1
|
Gangwar A, Saini S, Sharma R. Galectins as Drivers of Host-Pathogen Dynamics in Mycobacterium tuberculosis Infection. ACS Infect Dis 2025. [PMID: 40340374 DOI: 10.1021/acsinfecdis.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Galectins form a protein family with a conserved carbohydrate-binding domain that specifically interacts with β-galactoside-containing glycoconjugates, which are found abundantly on mammalian cell surfaces. These proteins play crucial roles in various physiological and pathological processes including immune responses, cell adhesion, inflammation, and apoptosis. During tuberculosis infection, galectins exert diverse impacts on pathogenesis. The interaction between host and pathogen during TB involves intricate mechanisms influencing disease outcomes, where the pathogen exploits host glycosylation patterns to evade immune detection, underscoring the significant role of galectins in regulating these crucial host-pathogen interactions. Galectins facilitate pathogen recognition, enhance the phagocytosis of mycobacteria, support the formation of granuloma, and carefully balance the protective immunity against potential tissue damage. Additionally, galectins have an impact on the cytokine milieu by regulating the levels of pro-inflammatory cytokines and chemokines, essential for orchestrating granuloma formation and maintaining tuberculosis-associated homeostasis. This review delves into the intricate connection between galectins and tuberculosis; uncovering essential molecular mechanisms that deepen our understanding of how these proteins contribute to combating this pervasive infectious disease. Here we discuss the multifaceted roles that galectins play to uniquely and critically influence the core dynamics of host-pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- Anjali Gangwar
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Saini
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Zhang W, Ji C, Li X, He T, Jiang W, Liu Y, Wu M, Zhao Y, Chen X, Wang X, Li J, Zhang H, Wang J. Autophagy-independent role of ATG9A vesicles as carriers for galectin-9 secretion. Nat Commun 2025; 16:4259. [PMID: 40335523 PMCID: PMC12059159 DOI: 10.1038/s41467-025-59605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Galectins play vital roles in cellular processes such as adhesion, communication, and survival, yet the mechanisms underlying their unconventional secretion remain poorly understood. This study identifies ATG9A, a core autophagy protein, as a key regulator of galectin-9 secretion via a mechanism independent of classical autophagy, secretory autophagy, or the LC3-dependent extracellular vesicle loading and secretion pathway. ATG9A vesicles function as specialized carriers, with the N-terminus of ATG9A and both carbohydrate recognition domains of galectin-9 being critical for the process. TMED10 mediates the incorporation of galectin-9 into ATG9A vesicles, which then fuse with the plasma membrane via the STX13-SNAP23-VAMP3 SNARE complex. Furthermore, ATG9A regulates the secretion of other proteins, including galectin-4, galectin-8, and annexin A6, but not IL-1β, galectin-3, or FGF2. This mechanism is potentially conserved across other cell types, including monocytic cells, which underscores its broader significance in unconventional protein secretion.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Wei Jiang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Meiling Wu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yunpeng Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xiaoli Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| |
Collapse
|
3
|
Pfeifer L, Mueller KK, Müller MT, Philipp LM, Sebens S, Classen B. Synthetic and plant-derived multivalent galactans as modulators of cancer-associated galectins-3 and -9. Int J Biol Macromol 2025; 305:141155. [PMID: 39971027 DOI: 10.1016/j.ijbiomac.2025.141155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Galectins are β-galactoside-binding proteins with numerous functions. Some of them are involved in proliferation and metastasis of cancer, making them promising therapeutic targets. As different plant glycans have been shown to bind to galectins, plant saccharides might be potential galectin inhibitors. To produce plant galactans rich in galactose and smaller in size, we degraded arabinogalactan-proteins from Echinacea purpurea and Zostera marina as well as arabinogalactan from larch. As galectin (Gal)-3 and -9 both have been described to be involved in cancer development, we quantified the binding capacities of the different galactans to both galectins by biolayer-interferometry. Our results revealed that all plant-derived galactans and Yariv reagents with terminal galactose and lactose residues bind to Gal-3 in micromolar ranges. Surprisingly, only the higher charged galactans from Zostera marina showed affinity to Gal-9. Investigations of two different pancreatic cancer cell lines (Panc1 and Panc89) and different cell variants thereof revealed that Gal-3 was expressed by both cell lines with a significantly higher Gal-3 level in Panc1 cells compared to Panc89 cells. Conversely, Gal-9 was only detected in Panc89 cells. The findings revealed that galactans are promising sources to develop galectin antagonists and plant galactans from different species express specificities for distinct galectins.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| | - Maximilian Thal Müller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Yu J, Li L, Kraithong S, Zou L, Zhang X, Huang R. Comprehensive review on human Milk oligosaccharides: Biosynthesis, structure, intestinal health benefits, immune regulation, neuromodulation mechanisms, and applications. Food Res Int 2025; 209:116328. [PMID: 40253162 DOI: 10.1016/j.foodres.2025.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
This review provides a comprehensive analysis of the biosynthetic pathways of various oligosaccharides in Escherichia coli, structural characteristics, and bioactive mechanisms of human milk oligosaccharides (HMOs), with a particular emphasis on their roles in gut health, immune modulation, and neurodevelopment. HMOs primarily function as prebiotics, facilitating the growth of beneficial bacteria such as Bifidobacterium to maintain microbial homeostasis, with a discussion on the synergistic role of carbohydrate-binding modules (CBMs). In immune modulation, HMOs interact with lectins on immune and epithelial cells, influencing immune responses via pathways such as Toll-like receptors (TLRs). Additionally, HMOs have been linked to enhanced cognitive, motor, and language development in infants, influencing genes such as GABRB2, SLC1A7, GLRA4, and CHRM3. The review also examines commercially available HMO-containing products and highlights future research directions and potential applications in nutrition and healthcare.
Collapse
Affiliation(s)
- Jieting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lingshan Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Vinaixa J, Martínez-Bosch N, Gibert J, Manero-Rupérez N, Santofimia-Castaño P, Baudou FG, Vera RE, Pease DR, Iglesias M, Sen S, Wang X, Almada LL, Marks DL, Moreno M, Iovanna JL, Rabinovich GA, Fernandez-Zapico ME, Navarro P. Nuclear Galectin-1 promotes KRAS-dependent activation of pancreatic cancer stellate cells. Proc Natl Acad Sci U S A 2025; 122:e2424051122. [PMID: 40172967 PMCID: PMC12002210 DOI: 10.1073/pnas.2424051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, primarily due to its complex tumor microenvironment (TME), which drives both disease progression and therapy resistance. Understanding the molecular mechanisms governing TME dynamics is essential for developing new treatment strategies for this devastating disease. In this study, we uncover an oncogenic role for Galectin-1 (Gal1), a glycan-binding protein abundantly expressed by activated pancreatic stellate cells (PSCs), a key component of the PDAC TME that orchestrates tumor progression. Our findings reveal that Gal1 expression is elevated in the nucleus of human PSCs in both tissue samples and cultured cell lines. Using chromatin immunoprecipitation followed by sequencing analysis (ChIP-seq), we identify Gal1 occupancy at the promoters of several cancer-associated genes, including KRAS, a pivotal oncogene involved in PDAC pathogenesis. We demonstrate that Gal1 binds to the KRAS promoter, sustaining KRAS expression in PSCs, which, in turn, maintains PSC activation and promotes the secretion of protumorigenic cytokines. Mechanistically, Gal1 is required to preserve histone H3 lysine 4 monomethylation levels and to recruit the histone methyltransferase MLL1 to target promoters. Collectively, our findings define a nuclear function of Gal1 in modulating the transcriptional landscape of cancer-associated genes in PSCs within the PDAC TME, mediated through an epigenetic mechanism. These insights enhance our understanding of PDAC pathology and open potential avenues for therapeutic interventions targeting intracellular Gal1.
Collapse
Affiliation(s)
- Judith Vinaixa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Patricia Santofimia-Castaño
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Federico G. Baudou
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján6700, Provincia de Buenos Aires, Argentina
| | - Renzo E. Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David R. Pease
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Departament of Pathology, Hospital del Mar, Barcelona08003, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Xiyin Wang
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David L. Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Juan L. Iovanna
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires1428, Argentina
- Caixa Research Institute, Barcelona08022, Spain
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
- Department of Molecular and Cellular Biomedicine, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08036, Spain
- Institut d’Investigacions Biomediques August Pi Sunyer, Barcelona08036, Spain
| |
Collapse
|
7
|
Huang S, Kang Y, Liu T, Xiong Y, Yang Z, Zhang Q. The role of immune checkpoints PD-1 and CTLA-4 in cardiovascular complications leading to heart failure. Front Immunol 2025; 16:1561968. [PMID: 40255399 PMCID: PMC12006013 DOI: 10.3389/fimmu.2025.1561968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of immune responses, acting as gatekeepers to balance immunity against foreign antigens and self-tolerance. These checkpoints play a key role in maintaining cardiac homeostasis by preventing immune-mediated damage to critical organs like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in cardiovascular complications, particularly atherosclerosis and myocarditis, which can lead to heart failure. We conducted a comprehensive analysis using animal models and clinical data to assess the effects of immune checkpoint inhibition on cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4 pathways exacerbates myocardial inflammation, accelerates atherosclerotic plaque formation, and promotes the development of heart failure. Additionally, we observed that immune checkpoint inhibition in these models led to increased infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical in preserving cardiac health, and their inhibition can result in severe cardiovascular toxicity. Our study emphasizes the need for careful monitoring of cardiovascular health in patients undergoing immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Shoulian Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixuan Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Lv J, Quan H, Lv J, Sui Y, Yu P, Guo S, Miao Y, Lv M. Argatroban and Menadione exert protective effects in ultraviolet-irradiated skin inflammation: A transcriptomic analysis based on identification of iron overload related biomarkers. Int Immunopharmacol 2025; 151:114334. [PMID: 40020462 DOI: 10.1016/j.intimp.2025.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
Ultraviolet light (UV) can cause serious damage to human skin. The inflammatory reaction arising from repeated UV exposure leads to severe skin lesions and even promotes photo-carcinogenesis. Iron overload is featured by excessive iron intake and deposition and will promote inflammatory response inside cells. However, the core molecules involved in UV radiation induced iron overload and related anti-inflammatory strategies remain unclear. Signature genes involved in UV-irradiated skin were filtered through integrated datasets from the Gene Expression Omnibus (GEO) database. Subsequently, immune cell infiltration analysis was carried out to examine the relationship between signature gene expression and immune cell abundance. Single cell RNA-seq matrix data implicated in UV-irradiated skin was then applied to assess the expression level of signature genes in different cell clusters and to find out the core cell type and the key signaling pathway involved in UV radiation. Finally, cytological and animal experiments were conducted to investigate the potential of signature genes as therapeutic targets. SAT1 and RBMS1 were screened and validated as signature genes of UV irradiation. Immune cell infiltration analysis demonstrated that SAT1 and RBMS1 expression were associated closely with immune cell abundance, and skin fibroblasts were identified as the central cell type to communicate with other cell clusters in UV-irradiated skin. Disturbance of SAT1 exerted observably more suppressive effects on the release of inflammatory cytokines than overexpression of RBMS1. Two small molecule drugs targeting SAT1, namely Argatroban and Menadione, were predicted. Moreover, their therapeutic potentials in the treatment of UV-irradiated skin injury were confirmed experimentally.
