by abnormal accumulation of extracellular matrix components that are expressed by liver myofibroblasts such as collagens and alpha-smooth actin proteins. Activated hepatic stellate cells contribute to the major population of myofibroblasts. Many treatments for liver fibrosis have been investigated in clinical trials, including dietary supplementation (e.g., vitamin C), biological treatment (e.g., simtuzumab), drug (e.g., pegbelfermin and natural herbs), genetic regulation (e.g., non-coding RNAs), and transplantation of stem cells (e.g., hematopoietic stem cells). However, none of these treatments has been approved by Food and Drug Administration. The treatment efficacy can be evaluated by histological staining methods, imaging methods, and serum biomarkers, as well as fibrosis scoring systems, such as fibrosis-4 index, aspartate aminotransferase to platelet ratio, and non-alcoholic fatty liver disease fibrosis score. Furthermore, the reverse of liver fibrosis is slowly and frequently impossible for advanced fibrosis or cirrhosis. To avoid the life-threatening stage of liver fibrosis, anti-fibrotic treatments, especially for combined behavior prevention, biological treatment, drugs or herb medicines, and dietary regulation are needed. This review summarizes the past studies and current and future treatments for liver fibrosis.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- Department of Radiology,The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
36
|
Regnault R, Klupsch F, El-Bouazzati H, Magnez R, Le Biannic R, Leleu-Chavain N, Ahouari H, Vezin H, Millet R, Goossens JF, Thuru X, Bailly C. Novel PD-L1-Targeted Phenyl-Pyrazolone Derivatives with Antioxidant Properties. Molecules 2023; 28:molecules28083491. [PMID: 37110727 PMCID: PMC10144346 DOI: 10.3390/molecules28083491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Orally-active anticancer small molecules targeting the PD-1/PD-L1 immune checkpoint are actively searched. Phenyl-pyrazolone derivatives with a high affinity for PD-L1 have been designed and characterized. In addition, the phenyl-pyrazolone unit acts as a scavenger of oxygen free radicals, providing antioxidant effects. The mechanism is known for the drug edaravone (1) which is also an aldehyde-reactive molecule. The present study reports the synthesis and functional characterization of new molecules (2-5) with an improved anti-PD-L1 activity. The leading fluorinated molecule 5 emerges as a potent checkpoint inhibitor, avidly binding to PD-L1, inducing its dimerization, blocking PD-1/PD-L1 signaling mediated by phosphatase SHP-2 and reactivating the proliferation of CTLL-2 cells in the presence of PD-L1. In parallel, the compound maintains a significant antioxidant activity, characterized using electron paramagnetic resonance (EPR)-based free radical scavenging assays with the probes DPPH and DMPO. The aldehyde reactivity of the molecules was investigated using 4-hydroxynonenal (4-HNE), which is a major lipid peroxidation product. The formation of drug-HNE adducts, monitored by high resolution mass spectrometry (HRMS), was clearly identified and compared for each compound. The study leads to the selection of compound 5 and the dichlorophenyl-pyrazolone unit as a scaffold for the design of small molecule PD-L1 inhibitors endowed with antioxidant properties.
Collapse
Affiliation(s)
- Romain Regnault
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Frédérique Klupsch
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hassiba El-Bouazzati
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Romain Magnez
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Raphaël Le Biannic
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hania Ahouari
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
- FR 2638-IMEC-Institut Michel-Eugène Chevreul, University Lille, F-59655 Lille, France
| | - Hervé Vezin
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
| | - Régis Millet
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Jean-François Goossens
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Xavier Thuru
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Christian Bailly
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
- Oncowitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France
| |
Collapse
|