1
|
Deng X, Li S, Wu Y, Yao J, Hou W, Zheng J, Liang B, Liang X, Hu Q, Wu Z, Tang Z. Correlation analysis of the impact of Clonorchis sinensis juvenile on gut microbiota and transcriptome in mice. Microbiol Spectr 2025; 13:e0155024. [PMID: 39727670 PMCID: PMC11792474 DOI: 10.1128/spectrum.01550-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Clonorchiasis remains a non-negligible global zoonosis, imposing serious socio-economic burdens in endemic regions. The interplay between gut microbiota and the host transcriptome is crucial for maintaining health; however, the impact of Clonorchiasis sinensis juvenile infection on these factors is still poorly understood. This study aimed to investigate their relationship and potential pathogenic mechanisms. The BALB/c mouse model of early infection with C. sinensis juvenile was constructed. Pathological analyses revealed that C. sinensis juvenile triggered liver inflammation, promoted intestinal villi growth, and augmented goblet cell numbers in the ileum. Additionally, the infection altered the diversity and structure of gut microbiota, particularly affecting beneficial bacteria that produce short-chain fatty acids, such as Lactobacillus and Muribaculaceae, and disrupted the Firmicutes/Bacteroidetes ratio. Gut transcriptome analysis demonstrated an increase in the number of differentially expressed genes (DEGs) as infection progressed. Enriched Gene Ontology items highlighted immune and detoxification-related processes, including immunoglobulin production and xenobiotic metabolic processes. Kyoto Encyclopedia of Genes and Genomes pathway analysis further indicated involvement in circadian rhythm, as well as various detoxification and metabolic-related pathways (e.g., glutathione metabolism and glycolysis/gluconeogenesis). Prominent DEGs associated with these pathways included Igkv12-41, Mcpt2, Arntl, Npas2, Cry1, and Gsta1. Correlation analysis additionally identified Bacteroides_sartorii as a potential key regulator in the interaction between gut microbiota and transcriptome. This study sheds light on the alterations in gut microbiota and transcriptome in mice following C. sinensis juvenile infection, as well as their correlation, laying a foundation for a better understanding of their interaction during infection. IMPORTANCE This study highlighted the impact of C. sinensis juvenile infection on the gut microbiota and transcriptome of BALB/c mice. It induced liver inflammation, promoted intestinal villi growth, and altered goblet cell numbers. The infection also disrupted the diversity and structure of gut microbiota, particularly affecting beneficial bacteria. Transcriptome analysis revealed increased expression of genes related to immune response and detoxification processes. Important pathways affected included circadian rhythm, glutathione metabolism, and glycolysis/gluconeogenesis. Notable genes implicated included Igkv12-41, Mcpt2, Arntl, Npas2, Cry1, and Gsta1. Bacteroides_sartorii emerged as a potential key regulator in this interaction.
Collapse
Affiliation(s)
- Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Shitao Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuhong Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jiali Yao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Hou
- Guangxi Key Laboratory of Thalassemia Research, Nanning, China
| | - Jiangyao Zheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Boying Liang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xiaole Liang
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
2
|
Chin KW, Khoo SC, Paul RPM, Luang-In V, Lam SD, Ma NL. Potential of Synbiotics and Probiotics as Chemopreventive Agent. Probiotics Antimicrob Proteins 2024; 16:2085-2101. [PMID: 38896220 DOI: 10.1007/s12602-024-10299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Cancer remains a global problem, with millions of new cases diagnosed yearly and countless lives lost. The financial burden of cancer therapy, along with worries about the long-term safety of existing medicines, necessitates the investigation of alternative approaches to cancer prevention. Probiotics generate chemopreventive compounds such as bacteriocins, short-chain fatty acids (SCFA), and extracellular polymeric substances (EPS), which have demonstrated the ability to impede cancer cell proliferation, induce apoptosis, and bolster the expression of pro-apoptotic genes. On the other hand, prebiotics, classified as non-digestible food ingredients, promote the proliferation of probiotics within the colon, thereby ensuring sustained functionality of the gut microbiota. Consequently, the synergistic effect of combining prebiotics with probiotics, known as the synbiotic effect, in dietary interventions holds promise for potentially mitigating cancer risk and augmenting preventive measures. The utilization of gut microbiota in cancer treatment has shown promise in alleviating adverse health effects. This review explored the potential and the role of probiotics and synbiotics in enhancing health and contributing to cancer prevention efforts. In this review, the applications of functional probiotics and synbiotics, the mechanisms of action of probiotics in cancer, and the relationship of probiotics with various drugs were discussed, shedding light on the potential of probiotics and synbiotics to alleviate the burdens of cancer treatment.
