1
|
Flury A, Aljayousi L, Park HJ, Khakpour M, Mechler J, Aziz S, McGrath JD, Deme P, Sandberg C, González Ibáñez F, Braniff O, Ngo T, Smith S, Velez M, Ramirez DM, Avnon-Klein D, Murray JW, Liu J, Parent M, Mingote S, Haughey NJ, Werneburg S, Tremblay MÈ, Ayata P. A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron 2025; 113:554-571.e14. [PMID: 39719704 DOI: 10.1016/j.neuron.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct "dark microglia" linked to pathological synapse loss. In AD models, microglial ISR activation exacerbates neurodegenerative pathologies and synapse loss while its inhibition ameliorates them. Mechanistically, we present evidence that ISR activation promotes the secretion of toxic lipids by microglia, impairing neuron homeostasis and survival in vitro. Accordingly, pharmacological inhibition of ISR or lipid synthesis mitigates synapse loss in AD models. Our results demonstrate that microglial ISR activation represents a neurodegenerative phenotype, which may be sustained, at least in part, by the secretion of toxic lipids.
Collapse
Affiliation(s)
- Anna Flury
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Leen Aljayousi
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Hye-Jin Park
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | | | - Jack Mechler
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA
| | - Siaresh Aziz
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Jackson D McGrath
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Colby Sandberg
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | | | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | - Thi Ngo
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Simira Smith
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Matthew Velez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Denice Moran Ramirez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Dvir Avnon-Klein
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - John W Murray
- Columbia Center for Human Development, Center for Stem Cell Therapies, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Martin Parent
- CERVO Brain Research Center, Québec City, QC G1E 1T2, Canada
| | - Susana Mingote
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sebastian Werneburg
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA; Michigan Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC H3A 2B4, Canada; Canada Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada; Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC V8N 5M8, Canada
| | - Pinar Ayata
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA.
| |
Collapse
|
2
|
Smolobochkin A, Gazizov A, Appazov N, Sinyashin O, Burilov A. Progress in the Stereoselective Synthesis Methods of Pyrrolidine-Containing Drugs and Their Precursors. Int J Mol Sci 2024; 25:11158. [PMID: 39456938 PMCID: PMC11508981 DOI: 10.3390/ijms252011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The presented review systematizes and summarizes the data on the synthesis of pyrrolidine derivatives, which are precursors for obtaining drugs. Based on the analysis of published data, the most promising directions in the synthesis of biologically active compounds containing a pyrrolidine ring are identified. Stereoselective synthesis methods are classified based on the source of the pyrrolidine ring. The first group includes methods that use a pyrrolidine ring as the starting compound. The second group combines stereoselective methods of cyclization of acyclic starting compounds, which lead to optically pure pyrrolidine derivatives.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| |
Collapse
|
3
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
Affiliation(s)
- Grace C Russell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Yassin Hamzaoui
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel Rho
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gaurav Sutrave
- The University of Sydney, Sydney, Australia; Department of Haematology, Westmead Hospital, Sydney, Australia; Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada
| | - Joseph S Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dara S Missan
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Gabrielle A Reckard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michael P Gustafson
- Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada; Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gloria B Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| |
Collapse
|
4
|
Niu ZX, Nie P, Herdewijn P, Wang YT. Synthetic approaches and application of clinically approved small-molecule drugs to treat hepatitis. Eur J Med Chem 2023; 262:115919. [PMID: 37922830 DOI: 10.1016/j.ejmech.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Hepatitis, a global public health concern, presents a significant burden on healthcare systems worldwide. Particularly, hepatitis B and C are viral infections that can lead to severe liver damage, cirrhosis, and even hepatocellular carcinoma (HCC). The urgency to combat these diseases has driven researchers to explore existing small-molecule drugs as potential therapeutics. This comprehensive review provides a systematic overview of synthetic routes to key antiviral agents used to manage hepatitis. Furthermore, it elucidates the mechanisms of action of these drugs, shedding light on their interference with viral replication and liver disease progression. The review also discusses the clinical applications of these drugs, including their use in combination therapies and various patient populations. By evaluating the synthetic pathways and clinical utility of these drugs, this review not only consolidates current knowledge but also highlights potential future directions for research and drug development in the fight against hepatitis, ultimately contributing to improved patient outcomes and reduced global disease burden.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
5
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
6
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
7
|
Ren J, Vaid TM, Lee H, Ojeda I, Johnson ME. Evaluation of interactions between the hepatitis C virus NS3/4A and sulfonamidobenzamide based molecules using molecular docking, molecular dynamics simulations and binding free energy calculations. J Comput Aided Mol Des 2023; 37:53-65. [PMID: 36427108 PMCID: PMC9839505 DOI: 10.1007/s10822-022-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
The Hepatitis C Virus (HCV) NS3/4A is an attractive target for the treatment of Hepatitis C infection. Herein, we present an investigation of HCV NS3/4A inhibitors based on a sulfonamidobenzamide scaffold. Inhibitor interactions with HCV NS3/4A were explored by molecular docking, molecular dynamics simulations, and MM/PBSA binding free energy calculations. All of the inhibitors adopt similar molecular docking poses in the catalytic site of the protease that are stabilized by hydrogen bond interactions with G137 and the catalytic S139, which are known to be important for potency and binding stability. The quantitative assessments of binding free energies from MM/PBSA correlate well with the experimental results, with a high coefficient of determination, R2 of 0.92. Binding free energy decomposition analyses elucidate the different contributions of Q41, F43, H57, R109, K136, G137, S138, S139, A156, M485, and Q526 in binding different inhibitors. The importance of these sidechain contributions was further confirmed by computational alanine scanning mutagenesis. In addition, the sidechains of K136 and S139 show crucial but distinct contributions to inhibitor binding with HCV NS3/4A. The structural basis of the potency has been elucidated, demonstrating the importance of the R155 sidechain conformation. This extensive exploration of binding energies and interactions between these compounds and HCV NS3/4A at the atomic level should benefit future antiviral drug design.
