1
|
Tanwar VS, Reddy MA, Dey S, Malek V, Lanting L, Chen Z, Ganguly R, Natarajan R. Palmitic acid alters enhancers/super-enhancers near inflammatory and efferocytosis-associated genes in human monocytes. J Lipid Res 2025; 66:100774. [PMID: 40068774 PMCID: PMC12002881 DOI: 10.1016/j.jlr.2025.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Free fatty acids like palmitic acid (PA) are elevated in obesity and diabetes and dysregulate monocyte and macrophage functions, contributing to enhanced inflammation in these cardiometabolic diseases. Epigenetic mechanisms regulating enhancer functions play key roles in inflammatory gene expression, but their role in PA-induced monocyte/macrophage dysfunction is unknown. We found that PA treatment altered the epigenetic landscape of enhancers and super-enhancers (SEs) in human monocytes. Integration with RNA-seq data revealed that PA-induced enhancers/SEs correlated with PA-increased expression of inflammatory and immune response genes, while PA-inhibited enhancers correlated with downregulation of phagocytosis and efferocytosis genes. These genes were similarly regulated in macrophages from mouse models of diabetes and accelerated atherosclerosis, human atherosclerosis, and infectious agents. PA-regulated enhancers/SEs harbored SNPs associated with diabetes, obesity, and body mass index indicating disease relevance. We verified increased chromatin interactions between PA-regulated enhancers/SEs and inflammatory gene promoters and reduced interactions at efferocytosis genes. PA-induced gene expression was reduced by inhibitors of BRD4, and NF-κB. PA treatment inhibited phagocytosis and efferocytosis in human macrophages. Together, our findings demonstrate that PA-induced enhancer dynamics at key monocyte/macrophage enhancers/SEs regulate inflammatory and immune genes and responses. Targeting these PA-regulated epigenetic changes could provide novel therapeutic opportunities for cardiometabolic disorders.
Collapse
Affiliation(s)
- Vinay Singh Tanwar
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Marpadga A Reddy
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Suchismita Dey
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Su C, Wang P, Foo N, Ho D. Optimizing metabolic health with digital twins. NPJ AGING 2025; 11:20. [PMID: 40128254 PMCID: PMC11933362 DOI: 10.1038/s41514-025-00211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
A hallmark of subclinical metabolic decline is impaired metabolic flexibility, which refers to the ability to switch fuel utilization between glucose and fat according to energy demand and substrate availability. Herein, we propose optimizing metabolic health with digital twins that model an individual's metabolic flexibility profile to gamify the process of health optimization and predict long-term health outcomes. We explore key characteristics of this approach from technological and socioeconomical perspectives, with the objective of reducing the burden from metabolic disorders through driving behavior change and early detection of metabolic decline.
Collapse
Affiliation(s)
- Chengxun Su
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
| | - Peter Wang
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Nigel Foo
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Dean Ho
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), National University of Singapore, Singapore, Singapore.
- Singapore's Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Wang S, Sun W, Cheng Y, Wang L, Ma S, Jing F, Zhang X, Zhou X. Relationship between plasma 12,13-diHOME level and nonalcoholic fatty liver disease in patients with type 2 diabetes and obesity. Minerva Endocrinol (Torino) 2025; 50:72-83. [PMID: 33855386 DOI: 10.23736/s2724-6507.21.03424-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) was one of the newly found lipokines. The goal of this study was to investigate whether the 12,13-diHOME was associated with related metabolic markers of nonalcoholic fatty liver disease (NAFLD) in a Chinese population with type 2 diabetes (T2DM) and obesity. METHODS This cross-sectional study enrolled 202 subjects with T2DM. Anthropometric parameters, 12,13-diHOME, serum lipids levels, fasting blood-glucose (FBG), serum glycosylated hemoglobin (HbA1c), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), liver and kidney function parameters were collected. NAFLD was diagnosed based on abdominal ultrasonography examination results. A computer-aided ultrasound quantitative method was applied to evaluate the liver fat content (LFC). RESULTS The number of the patients with fatty liver was 139 (68.81%) and those with non-fatty liver was 63 (31.19%). Subjects with NAFLD had a higher body mass index (BMI), diastolic blood pressure, serum alanine aminotransferase (ALT), triglyceride (TG), HOMA-IR, LFC, P<0.05 for all. But no significant difference was found in plasma 12,13-diHOME level (P=0.967), though its level trend was higher in non-NAFLD group. Plasma 12,13-diHOME was positively correlated with aspartate aminotransferase (AST), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), blood urea nitrogen (BUN), free fatty acid (FFA), C-peptide, FINS and HOMA-IR. It was negatively correlated with height, body weight, glomerular filtration rate (eGFR) and HbA1c. CONCLUSIONS Although 12,13-diHOME was correlated with AST, TC, HDL-C, BUN, FFA, C-peptide, FINS, HOMA-IR, eGFR and HbA1c, there was no significant difference in 12,13-diHOME level between the two groups. However, more research should be carried on about this newly-found lipokine.
Collapse
Affiliation(s)
- Sichao Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Infectious Diseases and Hepatology, The Second Hospital of Shandong University, Jinan, China
| | - Weixia Sun
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Jing
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinli Zhou
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China -
| |
Collapse
|
4
|
Qi W, Yang C, Li J, Bao L. Serum Lipidomic Analysis of T2DM Patients: A Potential Biomarker Study. Diabetes Metab Syndr Obes 2025; 18:529-539. [PMID: 39990177 PMCID: PMC11847430 DOI: 10.2147/dmso.s505863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose Comprehensive analysis of serum lipidomics is important for the treatment and prevention of type 2 diabetes (T2DM). The purpose of this study was to provide a profile of lipid changes in the serum of T2DM patients and identify potential lipid biomarkers. Patients and Methods In this study, we collected clinical physiological parameters and determined the serum lipid profiles of 30 T2DM patients and 30 matched healthy volunteers using the UPLC-MS method. T test and multivariate statistical analyses were used to identify candidate lipid predictors using the GraphPad Prism 9.5 software and MetaboAnalyst 5.0 online platform. Results Based on the above test, 1162 lipid metabolites were detected, of which 267 were significantly altered in the T2DM group (FDR < 0.05), which belonged to the five main lipid classes. Eleven lipids were identified as potential lipid biomarkers with the specific screening criteria (variable importance in the projection (VIP) >1.0; P < 0.05; log2(Fold Change) > 1) in the MetaboAnalyst 5.0 online platform. The Pearson rank correlation test showed that ten differential lipids were significantly correlated with T2DM-related physiological parameters (2h-loaded blood glucose and HbAc1 (glycated haemoglobin)). ROC curve analyses revealed that the combined 11 lipids or LPI classes can be as candidate features for the development of an integrated diagnostic biosignature for T2DM. Conclusion The results of this study revealed important changes in lipids in T2DM patients, expanded the knowledge of lipid levels and T2DM progression, and provided important metabolic information for the therapy and diagnosis of T2DM.
Collapse
Affiliation(s)
- Wenwen Qi
- Department of Geriatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Jingfeng Li
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Li Bao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Alpízar Salazar M, Olguín Reyes SE, Medina Estévez A, Saturno Lobos JA, De Aldecoa Castillo JM, Carrera Aguas JC, Alaniz Monreal S, Navarro Rodríguez JA, Alpízar Sánchez DMF. Natural History of Metabolic Dysfunction-Associated Steatotic Liver Disease: From Metabolic Syndrome to Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:88. [PMID: 39859069 PMCID: PMC11766802 DOI: 10.3390/medicina61010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Introduction: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) stems from disrupted lipid metabolism in the liver, often linked to obesity, type 2 diabetes, and dyslipidemia. In Mexico, where obesity affects 36.9% of adults, MASLD prevalence has risen, especially with metabolic syndrome affecting 56.31% by 2018. MASLD can progress to Metabolic Dysfunction-Associated Steatohepatitis (MASH), affecting 5.27% globally, leading to severe complications like cirrhosis and hepatocellular carcinoma. Background: Visceral fat distribution varies by gender, impacting MASLD development due to hormonal influences. Insulin resistance plays a central role in MASLD pathogenesis, exacerbated by high-fat diets and specific fatty acids, leading to hepatic steatosis. Lipotoxicity from saturated fatty acids further damages hepatocytes, triggering inflammation and fibrosis progression in MASH. Diagnosing MASLD traditionally involves invasive liver biopsy, but non-invasive methods like ultrasound and transient elastography are preferred due to their safety and availability. These methods detect liver steatosis and fibrosis with reasonable accuracy, offering alternatives to biopsy despite varying sensitivity and specificity. Conclusions: MASLD as a metabolic disorder underscores its impact on public health, necessitating improved awareness and early management strategies to mitigate its progression to severe liver diseases.
Collapse
Affiliation(s)
- Melchor Alpízar Salazar
- Endocrinology, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico
| | - Samantha Estefanía Olguín Reyes
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Andrea Medina Estévez
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Julieta Alejandra Saturno Lobos
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Jesús Manuel De Aldecoa Castillo
- Clinical Nutrition, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico;
| | - Juan Carlos Carrera Aguas
- Clinical Nutrition, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico;
| | - Samary Alaniz Monreal
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - José Antonio Navarro Rodríguez
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Dulce María Fernanda Alpízar Sánchez
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| |
Collapse
|
6
|
Cai X, Xu M, Chen J, Mao Y, Hu J, Li L, Pan J, Jin M, Chen L. Association Between the Trajectories of the Atherogenic Index of Plasma and Prediabetes Progression to Diabetes: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2024; 17:4689-4699. [PMID: 39660340 PMCID: PMC11629674 DOI: 10.2147/dmso.s481578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose This study aims to analyze baseline profiles and longitudinal changes in Atherogenic Index of Plasma (AIP) among individuals with prediabetes to identify distinct AIP trajectories and assess their significance in predicting diabetes onset. Methods This retrospective cohort study analyzed data from 8346 participants who underwent multiple general health checks. Utilizing latent class trajectory modeling and Cox proportional hazards analyses, it examined the association between the AIP index and health outcomes. Results Over about 2 years, 2897 people progressed from prediabetes to diabetes. Individuals in the highest quartile of AIP had a higher diabetes risk compared to the lowest quartile (HR = 1.138, 95% CI1.013-1.278). Trajectory analysis revealed three groups: low-stable, moderate-stable, and high-stable, based on AIP index. The moderate-stable group showed a 1.117-fold risk of diabetes progression (95% CI1.026-1.217), while the high-stable group had an elevated risk (HR = 1.224, 95% CI1.059-1.415). Conclusion The study highlights a clear association between higher AIP index levels at baseline and an increased risk of diabetes progression. It underscores the significance of utilizing the AIP index as a predictive tool to identify those at risk, emphasizing the need for targeted preventive measures in managing diabetes progression.