Collapse
Affiliation(s)
- Kah Wei Chin
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Shing Ching Khoo
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Richard Paul Merisha Paul
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, 44150, Kantarawichai, Maha Sarakham, Thailand
| | - Su Datt Lam
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Nyuk Ling Ma
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
3
|
Deng L, Guo X, Chen J, Li B, Liu N, Xia J, Ou M, Hong Z. Effect of intestinal microbiota transplantation on chronic hepatitis B virus infection associated liver disease. Front Microbiol 2024; 15:1458754. [PMID: 39323880 PMCID: PMC11422146 DOI: 10.3389/fmicb.2024.1458754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Background Research on the effects of intestinal microbiota transplantation (IMT) on chronic HBV infection (CHB) progression associated liver disease (HBV-CLD) and alterations in the microbiota post-IMT are quite limited for the moment. Methods By integrating microbiome with metabolome analyses, we aimed to the function of IMT and the alterations of gut microbiota in patients with HBV-CLD. First, this study included 20 patients with HBV-CLD and ten healthy controls. Then, 16 patients with CHB were given IMT with donor feces (heterologous) via oral capsule. Fecal samples from CHB patients were obtained before and after IMT, as well as healthy controls, for 16S rDNA sequencing and untargeted metabolomics analysis. Results The proalbuminemia were significantly increased after IMT, and the HBsAg and TBA showed a significant decrease after IMT in the HBV-CLD patients. There was statistical difference in the Chaol indexes between between CHB patients and healthy controls, suggesting a lower abundance of the gut microbiota in HBV-CLD patients. In addition, there was statistical difference in the Shannon and Simpson indexes between prior to IMT and post-IMT, indicating that the impaired abundance of the gut microbiota had been improved after IMT. The host-microbiota-metabolite interplay, amino acid metabolism, nicotinate and nicotinamide metabolism, starch and sucrose metabolism, steroid biosynthesis, and vitamins metabolism, were significantly lower in HBV-CLD patients than healthy controls. Conclusion IMT may improve the therapeutic effects on patients HBV-CLD. Furthermore, IMT appears to improve amino acid metabolism by impaired abundance of the gut microbiota and therefore improve liver prealbumin synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mengdang Ou
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhongsi Hong
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
4
|
Liu B, Yang H, Liao Q, Wang M, Huang J, Xu R, Shan Z, Zhong H, Li T, Li C, Fu Y, Rong X. Altered gut microbiota is associated with the formation of occult hepatitis B virus infection. Microbiol Spectr 2024; 12:e0023924. [PMID: 38785430 PMCID: PMC11218497 DOI: 10.1128/spectrum.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatitis B virus (HBV), a common blood transmission pathogen worldwide, can lead to viral hepatitis, cirrhosis, liver cancer, and other liver diseases. In particular, occult hepatitis B virus infection (OBI) may be caused by an immune response leading to suppressed virus replication. Gut microbiota can change the immunity status of the human body and, therefore, affect the replication of HBV. Thus, to identify whether there are differences in gut microbiota between HBV carriers and OBI carriers, we collected fecal samples from 18 HBV carriers, 24 OBI blood donors, and also 20 healthy blood donors as negative control. After 16S sequencing, we found that the abundance of Faecalibacterium was significantly reduced in samples from OBI blood donors compared with those from healthy blood donors. Compared with samples from HBV carriers, the samples from OBI blood donors had a significantly increased abundance of Subdoligranulum, which might stimulate immune activation, thus inhibiting HBV replication and contributing to the formation of occult infection. Our findings revealed the potential role of gut microbiota in the formation of OBI and further provided a novel strategy for the treatment of HBV infection.IMPORTANCEOccult hepatitis B virus infection (OBI) is a special form of hepatitis B virus infection with hepatitis B surface antigen (HBsAg) positive and hepatitis B virus (HBV) DNA negative. Gut microbiota may contribute to the immune response leading to suppressed virus replication and, thus, participates in the development of OBI. The study on gut microbiota of OBI blood donors provides novel data considerably advancing our understanding of the immune mechanism for the determination of occult hepatitis B virus infection, which is helpful for improving the strategy of the treatment of HBV infection.