Collapse
Affiliation(s)
- Jinhong Ren
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
- BeiGene (Beijing) Co., Ltd, No. 30 Science Park Road, Zhong-Guan-Cun Life Sciences Park, Changping District, Beijing, 102206, People's Republic of China
| | - Tasneem M Vaid
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
| | - Hyun Lee
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, 1100 S. Ashland Ave, Chicago, IL, 60607, USA
| | - Isabel Ojeda
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
| | - Michael E Johnson
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA.
| |
Collapse
|
8
|
Luo C, Ampomah-Wireko M, Wang H, Wu C, Wang Q, Zhang H, Cao Y. Isoquinolines: Important Cores in Many Marketed and Clinical Drugs. Anticancer Agents Med Chem 2021; 21:811-824. [PMID: 32329698 DOI: 10.2174/1871520620666200424132248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Isoquinoline analogs are an important, structurally diverse class of compounds that are extensively used as pharmaceuticals. Derivatives containing the isoquinoline scaffold have become a focus of therapeutic research because of their wide range of biological characteristics. Examples of these drugs, many of which are in clinical application or at the pre-clinical stage, are used to treat a broad swathe of ailments, such as tumors, respiratory diseases, infections, nervous system diseases, cardiovascular and cerebrovascular diseases, endocrine and metabolic diseases. METHODS Data were collected from PubMed, Web of Science, and SciFinder, through searches of drug names. RESULTS At least 38 isoquinoline-based therapeutic drugs are in clinical application or clinical trials, and their chemical structure and pharmacokinetics are described in detail. CONCLUSION The isoquinoline ring is a privileged scaffold which is often preferred as a structural basis for drug design, and plays an important role in drug discovery. This review provides a guide for pharmacologists to find effective preclinical/clinical drugs and examines recent progress in the application of the isoquinoline scaffold.
Collapse
Affiliation(s)
- Chunying Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Huanhuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Li Y, Evers R, Hafey MJ, Cheon K, Duong H, Lynch D, LaFranco-Scheuch L, Pacchione S, Tamburino AM, Tanis KQ, Geddes K, Holder D, Zhang NR, Kang W, Gonzalez RJ, Galijatovic-Idrizbegovic A, Pearson KM, Lebron JA, Glaab WE, Sistare FD. Use of a Bile Salt Export Pump Knockdown Rat Susceptibility Model to Interrogate Mechanism of Drug-Induced Liver Toxicity. Toxicol Sci 2020; 170:180-198. [PMID: 30903168 DOI: 10.1093/toxsci/kfz079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) may be associated with clinical drug-induced liver injury, but is poorly predicted by preclinical animal models. Here we present the development of a novel rat model using siRNA knockdown (KD) of Bsep that displayed differentially enhanced hepatotoxicity to 8 Bsep inhibitors and not to 3 Bsep noninhibitors when administered at maximally tolerated doses for 7 days. Bsep KD alone resulted in 3- and 4.5-fold increases in liver and plasma levels, respectively, of the sum of the 3 most prevalent taurine conjugated bile acids (T3-BA), approximately 90% decrease in plasma and liver glycocholic acid, and a distinct bile acid regulating gene expression pattern, without resulting in hepatotoxicity. Among the Bsep inhibitors, only asunaprevir and TAK-875 resulted in serum transaminase and total bilirubin increases associated with increases in plasma T3-BA that were enhanced by Bsep KD. Benzbromarone, lopinavir, and simeprevir caused smaller increases in plasma T3-BA, but did not result in hepatotoxicity in Bsep KD rats. Bosentan, cyclosporine A, and ritonavir, however, showed no enhancement of T3-BA in plasma in Bsep KD rats, as well as Bsep noninhibitors acetaminophen, MK-0974, or clarithromycin. T3-BA findings were further strengthened through monitoring TCA-d4 converted from cholic acid-d4 overcoming interanimal variability in endogenous bile acids. Bsep KD also altered liver and/or plasma levels of asunaprevir, TAK-875, TAK-875 acyl-glucuronide, benzbromarone, and bosentan. The Bsep KD rat model has revealed differences in the effects on bile acid homeostasis among Bsep inhibitors that can best be monitored using measures of T3-BA and TCA-d4 in plasma. However, the phenotype caused by Bsep inhibition is complex due to the involvement of several compensatory mechanisms.