Collapse
Affiliation(s)
- XiXuan Cai
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - MingYing Xu
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - JieRu Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - YueChun Mao
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - JingYu Hu
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - LuSha Li
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - JianJiang Pan
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - MengQi Jin
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - LiYing Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
7
|
Roy M, Majid H, Khan P, Sharma N, Kohli S, Islam SU, Vohora D, Nidhi. CTX-1 and TRACP-5b as biomarkers for osteoporosis risk in type 2 diabetes mellitus: a cross-sectional study. J Diabetes Metab Disord 2024; 23:2055-2064. [PMID: 39610562 PMCID: PMC11599675 DOI: 10.1007/s40200-024-01464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) demonstrates a higher risk of fractures compared to the healthy population. Therefore, the aim of our study is to assess the risk of osteoporosis in T2DM patients. METHODOLOGY A cross-sectional observational study was conducted in T2DM patients. The serum levels of bone resorption markers- carboxy-terminal crosslinked telopeptide of type 1 collagen (CTX-1) and tartrate-resistant acid phosphatase 5b (TRACP-5b) were compared in the T2DM group (n = 43) and the control group (n = 43) and its association with duration of T2DM, HbA1c level, body mass index (BMI), oral hypoglycaemic agents (OHA), and level of functioning was evaluated. RESULTS CTX-1 and TRACP-5b were significantly lower in the T2DM group compared to the control group (p < 0.05). There was no significant correlation between the bone resorption markers and the duration of T2DM and HbA1c levels. However, a significant positive correlation was found between the level of functioning and TRACP-5b level, but no such correlation was observed in T2DM patients. The linear regression model revealed that none of the OHA affected the levels of CTX-1 and TRACP-5b. CONCLUSION The bone resorption markers are not influenced by the duration of T2DM and HbA1c level. However, they were significantly associated with BMI and the level of functionality. However, further research is needed to strengthen the evidence of the association between T2DM and osteoporosis.
Collapse
Affiliation(s)
- Madhura Roy
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Haya Majid
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Parvej Khan
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Nikhil Sharma
- Department of Pharmacy Practice, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Sunil Kohli
- Department of Medicine, Hamdard Institute of Medical Science and Research, New Delhi, 110062 India
| | - Sajad Ul Islam
- Department of Medicine, Hamdard Institute of Medical Science and Research, New Delhi, 110062 India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| |
Collapse
|
8
|
Ferrari C, Ashraf B, Saeed Z, Tadros M. Understanding Why Metabolic-Dysfunction-Associated Steatohepatitis Lags Behind Hepatitis C in Therapeutic Development and Treatment Advances. GASTROENTEROLOGY INSIGHTS 2024; 15:944-962. [DOI: 10.3390/gastroent15040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Therapeutic development for metabolic-dysfunction-associated steatohepatitis (MASH) trails behind the success seen in hepatitis C virus (HCV) management. HCV, characterized by a viral etiology, benefits from direct-acting antivirals (DAAs) targeting viral proteins, achieving cure rates exceeding 90%. In contrast, MASH involves complex metabolic, genetic, and environmental factors, presenting challenges for drug development. Non-invasive diagnostics like ultrasound, FibroScan, and serum biomarkers, while increasingly used, lack the diagnostic accuracy of liver biopsy, the current gold standard. This review evaluates therapies for MASH, including resmetirom (Rezdiffra) and combinations like pioglitazone and vitamin E, which show potential but offer modest improvements due to MASH’s heterogeneity. The limited efficacy of these treatments highlights the need for multi-targeted strategies addressing metabolic and fibrotic components. Drawing parallels to HCV’s success, this review emphasizes advancing diagnostics and therapies for MASH. Developing effective, patient-specific therapies is crucial to closing the gap between MASH and better-managed liver diseases, optimizing care for this growing health challenge.
Collapse
Affiliation(s)
- Caesar Ferrari
- Department of Gastroenterology and Hepatology, Albany Medical College, Albany, NY 12208, USA
| | - Bilal Ashraf
- HCA Houston Healthcare Kingwood, Kingwood, TX 77339, USA
| | - Zainab Saeed
- Houston Methodist Baytown Hospital, Baytown, TX 77521, USA
| | - Micheal Tadros
- Department of Gastroenterology and Hepatology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
9
|
Jin Z, Liu M, Zhao H, Xie J, Yin W, Zheng M, Cai D, Liu H, Liu J. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:3388. [PMID: 39517172 PMCID: PMC11544810 DOI: 10.3390/foods13213388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity-induced insulin resistance (IR) can precipitate metabolic disorders such as diabetes. Zeaxanthin, a crucial member of the carotenoid family, has been found to mitigate the damage caused by obesity. However, reports on the effects of zeaxanthin on obesity-induced IR are lacking. Our objective was to examine the metabolic regulatory impacts of zeaxanthin on mice subjected to a high-fat diet (HFD) that triggered IR and to explore their influence on gut microbiota regulation. This study constructed a mouse model of metabolic dysfunction caused by lipid-rich nutritional patterns to investigate physiological and biochemical indices, liver pathway expression, and the intestinal microbiota. The mechanisms by which zeaxanthin improved both IR and glucose metabolic disorders were elucidated. The results demonstrate that zeaxanthin effectively suppressed obesity. The fasting blood glucose, area under curve of oral glucose tolerance test and insulin tolerance test, and homeostatic model assessment-insulin resistance (HOMA-IR) indices in the HFDZEA group decreased by 14.9%, 25.2%, 28.9%, and 29.8%. Additionally, zeaxanthin improved the lipid metabolism and alleviated damage to the liver and pancreas while also activating the PI3K/Akt pathway, regulating hepatic gluconeogenesis and the glycogen metabolism. The number of OTUs in the HFDZEA group increased by 29.04%. Zeaxanthin improved the structure and profile of the gastrointestinal microbiome and enhanced its diversity, increasing probiotics abundance, decreasing pathogen abundance, and thereby ameliorating the dysbiosis of enteric microbial communities in rodents with obesity resulting from excessive fat consumption. The outcomes of our analysis provide a rational basis for advancing zeaxanthin-based nutritional products.
Collapse
Affiliation(s)
- Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Hongyu Zhao
- Key Laboratory of TCM Pharmacology, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China;
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
| | - Jingsheng Liu
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
10
|
Moniruzzaman M, Bezerra AB, Mohibullah M, Judd RL, Granneman JG, Easley CJ. Dynamic sampling from ex vivo adipose tissue using droplet-based microfluidics supports separate mechanisms for glycerol and fatty acid secretion. LAB ON A CHIP 2024; 24:5020-5031. [PMID: 39344798 DOI: 10.1039/d4lc00664j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pathologies in adipose (fat) tissue function are linked with human diseases such as diabetes, obesity, metabolic syndrome, and cancer. Dynamic, rapid release of metabolites has been observed in adipocyte cells and tissue, yet higher temporal resolution is needed to adequately study this process. In this work, a microfluidic device with precise and regular valve-automated droplet sampling, termed a microfluidic analog-to-digital converter (μADC), was used to sample secretions from ∼0.75 mm diameter adipose explants from mice, and on-chip salt water electrodes were used to merge sampled droplets with reagent droplets from two different fluorometric coupled enzyme assays. By integrating sampling and assays on-chip, either glycerol or non-esterified fatty acids (NEFA), or both, were quantified optically within merged 12 nanoliter droplets using a fluorescence microscope with as high as 20 second temporal resolution. Limits of detection were 6 μM for glycerol (70 fmol) and 0.9 μM for NEFA (10 fmol). Multiple ex vivo adipose tissue explants were analyzed with this system, all showing clear increases in lipolytic function after switching from feeding to fasting conditions. Enabled by high temporal resolution, lipolytic oscillations of both glycerol and NEFA were observed for the first time in the range of 0.2 to 1.6 min-1. Continuous wavelet transform (CWT) spectrograms and burst analyses (0.1 to 4.0 pmol bursts) revealed complex dynamics, with multiplexed assays (duplex for glycerol and NEFA) from the same explants showing mostly discordant bursts. These data support separate mechanisms of NEFA and glycerol release, although the connection to intracellular metabolic oscillations remains unknown. Overall, this device allowed automated and highly precise temporal sampling of tissue explants at high resolution and programmable downstream merging with multiple assay reagents, revealing unique biological information. Such device features should be applicable to various other tissue or spheroid types and to other assay formats.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Andresa B Bezerra
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Robert L Judd
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
11
|
Dagogo-Jack S, Asuzu P, Wan J, Grambergs R, Stentz F, Mandal N. Plasma Ceramides and Other Sphingolipids in Relation to Incident Prediabetes in a Longitudinal Biracial Cohort. J Clin Endocrinol Metab 2024; 109:2530-2540. [PMID: 38501230 PMCID: PMC11403313 DOI: 10.1210/clinem/dgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT Sphingolipids are linked to the pathogenesis of type 2 diabetes. OBJECTIVE To test the hypothesis that plasma sphingolipid profiles predict incident prediabetes. DESIGN A case-control study nested in the Pathobiology of Prediabetes in a Biracial Cohort study, a 5-year follow-up study. SETTING Academic health center. PARTICIPANTS Normoglycemic adults enrolled in the Pathobiology of Prediabetes in a Biracial Cohort study. Assessments included oral glucose tolerance test, insulin sensitivity, and insulin secretion. Participants with incident prediabetes were matched in age, sex, and ethnicity with nonprogressors. INTERVENTIONS We assayed 58 sphingolipid species (ceramides, monohexosyl ceramides, sphingomyelins, and sphingosine) using liquid chromatography/tandem mass spectrometry in baseline plasma levels from participants and determined association with prediabetes risk. MAIN OUTCOME MEASURE The primary outcome was progression from normoglycemia to prediabetes, defined as impaired fasting glucose or impaired glucose tolerance. RESULTS The mean age of participants (N = 140; 50% Black, 50% female) was 48.1 ± 8.69 years, body mass index 30.1 ± 5.78 kg/m2, fasting plasma glucose 92.7 ± 5.84 mg/dL, and 2-hour plasma glucose 121 ± 23.3 mg/dL. Of the 58 sphingolipid species assayed, higher ratios of sphingomyelin C26:0/C26:1 (OR, 2.73 [95% CI, 1.172-4.408], P = .015) and ceramide C18:0/C18:1 (OR, 1.236 [95% CI, 1.042-1.466], P = .015) in baseline plasma specimens were significantly associated with progression to prediabetes during the 5-year follow-up period, after adjustments for age, race, sex, body mass index, fasting plasma glucose, 2-hour plasma glucose, insulin sensitivity, and insulin secretion. CONCLUSION We conclude that the saturated-to-monounsaturated ratios of long-chain ceramide C18:0/C18:1 and very-long-chain sphingomyelin C26:0/C26:1 are potential biomarkers of prediabetes risk among individuals with parental history of type 2 diabetes.