Collapse
Affiliation(s)
- Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huilin Quan
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiarui Lv
- Department of Organ Transplantation and Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Yanan Sui
- Department of ophthalmology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Panpan Yu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Yuwei Miao
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
de la Peña A, Retamal C, Pérez-Molina F, Díaz-Valdivia N, Veloso-Bahamondes F, Tapia D, Cancino J, Randow F, González A, Oyanadel C, Soza A. Galectin-8 drives ERK-dependent mitochondrial fragmentation, perinuclear relocation and mitophagy, with metabolic adaptations for cell proliferation. Eur J Cell Biol 2025; 104:151488. [PMID: 40209344 DOI: 10.1016/j.ejcb.2025.151488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025] Open
Abstract
Mitochondria adapt to the cell proliferative demands induced by growth factors through dynamic changes in morphology, distribution, and metabolic activity. Galectin-8 (Gal-8), a carbohydrate-binding protein that promotes cell proliferation by transactivating the EGFR-ERK signaling pathway, is overexpressed in several cancers. However, its impact on mitochondrial dynamics during cell proliferation remains unknown. Using MDCK and RPTEC kidney epithelial cells, we demonstrate that Gal-8 induces mitochondrial fragmentation and perinuclear redistribution. Additionally, mitochondria adopt donut-shaped morphologies, and live-cell imaging with two Keima-based reporters demonstrates Gal-8-induced mitophagy. ERK signaling inhibition abrogates all these Gal-8-induced mitochondrial changes and cell proliferation. Studies with established mutant versions of Gal-8 and CHO cells reveal that mitochondrial changes and proliferative response require interactions between the N-terminal carbohydrate recognition domain of Gal-8 and α-2,3-sialylated N-glycans at the cell surface. DRP1, a key regulator of mitochondrial fission, becomes phosphorylated in MDCK cells or overexpressed in RPTEC cells in an ERK-dependent manner, mediating mitochondrial fragmentation and perinuclear redistribution. Bafilomycin A abrogates Gal-8-induced cell proliferation, suggesting that mitophagy serves as an adaptation to cell proliferation demands. Functional analysis under Gal-8 stimulation shows that mitochondria maintain an active electron transport chain, partially uncoupled from ATP synthesis, and an increased membrane potential, indicative of healthy mitochondria. Meanwhile, the cells exhibit increased extracellular acidification rate and lactate production via aerobic glycolysis, a hallmark of an active proliferative state. Our findings integrate mitochondrial dynamics with metabolic adaptations during Gal-8-induced cell proliferation, with potential implications for physiology, disease, and therapeutic strategies.
Collapse
Affiliation(s)
- Adely de la Peña
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Nicole Díaz-Valdivia
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Francisco Veloso-Bahamondes
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Diego Tapia
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Medicine, University of Cambridge, UK
| | - Alfonso González
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile; Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
10
|
Wattchow NE, Pullen BJ, Indraratna AD, Nankivell V, Everest-Dass A, Psaltis PJ, Kolarich D, Nicholls SJ, Packer NH, Bursill CA. The emerging role of glycans and the importance of sialylation in cardiovascular disease. Atherosclerosis 2025; 403:119172. [PMID: 40138819 DOI: 10.1016/j.atherosclerosis.2025.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Glycosylation is the process by which glycans (i.e. 'sugars') are enzymatically attached to proteins or lipids to form glycoconjugates. Growing evidence points to glycosylation playing a central role in atherosclerosis. Glycosylation occurs in all human cells and post-translationally modifies many signalling molecules that regulate cardiovascular disease, affecting their binding and function. Glycoconjugates are present in abundance on the vascular endothelium and on circulating lipoproteins, both of which have well-established roles in atherosclerotic plaque development. Sialic acid is a major regulator of glycan function and therefore the process of sialylation, in which sialic acid is added to glycans, is likely to be entwined in any regulation of atherosclerosis. Glycans and sialylation regulators have the potential to present as new biomarkers that predict atherosclerotic disease or as targets for pharmacological intervention, as well as providing insights into novel cardiovascular mechanisms. Moreover, the asialoglycoprotein receptor 1 (ASGR1), a glycan receptor, is emerging as an exciting new regulator of lipid metabolism and coronary artery disease. This review summarises the latest advances in the growing body of evidence that supports an important role for glycosylation and sialylation in the regulation of atherosclerosis.
Collapse
Affiliation(s)
- Naomi E Wattchow
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Benjamin J Pullen
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia
| | - Anuk D Indraratna
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Victoria Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia
| | - Arun Everest-Dass
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Daniel Kolarich
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Stephen J Nicholls
- Victorian Heart Institute, Monash University, Clayton, Victoria, 3168, Australia
| | - Nicolle H Packer
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia; School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia; Australian Research Council (ARC) Centre of Excellence for Synthetic Biology, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia.
| |
Collapse
|
11
|
Prouza V, Zýka J, Kozák J, Magdolenová A, Pohl R, Parkan K. The Evaluation of Glyceryl C3-Azolyl-Thiogalactosides as Galectin-1 and Galectin-3 Ligands. ChemMedChem 2025; 20:e202400826. [PMID: 39673714 DOI: 10.1002/cmdc.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Galectins are a family of galactoside-binding proteins involved in various pathophysiological processes, which makes them attractive targets for drug discovery. The derivatization of d-galactose at C3 and C1 positions has been shown to increase the affinity of synthetic galectin antagonists. In this study, two small libraries of d-galactose derivatives have been designed and synthesized. The first series involved the development of novel aromatic 3-azolyl-3-deoxy-d-galactopyranoses. The second series consisted of epimeric analogs of glyceryl β-S-d-galactopyranosides, which were also derivatized. Binding-affinity evaluations for galectin-1 and galectin-3 have revealed that galactose analogs from both series have potential for further optimization. Notably, a combination of modifications at the C3 position of the galactose ring and on the aglycone has led to the identification of promising galectin inhibitors, specifically the compounds 29R and 32S.
Collapse
Affiliation(s)
- Vít Prouza
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jakub Zýka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Alžbeta Magdolenová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
12
|
Peixoto LC, da Rosa MM. New perspectives on galectin in major depressive disorder treatment. Biochem Pharmacol 2025; 233:116786. [PMID: 39892331 DOI: 10.1016/j.bcp.2025.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Galectins, a family of carbohydrate-binding proteins, regulate immune responses, neuroinflammation, and neurogenesis within the central nervous system (CNS). Among the 15 known galectins, galectins-1, -3, -4, -8, and -9 play significant roles in neuroinflammation and have been investigated in the context of CNS pathologies. This review synthesizes recent advancements in understanding galectins' involvement in the neurobiology of brain disorders, focusing on their interplay with signaling pathways underlying major depressive disorder (MDD). It explores their impact on neuroinflammation, neurogenesis, and brain signaling, highlighting the therapeutic potential of targeting galectins while addressing challenges in translating these findings into clinical practice. Comprehensive studies are essential to unravel the complex mechanisms of galectin-mediated pathways and unlock their full potential for managing neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Michelle Melgarejo da Rosa
- Center for Therapeutic Innovation - Suelly Galdino (NUPIT-SG) Recife Brazil; Department of Biochemistry Federal University of Pernambuco Recife Brazil.
| |
Collapse
|
13
|
Sato S, Iwaki J, Hirabayashi J. Decoding the multifaceted roles of galectins in self-defense. Semin Immunol 2025; 77:101926. [PMID: 39721561 DOI: 10.1016/j.smim.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In this review, we aim to explore the multifaceted roles of galectins in host defense from a broader perspective, particularly regarding their functions when host integrity is compromised. Numerous comprehensive reviews on galectin functions in immunity have already been published. For researchers new to the field, this wealth of information may create an impression of galectins as proteins involved in a wide array of biological processes. Furthermore, due to the heterogeneity of galectin ligands, glycans, there is a risk of perceiving galectin-specific functions as ambiguous, potentially obscuring their core biological significance. To address this, we revisit foundational aspects, focusing on the significance of the recognition of galactose, a "late-comer" monosaccharide in evolutionary terms, provide an overview of galectin glycan binding specificity, with emphasis on the potential biological importance of each carbohydrate-recognition domain. We also discuss the biological implications of the galectin location paradox wherein these cytosolic lectins function in host defense despite their glycan ligands being synthesized in the secretory pathway. Additionally, we examine the role of galectins in liquid-liquid phase separation on membranes, which may facilitate their diverse functions in cellular responses. Through this approach, we aim to re-evaluate the complex and diverse biological roles of galectins in host defense.
Collapse
Affiliation(s)
- Sachiko Sato
- Axe of Infectious and Immune Diseases, CHU de Quebec-Université Laval Research Centre, Faculty of Medicine, and Research Centre for Infectious Diseases, Laval University, Quebec City, Canada.