Collapse
Affiliation(s)
- Yutai Li
- Safety Assessment and Laboratory Animal Resources
| | - Raymond Evers
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism
| | | | | | - Hong Duong
- Safety Assessment and Laboratory Animal Resources
| | - Donna Lynch
- Safety Assessment and Laboratory Animal Resources
| | | | | | | | - Keith Q Tanis
- Genetics and Pharmacogenomics, MRL, West Point, PA 19486
| | | | | | | | - Wen Kang
- Safety Assessment and Laboratory Animal Resources
| | | | | | | | | | | | | |
Collapse
|
10
|
Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat Neurosci 2020; 23:281-292. [PMID: 31959934 PMCID: PMC7147976 DOI: 10.1038/s41593-019-0568-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/05/2019] [Indexed: 12/04/2022]
Abstract
New protein synthesis is known to be required for the consolidation of memories, yet existing methods to block translation lack spatiotemporal precision and cell-type specificity, preventing investigation of cell-specific contributions of protein synthesis. Here, we developed a combined knock-in mouse and chemogenetic approach for cell type-specific and drug-inducible protein synthesis inhibition (ciPSI) that enables rapid and reversible phosphorylation of eIF2α, leading to inhibition of general translation by 50% in vivo. We use ciPSI to show that targeted protein synthesis inhibition pan-neuronally and in excitatory neurons in lateral amygdala (LA) impaired long-term memory. This could be recovered with artificial chemogenetic activation of LA neurons, though at the cost of stimulus generalization. Conversely, genetically reducing phosphorylation of eIF2α in excitatory neurons in LA enhanced memory strength, but reduced memory fidelity and behavioral flexibility. Our findings provide evidence for a cell-specific translation program during consolidation of threat memories.
Collapse
|
11
|
Buonomo AR, Scotto R, Nappa S, Arcopinto M, Salzano A, Marra AM, D’Assante R, Zappulo E, Borgia G, Gentile I. The role of curcumin in liver diseases. Arch Med Sci 2019; 15:1608-1620. [PMID: 31749891 PMCID: PMC6855174 DOI: 10.5114/aoms.2018.73596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Riccardo Scotto
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Salvatore Nappa
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Michele Arcopinto
- Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy
| | - Andrea Salzano
- Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road, Leicester, UK
| | | | | | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Guglielmo Borgia
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
12
|
Sofia MJ. The Discovery and Early Clinical Evaluation of the HCV NS3/4A Protease Inhibitor Asunaprevir (BMS-650032). TOPICS IN MEDICINAL CHEMISTRY 2019. [PMCID: PMC7123690 DOI: 10.1007/7355_2018_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The discovery of asunaprevir (1) began with the concept of engaging the small and well-defined S1’ pocket of the hepatitis C virus (HCV) NS3/4A protease that was explored in the context of tripeptide carboxylic acid-based inhibitors. A cyclopropyl-acyl sulfonamide moiety was found to be the optimal element at the P1-P1’ interface enhancing the potency of carboxylic acid-based prototypes by 10- to >100-fold, dependent upon the specific background. Optimization for oral bioavailability identified a 1-substituted isoquinoline-based P2* element that conferred a significant exposure advantage in rats compared to the matched 4-substituted quinoline isomer. BMS-605339 (30) was the first cyclopropyl-acyl sulfonamide derivative advanced into clinical trials that demonstrated dose-related reductions in plasma viral RNA in HCV-infected patients. However, 30 was associated with cardiac events observed in a normal healthy volunteer (NHV) and an HCV-infected patient that led to the suspension of the development program. Using a Langendorff rabbit heart model, a limited structure-cardiac liability relationship was quickly established that led to the discovery of 1. This compound, which differs from 30 only by changes in the substitution pattern of the P2* isoquinoline heterocycle and the addition of a single chlorine atom to the molecular formula, gave a dose-dependent reduction in plasma viral RNA following oral administration to HCV-infected patients without the burden of the cardiac events that had been observed with 30. A small clinical trial of the combination of 1 with the HCV NS5A inhibitor daclatasvir (2) established for the first time that a chronic genotype 1 (GT-1) HCV infection could be cured by therapy with two direct-acting antiviral agents in the absence of exogenous immune-stimulating agents. Development of the combination of 1 and 2 was initially focused on Japan where the patient population is predominantly infected with GT-1b virus, culminating in marketing approval which was granted on July 4, 2014. In order to broaden therapy to include GT-1a infections, a fixed dose triple combination of 1, 2, and the allosteric NS5B inhibitor beclabuvir (3) was developed, approved by the Japanese health authorities for the treatment of HCV GT-1 infection on December 20, 2016 and marketed as Ximency®.