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard Grambergs
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
12
|
Sánchez-Terrón G, Martínez R, Delgado J, Molina J, Estévez M. Hepatoprotective mechanisms of pomegranate bioactives on a murine models affected by NAFLD as analysed by MS-based proteomics: The mitochondria in the eye of the storm. Food Res Int 2024; 192:114769. [PMID: 39147495 DOI: 10.1016/j.foodres.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the mechanisms underlying the direct association between fructose consumption and the onset and progression of non-alcoholic fatty liver disease (NAFLD), as well as the high prevalence of metabolic syndrome (MetS), is of great importance for adopting potential nutritional strategies. Thus, an evaluation of the impact of sustained high fructose consumption on the liver physiology of Wistar rats was made. Moreover, the effectiveness of a dietary pomegranate-derived supplement (P) at counteracting fructose-induced liver injury was also assessed. For unveiling the underlying mechanisms, an untargeted proteomic analysis of the livers from nineteen Wistar rats fed on a basal commercial feed and supplemented with either drinking water (C) (n = 6), 30 % (w/v) fructose in drinking water (F) (n = 7) or 30 % (w/v) fructose solution plus 0.2 % (w/v) P (F+P) (n = 6) was assessed. Fructose intake severely increased the abundance of several energy-production related-proteins, such as fructose-bisphosphate aldolase or fatty acid synthase, among others, as well as diminished the amount of another ones, such as carnitine O-palmitoyl transferase or different subunits of acyl-coenzyme A oxidase. These changes could facilitate mitochondrial disturbances and oxidative stress. Regarding the hepatic proteome of F, P extract restored mitochondrial homeostasis and strengthened endogenous antioxidant mechanisms diminishing the amount of proteins involved in process that could increase the oxidative status, as well as increasing both the quantity of several proteins involved in proteasome functionality, as expressing changes in the amount of certain RNA-splicing related-proteins, regarding F proteome.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain
| | - Remigio Martínez
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad de Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, 14014, Spain
| | - Josué Delgado
- HISEALI Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Caceres 10003, Spain
| | - Javier Molina
- Gastroenterology and Hepatology, Hospital Universitario de Cáceres (HUC), Servicio Extremeño de Salud (SES), Junta de Extremadura, Caceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain.
| |
Collapse
|
13
|
Guo Y, Yu H, Li Y, Zhang T, Xiong W, Wu X. Elucidating the genetic relationship between ulcerative colitis and diabetic kidney disease: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1435812. [PMID: 39211444 PMCID: PMC11358062 DOI: 10.3389/fendo.2024.1435812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Ulcerative colitis (UC) and diabetic kidney disease (DKD) are chronic disorders with multifaceted pathogenesis, posing significant challenges in clinical management. While substantial efforts have been made to investigate the individual causes of these diseases, the interplay between UC and DKD is not well understood. This study aims to elucidate the genetic association between UC and DKD through Mendelian randomization (MR) analysis, offering new insights into common biological pathways and potential clinical implications. Methods We conducted a bidirectional two-sample MR study utilizing data from large-scale genome-wide association studies (GWAS) for both UC and DKD. Instrumental variables (IVs) were meticulously selected according to genome-wide significance and stringent statistical criteria, ensuring robust causal inference. Various MR methodologies, including inverse variance weighting (IVW), were employed to assess the causal relationships between UC and DKD. Sensitivity analyses were also performed to validate the robustness of our findings. Results Our analysis revealed a significant causal relationship between genetic predisposition to UC and increased susceptibility to DKD. Specifically, individuals with a genetic susceptibility to UC exhibited a 17.3% higher risk of developing DKD. However, we found no evidence of a causal link between DKD and the risk of developing UC. Additionally, we identified shared genetic risk factors and molecular pathways linking UC and DKD, thereby highlighting potential therapeutic targets. Discussion This study underscores the intricate genetic interplay between UC and DKD, suggesting that individuals with UC may be at an elevated risk for developing DKD. Understanding these shared genetic pathways could facilitate the development of early detection strategies and targeted interventions for individuals at risk of DKD. Ultimately, these insights could lead to improved clinical outcomes for patients suffering from both conditions.
Collapse
Affiliation(s)
- Yaping Guo
- Xi’an Jiaotong University, Xi’an, China
- Yulin Hospital of Traditional Chinese Medicine, Yulin, China
| | - Hangxing Yu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Taijun Zhang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Weijian Xiong
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xili Wu
- Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Xu L, Yang Q, Zhou J. Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease. Int J Mol Sci 2024; 25:8465. [PMID: 39126035 PMCID: PMC11312913 DOI: 10.3390/ijms25158465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid metabolism is a critical component in preserving homeostasis and health, and lipids are significant chemicals involved in energy metabolism in living things. With the growing interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the close relationship between abnormalities in lipid metabolism and the development of numerous human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus, understanding how aberrant lipid metabolism contributes to the development of related diseases and how it works offers a theoretical foundation for treating and preventing related human diseases as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the processes of aberrant lipid metabolism in various human diseases in this review, including diseases of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity and type 2 diabetes mellitus), and other diseases including cancer.
Collapse
Affiliation(s)
| | | | - Jinghua Zhou
- School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Zhao R, Wang W, Zhang W, Lu J, Liu Y, Guo J, Yang L, Zhang Z, He C, Gu X, Wang B. Effects of genetically proxied statins on diabetic nephropathy and retinopathy: a Mendelian randomization study. Sci Rep 2024; 14:16885. [PMID: 39043809 PMCID: PMC11266622 DOI: 10.1038/s41598-024-67800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
There is no reliable causal evidence for the effect of statins on diabetic nephropathy (DN) and diabetic retinopathy (DR), and the results of previous observational studies are contradictory. Genetic variants linked to low-density lipoprotein cholesterol (LDL-C) from a UK biobank genome-wide association study and located within a 100kb window around HMGCR were used to proxy statins, comparing with PCSK9 inhibitors (control). DN and DR genome-wide association study summary statistics were obtained from the FinnGen study. Secondary MR analyses and NHANES cross-sectional data were used for validation. Drug-target Mendelian randomization (MR) was applied to investigate the association between the genetically proxied inhibition of HMGCR and PCSK9 with DN and DR, p < 0.0125 was considered significant after Bonferroni Correction. To triangulate the findings, genetic variants of whole blood-derived targets gene expression (cis-eQTL) and plasma-derived protein (cis-pQTL) levels were used to perform secondary MR analyses and data from the National Health and Nutrition Examination Survey were used for cross-sectional analysis. Genetically proxied inhibition of HMGCR was associated with higher risks of DN and DR (DN: OR = 1.79, p = 0.01; DR: OR = 1.41, p = 0.004), while no such association was found for PCSK9. Secondary MR analyses confirmed these associations. Cross-sectional analysis revealed a positive link between statin use and DR incidence (OR = 1.26, p = 0.03) and a significant negative association with glomerular filtration rate (Beta = - 1.9, p = 0.03). This study provides genetic evidence that genetically proxied inhibition of HMGCR is associated with increased risks of DN/DR, and this effect may not be attributed to their LDL-C-lowering properties. For patients with diabetic dyslipidemia, PCSK9 inhibitors may be a preferable alternative.
Collapse
Affiliation(s)
- Ran Zhao
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - WeiLi Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Wen Zhang
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiaPeng Lu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Liu
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Guo
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Yang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China
| | - ZeDan Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Chang He
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - XinYi Gu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Wang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Mitchell CM, Stinson EJ, Chang DC, Krakoff J. A mixed meal tolerance test predicts onset of type 2 diabetes in Southwestern Indigenous adults. Nutr Diabetes 2024; 14:50. [PMID: 38987291 PMCID: PMC11237083 DOI: 10.1038/s41387-024-00269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND/OBJECTIVE To identify predictors of incident type 2 diabetes using a mixed meal tolerance test (MMTT). METHODS Adult Indigenous Americans without diabetes (n = 501) from a longitudinal cohort underwent at baseline a 4-h MMTT, measures of body composition, an oral glucose tolerance test, an intravenous glucose tolerance test for acute insulin response (AIR), and a hyperinsulinemic-euglycemic clamp for insulin action (M). Plasma glucose responses from the MMTT were quantified by the total and incremental area under the curve (AUC/iAUC). RESULTS At follow-up (median time 9.6 [inter-quartile range: 5.6-13.5] years), 169 participants were diagnosed with diabetes. Unadjusted Cox proportional hazards models, glucose AUC180-min (HR: 1.98, 95% CI: 1.67, 2.34, p < 0.0001), AUC240-min (HR: 1.93, 95% CI: 1.62, 2.31, p < 0.0001), and iAUC180-min (HR: 1.43, 95% CI: 1.20, 1.71, p < 0.0001) were associated with an increased risk of diabetes. After adjustment for covariates (age, sex, body fat percentage, M, AIR, Indigenous American heritage) in three subsequent models, AUC180-min (HR: 1.44, 95% CI: 1.10, 1.88, p = 0.007) and AUC240-min (HR: 1.41, 95% CI: 1.09, 1.84, p < 0.01) remained associated with increased risk of diabetes. CONCLUSIONS Glucose responses to a mixed meal predicted the development of type 2 diabetes. This indicates that a mixed nutritional challenge provides important information on disease risk. CLINICAL TRIAL REGISTRY ClinicalTrials.gov identifier : NCT00340132, NCT00339482.