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan.
| | - Jun Hirabayashi
- Institute for Glyco-core Research, Nagoya University, Tokai Higher Education and Research System, Nagoya, Japan.
| |
Collapse
|
14
|
MacDonald E, Forrester A, Valades-Cruz CA, Madsen TD, Hetmanski JHR, Dransart E, Ng Y, Godbole R, Shp AA, Leconte L, Chambon V, Ghosh D, Pinet A, Bhatia D, Lombard B, Loew D, Larsen MR, Leffler H, Lefeber DJ, Clausen H, Blangy A, Caswell P, Shafaq-Zadah M, Mayor S, Weigert R, Wunder C, Johannes L. Growth factor-triggered de-sialylation controls glycolipid-lectin-driven endocytosis. Nat Cell Biol 2025; 27:449-463. [PMID: 39984654 DOI: 10.1038/s41556-025-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Glycolipid-lectin-driven endocytosis controls the formation of clathrin-independent carriers and the internalization of various cargos such as β1 integrin. Whether this process is regulated in a dynamic manner remained unexplored. Here we demonstrate that, within minutes, the epidermal growth factor triggers the galectin-driven endocytosis of cell-surface glycoproteins, such as integrins, that are key regulators of cell adhesion and migration. The onset of this process-mediated by the Na+/H+ antiporter NHE1 as well as the neuraminidases Neu1 and Neu3-requires the pH-triggered enzymatic removal of sialic acids whose presence otherwise prevents galectin binding. De-sialylated glycoproteins are then retrogradely transported to the Golgi apparatus where their glycan make-up is reset to regulate EGF-dependent invasive-cell migration. Further evidence is provided for a role of neuraminidases and galectin-3 in acidification-dependent bone resorption. Glycosylation at the cell surface thereby emerges as a dynamic and reversible regulatory post-translational modification that controls a highly adaptable trafficking pathway.
Collapse
Affiliation(s)
- Ewan MacDonald
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Montpellier Cell Biology Research Center, CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Alison Forrester
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- WEL Research Institute, Wavre, Belgium
- Université de Namur ASBL, Namur, Belgium
| | - Cesar A Valades-Cruz
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, Brunel University London, London, UK
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Godbole
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Ananthan Akhil Shp
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ludovic Leconte
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
| | - Valérie Chambon
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Debarpan Ghosh
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Alexis Pinet
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Dhiraj Bhatia
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Clausen
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Blangy
- Montpellier Cell Biology Research Center (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Satyajit Mayor
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Warwick, UK
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| |
Collapse
|
15
|
Kornuta CA, Bidart JE, Soria I, Quattrocchi V, Gammella M, Tribulatti MV, Campetella O, Prato CA, Carabelli J, Cheuquepán FA, Hecker YP, Moore PD, Zamorano PI, Langellotti CA. Galectin-8 and GEL01 as potential adjuvants to enhance the immune response induced by a DNA vaccine against bovine alphaherpesvirus Type-1. Virology 2025; 604:110402. [PMID: 39854916 DOI: 10.1016/j.virol.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Bovine alphaherpesvirus-1 (BoAHV-1) causes several symptoms in cattle, leading to significant costs for the livestock industry. In this study, we used a plasmid encoding a secreted form of BoAHV-1 glycoprotein D (pCIgD) as a DNA vaccine. To enhance the potency of the pCIgD vaccine, we used Montanide™ GEL01 PR (GEL01) and introduced Galectin-8 (Gal-8), a lectin considered a novel adjuvant due to its immunostimulatory effects, into the formulation. Animals were vaccinated with pCIgD, pCIgD with Gal-8 (pCIgD-Gal-8), pCIgD with Gal-8 and GEL01 (pCIgD-Gal-8-GEL01), or the control plasmid pCIneo. The immune response was first assessed in a mouse model and then in bovines. The results showed that combining Gal-8 and GEL01 with pCIgD modulated immune responses at both the humoral and cellular levels in both animal models. This study evaluates the efficacy of a DNA vaccine with Gal-8 and GEL01 as potential adjuvants to enhance immune protection against BoAHV-1.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - María Virginia Tribulatti
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Oscar Campetella
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Cecilia Arahí Prato
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Julieta Carabelli
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Felipe Andrés Cheuquepán
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Yanina Paola Hecker
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Prando Dadin Moore
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Tull S, Saviano A, Fatima A, Begum J, Mansour AA, Marigliano N, Schettino A, Blaising J, Trenkle P, Sandrin V, Maione F, Regan-Komito D, Iqbal AJ. Dichotomous effects of Galectin-9 in disease modulation in murine models of inflammatory bowel disease. Biomed Pharmacother 2025; 184:117902. [PMID: 39951917 PMCID: PMC11870847 DOI: 10.1016/j.biopha.2025.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a multifaceted disease characterised by compromised integrity of the epithelial barrier, the gut microbiome, and mucosal inflammation. While leukocyte recruitment and infiltration into intestinal tissue are well-studied and targeted in clinical practice, the role of galectins in modulating mucosal immunity remains underexplored. Galectins, a family of lectin-binding proteins, mediate critical interactions between immune cells and the intestinal epithelium. This study investigated the effect of endogenous Galectin-9 (Gal-9), as well as the combined effects with Galectin-3 (Gal-3), in modulating disease progression in murine models of colitis, using global knockout (KO) models for Gal-3, Gal-9, and Gal-3/Gal-9. Global deficiency in both galectins demonstrated improved disease parameters in Dextran sodium sulfate (DSS)-driven colitis. In contrast, in a model of adoptive T cell driven colitis, the addition of recombinant Gal-9 (rGal-9) was associated with reduced intestinal inflammation and an improvement in disease parameters. Further in vitro studies revealed no change in bone marrow-derived macrophage cytokine production in the absence of endogenous Gal-9, whereas the addition of rGal-9 to human macrophages stimulated pro-inflammatory cytokine production. Collectively, these findings demonstrate that Gal-9 plays distinct, context-dependent effects in intestinal inflammation, with both pro-inflammatory and anti-inflammatory effects. The contrasting functions of endogenous and exogenous Gal-9 underscore its complex involvement in IBD pathogenesis and highlight the need to differentiate its physiological function from therapeutic applications.
Collapse
Affiliation(s)
- Samantha Tull
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Areeba Fatima
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Jenefa Begum
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Julie Blaising
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Patrick Trenkle
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Virginie Sandrin
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| | - Daniel Regan-Komito
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Asif J Iqbal
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| |
Collapse
|
17
|
Svistunov VO, Ehrmann KJ, Lencer WI, Schmieder SS. Sorting of complex sphingolipids within the cellular endomembrane systems. Front Cell Dev Biol 2025; 12:1490870. [PMID: 40078962 PMCID: PMC11897003 DOI: 10.3389/fcell.2024.1490870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Cells contain a plethora of structurally diverse lipid species, which are unevenly distributed across the different cellular membrane compartments. Some of these lipid species require vesicular trafficking to reach their subcellular destinations. Here, we review recent advances made in the field that contribute to understanding lipid sorting during endomembrane trafficking.
Collapse
Affiliation(s)
- Victor O. Svistunov
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Kigumbi J. Ehrmann
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Digestive Diseases Center, Boston, MA, United States
| | - S. S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Brubel R, Polgar B, Szereday L, Balogh DB, Toth T, Mate S, Csibi N, Dobo N, Hudelist G, Acs N, Bokor A. Alteration of Serum Gal-3 Levels in Endometrium-Related Reproductive Disorders. Int J Mol Sci 2025; 26:1630. [PMID: 40004091 PMCID: PMC11855016 DOI: 10.3390/ijms26041630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Endometriosis, a benign, chronic gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity, affects 15% of women of reproductive age. Galectins, a family of beta-galactoside-binding proteins, regulate inflammation and autoimmunity and are widely expressed in reproductive tissues. This study aimed to assess Galectin-3 (Gal-3) levels in the serum of patients with endometriosis compared to asymptomatic controls and investigate serum Gal-3 level changes over a one-year follow-up period of patients with endometriosis. To determine the levels of soluble Gal-3 in the serum of women with endometriosis or gynecological tumors as well as healthy controls, a human Gal-3-specific ELISA was used. Our findings revealed significantly elevated serum Gal-3 levels in patients with endometriosis compared with healthy controls. Furthermore, Gal-3 concentrations were markedly higher in patients with malignant gynecological transformation of the endometrium than in patients with or without endometriosis. During the one-year follow-up, patients with endometriosis exhibited a progressive increase in serum Gal-3 levels. These findings highlight the potential of Gal-3 as a biomarker for endometriosis and related gynecological conditions. However, further prospective studies with larger, more representative patient cohorts are needed to validate its clinical value.
Collapse
Affiliation(s)
- Reka Brubel
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (D.B.B.); (S.M.); (N.C.); (N.D.); (N.A.); (A.B.)
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (B.P.); (L.S.)
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (B.P.); (L.S.)
| | - Dora Bianka Balogh
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (D.B.B.); (S.M.); (N.C.); (N.D.); (N.A.); (A.B.)
| | - Tunde Toth
- Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Szabolcs Mate
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (D.B.B.); (S.M.); (N.C.); (N.D.); (N.A.); (A.B.)
| | - Noemi Csibi
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (D.B.B.); (S.M.); (N.C.); (N.D.); (N.A.); (A.B.)
| | - Noemi Dobo
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (D.B.B.); (S.M.); (N.C.); (N.D.); (N.A.); (A.B.)
| | - Gernot Hudelist
- Department of Gynecology-Center of Endometriosis St. John of God, Hospital St. John of God, 1020 Vienna, Austria;
- Rudolfinerhaus Private Clinic and Campus, 1190 Vienna, Austria
| | - Nandor Acs
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (D.B.B.); (S.M.); (N.C.); (N.D.); (N.A.); (A.B.)
| | - Attila Bokor
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (D.B.B.); (S.M.); (N.C.); (N.D.); (N.A.); (A.B.)