Collapse
|
13
|
Scotto R, Buonomo AR, Moriello NS, Maraolo AE, Zappulo E, Pinchera B, Gentile I, Borgia G. Real-World Efficacy and Safety of Pangenotypic Direct-Acting Antivirals Against Hepatitis C Virus Infection. Rev Recent Clin Trials 2019; 14:173-182. [PMID: 30848211 DOI: 10.2174/1574887114666190306154650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Advances in the development of Direct-Acting Antivirals (DAAs), particularly pangenotypic drugs, have led to a high rate of hepatitis C virus (HCV) eradication. Notably, real- world studies have confirmed the efficacy and safety of pangenotypic DAA combinations reported in registration trials. The aim of this study was to review the treatment recommendations, and the efficacy and safety data of anti-HCV pangenotypic drugs reported in registration clinical trials and in recent real-life cohort studies. METHODS We reviewed the efficacy and safety data of pangenotypic anti-HCV drug combinations reported in original articles and in online conference abstracts. RESULTS Current pangenotypic drug combinations resulted in very high rates of sustained virologic response and few adverse reactions in real-life settings. SVR12 rates in real-life studies ranged from 90-100% depending on the pangenotypic combination, the HCV genotype and the stage of liver disease. Most adverse reactions reported in real-life settings were mild in intensity and rarely led to treatment discontinuation. These results are in accordance with those of clinical trials. CONCLUSION Pangenotypic DAAs result in very high rates of sustained virologic responses and are well tolerated. However, they are contraindicated in patients with decompensated cirrhosis or advanced chronic kidney disease who failed previous DDA-based treatment. Further research is required to customize treatment to "unpackage" current DAA combinations and to develop generic drugs against HCV.
Collapse
Affiliation(s)
- Riccardo Scotto
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Nicola Schiano Moriello
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Alberto Enrico Maraolo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Guglielmo Borgia
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
de Ruiter PE, Gadjradj Y, de Knegt RJ, Metselaar HJ, Ijzermans JNM, van der Laan LJW. Interaction of immunosuppressants with HCV antivirals daclatasvir and asunaprevir: combined effects with mycophenolic acid. World J Transplant 2018; 8:156-166. [PMID: 30211024 PMCID: PMC6134272 DOI: 10.5500/wjt.v8.i5.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the specific effects of immunosuppressants on the antiviral action of daclatasvir and asunaprevir.
METHODS The antiviral activity of daclatasvir (DCV) and asunaprevir (ASV) combined with immunosuppressants was tested using two in vitro models for hepatitis C virus (HCV) infection.
RESULTS Tacrolimus, rapamycin and cyclosporine did not negatively affect the antiviral action of DCV or ASV. Mycophenolic acid (MPA) showed additive antiviral effects combined with these direct acting antivirals (DAAs). MPA induces interferon-stimulated genes (ISGs) and is a potent GTP synthesis inhibitor. DCV or ASV did not induce ISGs expression nor affected ISG induction by MPA. Rather, the combined antiviral effect of MPA with DCV and ASV was partly mediated via inhibition of GTP synthesis.
CONCLUSION Immunosuppressants do not negatively affect the antiviral activity of DAAs. MPA has additive effect on the antiviral action of DCV and ASV. This combined benefit needs to be confirmed in prospective clinical trials.
Collapse
Affiliation(s)
- Petra E de Ruiter
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam CN 3015, the Netherlands
| | - Yashna Gadjradj
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam CN 3015, the Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam CN 3015, the Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam CN 3015, the Netherlands
| | - Jan NM Ijzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam CN 3015, the Netherlands
| | - Luc JW van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam CN 3015, the Netherlands
| |
Collapse
|
15
|
Zhu L, Li H, Chan P, Eley T, Gandhi Y, Bifano M, Osawa M, Ueno T, Hughes E, AbuTarif M, Bertz R, Garimella T. Population Pharmacokinetic Analysis of Asunaprevir in Subjects with Hepatitis C Virus Infection. Infect Dis Ther 2018; 7:261-275. [PMID: 29589331 PMCID: PMC5986681 DOI: 10.1007/s40121-018-0197-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Introduction Asunaprevir (ASV) is a potent, pangenotypic, twice-daily hepatitis C virus (HCV) NS3 inhibitor indicated for the treatment of chronic HCV infection. Methods A population pharmacokinetic (PPK) model was developed using pooled ASV concentration data from 1239 HCV-infected subjects who received ASV either as part of the DUAL regimen with daclatasvir or as part of the QUAD regimen with daclatasvir and peg-interferon/ribavirin. Results A two-compartment model with first-order elimination from the central compartment, an induction effect on clearance, and an absorption model consisted of zero-order release followed by first-order absorption adequately described ASV PK after oral administration. A typical value for ASV clearance (CL/F) was 50.8 L/h, increasing by 43% after 2 days to a CL/F of 72.5 L/h at steady-state, likely due to auto-induction of cytochrome P450 3A4 (CYP3A4). Factors indicative of hepatic function were identified as key influential covariates on ASV exposures. Subjects with cirrhosis had an 84% increase in ASV area under the concentration time curve (AUC) and subjects with baseline aspartate aminotransferase (AST) above 78 IU/L had a 58% increase in area under the concentration time curve (AUC). Asians subjects had a 46% higher steady-state AUC relative to White/Caucasian subjects. Other significant covariates were formulation, age, and gender. Conclusion The current PPK model provided a parsimonious description of ASV concentration data in HCV-infected subjects. Key covariates identified in the model help explain the observed variability in ASV exposures and may guide clinical use of the drug. Funding Bristol-Myers Squibb. Electronic supplementary material The online version of this article (10.1007/s40121-018-0197-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhu
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | - Hanbin Li
- Quantitative Solutions, Menlo Park, CA, USA
| | - Phyllis Chan
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | - Timothy Eley
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | - Yash Gandhi
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA.