Collapse
Affiliation(s)
- Cassie M Mitchell
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| | - Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
17
|
Zhu L, Gu Y, Li J, Yu S, Wang J, Wu H, Meng G, Wang X, Zhang Q, Liu L, Sun S, Wang X, Zhou M, Jia Q, Song K, Liu Q, Niu K. Association of added sugar intake and its forms and sources with handgrip strength decline among middle-aged and older adults: A prospective cohort study. Clin Nutr 2024; 43:1609-1617. [PMID: 38781671 DOI: 10.1016/j.clnu.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The consumption of added sugar has increased rapidly in recent years. Limited knowledge exists regarding the association between added sugar intake and muscle strength, although the latter is a predictor of physical disability in older adults. This study aimed to investigate the association between added sugar intake and longitudinal changes in handgrip strength among middle-aged and elderly Chinese adults. METHODS This prospective cohort study included 5298 adults aged 40 years and older (62.6% men) from the TCLSIH (Tianjin Chronic Low-grade Systemic Inflammation and Health) cohort study. Added sugar intake was obtained through a frequency questionnaire containing 100 items of food. Handgrip strength is measured annually using a handheld digital dynamometer. Multivariate linear regression models were used to examine the association between added sugars intake and the annual changes in handgrip strength and weight-adjusted handgrip strength. RESULTS In the fully adjusted model, the annual change in handgrip strength for one unit increase in total added sugar, solid added sugar, and liquid added sugar intake was -0.0353 kg, (95% confidence intervals (CI) -0.000148, -0.0000164; P = 0.01), -0.0348 kg (95% CI: -0.000227, -0.0000269; P = 0.01) and -0.0189 kg (95% CI -0.000187, 0.0000338; P = 0.17), respectively. Added sugar from bread and biscuits sources were remarkably associated with a decline in handgrip strength (β = -0.0498; 95%CI -0.00281, -0.000787) and (β = -0.0459; 95%CI 0.00158, 0.00733) (P < 0.01). CONCLUSIONS Our data suggest that the higher the intake of solid added sugars, but not liquid sugars, were associated with the declined handgrip strength in the Chinese middle-aged and elderly population. In addition, the consumption of added sugars from bread and biscuits sources was also associated with a decline in grip strength.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Anatomy, Shandong Second Medical University, Weifang, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Jianguo Li
- Department of Anatomy, Shandong Second Medical University, Weifang, China
| | - Shuna Yu
- Department of Anatomy, Shandong Second Medical University, Weifang, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongmei Wu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Anatomy, Shandong Second Medical University, Weifang, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Kaijun Niu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China; Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
18
|
Zhang J, Guo Y, Wei C, Yan Y, Shan H, Wu B, Wu F. A pharmacovigilance study of chronic kidney disease in diabetes mellitus patients with statin treatment by using the US Food and Drug Administration adverse event reporting system. Front Pharmacol 2024; 15:1363501. [PMID: 38974040 PMCID: PMC11224537 DOI: 10.3389/fphar.2024.1363501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Background Statins were regarded as a main medication for managing hypercholesterolemia. Administration of statin therapy could reduce the incidence of cardiovascular disease in individuals diagnosed with type 2 diabetes mellitus (DM), which was recognized by multipal clinical guidelines. But previous studies had conflicting results on whether the long-term use of statins could benefit the renal function in diabetic patients. Aim To evaluate the association between statin treatment and Chronic Kidney Disease in DM patients. Methods This is a retrospective disproportionality analysis and cohort study based on real-world data. All DM cases reported in US Food and Drug Administration adverse event reporting system (FAERS) between the first quarter of 2004 and the fourth quarter of 2022 were included. Disproportionality analyses were conducted by estimating the reporting odds ratio (ROR) and the information component (IC). We further compared the CKD odds ratio (OR) between the statins group and the other primary suspected drug group among the included diabetes mellitus cases. Results We finally included 593647 DM cases from FAERS, 5113 (5.31%) CKD cases in the statins group and 8810 (1.77%) CKD cases in the control group. Data analysis showed that the statins group showed a significant CKD signal (ROR: 3.11, 95% CI: 3.00-3.22; IC: 1.18, 95% CI: 1.07-1.29). In case group with two or more statins treatment history, the CKD signal was even stronger (ROR: 19.56, 95% CI: 18.10-21.13; IC: 3.70, 95% CI:3.44-3.93) compared with cases with one statin treatment history. Conclusion The impact of statin therapy on the progression of renal disease in individuals diagnosed with type 2 diabetes mellitus (DM) remains inconclusive. After data mining on the current FAERS dataset, we discovered significant signals between statin treatment and CKD in diabetic patients. Furthermore, the incidence rate of CKD was higher among DM patients who used statins compared to those who did not.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Guo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Wei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huifang Shan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Tamarit-Rodriguez J. Regulatory Role of Fatty Acid Metabolism on Glucose-Induced Changes in Insulin and Glucagon Secretion by Pancreatic Islet Cells. Int J Mol Sci 2024; 25:6052. [PMID: 38892240 PMCID: PMC11172437 DOI: 10.3390/ijms25116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.
Collapse
|
20
|
Huang KC, Chuang PY, Yang TY, Tsai YH, Li YY, Chang SF. Diabetic Rats Induced Using a High-Fat Diet and Low-Dose Streptozotocin Treatment Exhibit Gut Microbiota Dysbiosis and Osteoporotic Bone Pathologies. Nutrients 2024; 16:1220. [PMID: 38674910 PMCID: PMC11054352 DOI: 10.3390/nu16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) presents a challenge for individuals today, affecting their health and life quality. Besides its known complications, T2DM has been found to contribute to bone/mineral abnormalities, thereby increasing the vulnerability to bone fragility/fractures. However, there is still a need for appropriate diagnostic approaches and targeted medications to address T2DM-associated bone diseases. This study aims to investigate the relationship between changes in gut microbiota, T2DM, and osteoporosis. To explore this, a T2DM rat model was induced by combining a high-fat diet and low-dose streptozotocin treatment. Our findings reveal that T2DM rats have lower bone mass and reduced levels of bone turnover markers compared to control rats. We also observe significant alterations in gut microbiota in T2DM rats, characterized by a higher relative abundance of Firmicutes (F) and Proteobacteria (P), but a lower relative abundance of Bacteroidetes (B) at the phylum level. Further analysis indicates a correlation between the F/B ratio and bone turnover levels, as well as between the B/P ratio and HbA1c levels. Additionally, at the genus level, we observe an inverse correlation in the relative abundance of Lachnospiraceae. These findings show promise for the development of new strategies to diagnose and treat T2DM-associated bone diseases.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Po-Yao Chuang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Tien-Yu Yang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yao-Hung Tsai
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yen-Yao Li
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| |
Collapse
|
21
|
Sheng R, Li Y, Wu Y, Liu C, Wang W, Han X, Li Y, Lei L, Jiang X, Zhang Y, Zhang Y, Li S, Hong B, Liu C, Xu Y, Si S. A pan-PPAR agonist E17241 ameliorates hyperglycemia and diabetic dyslipidemia in KKAy mice via up-regulating ABCA1 in islet, liver, and white adipose tissue. Biomed Pharmacother 2024; 172:116220. [PMID: 38308968 DOI: 10.1016/j.biopha.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved β-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.
Collapse
Affiliation(s)
- Ren Sheng
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yining Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chang Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xiaowan Han
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS & PUMC, Beijing 100050, China
| | - Yinghong Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, CAMS & PUMC, Beijing 100050, China.
| |
Collapse
|
22
|
Wang W, Wang P, Zhu L, Liu B, Wei Q, Hou Y, Li X, Hu Y, Li W, Wang Y, Jiang C, Yang G, Wang J. An optimized fluorescent biosensor for monitoring long-chain fatty acyl-CoAs metabolism in vivo. Biosens Bioelectron 2024; 247:115935. [PMID: 38128319 DOI: 10.1016/j.bios.2023.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.
Collapse
Affiliation(s)
- Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China; National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, PR China
| | - Lixin Zhu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Xi Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yufei Hu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Guangfu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China.
| |
Collapse
|
23
|
Lai C, Fu R, Huang C, Wang L, Ren H, Zhu Y, Zhang X. Healthy lifestyle decreases the risk of the first incidence of non-communicable chronic disease and its progression to multimorbidity and its mediating roles of metabolic components: a prospective cohort study in China. J Nutr Health Aging 2024; 28:100164. [PMID: 38306889 DOI: 10.1016/j.jnha.2024.100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVES To identify the influence of healthy lifestyles on the incidence of the first NCD (FNCD), multiple chronic conditions (MCCs), and the progression from FNCD to MCCs. DESIGN cohort study. SETTING Zhejiang, China PARTICIPANTS: 10566 subjects (55.5 ± 13.5 years, 43.1% male) free of NCDs at baseline from the Zhejiang Metabolic Syndrome prospective cohort. MEASUREMENTS Healthy lifestyle score (HLS) was developed by 6 common healthy lifestyle factors as smoking, alcohol drinking, physical activity, body mass index (BMI) and waist-to-hip ratio (WHR). Healthy lifestyle data and metabolic biomarkers collected via a face-to-face questionnaire-based interview, clinical health examination and routine biochemical determination. Biochemical variables were determined using biochemical auto-analyzer. Participants were stratified into four group based on the levels of HLS as ≤2, 3, 4 and ≥5. Multiple Cox proportional hazards model was applied to examine the relationship between HLS and the risk of FNCD, MCCs and the progression from FNCD to MCCs. The population-attributable fractions (PAF) were used to assess the attributable role of HLS. Mediating effect was examined by mediation package in R. RESULTS After a median of 9.92 years of follow-up, 1572 participants (14.9%) developed FNCD, and 149 (1.4%) developed MCCs. In the fully adjusted model, the higher HLS group (≥5) was associated with lower risk of FNCD (HR = 0.68 and 95% CI: 0.56-0.82), MCCs (HR = 0.31 and 95%CI: 0.14-0.69); and the progression from FNCD to MCCs (HR = 0.39 and 95%CI: 0.18-0.85). Metabolic components (TC, TG, HDL-C, LDC-C, FPG, and UA) played the mediating roles with the proportion ranging from 5.02% to 22.2% for FNCD and 5.94% to 20.1% for MCCs. PAFs (95%CI) for poor adherence to the overall healthy lifestyle (HLS ≤ 3) were 17.5% (11.2%, 23.7%) for FNCD, 42.9% (23.4%, 61.0%) for MCCs, and 37.0% (15.5%, 56.3%) for the progression from FNCD to MCCs. CONCLUSIONS High HLS decreases the risk of FNCD, MCCs, and the progression from FNCD to MCCs. These effects are partially mediated by metabolic components. Maintaining healthy lifestyles might reduce the disease burden of common chronic diseases.
Collapse
Affiliation(s)
- Chong Lai
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiyi Fu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Changzhen Huang
- Dongyang Traditional Chinese Medicine Hospital, Dong Yang, Zhejiang, People's Republic of China
| | - Lu Wang
- Basic Discipline of Chinese and Western Integrative, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Haiqing Ren
- Dongyang Traditional Chinese Medicine Hospital, Dong Yang, Zhejiang, People's Republic of China.