| |
Collapse
|
19
|
Zeng T, Li F, Yang M, Wu Y, Cui W, Mou H, Luo X. Feasibility of Serum Galectin-1 as a Diagnostic Biomarker for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study on a Segment of the Chinese Population Using Convenience Sampling. Biomedicines 2025; 13:425. [PMID: 40002838 PMCID: PMC11853191 DOI: 10.3390/biomedicines13020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is commonly considered as a hepatic manifestation of metabolic syndrome, posing considerable public health and economic challenges due to its high prevalence. This study investigates the diagnostic potential of serum galectin-1 levels in MASLD patients. Methods: A total of 128 participants were analyzed for this study, comprising 68 healthy controls and 60 MASLD patients. The hepatic steatosis index (HSI) and fatty liver index (FLI) were calculated to evaluate the liver steatosis. Serum galectin-1 levels were measured using an enzyme-linked immunosorbent assay. We additionally conducted a comparative analysis of galectin-1 mRNA and protein expression levels in the liver tissue between the mouse models of MASLD, including ob/ob mice (n = 6), high-fat diet-fed C57 mice (n = 6), and the control group (n = 6). Results: Average serum galectin-1 levels significantly differed between groups, with lower values in the controls (p < 0.01). The frequency of MASLD increased with higher quartiles of galectin-1 levels (p < 0.01). The correlation analysis showed a positive relationship between serum galectin-1 and both HSI and FLI (p < 0.01). The multivariate logistic regression indicated that elevated galectin-1 was associated with an increased risk of MASLD (p < 0.01), yielding an area under the receiver operating characteristic curve for predicting MASLD at 0.745 (95% CI: 0.662-0.829). Hepatic galectin-1 levels were also elevated in the MASLD mouse model at both transcript and protein levels (p < 0.01). Conclusions: Serum galectin-1 can be used as a potential biomarker to help diagnose MASLD.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Fang Li
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Min Yang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Yao Wu
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Wei Cui
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Huaming Mou
- Department of Cardiovascular Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Xiaohe Luo
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| |
Collapse
|
20
|
Tan KF, Chia LY, Maki MAA, Cheah SC, In LLA, Kumar PV. Gold nanocomposites in colorectal cancer therapy: characterization, selective cytotoxicity, and migration inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03839-z. [PMID: 39878813 DOI: 10.1007/s00210-025-03839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells. A novel gold nanocomposite (EV-β-CD-HA-Chi-AuNCs) functionalized with a targeting ligand (hyaluronic acid), a permeation enhancement excipient (chitosan), and an anticancer inclusive compound consisting of beta-cyclodextrin and everolimus was proposed and prepared via Turkevich method. Characterization was performed with a UV spectrometer, FTIR, Zetasizer, and HRTEM. Its drug release profile was also evaluated in media with three different pH values. Cytotoxicity and biocompatibility studies were performed on a colorectal cancer cell line (Caco-2) and a normal fibroblast line (MRC-5), respectively, via xCELLigence real-time cellular analysis (RTCA) technology. The inhibitory effect on migration was also further tested via the xCELLigence RTCA technique and a scratch assay. Characterization studies revealed the successful formation of EV-β-CD-HA-Chi-AuNCs with a size and charge which are suitable for the use as targeted drug delivery carrier. In the cytotoxic study, the EV-β-CD-HA-Chi-AuNCs showed a lower IC50 (16 ± 1 µg/ml) than the pure drug (25 ± 3 µg/ml) toward a colorectal cell line (Caco-2). In the biocompatibility study, the EV-β-CD-HA-Chi-AuNCs have minimal toxicity, while the pure drug has severe toxicity toward healthy fibroblasts (MRC-5) despite its low concentration. In the cell migration study, the EV-β-CD-HA-Chi-AuNCs also showed a greater inhibitory effect than the pure drug. Compared with the pure drug, the EV-β-CD-HA-Chi-AuNCs exhibit an excellent selective cytotoxicity between cancerous colorectal Caco-2 cells and healthy MRC-5 cells, making it a potential carrier to carry the drug to the cancerous site while maintaining its low toxicity to the surrounding environment. In addition, an increase in the cytotoxic activity of the EV-β-CD-HA-Chi-AuNCs toward cancerous colorectal Caco-2 cells was also observed, which can potentially improve the treatment of colorectal cancer.
Collapse
Grants
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Le Yi Chia
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Marwan Abdelmahmoud Abdelkarim Maki
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson, Negeri Sembilan, 71010, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
21
|
Park NY, Jo DS, Yang JY, Bae JE, Kim JB, Kim YH, Kim SH, Kim P, Lee DS, Yoshimori T, Jo EK, Yeom E, Cho DH. Activation of lysophagy by a TBK1-SCF FBXO3-TMEM192-TAX1BP1 axis in response to lysosomal damage. Nat Commun 2025; 16:1109. [PMID: 39875384 PMCID: PMC11775327 DOI: 10.1038/s41467-025-56294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCFFBXO3(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe). Furthermore, FBXO3 interacts with TMEM192, leading to its ubiquitination in LLOMe-treated cells. We also identify TAX1BP1 as a critical autophagic adaptor that recognizes ubiquitinated TMEM192 during lysophagy and find that TBK1 activation is crucial for lysophagy, as it phosphorylates FBXO3 in response to lysosomal damage. Knockout of FBXO3 significantly impairs lysophagy, and its reconstitution with a loss-of-function mutant (V221I) further confirms its essential role in lysophagy regulation. Collectively, our findings highlight the significance of the TBK1-FBXO3-TMEM192-TAX1BP1 axis in lysophagy and emphasize the critical role of FBXO3 in lysosomal integrity.
Collapse
Affiliation(s)
- Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
- Organelle Institute, Kyungpook National University, Daegu, South Korea
| | | | - Jae-Yoon Yang
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Ji-Eun Bae
- Organelle Institute, Kyungpook National University, Daegu, South Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | | | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
- Organelle Institute, Kyungpook National University, Daegu, South Korea.
- ORGASIS Corp. 260, Suwon, South Korea.
| |
Collapse
|
22
|
Mimura S, Morishita A, Oura K, Takuma K, Nakahara M, Tadokoro T, Fujita K, Tani J, Kobara H. Galectins and Liver Diseases. Int J Mol Sci 2025; 26:790. [PMID: 39859504 PMCID: PMC11766161 DOI: 10.3390/ijms26020790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement. Galectins affect various immune cell processes through both intracellular and extracellular mechanisms and play roles in processes, such as apoptosis, angiogenesis, and fibrosis. Their importance has increased in recent years because they are recognized as biomarkers, therapeutic agents, and drug targets, with many other applications in conditions such as cardiovascular diseases and cancer. However, little is known about the involvement of galectins in liver diseases. Here, we review the functions of various galectins and evaluate their roles in liver diseases.
Collapse
Affiliation(s)
- Shima Mimura
- Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Takamatsu 761-0793, Kagawa Prefecture, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Elli S, Sisto T, Nizzolo S, Freato N, Bertocchi L, Bianchini G, Yates EA, Guerrini M. Modeling the Detailed Conformational Effects of the Lactosylation of Hyaluronic Acid. Biomacromolecules 2025; 26:541-555. [PMID: 39680036 DOI: 10.1021/acs.biomac.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hyaluronic acid (HA) is a natural and biocompatible polysaccharide that is able to interact with CD44 receptors to regulate inflammation, fibrosis, and tissue reconstruction. It is a suitable chemical scaffold for drug delivery that can be functionalized with pharmacophores and/or vectorizable groups. The derivatization of HA is achieved to varying extents by reacting 1-amino-1-deoxy-lactitol via the carboxyl group to form amide linkages, giving rise to the grafted polymer, HYLACH. This retains the broad properties of HA, even though, as in most HA-grafted polymers, the detailed conformational effects of such substitutions, while crucial in the design or optimization of drug delivery systems, remain unknown. Here, the conformation, size, secondary structure, hydrogen bond network, and hydration features of lactosylated HA derivatives were evaluated by using multiple independent molecular dynamics simulations. This revealed subtle but nevertheless significant changes in the HA scaffold, establishing the density of grafting as the key parameter determining its properties.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Tommaso Sisto
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Sofia Nizzolo
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milano 20126, Italy
| | | | | | | | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7BE, U.K
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme,Staffordshire ST5 5BG, U.K
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| |
Collapse
|
24
|
Han H, Su H, Lv Z, Zhu C, Huang J. Identifying MTHFD1 and LGALS4 as Potential Therapeutic Targets in Prostate Cancer Through Multi-Omics Mendelian Randomization Analysis. Biomedicines 2025; 13:185. [PMID: 39857769 PMCID: PMC11759815 DOI: 10.3390/biomedicines13010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Prostate cancer remains one of the leading causes of cancer-related mortality in men worldwide. The treatment of it is currently based on surgical removal, radiotherapy, and hormone therapy. It is crucial to improve therapeutic prospects for the diagnosis and treatment of prostate cancer via drug target screening. Methods: We integrated eQTL data from the eQTLGen Consortium and pQTL data from UK Biobank Proteome Plasma Proteins (UKB-PPP) and deCODE health datasets. MR analyses (SMR, heterogeneity in dependent instruments (HEIDI), IVW, Wald ratio, weighted median, and MR-Egger) were used to screen candidate genes associated with prostate adenocarcinoma (PRAD) risk. Candidate genes were further verified through TCGA-based gene expression profile, survival analysis, and immune microenvironment evaluations. TIDE analysis was utilized to investigate gene immunotherapy response. Single-cell RNA sequencing data from the GSE176031 dataset were used to investigate the gene expression patterns. The Drug Bank, Therapeutic Target Database and Drug Signatures Database were utilized to predict targeted drugs for candidate genes. Results: MTHFD1 and LGALS4 were identified as promising therapeutic targets for PRAD, with evidence provided at multi-omics levels. LGALS4 was predominantly expressed in malignant cells and was correlated with enhanced immune checkpoint pathways, increased TIDE scores, and immunotherapy resistance. In contrast, MTHFD1was expressed in both tumor and microenvironmental cells and was associated with poor survival. Drug target prediction suggested that there are no currently approved drugs specifically targeting MTHFD1 and LGALS4. Conclusions: Our study identified MTHFD1 and LGALS4 as potential preventive targets for PRAD. However, future experiments are warranted to assess the utility and effectiveness of these candidate proteins.