| | - Marc Bifano
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | | | | | - Eric Hughes
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | - Malaz AbuTarif
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | - Richard Bertz
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | - Tushar Garimella
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| |
Collapse
|
16
|
Pharmacophore anchor models of flaviviral NS3 proteases lead to drug repurposing for DENV infection. BMC Bioinformatics 2017; 18:548. [PMID: 29297305 PMCID: PMC5751397 DOI: 10.1186/s12859-017-1957-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Viruses of the flaviviridae family are responsible for some of the major infectious viral diseases around the world and there is an urgent need for drug development for these diseases. Most of the virtual screening methods in flaviviral drug discovery suffer from a low hit rate, strain-specific efficacy differences, and susceptibility to resistance. It is because they often fail to capture the key pharmacological features of the target active site critical for protein function inhibition. So in our current work, for the flaviviral NS3 protease, we summarized the pharmacophore features at the protease active site as anchors (subsite-moiety interactions). Results For each of the four flaviviral NS3 proteases (i.e., HCV, DENV, WNV, and JEV), the anchors were obtained and summarized into ‘Pharmacophore anchor (PA) models’. To capture the conserved pharmacophore anchors across these proteases, were merged the four PA models. We identified five consensus core anchors (CEH1, CH3, CH7, CV1, CV3) in all PA models, represented as the “Core pharmacophore anchor (CPA) model” and also identified specific anchors unique to the PA models. Our PA/CPA models complied with 89 known NS3 protease inhibitors. Furthermore, we proposed an integrated anchor-based screening method using the anchors from our models for discovering inhibitors. This method was applied on the DENV NS3 protease to screen FDA drugs discovering boceprevir, telaprevir and asunaprevir as promising anti-DENV candidates. Experimental testing against DV2-NGC virus by in-vitro plaque assays showed that asunaprevir and telaprevir inhibited viral replication with EC50 values of 10.4 μM & 24.5 μM respectively. The structure-anchor-activity relationships (SAAR) showed that our PA/CPA model anchors explained the observed in-vitro activities of the candidates. Also, we observed that the CEH1 anchor engagement was critical for the activities of telaprevir and asunaprevir while the extent of inhibitor anchor occupation guided their efficacies. Conclusion These results validate our NS3 protease PA/CPA models, anchors and the integrated anchor-based screening method to be useful in inhibitor discovery and lead optimization, thus accelerating flaviviral drug discovery. Electronic supplementary material The online version of this article (10.1186/s12859-017-1957-5) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The rapid evolution in the therapeutic landscape of hepatitis C presents a minefield to clinicians seeking to optimize therapy for their patients. Efficacy, evidence-base, side-effects, and drug combinations must be tailored to individual patients, taking into account comorbidities, degree of fibrosis, evidence of hepatic decompensation, and life expectancy. The review article aims to discuss novel hepatitis C virus (HCV) treatments with an overview of recent breakthrough research validating their potential. It is hoped that this systematic evaluation will clarify best available evidence for clinicians treating patients with HCV on a regular basis. RECENT FINDINGS With greater understanding of the HCV life cycle and viral genome, the last decade has seen the emergence of novel direct-acting antiviral (DAA) agents, which specifically target proteins responsible for viral replication. Landmark clinical trials have offered robust evidence supporting the use of DAA agents as pioneer treatments, alone, or in combination with standard pegylated interferon (peg-IFN) and ribavirin (RBV)-based regimens. DAAs have proved highly efficacious, with pan-genotypic activity, shortened treatment duration, and an improved side-effect profile when compared with historical peg-IFN/RBV treatment. Recent phase 3 studies have provided proof-of-concept that all-oral, IFN-free DAA regimens can yield high rates of sustained virological response across most HCV genotypes. SUMMARY The ability of DAAs to dramatically improve virological clearance heralds a new era in clinical therapeutics, as the unprecedented prospect of cure for a chronic viral infection becomes tangible. However, myriad clinical challenges remain before global eradication of HCV can become reality.