Collapse
Affiliation(s)
- Bochao Liu
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Hualong Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiao Liao
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Min Wang
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Jieting Huang
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Ru Xu
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Huishan Zhong
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongshui Fu
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Xia Rong
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Wen J, Chen G, Wang T, Yu W, Liu Z, Wang H. High-pressure Hydrodynamic Injection as a Method of Establishing Hepatitis B Virus Infection in Mice. Comp Med 2024; 74:19-24. [PMID: 38365263 PMCID: PMC10938560 DOI: 10.30802/aalas-cm-23-000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Among several existing mouse models for hepatitis B virus (HBV) infection, the high-pressure hydrodynamic injection (HDI) method is frequently used in HBV research due to its economic advantages and ease of implementation. The use of the HDI method is influenced by factors such as mouse genetic background, age, sex, and the type of HBV plasmid used. This overview provides a multidimensional analysis and comparison of various factors that influence the effectiveness of the HBV mouse model established through HDI. The goal is to provide a summary of information for researchers who create HBV models in mice.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoli Chen
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tianshun Wang
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wan Yu
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhengyun Liu
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huan Wang
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Shah YR, Ali H, Tiwari A, Guevara-Lazo D, Nombera-Aznaran N, Pinnam BSM, Gangwani MK, Gopakumar H, Sohail AH, Kanumilli S, Calderon-Martinez E, Krishnamoorthy G, Thakral N, Dahiya DS. Role of fecal microbiota transplant in management of hepatic encephalopathy: Current trends and future directions. World J Hepatol 2024; 16:17-32. [PMID: 38313244 PMCID: PMC10835490 DOI: 10.4254/wjh.v16.i1.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Fecal microbiota transplantation (FMT) offers a potential treatment avenue for hepatic encephalopathy (HE) by leveraging beneficial bacterial displacement to restore a balanced gut microbiome. The prevalence of HE varies with liver disease severity and comorbidities. HE pathogenesis involves ammonia toxicity, gut-brain communication disruption, and inflammation. FMT aims to restore gut microbiota balance, addressing these factors. FMT's efficacy has been explored in various conditions, including HE. Studies suggest that FMT can modulate gut microbiota, reduce ammonia levels, and alleviate inflammation. FMT has shown promise in alcohol-associated, hepatitis B and C-associated, and non-alcoholic fatty liver disease. Benefits include improved liver function, cognitive function, and the slowing of disease progression. However, larger, controlled studies are needed to validate its effectiveness in these contexts. Studies have shown cognitive improvements through FMT, with potential benefits in cirrhotic patients. Notably, trials have demonstrated reduced serious adverse events and cognitive enhancements in FMT arms compared to the standard of care. Although evidence is promising, challenges remain: Limited patient numbers, varied dosages, administration routes, and donor profiles. Further large-scale, controlled trials are essential to establish standardized guidelines and ensure FMT's clinical applications and efficacy. While FMT holds potential for HE management, ongoing research is needed to address these challenges, optimize protocols, and expand its availability as a therapeutic option for diverse hepatic conditions.