Collapse
Affiliation(s)
| | | | | | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; (H.H.); (H.S.); (Z.L.)
| | - Jingtao Huang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; (H.H.); (H.S.); (Z.L.)
| |
Collapse
|
25
|
Si Y, Zhu J, Sayed H, Mayo KH, Zhou Y, Tai G, Su J. CD98hc, a novel of galectin-8 receptor, binds to galectin-8 in an N-glycosylation-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40205944 DOI: 10.3724/abbs.2024182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Glycan-mediated recognition plays a critical role in facilitating cell-cell and cell-matrix interactions. Galectin-8 (Gal-8), classified as a 'tandem-repeat' type of galectin, binds to cell surface glycans to modulate various cellular functions, including cell adhesion, migration, apoptosis, pathogen recognition, autophagy, and immunomodulation. Despite the known function of Gal-8 in binding to various glycosylated proteins, only a few interactions have been reported to date. In this study, mass spectrometry is used to identify CD98hc as a novel binding partner for Gal-8. Both the N-terminal and C-terminal carbohydrate recognition domains (CRDs) of Gal-8 (Gal-8N and Gal-8C) bind to CD98hc, an interaction that is specifically inhibited by lactose but not sucrose, as confirmed by pull-down assays. The binding affinity between CD98hc and Gal-8 measured by microscale thermophoresis (MST) is 1.51 ± 0.17 μM. In addition, Gal-8N and Gal-8C have the binding affinities of 0.22 ± 0.03 μM and 10.68 ± 1.69 μM, respectively. Gal-8N and Gal-8C are both involved in the recognition and binding process of CD98hc. Furthermore, both full-length Gal-8 and its individual CRDs bind specifically to N-glycosylated glycans on CD98hc, as demonstrated by the use of tunicamycin to inhibit N-glycosylation in cells. In addition, Gal-8 and its individual CRDs can pull down glycosylated CD98hc-ED but not free CD98hc-ED in vitro, indicating that the binding of Gal-8 to glycosylated CD98hc-ED is N-glycosylation-dependent. Overall, our findings establish CD98hc as a novel binding partner for Gal-8 and provide insights for further exploration of the diverse biological functions of Gal-8.
Collapse
Affiliation(s)
- Yunlong Si
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hend Sayed
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
26
|
Wu B, Tang R, Tan Y. Synthetic molecular cage receptors for carbohydrate recognition. Nat Rev Chem 2025; 9:10-27. [PMID: 39653770 DOI: 10.1038/s41570-024-00666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 01/12/2025]
Abstract
A captivating challenge in chemistry lies in achieving robust and precise binding of uncharged, hydrophilic carbohydrate entities. Although past decades have provided a variety of excellent molecular architectures tailored for carbohydrate recognition, including acyclic receptors, macrocycles and foldamers, recent advances have highlighted the potential of synthetic molecular cages. These structures are equipped with intricately designed cavities that contain bespoke noncovalent binding sites for carbohydrate interactions. Constructed with the principles of complementarity and preorganization, these cage receptors demonstrate high affinity and exquisite selectivity in carbohydrate recognition through noncovalent interactions, capitalizing on multivalency and cooperativity. This Review highlights recent advances in the design and application of molecular cages with diverse structures, interactions and binding capacities for carbohydrate recognition. In the concluding remarks, we discuss future avenues for further exploration.
Collapse
Affiliation(s)
- Baoqi Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
27
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
28
|
Peterson K, Nilsson UJ, Gravelle L, Holyer I, Jansson K, Kahl-Knutson B, Leffler H, MacKinnon AC, Roper JA, Slack RJ, Wachenfeldt HV, Pedersen A, Zetterberg FR. Development and Characterization of a High-Affinity Selective Galectin-3 Mouse Tool Compound in Mouse Models of Cancer. J Med Chem 2024; 67:21905-21915. [PMID: 39668131 DOI: 10.1021/acs.jmedchem.4c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The interest in galectin-3 as a drug target in the cancer and fibrosis space has grown during the past few years with several new classes of compounds being developed. The first orally available galectin-3 inhibitor, GB1211 (h-galectin-3 Kd = 0.025 μM), is currently in phase 2 clinical trials. Due to structural differences between human and mouse galectin-3 a significant reduction in mouse galectin-3 affinity is observed for most highly potent human galectin-3 inhibitors including GB1211 (m-galectin-3 Kd = 0.77 μM). Pharmacokinetic experiments in mouse dosing GB1211 up to 100 mg/kg results in free plasma levels below m-galectin-3 Kd, which is not comparable to the data observed in humans. To better support translation into clinical studies, a new improved mouse galectin-3 tool compound, GB2095, was developed. Dosing this new compound in in vivo syngeneic mouse models of cancer resulted in reduction of the growth of breast and melanoma cancers.
Collapse
Affiliation(s)
- Kristoffer Peterson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| | - Ulf J Nilsson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lise Gravelle
- Galecto Biotech AB, Cobis Science Park, Ole Maaloes Vej 3, DK-2200, Copenhagen, Denmark
| | - Ian Holyer
- Galecto Biotech ApS, Stevenage Bioscience Catalyst, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Karl Jansson
- Red Glead Discovery AB, Medicon Village, SE-223 63, Lund, Sweden
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Alison C MacKinnon
- Galecto Biotech ApS, Nine Edinburgh Bioquarter, 9 Little France Road, Edinburgh EH16 4UX, U.K
| | - James A Roper
- Galecto Biotech ApS, Stevenage Bioscience Catalyst, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Robert J Slack
- Galecto Biotech ApS, Stevenage Bioscience Catalyst, Stevenage, Hertfordshire SG1 2FX, U.K
| | | | - Anders Pedersen
- Galecto Biotech AB, Cobis Science Park, Ole Maaloes Vej 3, DK-2200, Copenhagen, Denmark
| | - Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| |
Collapse
|
29
|
Schmidt KW, Montespan C, Thompson D, Lucas MS, Ligeon LA, Wodrich H, Hahn AS, Greber UF, Münz C. Selective autophagy impedes KSHV entry after recruiting the membrane damage sensor galectin-8 to virus-containing endosomes. Cell Rep 2024; 43:115019. [PMID: 39602307 DOI: 10.1016/j.celrep.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus. Autophagy during KSHV entry has remained unexplored. We show that LC3 lipidation as a hallmark of autophagy is induced shortly after KSHV entry. LC3 co-localizes with KSHV in amphisomes during entry and loss of LC3 lipidation increases infection. Accordingly, NDP52, a receptor of selective autophagy, was recruited to endocytosed viral particles, and its reduction increased KSHV infection. Additionally, virus particles co-localized with the endolysosome damage sensor galectin-8 upon KSHV entry and depletion of galectin-8 promoted KSHV infection. Compared with herpes simplex virus, listeriolysin, adenovirus, and influenza virus, and in contrast to what was previously thought about enveloped viruses, KSHV binding to EphA2 by its envelope protein gH causes endolysosomal membrane damage, akin to non-enveloped viruses and bacteria. Taken together, our study identifies an important anti-viral role for galectin-8, NDP52, and the autophagy machinery at virus-damaged endosomes, restricting KSHV entry by selective autophagy.
Collapse
Affiliation(s)
- Katarina Wendy Schmidt
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Charlotte Montespan
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Danielle Thompson
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Miriam S Lucas
- ScopeM - Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Laure-Anne Ligeon
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33063 Bordeaux, France
| | - Alexander S Hahn
- German Primate Center, University of Göttingen, 37077 Göttingen, Germany
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Karlsson V, Stål E, Stoopendahl E, Ivarsson A, Leffler H, Lycke M, Sundqvist M, Sundfeldt K, Christenson K, Bernson E. Elevated Galectin-3 levels in the tumor microenvironment of ovarian cancer - implication of ROS mediated suppression of NK cell antitumor response via tumor-associated neutrophils. Front Immunol 2024; 15:1506236. [PMID: 39759523 PMCID: PMC11695286 DOI: 10.3389/fimmu.2024.1506236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Ovarian cancer is a lethal disease with low survival rates for women diagnosed in advanced stages. Current cancer immunotherapies are not efficient in ovarian cancer, and there is therefore a significant need for novel treatment options. The β-galactoside-binding lectin, Galectin-3, is involved in different immune processes and has been associated with poor outcome in various cancer diagnoses. Here, we investigated how Galectin-3 affects the interaction between natural killer (NK) cells and neutrophils in the tumor microenvironment of ovarian cancer. Method Ascites from the metastatic tumor microenvironment and cyst fluid from the primary tumor site were collected from patients with high-grade serous carcinoma (HGSC) together with peripheral blood samples. Galectin-3 concentration was measured in ascites, cyst fluid and serum or plasma. Neutrophils isolated from HGSC ascites and autologous blood were analyzed to evaluate priming status and production of reactive oxygen species. In vitro co-culture assays with NK cells, neutrophils and K562 target cells (cancer cell line) were conducted to evaluate NK cell viability, degranulation and cytotoxicity. Results High levels of Galectin-3 were observed in cyst fluid and ascites from patients with HGSC. Neutrophils present in HGSC ascites showed signs of priming; however, the priming status varied greatly among the patient samples. Galectin-3 induced production of reactive oxygen species in ascites neutrophils, but only from a fraction of the patient samples, which is in line with the heterogenous priming status of the ascites neutrophils. In co-cultures with NK cells and K562 target cells, we observed that Galectin-3-induced production of reactive oxygen species in neutrophils resulted in decreased NK cell viability and lowered anti-tumor responses. Conclusion Taken together, our results demonstrate high levels of Galectin-3 in the tumormicroenvironment of HGSC. High levels of Galectin-3 may induce production of reactiveoxygen species in ascites neutrophils in some patients. In turn, reactive oxygen species produced by neutrophils may modulate the NK cell anti-tumor immunity. Together, this study suggests further investigation to evaluate if a Galectin-3-targeting therapy may be used in ovarian cancer.
Collapse
Affiliation(s)
- Veronika Karlsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebba Stål
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Emma Stoopendahl
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anton Ivarsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Lycke
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Mahanti M, Gummesson S, Sundin A, Leffler H, Zetterberg F, Nilsson UJ. Sulfonamide-derivatized galactosides selectively target an unexplored binding site in the galectin-9N-terminal domain. Bioorg Med Chem 2024; 116:117989. [PMID: 39549501 DOI: 10.1016/j.bmc.2024.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Four directional and positional variants of sulfonamide-derivatized galactopyranosides were synthesized and evaluated against human galectin-1, -3, -4C (C-terminal), -7, -8N (N-terminal), -8C (C-terminal), -9N (N-terminal), and -9C (C-terminal), which revealed that one of the sulfonamide positions and directionalities (methyl 3-{4-[2-(phenylsulfonylamino)-phenyl]-triazolyl}-3-deoxy-α-d-galactopyranosides) bound with 6-15 fold higher affinity than the corresponding phenyltriazole (lacking the phenylsulfonamide moiety) for galectin-9N. Molecular dynamic simulations suggested that inhibitor adopted a conformation that is complementary to the galectin-9N binding site and where the sulfonamide moiety protrudes into an unexplored and non-conserved binding site perpendicular to and below the A-B subsite to interact with a His61 NH proton. This resulted in the discovery of galectin-9N inhibitors with unprecedented selectivity over other galectins, thus constituting valuable tools for studies of the biological functions of galectin-9.