Collapse
|
18
|
Ingle PV, Samsudin SZ, Chan PQ, Ng MK, Heng LX, Yap SC, Chai ASH, Wong ASY. Development and novel therapeutics in hepatocellular carcinoma: a review. Ther Clin Risk Manag 2016; 12:445-55. [PMID: 27042086 PMCID: PMC4801152 DOI: 10.2147/tcrm.s92377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review summarizes the epidemiological trend, risk factors, prevention strategies such as vaccination, staging, current novel therapeutics, including the drugs under clinical trials, and future therapeutic trends for hepatocellular carcinoma (HCC). As HCC is the third most common cause of cancer-related death worldwide, its overall incidence remains alarmingly high in the developing world and is steadily rising across most of the developed and developing world. Over the past 15 years, the incidence of HCC has more than doubled and it increases with advancing age. Chronic infection with hepatitis B virus is the leading cause of HCC, closely followed by infection with hepatitis C virus. Other factors contributing to the development of HCC include alcohol abuse, tobacco smoking, and metabolic syndrome (including obesity, diabetes, and fatty liver disease). Treatment options have improved in the past few years, particularly with the approval of several molecular-targeted therapies. The researchers are actively pursuing novel therapeutic targets as well as predictive biomarker for treatment of HCC. Advances are being made in understanding the mechanisms underlying HCC, which in turn could lead to novel therapeutics. Nevertheless, there are many emerging agents still under clinical trials and yet to show promising results. Hence, future therapeutic options may include different combination of novel therapeutic interventions.
Collapse
Affiliation(s)
| | - Sarah Zakiah Samsudin
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Pei Qi Chan
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mei Kei Ng
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Li Xuan Heng
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Siu Ching Yap
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Amy Siaw Hui Chai
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Audrey San Ying Wong
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Scherer ML, Sammons C, Nelson B, Hammer SM, Verna E. Anti-Hepatitis Virus Agents. CLINICAL VIROLOGY 2016:239-270. [DOI: 10.1128/9781555819439.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Banerjee D, Reddy KR. Review article: safety and tolerability of direct-acting anti-viral agents in the new era of hepatitis C therapy. Aliment Pharmacol Ther 2016; 43:674-96. [PMID: 26787287 DOI: 10.1111/apt.13514] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/25/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Direct-acting anti-virals (DAAs) licensed to treat chronic HCV infection have revolutionised treatment algorithms by drastically mitigating side effects while enhancing efficacy relative to interferon-based therapy. AIM To review adverse events (AEs) uniquely associated with DAA therapy across a broad spectrum of patient populations. METHODS Searches of PubMed and FDA surveillance studies were undertaken to complete an exhaustive review. Search terms included 'DAAs', 'safety', and 'tolerability'. RESULTS While DAAs are remarkably well tolerated, they are accompanied by unique AEs. Simeprevir, an NS3/4A protease inhibitor, has been known, albeit infrequently, to cause mild hyperbilirubinemia and photosensitivity reactions; and paritaprevir boosted with ritonavir causes bilirubin and ALT elevations. Asunaprevir, another protease inhibitor, infrequently causes elevated transaminase levels. NS5A and NS5B inhibitors are well tolerated, although sofosbuvir is contraindicated in patients with severe renal impairment. Ribavirin co-administered in certain treatment regimens has been associated with cough, rash and haemolytic anaemia. CONCLUSIONS With the impending reality of a more tolerable interferon-sparing regimen, the future of DAA therapy offers shorter treatment duration, simplified disease management, and a patient-centred regimen. With advantages come drawbacks, including development of resistance to therapy and accessibility to this expensive treatment. DAA therapy continues to advance at a brisk pace with a promising trend for higher tolerability, even in difficult-to-treat subgroups such as those with cirrhosis, nonresponders to prior therapy, and transplant recipients. Subgroup-specific contraindications and safety-related limitations are active areas of research. Concerted research efforts and continuing advances lend hope to the goal of rendering HCV a routinely curable disease.
Collapse
Affiliation(s)
- D Banerjee
- Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - K R Reddy
- Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Tamori A, Enomoto M, Kawada N. Recent Advances in Antiviral Therapy for Chronic Hepatitis C. Mediators Inflamm 2016; 2016:6841628. [PMID: 27022210 PMCID: PMC4752984 DOI: 10.1155/2016/6841628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide health problem. Chronic infection induces continuous inflammation in the liver, progression of hepatic fibrosis, eventual cirrhosis, and possible hepatocellular carcinoma. Eradication of the virus is one of the most important treatment aims. A number of promising new direct-acting antivirals (DAAs) have been developed over the past 10 years. Due to their increased efficacy, safety, and tolerability, interferon-free oral therapies with DAAs have been approved for patients with HCV, including those with cirrhosis. This review introduces the characteristics and results of recent clinical trials of several DAAs: NS3/4A protease inhibitors, NS5A inhibitors, and NS5B inhibitors. DAA treatment failure and prognosis after DAA therapy are also discussed.
Collapse
Affiliation(s)
- Akihiro Tamori
- Department of Hepatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Masaru Enomoto
- Department of Hepatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
22
|
Gentile I, Zappulo E, Buonomo AR, Scotto R, Borgia G. Asunaprevir for hepatitis C: a safety evaluation. Expert Opin Drug Saf 2015; 14:1631-46. [PMID: 26329454 DOI: 10.1517/14740338.2015.1084287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The introduction of direct-acting antiviral (DAA) agents has revolutionized the treatment of hepatitis C virus (HCV) chronic infection. Non-structural 3 protease inhibitors are currently the most numerous class of DAAs on the market. AREAS COVERED This review mainly focuses on the tolerability and safety profile of asunaprevir (ASV)-containing DAA regimens. ASV is a second-wave protease inhibitor currently in Phase III clinical development in most countries and already available in Japan. EXPERT OPINION ASV shows potent antiviral effect and clinical efficacy on HCV genotypes 1 and 4. The all-oral combination daclatasvir/ASV reached high eradication rates in HCV genotype 1b and 4 infection, and a lower efficacy in genotype 1a infection. ASV presents a low potential for drug-drug interaction and a good tolerability as part of multiple, including all-oral, regimens. ASV is associated with a transient and usually mild increase in aminotransferase levels in a low percentage of cases. Due to the impaired pharmacokinetic profile observed in advanced liver disease, ASV use in patients with moderate or severe hepatic impairment is not allowed. In conclusion, ASV represents a powerful weapon against HCV infection and has to be considered an optimal option as a component of genotype tailored interferon-free combinations.