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
24
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
25
|
Bui AT, Chaudhari R, Bhati C, Wolver S, Patel S, Boyett S, Evans MC, Kamal H, Patel V, Forsgren M, Sanyal AJ, Kirkman D, Siddiqui MS. Reduced metabolic flexibility is a predictor of weight gain among liver transplant recipients. Liver Transpl 2024; 30:192-199. [PMID: 37146168 DOI: 10.1097/lvt.0000000000000169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023]
Abstract
Metabolic flexibility is the ability to match biofuel availability to utilization and is inversely associated with increased metabolic burden among liver transplant (LT) recipients. The present study evaluated the impact of metabolic flexibility on weight gain following LT. LT recipients were enrolled prospectively (n = 47) and followed for 6 months. Metabolic flexibility was measured using whole-room calorimetry and is expressed as a respiratory quotient (RQ). Peak RQ represents maximal carbohydrate metabolism and occurs in the post-prandial state, while trough RQ represents maximal fatty acid metabolism occurring in the fasted state. The clinical, metabolic, and laboratory characteristics of the study cohort of lost weight (n = 14) and gained weight (n = 33) were similar at baseline. Patients who lost weight were more likely to reach maximal RQ (maximal carbohydrate oxidation) early and rapidly transitioned to trough RQ (maximal fatty acid oxidation). In contrast, patients who gained weight had delayed time to peak RQ and trough RQ. In multivariate modeling, time to peak RQ (β-coefficient 0.509, p = 0.01), time from peak RQ to trough RQ (β-coefficient 0.634, p = 0.006), and interaction between time to peak RQ to trough RQ and fasting RQ (β-coefficient 0.447, p = 0.02) directly correlated with the severity of weight gain. No statistically significant relationship between peak RQ, trough RQ, and weight change was demonstrated. Inefficient transition between biofuels (carbohydrates and fatty acids) is associated with weight gain in LT recipients that is independent of clinical metabolic risk. These data offer novel insight into the physiology of obesity after LT with the potential to develop new diagnostics and therapeutics.
Collapse
Affiliation(s)
- Anh T Bui
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rahul Chaudhari
- Division of Gastroenterology and Hepatology, VCU, Richmond, Virginia, USA
| | - Chandra Bhati
- Division of Transplant Surgery, University of Maryland, Maryland, USA
| | - Susan Wolver
- Department of Internal Medicine, VCU, Richmond, Virginia, USA
| | - Samarth Patel
- Division of Gastroenterology and Hepatology, Lehigh Valley Hospital-Cedar Crest, Pennsylvania, USA
| | - Sherry Boyett
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Marie Claire Evans
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Hiba Kamal
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Vaishali Patel
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Mikael Forsgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linkoping, Sweden
| | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, VCU, Richmond, Virginia, USA
| | - Danielle Kirkman
- Department of Kinesiology and Health Sciences, VCU, Richmond, Virginia, USA
| | - Mohammad Shadab Siddiqui
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| |
Collapse
|
26
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
27
|
Wang GL, Yuan HJ, Kong QQ, Zhang J, Han X, Gong S, Xu MT, He N, Luo MJ, Tan JH. High glucose exposure of preimplantation embryos causes glucose intolerance and insulin resistance in F1 and F2 male offspring. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166921. [PMID: 37879502 DOI: 10.1016/j.bbadis.2023.166921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Although studies suggest that maternal high glucose (HG) increases offspring susceptibility to type 2 diabetes mellitus (T2DM), the underlying mechanisms are largely unclear. We studied whether glucose levels in oviducts are elevated when pregestational diabetic females get pregnant and whether the oviductal HG (OVHG) would act directly on embryos to increase offspring's T2DM susceptibility. METHODS We established an in vivo model of OVHG by injecting female mice with streptozotocin (STZ) during the preimplantation period and an in vitro model of embryo culture with HG (ECHG) by culturing preimplantation embryos with HG, before examining glucose tolerance and insulin resistance (IR) in F1 and F2 offspring. FINDINGS Injection of female mice with STZ induced a lasting significant glucose elevation in blood and oviduct fluid during the preimplantation period. The glucose tolerance test showed that both the STZ-induced OVHG and the ECHG caused glucose intolerance in F1 male and F1-sired F2 male offspring but had no effect on female offspring. Insulin tolerance test and the analysis for IR-related gene expression and glycogen contents in liver and muscle revealed significant IR in these male offspring. INTERPRETATION This study provided evidence that HG can act directly on preimplantation embryos to increase offspring's T2DM susceptibility suggesting that the preimplantation period is a critical stage for transmission of mother's diabetes to offspring. FUND: This study was supported by grants from the China National Natural Science Foundation (Nos. 31772599, 32072738, 31702114, and 31902160), and the Natural Science Foundation of Shandong Province (Nos. ZR2022MC036, ZR2017BC025 and ZR2020QC102).
Collapse
Affiliation(s)
- Guo-Liang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Qiao-Qiao Kong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Xiao Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Ming-Tao Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Nan He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China.
| |
Collapse
|
28
|
Kim DM, Lee JH, Pan Q, Han HW, Shen Z, Eshghjoo S, Wu CS, Yang W, Noh JY, Threadgill DW, Guo S, Wright G, Alaniz R, Sun Y. Nutrient-sensing growth hormone secretagogue receptor in macrophage programming and meta-inflammation. Mol Metab 2024; 79:101852. [PMID: 38092245 PMCID: PMC10772824 DOI: 10.1016/j.molmet.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE Obesity-associated chronic inflammation, aka meta-inflammation, is a key pathogenic driver for obesity-associated comorbidity. Growth hormone secretagogue receptor (GHSR) is known to mediate the effects of nutrient-sensing hormone ghrelin in food intake and fat deposition. We previously reported that global Ghsr ablation protects against diet-induced inflammation and insulin resistance, but the site(s) of action and mechanism are unknown. Macrophages are key drivers of meta-inflammation. To unravel the role of GHSR in macrophages, we generated myeloid-specific Ghsr knockout mice (LysM-Cre;Ghsrf/f). METHODS LysM-Cre;Ghsrf/f and control Ghsrf/f mice were subjected to 5 months of high-fat diet (HFD) feeding to induce obesity. In vivo, metabolic profiling of food intake, physical activity, and energy expenditure, as well as glucose and insulin tolerance tests (GTT and ITT) were performed. At termination, peritoneal macrophages (PMs), epididymal white adipose tissue (eWAT), and liver were analyzed by flow cytometry and histology. For ex vivo studies, bone marrow-derived macrophages (BMDMs) were generated from the mice and treated with palmitic acid (PA) or lipopolysaccharide (LPS). For in vitro studies, macrophage RAW264.7 cells with Ghsr overexpression or Insulin receptor substrate 2 (Irs2) knockdown were studied. RESULTS We found that Ghsr expression in PMs was increased under HFD feeding. In vivo, HFD-fed LysM-Cre;Ghsrf/f mice exhibited significantly attenuated systemic inflammation and insulin resistance without affecting food intake or body weight. Tissue analysis showed that HFD-fed LysM-Cre;Ghsrf/f mice have significantly decreased monocyte/macrophage infiltration, pro-inflammatory activation, and lipid accumulation, showing elevated lipid-associated macrophages (LAMs) in eWAT and liver. Ex vivo, Ghsr-deficient macrophages protected against PA- or LPS-induced pro-inflammatory polarization, showing reduced glycolysis, increased fatty acid oxidation, and decreased NF-κB nuclear translocation. At molecular level, GHSR metabolically programs macrophage polarization through PKA-CREB-IRS2-AKT2 signaling pathway. CONCLUSIONS These novel results demonstrate that macrophage GHSR plays a key role in the pathogenesis of meta-inflammation, and macrophage GHSR promotes macrophage infiltration and induces pro-inflammatory polarization. These exciting findings suggest that GHSR may serve as a novel immunotherapeutic target for the treatment of obesity and its associated comorbidity.
Collapse
Affiliation(s)
- Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Jong Han Lee
- Department of Marine Bioindustry, Hanseo University, Seosan 31962, South Korea; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Quan Pan
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Sahar Eshghjoo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Agilent technologies, Aanta Clara, CA 95051, USA
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Wanbao Yang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - David W Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Genome Sciences and Society, Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Gus Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Robert Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Tlaloc Therapeutics Inc., College Station, TX 77845, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
30
|
Zhou X, Liu Z, Yang X, Feng J, Gins MS, Yan T, Han L, Zhang H. The Mechanism Underlying the Hypoglycemic Effect of Epimedin C on Mice with Type 2 Diabetes Mellitus Based on Proteomic Analysis. Nutrients 2023; 16:25. [PMID: 38201855 PMCID: PMC10780735 DOI: 10.3390/nu16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a worldwide public health problem. Epimedin C is considered one of the most important flavonoids in Epimedium, a famous edible herb in China and Southeast Asia that is traditionally used in herbal medicine to treat diabetes. In the present study, the therapeutic potential of epimedin C against T2DM was ascertained using a mouse model, and the mechanism underlying the hypoglycemic activity of epimedin C was explored using a label-free proteomic technique for the first time. Levels of fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), and oral glucose tolerance, as well as contents of malondialdehyde (MDA) and low-density lipoprotein cholesterol (LDL-C) in the 30 mg·kg-1 epimedin C group (EC30 group), were significantly lower than those in the model control group (MC group) (p < 0.05), while the contents of hepatic glycogen, insulin, and high-density lipoprotein cholesterol (HDL-C), as well as activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the EC30 group were notably higher than those in the MC group (p < 0.05). The structures of liver cells and tissues were greatly destroyed in the MC group, whereas the structures of cells and tissues were basically complete in the EC30 group, which were similar to those in the normal control group (NC group). A total of 92 differentially expressed proteins (DEPs) were enriched in the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In the EC30 vs. MC groups, the expression level of cytosolic phosphoenolpyruvate carboxykinase (Pck1) was down-regulated, while the expression levels of group XIIB secretory phospholipase A2-like protein (Pla2g12b), apolipoprotein B-100 (Apob), and cytochrome P450 4A14 (Cyp4a14) were up-regulated. According to the KEGG pathway assay, Pck1 participated in the gluconeogenesis and insulin signaling pathways, and Pla2g12b, Apob, and Cyp4a14 were the key proteins in the fat digestion and fatty acid degradation pathways. Pck1, Pla2g12b, Apob, and Cyp4a14 seemed to play important roles in the prevention and treatment of T2DM. In summary, epimedin C inhibited Pck1 expression to maintain FBG at a relatively stable level, promoted Pla2g12b, Apob, and Cyp4a14 expressions to alleviate liver lipotoxicity, and protected liver tissues and cells from oxidant stress possibly by its phenolic hydroxyl groups.