Collapse
Affiliation(s)
- Mukul Mahanti
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Sofi Gummesson
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Anders Sundin
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-221 84 Lund, Sweden
| | - Fredrik Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
32
|
Wang LJ, Wu Y, Xie S, Lian H. Insulin like growth factor 2 mRNA binding protein 2 regulates vascular development in cerebral arteriovenous malformations. Front Neurol 2024; 15:1483016. [PMID: 39722688 PMCID: PMC11668662 DOI: 10.3389/fneur.2024.1483016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Cerebral arteriovenous malformations (AVMs) are intricate vascular anomalies that disrupt normal cerebral blood flow, potentially leading to severe neurological complications. Although the pathology of AVMs is not fully understood, epigenetic mechanisms have been implicated in their formation. Methods Transcriptional differences between cerebral AVMs and normal tissues were analyzed using RNA sequencing (RNA-seq), identifying IGF2BP2 as a key differentially expressed gene. Comprehensive bioinformatics analysis, integrating multi-omics data such as RNA-seq and methylated RNA immunoprecipitation sequencing (MeRIP-seq), was employed to identify the downstream target gene of IGF2BP2. The roles of specific genes in vascular development were assessed using endothelial cell cultures and zebrafish models. Results Our analysis of RNA-seq data from cerebral AVMs and normal tissues identified IGF2BP2, a key N6-methyladenosine (m6A) reader, as significantly downregulated in cerebral AVMs. Functional studies showed that IGF2BP2 knockdown resulted in abnormal angiogenesis in endothelial cells and disrupted vascular development in zebrafish models. Mechanistically, IGF2BP2 regulates LGALS8 expression by modulating mRNA stability through m6A modification, and LGALS8 deficiency severely impairs angiogenesis in vitro and leads to cerebrovascular dysplasia in vivo. Conclusion Our findings suggest that IGF2BP2, via m6A-dependent regulation of LGALS8, is crucial for vascular development and presents potential targets for therapeutic intervention in cerebral AVMs.
Collapse
Affiliation(s)
- Lin-jian Wang
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| | - Yangyang Wu
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| | - Sha Xie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongkai Lian
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| |
Collapse
|
33
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
34
|
Ávila G, Bonnet M, Viala D, Dejean S, Grilli G, Lecchi C, Ceciliani F. Citrus pectin modulates chicken peripheral blood mononuclear cell proteome in vitro. Poult Sci 2024; 103:104293. [PMID: 39288719 PMCID: PMC11421475 DOI: 10.1016/j.psj.2024.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Citrus pectin (CP) is a dietary fiber used in animal nutrition with anti-inflammatory properties. CP downregulates chicken immunoregulatory monocytes' functions, like chemotaxis and phagocytosis, in vitro. The molecular underlying background is still unknown. This study investigated the activity of CP on chicken peripheral blood mononuclear cells (PBMC) proteome. An overall number of 1503 proteins were identified and quantified. The supervised sparse variant partial least squares-discriminant analysis (sPLS-DA) for paired data highlighted 373 discriminant proteins between CP-treated and the control group, of which 50 proteins with the highest abundance in CP and 137 in the control group were selected for Gene Ontology (GO) analyses using ProteINSIDE. Discriminant Protein highly abundant in CP-treated cells were involved in actin cytoskeleton organization and negative regulation of cell migration. Interestingly, MARCKSL1, a chemotaxis inhibitor, was upregulated in CP-treated cells. On the contrary, CP incubation downregulated MARCKS, LGALS3, and LGALS8, which are involved in cytoskeleton rearrangements, cell migration, and phagocytosis. In conclusion, these results provide a proteomics background to the anti-inflammatory activity of CP, demonstrating that the in vitro downregulation of phagocytosis and chemotaxis is related to changes in proteins related to the cytoskeleton.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility, Proteomic Component (PFEMcp), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - G Grilli
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - C Lecchi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - F Ceciliani
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| |
Collapse
|
35
|
Zhao Z, Wu J, Xu X, He Z, Wang X, Su J, Mayo KH, Sun L, Cui L, Zhou Y. Oligosaccharides from Stellaria dichotoma L. var. lanceolate bind to galectin-3 and ameliorate effects of colitis. Carbohydr Polym 2024; 345:122551. [PMID: 39227094 DOI: 10.1016/j.carbpol.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
Even though Stellaria dichotoma L. var. lanceolate (S. dichotoma) is a well-known medicinal plant in the family Caryophyllaceae, its oligosaccharides remain unexplored in terms of their potential as bioactive agents. Here, we isolated a mixture of oligosaccharides from S. dichotoma (Yield: 12 % w/w), that are primarily non-classical raffinose family oligosaccharides (RFOs). Nine major oligosaccharides were purified and identified from the mixture, including sucrose, raffinose, 1-planteose, lychnose, stellariose, along with four new non-classical RFOs. Two of the four new oligosaccharides are linear hexose pentamers with α-galactosyl extensions on their lychnose moieties, and the other two are branched hexose hexamers with α-galactosyl extensions on their stellariose groups. Their interactions with galectin-3 (Gal-3) revealed significant binding, with the terminal galactose providing enhanced affinity for the lectin. Notably, Gal-3 residues Arg144, His158, Asn160, Arg162, Asn174, Trp181, Glu184 and Arg186 coordinate with the lychnose. In vivo studies using the dextran sulfate sodium (DSS) mouse model for colitis demonstrated the ability of these carbohydrates in mitigating ulcerative colitis (UC). Overall, our study has provided structural information and potential applications of S. dichotoma oligosaccharides, also offers new approaches for the development of medicinal oligosaccharides.
Collapse
Affiliation(s)
- Zihan Zhao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhen He
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
36
|
Franken G, Cuenca-Escalona J, Stehle I, van Reijmersdal V, Rodgers Furones A, Gokhale R, Classens R, Di Blasio S, Dolen Y, van Spriel AB, Querol Cano L. Galectin-9 regulates dendritic cell polarity and uropod contraction by modulating RhoA activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564706. [PMID: 39605690 PMCID: PMC11601427 DOI: 10.1101/2023.10.30.564706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Adaptive immunity relies on dendritic cell (DC) migration to transport antigens from tissues to lymph nodes. Galectins, a family of β-galactoside-binding proteins, control cell membrane organisation, exerting crucial roles in multiple physiological processes. Here, we report a novel mechanism underlying cell polarity and uropod retraction. We demonstrate that galectin-9 regulates chemokine-driven and basal DC migration both in humans and mice, indicating a conserved function for this lectin. We identified the underlying mechanism, namely a deficiency in cell rear contractility mediated by galectin-9 interaction with CD44 that in turn regulates RhoA activity. Analysis of DC motility in the 3D tumour-microenvironment revealed galectin-9 is also required for DC infiltration. Moreover, exogenous galectin-9 rescued the motility of tumour-immunocompromised human blood DCs, validating the physiological relevance of galectin-9 in DC migration and underscoring its implications for DC-based immunotherapies. Our results identify galectin-9 as a necessary mechanistic component for DC motility and highlight a novel role for the lectin in regulating cell polarity and contractility.
Collapse
|
37
|
Wu D, Liu Y, Luo X, Chen Z, Fu Q, Yao K. Involvement of Lgals3/Galectin-3 in Choroidal Neovascularization and Subretinal Fibrosis Formation. Biomedicines 2024; 12:2649. [PMID: 39595213 PMCID: PMC11592115 DOI: 10.3390/biomedicines12112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Background:Lgals3/galectin-3 plays a pivotal role in many vascular diseases. However, the involvement of Lgals3/galectin-3 in eyes with neovascular age-related macular degeneration (nAMD) remains unknown. Methods: In the laser-induced CNV model, a whole mount retina stained with Isolectin B4 and collagen type I revealed the vascular bed and CNV-associated subretinal fibrosis on day 7 after laser treatment. Results: We show that the expression levels of Lgals3/galectin-3 were significantly increased in the RPE/choroidal complex of CNV mice. An intravitreal injection of Lgals3-siRNA significantly suppressed the area of CNV and subretinal fibrosis, together with Mcp-1 decline. The mixture of Lgals3-siRNA and Ranibizumab showed more efficiency than each drug used separately. Hypoxia induced Lgals3/galectin-3 production in ARPE-19 cells, which was reduced by the silencing hypoxia-inducible factor -1α (Hif-1a). Conclusions: Our data indicated that Lgals3/galectin-3 is involved in the pathogenesis of CNV and subretinal fibrosis, and Lgals3/galectin-3 could be a potential therapeutic target for nAMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310051, China; (D.W.); (Y.L.); (X.L.); (Z.C.); (Q.F.)