Collapse
Affiliation(s)
- Ivan Gentile
- a University of Naples "Federico II", Department of Clinical Medicine and Surgery , via S. Pansini 5, I-80131 Naples, Italy +39 081 746 3178 ; +39 081 746 3190 ;
| | - Emanuela Zappulo
- a University of Naples "Federico II", Department of Clinical Medicine and Surgery , via S. Pansini 5, I-80131 Naples, Italy +39 081 746 3178 ; +39 081 746 3190 ;
| | - Antonio Riccardo Buonomo
- a University of Naples "Federico II", Department of Clinical Medicine and Surgery , via S. Pansini 5, I-80131 Naples, Italy +39 081 746 3178 ; +39 081 746 3190 ;
| | - Riccardo Scotto
- a University of Naples "Federico II", Department of Clinical Medicine and Surgery , via S. Pansini 5, I-80131 Naples, Italy +39 081 746 3178 ; +39 081 746 3190 ;
| | - Guglielmo Borgia
- a University of Naples "Federico II", Department of Clinical Medicine and Surgery , via S. Pansini 5, I-80131 Naples, Italy +39 081 746 3178 ; +39 081 746 3190 ;
| |
Collapse
|
23
|
Gentile I, Zappulo E, Buonomo AR, Maraolo AE, Borgia G. Beclabuvir for the treatment of hepatitis C. Expert Opin Investig Drugs 2015; 24:1111-21. [PMID: 26156630 DOI: 10.1517/13543784.2015.1059820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION About 185,000,000 people worldwide are chronically infected with hepatitis C virus (HCV). Currently, the most successful HCV infection antiviral therapies reduce the chance of progression towards the advanced phases of the hepatopathy (liver cirrhosis, hepatocellular carcinoma and death). Recently, however, several new direct-acting antivirals against HCV are available or are in an advanced phase of clinical development. AREAS COVERED This review focuses on beclabuvir , an allosteric non-nucleotide inhibitor of HCV polymerase. The article covers its pharmacokinetics, mechanism of action, in addition to its tolerability and safety profile as well as its resistance pattern. EXPERT OPINION The pharmacokinetic, efficacy and tolerability profile of beclabuvir, as well as its barrier to resistance, are very favorable. In particular, the combination of beclabuvir with asunaprevir and daclatasvir achieves very high rates of viral eradication (about 90%) in patients infected with HCV genotype 1, which is the most common genotype worldwide. Therefore, beclabuvir represents a powerful weapon against HCV infection and has to be considered an optimal option in tailored IFN-free combinations.
Collapse
Affiliation(s)
- Ivan Gentile
- University of Naples 'Federico II,' Department of Clinical Medicine and Surgery , via S. Pansini 5, I-80131 Naples , Italy +39 0 81 7463178 ; +39 0 81 7463190 ;
| | | | | | | | | |
Collapse
|
24
|
Yoshimi S, Imamura M, Murakami E, Hiraga N, Tsuge M, Kawakami Y, Aikata H, Abe H, Hayes CN, Sasaki T, Ochi H, Chayama K. Long term persistence of NS5A inhibitor-resistant hepatitis C virus in patients who failed daclatasvir and asunaprevir therapy. J Med Virol 2015; 87:1913-20. [PMID: 25954851 DOI: 10.1002/jmv.24255] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
Although interferon-free antiviral treatment is expected to improve treatment of hepatitis C, it is unclear to what extent pre-existing drug-resistant amino acid substitutions influence response to therapy. The impact of pre-existing drug-resistant substitutions on virological response to daclatasvir and asunaprevir combination therapy was studied in genotype 1b hepatitis C virus (HCV)-infected patients. Thirty-one patients were treated with daclatasvir and asunaprevir for 24 weeks. Twenty-six patients achieved sustained virological response (SVR), three patients experienced viral breakthrough, and two patients relapsed. Direct sequencing analysis of HCV showed the existence of daclatasvir-resistant NS5A-L31M or -Y93H/F variants in nine out of 30 patients (30%) prior to treatment, while asunaprevir-resistant NS3-D168 mutations were not detected in any patient. All 21 patients with wild-type NS5A-L31 and -Y93 achieved SVR, whereas only four out of nine patients (44%) with L31M or Y93F/H substitutions achieved SVR (P = 0.001). Ultra-deep sequencing analysis showed that treatment failure was associated with the emergence of both NS5A-L31/Y93 and NS3-D168 variants. NS5A-L31/Y93 variants remained at high frequency through post-treatment weeks 103 through 170, while NS3-D168 variants were replaced by wild-type in all patients. In conclusion, pre-existence of NS5A inhibitor-resistant substitutions compromised the response to daclatasvir and asunaprevir combination therapy, and treatment failure was associated with the emergence of both NS5A-L31/Y93 and NS3-D168 variants. While asunaprevir-resistant variants that emerged during therapy returned to wild-type, daclatasvir-resistant variants tended to persist in the absence of the drug.