Collapse
Affiliation(s)
- Xuexue Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Ziqi Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Xiaohua Yang
- Research Station of Selenium-Enriched Tea of Shaanxi Province, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jing Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 119991, Russia;
| | - Murat Sabirovich Gins
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 119991, Russia;
| | - Tingyu Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Lei Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Huafeng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| |
Collapse
|
31
|
Klein RJ, Viana Rodriguez GM, Rotman Y, Brown RJ. Divergent pathways of liver fat accumulation, oxidation, and secretion in lipodystrophy versus obesity-associated NAFLD. Liver Int 2023; 43:2692-2700. [PMID: 37622286 DOI: 10.1111/liv.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AND AIMS Fatty liver is common in obesity as well as in partial lipodystrophy (PL) syndromes, characterized by deficient adipose tissue. Insulin resistance is key to fatty liver pathogenesis in both entities. We aimed to compare the contributions of insulin resistance and adipose tissue to hepatic steatosis in PL and non-syndromic, obesity-associated non-alcoholic fatty liver disease (NS-NAFLD). METHODS In a cross-sectional comparison of people with NS-NAFLD (N = 73) and PL (N = 27), liver fat was measured by FibroScan® controlled attenuation parameter (CAP) and insulin resistance by HOMA-IR, Adipo-IR, and NMR-based LP-IR. RESULTS Insulin resistance was greater in PL versus NS-NAFLD by HOMA-IR (p = 0.005), Adipo-IR (p = 0.01) and LP-IR (p = 0.05) while liver fat was comparable (304 vs. 324 dB/m, p = 0.12). Liver fat correlated with HOMA-IR in both groups, but CAP values were lower by 32 dB/m in PL compared with NS-NAFLD for any given HOMA-IR. In contrast, Adipo-IR and LP-IR correlated with CAP only in the NS-NAFLD group, suggesting different pathways for fat accumulation. Plasma free fatty acids, reflecting substrate input from the adipose tissue, were comparable between groups. However, the levels of β-hydroxybutyrate, a marker of β-oxidation, and large triglyceride-rich lipoprotein particles, a marker of VLDL secretion, were both higher in PL (p < 0.001 for both). CONCLUSION Liver fat content was comparable in subjects with PL-associated NAFLD and NS-NAFLD, despite worse insulin resistance in partial lipodystrophy. Our data demonstrate higher triglyceride oxidation and export in PL, suggesting a compensatory shift of fat from liver storage into the circulation that does not occur in NS-NAFLD.
Collapse
Affiliation(s)
- Rachael J Klein
- Section on Translational Diabetes and Metabolic Syndromes, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gracia M Viana Rodriguez
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Brown
- Section on Translational Diabetes and Metabolic Syndromes, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Sidhu SK, Aleman JO, Heffron SP. Obesity Duration and Cardiometabolic Disease. Arterioscler Thromb Vasc Biol 2023; 43:1764-1774. [PMID: 37650325 PMCID: PMC10544713 DOI: 10.1161/atvbaha.123.319023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Cardiovascular disease risk is known to be influenced by both the severity of a risk factor and the duration of exposure (eg, LDL [low-density lipoprotein] cholesterol, tobacco smoke). However, this concept has been largely neglected within the obesity literature. While obesity severity has been closely linked with cardiometabolic diseases, the risk of developing these conditions among those with obesity may be augmented by greater obesity duration over the life span. Few longitudinal or contemporary studies have investigated the influence of both factors in combination-cumulative obesity exposure-instead generally focusing on obesity severity, often at a single time point, given ease of use and lack of established methods to encapsulate duration. Our review focuses on what is known about the influence of the duration of exposure to excess adiposity within the obesity-associated cardiometabolic disease risk equation by means of summarizing the hypothesized mechanisms for and evidence surrounding the relationships of obesity duration with diverse cardiovascular and metabolic disease. Through the synthesis of the currently available data, we aim to highlight the importance of a better understanding of the influence of obesity duration in cardiovascular and metabolic disease pathogenesis. We underscore the clinical importance of aggressive early attention to obesity identification and intervention to prevent the development of chronic diseases that arise from exposure to excess body weight.
Collapse
Affiliation(s)
- Sharnendra K. Sidhu
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jose O. Aleman
- Laboratory of Translational Obesity Research, Division of Endocrinology, Diabetes & Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | - Sean P. Heffron
- Center for the Prevention of Cardiovascular Disease, Leon H. Charney Division of Cardiology, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Jing J, Li J, Yan N, Li N, Liu X, Li X, Zhang J, Wang Q, Yang C, Qiu J, Liu X, Wang F, Zhao Y, Zhang Y. Increased TG Levels and HOMA-IR Score Are Associated With a High Risk of Prediabetes: A Prospective Study. Asia Pac J Public Health 2023; 35:413-419. [PMID: 37551032 DOI: 10.1177/10105395231191688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This study aimed to determine the association of blood lipid and insulin levels with the development of prediabetes. In this prospective cohort study, we collected and analyzed data related to demographic characteristics, lipid profiles, and insulin parameters at baseline (2008-2012) and at follow-up (2019-2020). A total of 1205 participants were included. The study found that maintained or elevated Homeostatic Model Assessment for Insulin Resistance (HOMO-IR) score and elevated triglyceride (TG) levels from baseline to follow-up were associated with an increased risk of prediabetes. However, the interaction between blood lipids and insulin had no significant effect on the risk of prediabetes. Our findings indicate that elevated TG or HOMA-IR levels are associated with an increased risk of prediabetes. These findings emphasize the need to formulate initiatives that can help reduce dyslipidemia to prevent the onset of prediabetes and diabetes.
Collapse
Affiliation(s)
- Jinyun Jing
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Juan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Ni Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Nan Li
- Ningxia Center for Disease Control and Prevention, Yinchuan, China
| | - Xiaowei Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
| | - Jiaxing Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Qingan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Chan Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Department of Community Nursing, School of Nursing, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangwei Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Xiuying Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
| | - Faxuan Wang
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
- Department of Occupational and Environmental Hygiene, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Zhao
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuhong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
| |
Collapse
|
34
|
St. Clair JR, Westacott MJ, Miranda J, Farnsworth NL, Kravets V, Schleicher WE, Dwulet JM, Levitt CH, Heintz A, Ludin NWF, Benninger RKP. Restoring connexin-36 function in diabetogenic environments precludes mouse and human islet dysfunction. J Physiol 2023; 601:4053-4072. [PMID: 37578890 PMCID: PMC10508056 DOI: 10.1113/jp282114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
The secretion of insulin from β-cells in the islet of Langerhans is governed by a series of metabolic and electrical events, which can fail during the progression of type 2 diabetes (T2D). β-cells are electrically coupled via connexin-36 (Cx36) gap junction channels, which coordinates the pulsatile dynamics of [Ca2+ ] and insulin release across the islet. Factors such as pro-inflammatory cytokines and free fatty acids disrupt gap junction coupling under in vitro conditions. Here we test whether gap junction coupling and coordinated [Ca2+ ] dynamics are disrupted in T2D, and whether recovery of gap junction coupling can recover islet function. We examine islets from donors with T2D, from db/db mice, and islets treated with pro-inflammatory cytokines (TNF-α, IL-1β, IFN-ɣ) or free fatty acids (palmitate). We modulate gap junction coupling using Cx36 over-expression or pharmacological activation via modafinil. We also develop a peptide mimetic (S293) of the c-terminal regulatory site of Cx36 designed to compete against its phosphorylation. Cx36 gap junction permeability and [Ca2+ ] dynamics were disrupted in islets from both human donors with T2D and db/db mice, and in islets treated with pro-inflammatory cytokines or palmitate. Cx36 over-expression, modafinil treatment and S293 peptide all enhanced Cx36 gap junction coupling and protected against declines in coordinated [Ca2+ ] dynamics. Cx36 over-expression and S293 peptide also reduced apoptosis induced by pro-inflammatory cytokines. Critically, S293 peptide rescued gap junction coupling and [Ca2+ ] dynamics in islets from both db/db mice and a sub-set of T2D donors. Thus, recovering or enhancing Cx36 gap junction coupling can improve islet function in diabetes. KEY POINTS: Connexin-36 (Cx36) gap junction permeability and associated coordination of [Ca2+ ] dynamics is diminished in human type 2 diabetes (T2D) and mouse models of T2D. Enhancing Cx36 gap junction permeability protects against disruptions to the coordination of [Ca2+ ] dynamics. A novel peptide mimetic of the Cx36 c-terminal regulatory region protects against declines in Cx36 gap junction permeability. Pharmacological elevation in Cx36 or Cx36 peptide mimetic recovers [Ca2+ ] dynamics and glucose-stimulated insulin secretion in human T2D and mouse models of T2D.
Collapse
Affiliation(s)
- Joshua R St. Clair
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Matthew J Westacott
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Jose Miranda
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Nikki L Farnsworth
- Barbara Davis Center for Diabetes, University of Colorado
Denver | Anschutz Medical Campus, Aurora, CO
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Claire H Levitt
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Audrey Heintz
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Nurin WF Ludin
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Diabetes, University of Colorado
Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
35
|
Zhang Y, Fang X, Shuang F, Chen G. Dexamethasone potentiates the insulin-induced Srebp-1c expression in primary rat hepatocytes. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:1519-1525. [DOI: 10.1016/j.fshw.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Taylor R, Barnes A, Hollingsworth K, Irvine K, Solovyova A, Clark L, Kelly T, Martin-Ruiz C, Romeres D, Koulman A, Meek C, Jenkins B, Cobelli C, Holman R. Aetiology of Type 2 diabetes in people with a 'normal' body mass index: testing the personal fat threshold hypothesis. Clin Sci (Lond) 2023; 137:1333-1346. [PMID: 37593846 PMCID: PMC10472166 DOI: 10.1042/cs20230586] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Weight loss in overweight or obese individuals with Type 2 diabetes (T2D) can normalize hepatic fat metabolism, decrease fatty acid oversupply to β cells and restore normoglycaemia. One in six people has BMI <27 kg/m2 at diagnosis, and their T2D is assumed to have different aetiology. The Personal Fat Threshold hypothesis postulated differing individual thresholds for lipid overspill and adverse effects on β-cell function. To test this hypothesis, people with Type 2 diabetes and body mass index <27kg/m2 (n = 20) underwent repeated 5% weight loss cycles. Metabolic assessments were carried out at stable weight after each cycle and after 12 months. To determine how closely metabolic features returned to normal, 20 matched normoglycemic controls were studied once. Between baseline and 12 months: BMI fell (mean ± SD), 24.8 ± 0.4 to 22.5 ± 0.4 kg/m2 (P<0.0001) (controls: 21.5 ± 0.5); total body fat, 32.1 ± 1.5 to 27.6 ± 1.8% (P<0.0001) (24.6 ± 1.5). Liver fat content and fat export fell to normal as did fasting plasma insulin. Post-meal insulin secretion increased but remained subnormal. Sustained diabetes remission (HbA1c < 48 mmol/mol off all glucose-lowering agents) was achieved by 70% (14/20) by initial weight loss of 6.5 (5.5-10.2)%. Correction of concealed excess intra-hepatic fat reduced hepatic fat export, with recovery of β-cell function, glycaemic improvement in all and return to a non-diabetic metabolic state in the majority of this group with BMI <27 kg/m2 as previously demonstrated for overweight or obese groups. The data confirm the Personal Fat Threshold hypothesis: aetiology of Type 2 diabetes does not depend on BMI. This pathophysiological insight has major implications for management.