| |
Collapse
|
38
|
Jaroentomeechai T, Karlsson R, Goerdeler F, Teoh FKY, Grønset MN, de Wit D, Chen YH, Furukawa S, Psomiadou V, Hurtado-Guerrero R, Vidal-Calvo EE, Salanti A, Boltje TJ, van den Bos LJ, Wunder C, Johannes L, Schjoldager KT, Joshi HJ, Miller RL, Clausen H, Vakhrushev SY, Narimatsu Y. Mammalian cell-based production of glycans, glycopeptides and glycomodules. Nat Commun 2024; 15:9668. [PMID: 39516489 PMCID: PMC11549445 DOI: 10.1038/s41467-024-53738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Access to defined glycans and glycoconjugates is pivotal for discovery, dissection, and harnessing of a range of biological functions orchestrated by cellular glycosylation processes and the glycome. We previously employed genetic glycoengineering by nuclease-based gene editing to develop sustainable production of designer glycoprotein therapeutics and cell-based glycan arrays that display glycans in their natural context at the cell surface. However, access to human glycans in formats and quantities that allow structural studies of molecular interactions and use of glycans in biomedical applications currently rely on chemical and chemoenzymatic syntheses associated with considerable labor, waste, and costs. Here, we develop a sustainable and scalable method for production of glycans in glycoengineered mammalian cells by employing secreted Glycocarriers with repeat glycosylation acceptor sequence motifs for different glycans. The Glycocarrier technology provides a flexible production platform for glycans in different formats, including oligosaccharides, glycopeptides, and multimeric glycomodules, and offers wide opportunities for use in bioassays and biomedical applications.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fallen Kai Yik Teoh
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Nørregaard Grønset
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan de Wit
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Venetia Psomiadou
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Christian Wunder
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
39
|
Qi C, Zhao Z, Chen L, Wang L, Zhou Y, Duan G. Exploring the role of neutrophil extracellular traps in neuroblastoma: identification of molecular subtypes and prognostic implications. Front Oncol 2024; 14:1361871. [PMID: 39575432 PMCID: PMC11578966 DOI: 10.3389/fonc.2024.1361871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
Background Cancer cells induce neutrophil extracellular traps (NETs) to promote tumor progression and metastasis. However, only a few studies have focused on the role of NETs in Neuroblastoma (NB). Methods First, based on the expression of NET-related genes, consensus clustering analysis was conducted to cluster NB samples into different subtypes. Differential analysis was performed to identify DEGs between subtypes. Functional items and related pathways of DEGs were identified using enrichment analysis. Univariate Cox analysis and the LASSO algorithm were used to identify biomarkers for prognosis. Furthermore, independent prognostic analysis was performed. Immune infiltration analysis was performed to identify differential immune cells. Finally, the verification of prognostic model genes were taken by the immunohistochemical staining and quantitative real-time PCR. Results Consensus clustering analysis demonstrated that NB samples were clustered into two subtypes. There were 125 DEGs between the two subtypes of NB. Moreover, the enrichment analysis results showed that the DEGs were mainly associated with 'external side of plasma membrane,' 'immune receptor activity' 'regulation of leukocyte migration' GO items. There were also several GO items related to neutrophils, such as regulation of neutrophil migration and differentiation. KEGG pathways revealed that the DEGs were correlated with in immunity-related activities, including 'Complement and coagulation cascades,' 'Neutrophil extracellular trap formation, 'T cell receptor signaling pathway,' 'PD-L1 expression and PD-1 checkpoint pathway in cancer' and so on. A total of five biomarkers,[Selenoprotein P1 (SEPP1), Fibrinogen-like protein 2 (FGL2), NK cell lectin-like receptor K1 (KLRK1), ATP-binding cassette transporters 6(ABCA6) and Galectins(GAL)], were screened, and a risk model based on the biomarkers was created. Furthermore, a nomogram for forecasting the survival rates of patients with NB was established based on the risk score, age at diagnosis, and MYCN status. Eight differential immune cells (CD8 + T cells, resting mast cells, etc.) were acquired between the two risk subgroups. The expression levels of five prognostic model genes at the protein and mRNA were verified and all results were consistent with the results of our bioinformatics analysis. Conclusion We initially found that five NET-related genes were significantly differentially expressed in NETs-associated molecular isoforms and two Netrg molecular isoforms were found to be associated with poorer prognosis. This stratification might provide insight into the prediction of prognosis and ideal immunotherapy strategies for patients with NB. However, we also noted that the formation of NETs is a complex biological process involving the regulation of multiple cytokines and cellular interactions. Therefore, the exact roles of these genes and their specific mechanisms in the formation of NETs and the development of NB still need to be further investigated.
Collapse
Affiliation(s)
- Can Qi
- Study Office of Pediatric and Thoracic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Ziwei Zhao
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Lin Chen
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Le Wang
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Yun Zhou
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Guochen Duan
- Study Office of Pediatric and Thoracic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
40
|
Shah A, Ding Y, Walji D, Rabinovich GA, Pelletier M, El-Diasty M. The prognostic utility of galectin-3 in patients undergoing cardiac surgery: a scoping review. Biomarkers 2024; 29:485-493. [PMID: 39422445 DOI: 10.1080/1354750x.2024.2415073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To review the utility of galectin-3 (Gal-3) as a biomarker for postoperative adverse outcomes in patients undergoing cardiac surgery. METHOD This review was conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Electronic database search was conducted in October 2023. Studies that measured pre- and/or postoperative plasma Gal-3 levels in adult patients undergoing cardiac surgery were included. Primary outcomes included postoperative morbidity and mortality. RESULTS Out of 391 studies screened, eight studies met the inclusion criteria. Two of the three studies showed that preoperative plasma levels of Gal-3 were associated with acute kidney injury (AKI) after cardiac surgery. Two of the three studies reported a significant increase in preoperative Gal-3 levels in patients who developed postoperative atrial fibrillation (POAF). The addition of Gal-3 to the EuroSCORE II model was found to statistically improve the prediction of both AKI and POAF. Three of the five studies suggested that Gal-3 levels can predict postoperative mortality. Finally, one study suggested that lower preoperative Gal-3 levels was associated with a higher likelihood of achieving left ventricular reverse remodeling (LVRR) after surgery. CONCLUSIONS Gal-3 may play a promising role in predicting adverse outcomes in patients undergoing cardiac surgery. The addition of Gal-3 to clinical risk prediction scores may improve their discriminatory power in this group of patients. Future studies are warranted to justify its incorporation into routine clinical practice.
Collapse
Affiliation(s)
- Aryan Shah
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Yu Ding
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - David Walji
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marc Pelletier
- Cardiac Surgery Department, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mohammad El-Diasty
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
- Cardiac Surgery Department, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
41
|
Wolters-Eisfeld G, Oliveira-Ferrer L. Glycan diversity in ovarian cancer: Unraveling the immune interplay and therapeutic prospects. Semin Immunopathol 2024; 46:16. [PMID: 39432076 PMCID: PMC11493797 DOI: 10.1007/s00281-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Ovarian cancer remains a formidable challenge in oncology due to its late-stage diagnosis and limited treatment options. Recent research has revealed the intricate interplay between glycan diversity and the immune microenvironment within ovarian tumors, shedding new light on potential therapeutic strategies. This review seeks to investigate the complex role of glycans in ovarian cancer and their impact on the immune response. Glycans, complex sugar molecules decorating cell surfaces and secreted proteins, have emerged as key regulators of immune surveillance in ovarian cancer. Aberrant glycosylation patterns can promote immune evasion by shielding tumor cells from immune recognition, enabling disease progression. Conversely, certain glycan structures can modulate the immune response, leading to either antitumor immunity or immune tolerance. Understanding the intricate relationship between glycan diversity and immune interactions in ovarian cancer holds promise for the development of innovative therapeutic approaches. Immunotherapies that target glycan-mediated immune evasion, such as glycan-based vaccines or checkpoint inhibitors, are under investigation. Additionally, glycan profiling may serve as a diagnostic tool for patient stratification and treatment selection. This review underscores the emerging importance of glycan diversity in ovarian cancer, emphasizing the potential for unraveling immune interplay and advancing tailored therapeutic prospects for this devastating disease.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
42
|
Zhang Y, Li Z, Chen X. The role of galectin-3 in bone homeostasis: A review. Int J Biol Macromol 2024; 278:134882. [PMID: 39168209 DOI: 10.1016/j.ijbiomac.2024.134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The skeletal system maintains a delicate balance known as bone homeostasis, which is essential for the lifelong preservation of bone mass, shape, and integrity. This equilibrium relies on a complex interplay between bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteocytes, and osteoclasts. Galectin-3 (Gal-3), a chimeric galectin with a unique N-terminal tail and a conserved carbohydrate recognition domain (CRD) at its C-terminus, has emerged as a critical regulator in bone homeostasis. The CRD of Gal-3 mediates carbohydrate binding, while its N-terminal tail is implicated in oligomerization and phase separation, which are vital for its functionality. Gal-3's multivalency is central to its role in a range of cellular activities, including inflammation, immune response, apoptosis, cell adhesion, and migration. Imbalances in bone homeostasis often arise from disruptions in osteoblast differentiation and activity, increased osteoclast differentiation and activity. Gal-3's influence on these processes suggests its significant role in the regulation of bone remodeling. This review will examine the molecular mechanisms through which Gal-3 contributes to bone remodeling and discuss its potential as a therapeutic target for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yanchao Zhang
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Zhiyong Li
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Xueqing Chen
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China.
| |
Collapse
|
43
|
Kalka M, Chorążewska A, Gędaj A, Żukowska D, Ciura K, Biaduń M, Gregorczyk P, Ptak J, Porębska N, Opaliński Ł. Engineered intrinsically fluorescent galectin-8 variants with altered valency, ligand recognition and biological activity. Int J Biol Macromol 2024; 277:134371. [PMID: 39094876 DOI: 10.1016/j.ijbiomac.2024.134371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Galectin-8 is a small soluble lectin with two carbohydrate recognition domains (CRDs). N- and C-terminal CRDs of Gal-8 differ in their specificity for glycan ligands. Here, we wanted to find out whether oligomerization of individual CRDs of galectin-8 affects its biological activity. Using green fluorescent protein polygons (GFPp) as an oligomerization scaffold, we generated intrinsically fluorescent CRDs with altered valency. We show that oligomers of C-CRD are characterized by significant cell surface affinity. Furthermore, the multivalency of the resulting variants has an impact on cellular activities such as cell signaling, heparin binding and proliferation. Our data indicates that tunable valence is a useful tool for modifying the biological activity of CRDs of galectins.