Collapse
Affiliation(s)
- Yash R Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Hassam Ali
- Division of Gastroenterology and Hepatology, East Carolina University/Brody School of Medicine, Greenville, NC 27858, United States
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, India
| | - David Guevara-Lazo
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger Hospital of Cook County, Chicago, IL 60612, United States
| | - Manesh Kumar Gangwani
- Department of Internal Medicine, The University of Toledo, Toledo, OH 43606, United States
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87106, United States
| | | | - Ernesto Calderon-Martinez
- Department of Internal Medicine, Universidad Nacional Autonoma de Mexico, Ciudad De Mexico 04510, Mexico
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Nimish Thakral
- Department of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
7
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
8
|
Li SQ, Shen Y, Zhang J, Weng CZ, Wu SD, Jiang W. Immune modulation of gut microbiota and its metabolites in chronic hepatitis B. Front Microbiol 2023; 14:1285556. [PMID: 38094621 PMCID: PMC10716252 DOI: 10.3389/fmicb.2023.1285556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 02/05/2025] Open
Abstract
The gut microbiota is a diverse ecosystem consisting of 100 trillion microbiomes. The interaction between the host's gut and distal organs profoundly impacts various functions such as metabolism, immunity, neurology, and nutrition within the human body. The liver, as the primary immune organ, plays a crucial role in maintaining immune homeostasis by receiving a significant influx of gut-derived components and toxins. Perturbations in gut microbiota homeostasis have been linked to a range of liver diseases. The advancements in sequencing technologies, such as 16S rRNA and metagenomics, have opened up new avenues for comprehending the intricate physiological interplay between the liver and the intestine. Metabolites produced by the gut microbiota function as signaling molecules and substrates, influencing both pathological and physiological processes. Establishing a comprehensive host-bacterium-metabolism axis holds tremendous potential for investigating the mechanisms underlying liver diseases. In this review, we have provided a summary of the detrimental effects of the gut-liver axis in chronic liver diseases, primarily focusing on hepatitis B virus-related chronic liver diseases. Moreover, we have explored the potential mechanisms through which the gut microbiota and its derivatives interact with liver immunity, with implications for future clinical therapies.
Collapse
Affiliation(s)
- Shi-Qin Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jun Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng-Zhao Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
9
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
10
|
Lin D, Song Q, Liu J, Chen F, Zhang Y, Wu Z, Sun X, Wu X. Potential Gut Microbiota Features for Non-Invasive Detection of Schistosomiasis. Front Immunol 2022; 13:941530. [PMID: 35911697 PMCID: PMC9330540 DOI: 10.3389/fimmu.2022.941530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiota has been identified as a predictive biomarker for various diseases. However, few studies focused on the diagnostic accuracy of gut microbiota derived-signature for predicting hepatic injuries in schistosomiasis. Here, we characterized the gut microbiomes from 94 human and mouse stool samples using 16S rRNA gene sequencing. The diversity and composition of gut microbiomes in Schistosoma japonicum infection-induced disease changed significantly. Gut microbes, such as Bacteroides, Blautia, Enterococcus, Alloprevotella, Parabacteroides and Mucispirillum, showed a significant correlation with the level of hepatic granuloma, fibrosis, hydroxyproline, ALT or AST in S. japonicum infection-induced disease. We identified a range of gut bacterial features to distinguish schistosomiasis from hepatic injuries using the random forest classifier model, LEfSe and STAMP analysis. Significant features Bacteroides, Blautia, and Enterococcus and their combinations have a robust predictive accuracy (AUC: from 0.8182 to 0.9639) for detecting liver injuries induced by S. japonicum infection in humans and mice. Our study revealed associations between gut microbiota features and physiopathology and serological shifts of schistosomiasis and provided preliminary evidence for novel gut microbiota-derived features for the non-invasive detection of schistosomiasis.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Qiuyue Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yishu Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|