Collapse
Affiliation(s)
- Roy Taylor
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Alison C. Barnes
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Kieren G. Hollingsworth
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Keaton M. Irvine
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Lucy Clark
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Tara Kelly
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Carmen Martin-Ruiz
- BioScreening Core Facility, Campus for Ageing and Vitality, Faculty of Medical Sciences, Newcastle University, U.K
| | - Davide Romeres
- Department of Endocrinology, University of Virginia, Charlottesville, VA, U.S.A
| | - Albert Koulman
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Cambridge, U.K
| | - Claire M. Meek
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Cambridge, U.K
- Wolfson Diabetes and Endocrine Centre, Cambridge Universities NHS Foundation Trust, Cambridge, U.K
| | - Benjamin Jenkins
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Cambridge, U.K
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova, Italy
| | - Rury R. Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| |
Collapse
|
37
|
Xiao Y, Pietzner A, Rohwer N, Jung A, Rothe M, Weylandt KH, Elbelt U. Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia. Front Endocrinol (Lausanne) 2023; 14:1195247. [PMID: 37664847 PMCID: PMC10472135 DOI: 10.3389/fendo.2023.1195247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Dyslipidemia, in particular elevated triglycerides (TGs) contribute to increased cardiovascular risk in type 2 diabetes mellitus (T2DM). In this pilot study we aimed to assess how increased TGs affect hepatic fat as well as polyunsaturated fatty acid (PUFA) metabolism and oxylipin formation in T2DM patients. Methods 40 patients with T2DM were characterized analyzing routine lipid blood parameters, as well as medical history and clinical characteristics. Patients were divided into a hypertriglyceridemia (HTG) group (TG ≥ 1.7mmol/l) and a normal TG group with TGs within the reference range (TG < 1.7mmol/l). Profiles of PUFAs and their oxylipins in plasma were measured by gas chromatography and liquid chromatography/tandem mass spectrometry. Transient elastography (TE) was used to assess hepatic fat content measured as controlled attenuation parameter (CAP) (in dB/m) and the degree of liver fibrosis measured as stiffness (in kPa). Results Mean value of hepatic fat content measured as CAP as well as body mass index (BMI) were significantly higher in patients with high TGs as compared to those with normal TGs, and correlation analysis showed higher concentrations of TGs with increasing CAP and BMI scores in patients with T2DM. There were profound differences in plasma oxylipin levels between these two groups. Cytochrome P450 (CYP) and lipoxygenase (LOX) metabolites were generally more abundant in the HTG group, especially those derived from arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and α-linolenic acid (α-LA), and a strong correlation between TG levels and plasma metabolites from different pathways was observed. Conclusions In adult patients with T2DM, elevated TGs were associated with increased liver fat and BMI. Furthermore, these patients also had significantly higher plasma levels of CYP- and LOX- oxylipins, which could be a novel indicator of increased inflammatory pathway activity, as well as a novel target to dampen this activity.
Collapse
Affiliation(s)
- Yanan Xiao
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Adelheid Jung
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
| | | | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
38
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
39
|
Tian Y, Shi D, Liao H, Lu B, Pang Z. The role of Huidouba in regulating skeletal muscle metabolic disorders in prediabetic mice through AMPK/PGC-1α/PPARα pathway. Diabetol Metab Syndr 2023; 15:145. [PMID: 37391779 PMCID: PMC10314379 DOI: 10.1186/s13098-023-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/23/2023] [Indexed: 07/02/2023] Open
Abstract
Prediabetes is a transitional state between normal blood glucose levels and diabetes, but it is also a reversible process. At the same time, as one of the most important tissues in the human body, the metabolic disorder of skeletal muscle is closely related to prediabetes. Huidouba (HDB) is a clinically proven traditional Chinese medicine with significant effects in regulating disorders of glucose and lipid metabolism. Our study aimed to investigate the efficacy and mechanism of HDB in prediabetic model mice from the perspective of skeletal muscle. C57BL/6J mice (6 weeks old) were fed a high-fat diet (HFD) for 12 weeks to replicate the prediabetic model. Three concentrations of HDB were treated with metformin as a positive control. After administration, fasting blood glucose was measured as an indicator of glucose metabolism, as well as lipid metabolism indicators such as total triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), free fatty acid (FFA), and lactate dehydrogenase (LDH). Muscle fat accumulation and glycogen accumulation were observed. The protein expression levels of p-AMPK, AMPK, PGC-1α, PPAR-α, and GLUT-4 were detected. After HDB treatment, fasting blood glucose was significantly improved, and TG, LDL-C, FFA, and LDH in serum and lipid accumulation in muscle tissue were significantly reduced. In addition, HDB significantly upregulated the expression levels of p-AMPK/AMPK, PGC-1α, PPAR-α, and GLUT-4 in muscle tissue. In conclusion, HDB can alleviate the symptoms of prediabetic model mice by promoting the AMPK/PGC-1α/PPARα pathway and upregulating the expression of GLUT-4 protein.
Collapse
Affiliation(s)
- Yu Tian
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Dongxu Shi
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Haiying Liao
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| |
Collapse
|
40
|
Cai Y, Liu S, Zeng F, Rao Z, Yan C, Xing Q, Chen Y. Exploring the protective effect of Sangggua Drink against type 2 diabetes mellitus in db/db mice using a network pharmacological approach and experimental validation. Heliyon 2023; 9:e18026. [PMID: 37483759 PMCID: PMC10362244 DOI: 10.1016/j.heliyon.2023.e18026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Sanggua Drink (SGD) is an experienced formula for clinical treatment of type 2 diabetes mellitus (T2DM). Network pharmacology and experiments were combined to explore the potential mechanism of action of SGD on T2DM. The material basis and action mechanism of SGD were investigated to reveal the active components of SGD, potential target prediction was conducted from TargetNet, PharmMapper; Cytoscape was used to construct PPI network and component-target-pathway (C-T-P) network diagram to interpret biological processes and enrich action pathways. 54 compounds and 41 key target proteins were screened, and a total of 98 signaling pathways were obtained. In vivo experiments, the levels of p-AMPK (P < 0.01), p-ACC and p-AKT were significantly increased in the mice with SGD intervention compared to the db/db mice, while level of FOXO1 were decreased. The results suggested that SGD might improve insulin resistance and glucose metabolism in T2DM mice by activating the AMPK/Akt signaling pathway.
Collapse
Affiliation(s)
- Yu Cai
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Simin Liu
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fei Zeng
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhiwei Rao
- Central Hospital of Xianning, The First Affiliate Hospital of Hubei University of Science, China
| | - Chunchao Yan
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qichang Xing
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yunzhong Chen
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
41
|
Casas-Deza D, Espina S, Martínez-Sapiña A, Del Moral-Bergos R, Garcia-Sobreviela MP, Lopez-Yus M, Calmarza P, Bernal-Monterde V, Arbones-Mainar JM. Triglyceride-rich lipoproteins and insulin resistance in patients with chronic hepatitis C receiving direct-acting antivirals. Atherosclerosis 2023; 375:59-66. [PMID: 37245427 DOI: 10.1016/j.atherosclerosis.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) interferes with carbohydrate and lipid metabolism causing cardiovascular disease and insulin resistance (IR). Direct-acting antivirals (DAAs) are highly effective for the eradication of HCV, with positive effects on metabolic health although paradoxically associated with increased total and LDL-cholesterol. The aims of this study were 1) to characterize dyslipidemia (lipoprotein content, number, and size) in naive HCV-infected individuals and 2) to evaluate the longitudinal association of metabolic changes and lipoparticle characteristics after DAA therapy. METHODS We conducted a prospective study with one-year follow-up. 83 naive outpatients treated with DAAs were included. Those co-infected with HBV or HIV were excluded. IR was analyzed using the HOMA index. Lipoproteins were studied by fast-protein liquid chromatography (FPLC) and Nuclear Magnetic Resonance Spectroscopy (NMR). RESULTS FPLC analysis showed that lipoprotein-borne HCV was only present in the VLDL region most enriched in APOE. There was a lack of association between HOMA and total cholesterol or cholesterol carried by LDL or HDL at baseline. Alternatively, a positive association was found between HOMA and total circulating triglycerides (TG), as well as with TG transported in VLDL, LDL, and HDL. HCV eradication with DAAs resulted in a strong and significant decrease in HOMA (-22%) and HDL-TG (-18%) after one-year follow-up. CONCLUSIONS HCV-dependent lipid abnormalities are associated with IR and DAA therapy can reverse this association. These findings may have potential clinical implications as the HDL-TG trajectory may inform the evolution of glucose tolerance and IR after HCV eradication.
Collapse
Affiliation(s)
- Diego Casas-Deza
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Silvia Espina
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Ana Martínez-Sapiña
- Clinical Microbiology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Pilar Calmarza
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Clinical Biochemistry Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029, Madrid, Spain
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain.
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
42
|
Tao J, Guo P, Lai H, Peng H, Guo Z, Yuan Y, Yu X, Shen X, Liu J, Xier Z, Li G, Yang Y. TXLNG improves insulin resistance in obese subjects in vitro and in vivo by inhibiting ATF4 transcriptional activity. Mol Cell Endocrinol 2023; 568-569:111928. [PMID: 37028586 DOI: 10.1016/j.mce.2023.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Lipotoxicity contributes to insulin resistance and dysfunction of pancreatic β-cells. Insulin promotes 3T3-L1 preadipocyte differentiation and facilitates glucose entry into muscle, adipose, and other tissues. In this study, differential gene expression was analyzed using four datasets, and taxilin gamma (TXLNG) was the only shared downregulated gene in all four datasets. TXLNG expression was significantly reduced in obese subjects according to online datasets and in high-fat diet (HFD)-induced insulin-resistant (IR) mice according to experimental investigations. TXLNG overexpression significantly improved IR induced by HFD in mouse models by reducing body weight and epididymal adipose weight, decreasing mRNA expression of pro-inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), and reducing adipocyte size. High-glucose/high-insulin-stimulated adipocytes exhibited decreased TXLNG and increased signal transducer and activator of transcription 3 (STAT3) and activating transcription factor 4 (ATF4). IR significantly decreased glucose uptake, cell surface glucose transporter type 4 (GLUT4) levels, and Akt phosphorylation, while increasing the mRNA expression levels of IL-6 and TNF-α in adipocytes. However, these changes were significantly reversed by TXLNG overexpression, while they were exacerbated by TXLNG knockdown. TXLNG overexpression had no effect on ATF4 protein levels, while ATF4 overexpression increased ATF4 protein levels. Furthermore, ATF4 overexpression notably abolished the improvements in IR adipocyte dysfunction caused by TXLNG overexpression. In conclusion, TXLNG improves IR in obese subjects in vitro and in vivo by inhibiting ATF4 transcriptional activity.