Collapse
Affiliation(s)
- Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Biaduń
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Julia Ptak
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
44
|
Taniguchi T, Mogi K, Tomita H, Okada H, Mori K, Imaizumi Y, Ichihashi K, Okubo T, Niwa A, Kanayma T, Yamakita Y, Suzuki A, Sugie S, Yoshihara M, Hara A. Sugar-binding profiles of the mesothelial glycocalyx in frozen tissues of mice revealed by lectin staining. Pathol Res Pract 2024; 262:155538. [PMID: 39191196 DOI: 10.1016/j.prp.2024.155538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
The mesothelium is a non-adhesive protective surface that lines the serosal cavities and organs within the body. The glycocalyx is a complex structure that coats the outer layer of the mesothelium. However, due to the limitations of conventional fixation techniques, studies on glycans are limited. In this study, lectin staining of frozen tissues was performed to investigate the diversity of glycans in the glycocalyx of mesothelial cells in mice. Datura stramonium lectin (DSL), which recognizes lactosamine and binds to Galectin-3 and -1, was broadly bound to the mesothelial cells of the visceral and parietal peritoneum but not to the pancreas, liver, intestine, or heart. Furthermore, human mesothelial cells in the omentum and parietal peritoneum were positive for DSL. Erythrina cristagalli lectin binding was specific to mesothelial cells in the parietal peritoneum, that is, the pleura, diaphragm, and peritoneum. Intriguingly, surface sialylation, the key element in reducing peritoneal dissemination and implantation, and promoting ascites formation by ovarian carcinoma cells, was much higher in the parietal peritoneum than in the omentum. These findings revealed slight differences in the glycans of mesothelial cells of different organs, which may be related to clinical diseases. These results also suggest that there may be differences in the functions of parietal and visceral mesothelial cells.
Collapse
Affiliation(s)
- Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazumasa Mogi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Medical Genomics Center, Nagoya University Hospital, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Hideshi Okada
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan; Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takafumi Okubo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayma
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihiko Yamakita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
45
|
Amore E, Cenni V, Piazzi M, Signore M, Orlandi G, Neri S, Biressi S, Barone R, Di Felice V, Follo MY, Bertacchini J, Palumbo C. Myoblast-Derived Galectin 3 Impairs the Early Phases of Osteogenesis Affecting Notch and Akt Activity. Biomolecules 2024; 14:1243. [PMID: 39456175 PMCID: PMC11505649 DOI: 10.3390/biom14101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Galectin-3 (Gal-3) is a pleiotropic lectin produced by most cell types, which regulates multiple cellular processes in various tissues. In bone, depending on its cellular localization, Gal-3 has a dual and opposite role. If, on the one hand, intracellular Gal-3 promotes bone formation, on the other, its circulating form affects bone remodeling, antagonizing osteoblast differentiation and increasing osteoclast activity. From an analysis of the secretome of cultured differentiating myoblasts, we interestingly found the presence of Gal-3. After that, we confirmed that Gal-3 was expressed and released in the extracellular environment from myoblast cells during their differentiation into myotubes, as well as after mechanical strain. An in vivo analysis revealed that Gal-3 was triggered by trained exercise and was specifically produced by fast muscle fibers. Speculating a role for this peptide in the muscle-to-bone cross talk, a direct co-culture in vitro system, simultaneously combining media that were obtained from differentiated myoblasts and osteoblast cells, confirmed that Gal-3 is a mediator of osteoblast differentiation. Molecular and proteomic analyses revealed that the secreted Gal-3 modulated the biochemical processes occurring in the early phases of bone formation, in particular impairing the activity of the STAT3 and PDK1/Akt signaling pathways and, at the same time, triggering that one of Notch. Circulating Gal-3 also affected the expression of the most common factors involved in osteogenetic processes, including BMP-2, -6, and -7. Intriguingly, Gal-3 was able to interfere with the ability of differentiating osteoblasts to interact with the components of the extracellular bone matrix, a crucial condition required for a proper osteoblast differentiation. All in all, our evidence lays the foundation for further studies to present this lectin as a novel myokine involved in muscle-to-bone crosstalk.
Collapse
Affiliation(s)
- Emanuela Amore
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Vittoria Cenni
- CNR-Institute of Molecular Genetics, 40136 Bologna, Italy; (V.C.); (M.P.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Manuela Piazzi
- CNR-Institute of Molecular Genetics, 40136 Bologna, Italy; (V.C.); (M.P.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Michele Signore
- RPPA Unit of Proteomics Area, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy;
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy;
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Jessika Bertacchini
- CNR-Institute of Molecular Genetics, 40136 Bologna, Italy; (V.C.); (M.P.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| |
Collapse
|
46
|
Ideo H, Tsuchida A, Takada Y. Lectin-Based Approaches to Analyze the Role of Glycans and Their Clinical Application in Disease. Int J Mol Sci 2024; 25:10231. [PMID: 39337716 PMCID: PMC11432504 DOI: 10.3390/ijms251810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. Considering that the three-dimensional structure and multivalency of glycans are important factors for their function, their binding characteristics toward lectins provide vital information. Glycans and lectins are inextricably linked, and studies on lectins have also led to research on the roles of glycans. The applications of lectins are not limited to analysis but can also be used as drug delivery tools. Moreover, mammalian lectins are potential therapeutic targets because certain lectins change their expression in cancer, and lectin regulation subsequently regulates several molecules with glycans. Herein, we review lectin-based approaches for analyzing the role of glycans and their clinical applications in diseases, as well as our recent results.
Collapse
Affiliation(s)
- Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | | | | |
Collapse
|
47
|
Shafaq-Zadah M, Dransart E, Mani SK, Sampaio JL, Bouidghaghen L, Nilsson UJ, Leffler H, Johannes L. Exploration into Galectin-3 Driven Endocytosis and Lattices. Biomolecules 2024; 14:1169. [PMID: 39334935 PMCID: PMC11430376 DOI: 10.3390/biom14091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Essentially all plasma membrane proteins are glycosylated, and their activity is regulated by tuning their cell surface dynamics. This is achieved by glycan-binding proteins of the galectin family that either retain glycoproteins within lattices or drive their endocytic uptake via the clathrin-independent glycolipid-lectin (GL-Lect) mechanism. Here, we have used immunofluorescence-based assays to analyze how lattice and GL-Lect mechanisms affect the internalization of the cell adhesion and migration glycoprotein α5β1 integrin. In retinal pigment epithelial (RPE-1) cells, internalized α5β1 integrin is found in small peripheral endosomes under unperturbed conditions. Pharmacological compounds were used to competitively inhibit one of the galectin family members, galectin-3 (Gal3), or to inhibit the expression of glycosphingolipids, both of which are the fabric of the GL-Lect mechanism. We found that under acute inhibition conditions, endocytic uptake of α5β1 integrin was strongly reduced, in agreement with previous studies on the GL-Lect driven internalization of the protein. In contrast, upon prolonged inhibitor treatment, the uptake of α5β1 integrin was increased, and the protein was now internalized by alternative pathways into large perinuclear endosomes. Our findings suggest that under these prolonged inhibitor treatment conditions, α5β1 integrin containing galectin lattices are dissociated, leading to an altered endocytic compartmentalization.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Satish Kailasam Mani
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Julio Lopes Sampaio
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Lydia Bouidghaghen
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Ulf J. Nilsson
- Department of Chemistry, Lund University, 221 00 Lund, Sweden;
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| |
Collapse
|
48
|
Hewson AR, Lloyd-Laney HO, Keenan T, Richards SJ, Gibson MI, Linclau B, Signoret N, Fascione MA, Parkin A. Harnessing glycofluoroforms for impedimetric biosensing. Chem Sci 2024; 15:d4sc04409f. [PMID: 39282644 PMCID: PMC11393611 DOI: 10.1039/d4sc04409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Glycans play a major role in biological cell-cell recognition and signal transduction but have found limited application in biosensors due to glycan/lectin promiscuity; multiple proteins are capable of binding to the same native glycan. Here, site-specific fluorination is used to introduce protein-glycan selectivity, and this is coupled with an electrochemical detection method to generate a novel biosensor platform. 3F-lacto-N-biose glycofluoroform is installed onto polymer tethers, which are subsequently immobilised onto gold screen printed electrodes, providing a non-fouling surface. The impedance biosensing platform is shown to selectively bind cancer-associated galectin-3 compared to control glycans and proteins. To improve the analytical capability, Bayesian statistical analysis was deployed in the equivalent circuit fitting of electrochemical impedance spectroscopy data. It is shown that Markov Chain Monte Carlo (MCMC) analysis is a helpful method for visualising experimental irreproducibility, and we apply this as a quality control step.
Collapse
Affiliation(s)
- Alice R Hewson
- Department of Chemistry, University of York YO10 5DD York UK
| | | | - Tessa Keenan
- Department of Chemistry, University of York YO10 5DD York UK
| | - Sarah-Jane Richards
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Matthew I Gibson
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | | | | | - Alison Parkin
- Department of Chemistry, University of York YO10 5DD York UK
| |
Collapse
|
49
|
Mohammed NBB, Lau LS, Souchak J, Qiu S, Ahluwalia MS, Osman I, Dimitroff CJ. Tumor-Intrinsic Galectin-3 Suppresses Melanoma Metastasis. J Invest Dermatol 2024; 144:2039-2051.e9. [PMID: 38458429 PMCID: PMC11344686 DOI: 10.1016/j.jid.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 03/10/2024]
Abstract
Melanoma poses a poor prognosis with high mortality rates upon metastasis. Exploring the molecular mechanisms governing melanoma progression paves the way for developing novel approaches to control melanoma metastasis and ultimately enhance patient survival rates. Extracellular galectin-3 (Gal-3) has emerged as a pleiotropic promoter of melanoma metastasis, exerting varying activities depending on its interacting partner. However, whether intracellular Gal-3 promotes melanoma aggressive behavior remains unknown. In this study, we explored Gal-3 expression in human melanoma tissues as well as in murine melanoma models to examine its causal role in metastatic behavior. We found that Gal-3 expression is downregulated in metastatic melanoma tissues compared with its levels in primary melanomas. Enforced silencing of Gal-3 in melanoma cells promoted migration, invasion, colony formation, in vivo xenograft growth, and metastasis and activated canonical oncogenic signaling pathways. Moreover, loss of Gal-3 in melanoma cells resulted in upregulated the expression of the prometastatic transcription factor NFAT1 and its downstream metastasis-associated proteins, matrix metalloproteinase 3, and IL-8. Overall, our findings implicate melanoma intracellular Gal-3 as a major determinant of its metastatic behavior and reveal a negative regulatory role for Gal-3 on the expression of NFAT1 in melanoma cells.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lee Seng Lau
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Joseph Souchak
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Shi Qiu
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Manmeet S Ahluwalia
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Medical Oncology, Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Charles J Dimitroff
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
50
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|