Collapse
Affiliation(s)
- Satoshi Yoshimi
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tamito Sasaki
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ochi
- Laboratory for Digestive Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| |
Collapse
|
25
|
Li HC, Lo SY. Hepatitis C virus: Virology, diagnosis and treatment. World J Hepatol 2015; 7:1377-1389. [PMID: 26052383 PMCID: PMC4450201 DOI: 10.4254/wjh.v7.i10.1377] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/22/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
More than twenty years of study has provided a better understanding of hepatitis C virus (HCV) life cycle, including the general properties of viral RNA and proteins. This effort facilitates the development of sensitive diagnostic tools and effective antiviral treatments. At present, serologic screening test is recommended to perform on individuals in the high risk groups and nucleic acid tests are recommended to confirm the active HCV infections. Quantization and genotyping of HCV RNAs are important to determine the optimal duration of anti-viral therapy and predict the likelihood of response. In the early 2000s, pegylated interferon plus ribavirin became the standard anti-HCV treatment. However, this therapy is not ideal. To 2014, boceprevir, telaprevir, simeprevir, sofosbuvir and Harvoni are approved by Food and Drug Administration for the treat of HCV infections. It is likely that the new all-oral, interferon-free, pan-genotyping anti-HCV therapy will be available within the next few years. Majority of HCV infections will be cured by these anti-viral treatments. However, not all patients are expected to be cured due to viral resistance and the high cost of antiviral treatments. Thus, an efficient prophylactic vaccine will be the next challenge in the fight against HCV infection.
Collapse
|
26
|
Yang SS, Kao JH. Asunaprevir-containing regimens for the treatment of hepatitis C virus infection. Expert Rev Gastroenterol Hepatol 2015; 9:9-20. [PMID: 25174254 DOI: 10.1586/17474124.2014.953930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic hepatitis C virus (HCV) infection has been a tremendous health burden worldwide with an annual mortality of 300,000 people due to decompensated cirrhosis or hepatocellular carcinoma. A combination of interferon (IFN), ribavirin (RBV), and/or direct-acting antivirals (DAAs) can eradicate HCV in a various proportion of infected patients. Unfortunately, IFN-based therapy is associated with significant adverse effects, contraindications, and limited tolerability, leading to lower adherence or even treatment discontinuation. With the rapid evolution of newer DAAs or host-targeting agents, emerging HCV therapy is moving towards an IFN- and RBV-free strategy. To this end, a recently developed NS3 protease inhibitor, asunaprevir (ASV), in combination with other DAAs as IFN/RBV-containing or -free regimen, has shown promising results with fewer adverse effects. In this review, preclinical profiles and clinical proof-of-concept studies of ASV, including viral resistance, host polymorphism, and role of ASV in future HCV therapy are reviewed and discussed.
Collapse
Affiliation(s)
- Sheng-Shun Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | | |
Collapse
|
27
|
Gentile I, Buonomo AR, Zappulo E, Borgia G. Discontinued drugs in 2012 – 2013: hepatitis C virus infection. Expert Opin Investig Drugs 2014; 24:239-51. [DOI: 10.1517/13543784.2015.982274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ivan Gentile
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| | - Antonio Riccardo Buonomo
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| | - Emanuela Zappulo
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| | - Guglielmo Borgia
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| |
Collapse
|
28
|
Gentile I, Buonomo AR, Zappulo E, Coppola N, Borgia G. GS-9669: a novel non-nucleoside inhibitor of viral polymerase for the treatment of hepatitis C virus infection. Expert Rev Anti Infect Ther 2014; 12:1179-86. [PMID: 25096404 DOI: 10.1586/14787210.2014.945432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is an RNA virus that chronically infects 2-3% of the world's population. About 25% of these chronic carriers evolve towards liver cirrhosis, a disease that is significantly associated with reduced survival and quality of life. Antiviral therapy can eradicate the infection - a process that is associated with a reduced disease progression rate. Several oral direct agents have been developed and tested for the treatment of HCV infection. This review focuses on the mechanism of action, pharmacokinetics, efficacy, safety and resistance of GS-9669, a non-nucleoside inhibitor of viral polymerase, active against HCV genotype 1. In combination with other oral antivirals, GS-9669 results: in very high rates of viral eradication (90-100%) in patients with HCV genotype 1 infection, with a good tolerability and safety profile. In conclusion, GS-9669 is a good candidate to be used in interferon-free combinations for the treatment of chronic HCV infection.
Collapse
Affiliation(s)
- Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', via S. Pansini 5,I-80131 Naples, Italy
| | | | | | | | | |
Collapse
|