Collapse
Affiliation(s)
- Jing Tao
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Peipei Guo
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Hongmei Lai
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Hui Peng
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Zitong Guo
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Yujuan Yuan
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Xiaolin Yu
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Xin Shen
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Jun Liu
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Zulipiyemu Xier
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Guoqing Li
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Yining Yang
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China.
| |
Collapse
|
43
|
San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12040782. [PMID: 37107158 PMCID: PMC10135185 DOI: 10.3390/antiox12040782] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
44
|
Zheng Q, Zhu M, Zeng X, Liu W, Fu F, Li X, Liao G, Lu Y, Chen Y. Comparison of Animal Models for the Study of Nonalcoholic Fatty Liver Disease. J Transl Med 2023; 103:100129. [PMID: 36907553 DOI: 10.1016/j.labinv.2023.100129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases, and there is still no effective treatment for its advanced stage, nonalcoholic steatohepatitis (NASH). An ideal animal model of NAFLD/NASH is urgently needed for preclinical studies. However, the models reported previously are quite heterogeneous due to differences in animal strains, feed formulations, evaluation indicators, etc. Here, we report five NAFLD mouse models we developed in previous studies and comprehensively compared their characteristics. The high-fat diet (HFD) model is time-consuming and is characterized by early insulin resistance and slight liver steatosis at 12 weeks. Still, inflammation and fibrosis are rare, even at 22 weeks. The high fat, high fructose, and high cholesterol diet (FFC) exacerbates glucose and lipid metabolism disorders, showing distinct hypercholesterolemia, steatosis, and mild inflammation at 12 w. An FFC diet combined with streptozotocin (STZ) is a novel model that speeds up the process of lobular inflammation and fibrosis. The STAM model also used a combination of FFC and STZ but employs newborn mice and shows the fastest formation of fibrosis nodules. The HFD model is appropriate for the study of early NAFLD. FFC combined with STZ accelerates the pathological process of NASH and may be the most promising model for NASH research and drug development.
Collapse
Affiliation(s)
- Qing Zheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Min Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wen Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guangneng Liao
- Animal experimental center of West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
45
|
Luan G, Li L, Yue H, Li Y, Lü H, Wang Y. Phenols from Potentilla anserina L. Improve Insulin Sensitivity and Inhibit Differentiation in 3T3-L1 Adipocytes in Vitro. Chem Biodivers 2023; 20:e202200784. [PMID: 36717756 DOI: 10.1002/cbdv.202200784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Potentilla anserina L., a well-known perennial herb, is widely used in traditional Tibetan medicine and used as a delicious food in humans. The present investigation reports on the activity of P. anserina phenols (PAP) in regulating glycolipid metabolism in 3T3-L1 adipocytes. Insulin sensitivity tests showed that PAP improved insulin-stimulated glucose uptake by promoting the phosphorylation of serine/threonine kinase Akt. Moreover, an assay involving the differentiation of 3T3-L1 preadipocytes demonstrated that PAP also decreased the accumulation of lipid droplets by suppressing the expression of adipokines during the differentiation process. In addition, the underlying mechanism from the aspects of energy metabolism and oxidative stress is also discussed. The improvement in energy metabolism was supported by an increase in mitochondrial membrane potential (MMP) and intracellular ATP. Amelioration of oxidative stress was supported by decreased levels of intracellular reactive oxygen species (ROS). In summary, our findings suggest that PAP can ameliorate the disorder of glycolipid metabolism in insulin resistant 3T3-L1 adipocytes by improving energy metabolism and oxidative stress and might be an attractive candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Guangxiang Luan
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Linlin Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Hongxia Yue
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Yongfang Li
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Huiling Lü
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Yuwei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
46
|
Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 2023; 118:3434-3450. [PMID: 35880317 PMCID: PMC10202444 DOI: 10.1093/cvr/cvac120] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity and heart failure with preserved ejection fraction (HFpEF) represent two intermingling epidemics driving perhaps the greatest unmet health problem in cardiovascular medicine in the 21st century. Many patients with HFpEF are either overweight or obese, and recent data have shown that increased body fat and its attendant metabolic sequelae have widespread, protean effects systemically and on the cardiovascular system leading to symptomatic HFpEF. The paucity of effective therapies in HFpEF underscores the importance of understanding the distinct pathophysiological mechanisms of obese HFpEF to develop novel therapies. In this review, we summarize the current understanding of the cardiovascular and non-cardiovascular features of the obese phenotype of HFpEF, how increased adiposity might pathophysiologically contribute to the phenotype, and how these processes might be targeted therapeutically.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice. Nat Commun 2023; 14:390. [PMID: 36693830 PMCID: PMC9873739 DOI: 10.1038/s41467-023-35944-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Statins play an important role in the treatment of diabetic nephropathy. Increasing attention has been given to the relationship between statins and insulin resistance, but many randomized controlled trials confirm that the therapeutic effects of statins on diabetic nephropathy are more beneficial than harmful. However, further confirmation of whether the beneficial effects of chronic statin administration on diabetic nephropathy outweigh the detrimental effects is urgently needed. Here, we find that long-term statin administration may increase insulin resistance, interfere with lipid metabolism, leads to inflammation and fibrosis, and ultimately fuel diabetic nephropathy progression in diabetic mice. Mechanistically, activation of insulin-regulated phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway leads to increased fatty acid synthesis. Furthermore, statins administration increases lipid uptake and inhibits fatty acid oxidation, leading to lipid deposition. Here we show that long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice.
Collapse
|
48
|
Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP. In Vitro Modeling of Diabetes Impact on Vascular Endothelium: Are Essentials Engaged to Tune Metabolism? Biomedicines 2022; 10:biomedicines10123181. [PMID: 36551937 PMCID: PMC9775148 DOI: 10.3390/biomedicines10123181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Angiopathy is a common complication of diabetes mellitus. Vascular endothelium is among the first targets to experience blood-borne metabolic alterations, such as hyperglycemia and hyperlipidemia, the hallmarks of type 2 diabetes. To explore mechanisms of vascular dysfunction and eventual damage brought by these pathologic conditions and to find ways to protect vasculature in diabetic patients, various research approaches are used including in vitro endothelial cell-based models. We present an analysis of the data available from these models that identifies early endothelial cell apoptosis associated with oxidative stress as the major outcome of mimicking hyperglycemia and hyperlipidemia in vitro. However, the fate of endothelial cells observed in these studies does not closely follow it in vivo where massive endothelial damage occurs mainly in the terminal stages of diabetes and in conjunction with comorbidities. We propose that the discrepancy is likely in missing essentials that should be available to cultured endothelial cells to adjust the metabolic state and withstand the immediate apoptosis. We discuss the role of carnitine, creatine, and AMP-activated protein kinase (AMPK) in suiting the endothelial metabolism for long-term function in diabetic type milieu in vitro. Engagement of these essentials is anticipated to expand diabetes research options when using endothelial cell-based models.
Collapse
|
49
|
Spada C, Vu C, Raymond I, Tong W, Chuang CL, Walker C, Loomes K, Woodward DF, Poloso NJ. Bimatoprost promotes satiety and attenuates body weight gain in rats fed standard or obesity-promoting diets. Prostaglandins Leukot Essent Fatty Acids 2022; 187:102511. [PMID: 36399889 DOI: 10.1016/j.plefa.2022.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Bimatoprost is a synthetic prostamide F2α analog that down-regulates adipogenesis in vitro. This effect has been attributed to participation in a negative feedback loop that regulates anandamide-induced adipogenesis. A follow-on investigation has now been conducted into the broader metabolic effects of bimatoprost using rats under both normal state and obesity-inducing conditions. Chronic bimatoprost administration attenuated weight gain in a dose dependent-manner in rats fed either standard [max effect -7%] or obesity-promoting diets [max effect -23%] over a 9-10 week period. Consistent with these findings, bimatoprost promoted satiety as measured by decreased food intake [max effect, -7%], gastric emptying [max effect, -33-50%] and decreased circulating concentrations of the gut hormones, ghrelin and GLP-1 [max effect, -33-50%]. Additionally, subcutaneous, and visceral fat mass were distinctly affected by treatment [-30% diet independent]. Taken together, these results suggest that bimatoprost regulates energy homeostasis through promoting satiety and a decrease in food intake. These newly reported activities of bimatoprost reveal an additional method of metabolic disease intervention for potential therapeutic exploitation.
Collapse
Affiliation(s)
| | - Chau Vu
- Allergan Inc, Irvine, CA, United States of America
| | - Iona Raymond
- Allergan Inc, Irvine, CA, United States of America
| | - Warren Tong
- Allergan Inc, Irvine, CA, United States of America
| | | | | | | | | | | |
Collapse
|
50
|
Zhang L, Cui L, Li C, Zhao X, Lai X, Li J, Lv T. Serum free fatty acid elevation is related to acute kidney injury in primary nephrotic syndrome. Ren Fail 2022; 44:1236-1242. [PMID: 35912916 PMCID: PMC9347463 DOI: 10.1080/0886022x.2022.2105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aim of this research was to examine the clinical characteristics of acute kidney injury (AKI) in primary nephrotic syndrome (NS) and discuss the relationship between serum lipids and AKI. A total of 1028 patients diagnosed with primary NS with renal biopsy results were enrolled in this study. The patients were divided into AKI (n = 81) and non-AKI (n = 947) groups, and their characteristics were compared using a propensity score analysis for the best matching. Serum free fatty acid (FFA) was an independent predictor for AKI in the postmatch samples (p = 0.011). No significant difference in FFA levels was observed among AKI stages or different pathological types in the AKI and non-AKI groups. The AUC (area under the ROC curve) was 0.63 for FFA levels to distinguish AKI. In primary NS, elevated FFA levels tend to be related to a high risk of AKI. FFAs have diagnostic value and may serve as biomarkers for AKI in NS.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Cui
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunmei Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoying Lai
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Teng Lv
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|