1
|
Guo HH, Ou HN, Yu JS, Rosa JM, Formolo DA, Cheng T, Yau SY, Tsang HWH. Adiponectin as a potential mediator of the pro-cognitive effects of physical exercise on Alzheimer's disease. Neural Regen Res 2026; 21:96-106. [PMID: 39885660 PMCID: PMC12094572 DOI: 10.4103/nrr.nrr-d-23-00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/11/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally. Physical exercise, as an effective strategy for improving general health, has been largely reported for its effectiveness in slowing neurodegeneration and increasing brain functional plasticity, particularly in aging brains. However, the underlying mechanisms of exercise in cognitive aging remain largely unclear. Adiponectin, a cell-secreted protein hormone, has recently been found to regulate synaptic plasticity and mediate the antidepressant effects of physical exercise. Studies on the neuroprotective effects of adiponectin have revealed potential innovative treatments for Alzheimer's disease. Here, we reviewed the functions of adiponectin and its receptor in the brains of human and animal models of cognitive impairment. We summarized the role of adiponectin in Alzheimer's disease, focusing on its impact on energy metabolism, insulin resistance, and inflammation. We also discuss how exercise increases adiponectin secretion and its potential benefits for learning and memory. Finally, we highlight the latest research on chemical compounds that mimic exercise-enhanced secretion of adiponectin and its receptor in Alzheimer's disease.
Collapse
Affiliation(s)
- Hui-Hui Guo
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Rehabilitation Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Hai-Ning Ou
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Rehabilitation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jia-Sui Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Julia Macedo Rosa
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Douglas Affonso Formolo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tong Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hector Wing Hong Tsang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Inafuku N, Sowa Y, Kishida T, Sawai S, Ntege EH, Numajiri T, Yamamoto K, Shimizu Y, Mazda O. Investigation of the stemness and wound-healing potential of long-term cryopreserved stromal vascular fraction cells. Regen Ther 2025; 29:128-139. [PMID: 40162021 PMCID: PMC11952815 DOI: 10.1016/j.reth.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Stromal vascular fraction (SVF), a heterogeneous cell population primarily derived from adipose tissue, is widely utilized in regenerative therapies for its wound-healing properties and accessibility. While its immediate availability is advantageous, repeated harvesting can be burdensome, especially for elderly patients, and the regenerative capacity of SVF declines with donor age. Long-term cryopreservation offers a potential solution by allowing the banking of SVF from younger donors for future use; however, the impact of this process on SVF functionality remains elusive. This study investigates the stemness and wound-healing potential of SVF following prolonged cryopreservation. Methods SVF cells were isolated from adipose tissue harvested from twelve patients and cryopreserved for either two months (short-term cryopreserved SVF, S-SVF) or 12-13 years (long-term cryopreserved SVF, L-SVF), with six patients in each group. In vitro assays assessed cell viability and stemness, while in vivo assays evaluated wound-healing ability by administering thawed SVF cells from each group to dorsal wounds in immunodeficient mice, compared with a control group. Non-parametric statistical tests analyzed the differences between groups. Results L-SVF exhibited significantly lower stemness compared to S-SVF. Importantly, the L-SVF group showed significantly improved wound healing compared with the control group, although the wound-healing effect of L-SVF was inferior to that of the S-SVF. Conclusion This study demonstrated that, despite reduced stemness, L-SVF retains partial wound-healing potential after 12-13 years of cryopreservation. These findings highlight the need for optimized cryopreservation protocols to enhance SVF viability and regenerative capacity for clinical applications.
Collapse
Affiliation(s)
- Naoki Inafuku
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Seiji Sawai
- Department of Orthopedics, Jyujyo Takeda Rehabilitation Hospital, Kyoto, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshiaki Numajiri
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| |
Collapse
|
3
|
Orszulak D, Niziński K, Matonóg A, Zięba-Domalik M, Stojko R, Drosdzol-Cop A. Adipokines as biochemical marker of polycystic ovary syndrome in adolescents - review. Front Endocrinol (Lausanne) 2025; 16:1475465. [PMID: 40491594 PMCID: PMC12146174 DOI: 10.3389/fendo.2025.1475465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 05/01/2025] [Indexed: 06/11/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders affecting approximately 10% of adolescent women. According to literature data, in the case of coexistence of obesity and PCOS, menstrual cycle disorders are much more common. One of the probable reasons is the activity of adipose tissue, which secretes many types of adipokines that may have a negative impact on hormonal and metabolic functions. This article reviews the literature on the role of adipokines in the etiopathogenesis of PCOS in adolescent girls. The literature base consisted of published articles - clinical trials, meta-analyses, reviews and systematic reviews. The databases - PubMed, ScienceDirect, EMBASE were searched.
Collapse
|
4
|
Xu X, Tang X, Ji R, Xiang X, Liu Q, Han S, Du J, Li Y, Mai K, Ai Q. Adiponectin receptor agonist AdipoRon regulates glucose and lipid metabolism via PPARγ signaling pathway in hepatocytes of large yellow croaker (Larimichthys crocea). Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159632. [PMID: 40379087 DOI: 10.1016/j.bbalip.2025.159632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Activation of adiponectin receptors (AdipoRs) has been shown to regulate glucose and lipid metabolism in mammalian hepatocytes. However, much less is known for their roles in fish. The current study demonstrated that AdipoRon, a small-molecule activator of AdipoRs, modulated glucose and lipid metabolism in large yellow croaker. In hepatocytes of large yellow croaker, AdipoRon upregulated the mRNA expression of adipors and appl1, while increasing phosphorylation levels of AMPK and AKT. These changes indicate the activation of AdipoR-mediated signaling. Furthermore, AdipoRon promoted glucose uptake, increased intracellular glucose content, as well as upregulated genes involved in glycogen synthesis and glycolysis whereas downregulated gluconeogenesis-related genes. On the other hand, AdipoRon facilitated free fatty acid (FFA) absorption by increasing the expression of fatty acid transport genes (fat/cd36, fatp1, and fabp11). It also enhanced triglyceride (TG) synthesis, evidenced by increased triglyceride levels and upregulation of dgat2 and PPARγ, which is consistent with the effect of adiponectin (APN) in large yellow croaker. Additional evidence suggested that inhibition of PPARγ with GW9662 reduced the effects of AdipoRon on glucose uptake and lipid metabolism, indicating that PPARγ is a key mediator in these metabolic regulations. Overall, AdipoRon was found to modulate multiple metabolic processes in hepatocytes of large yellow croaker via PPARγ signaling pathway, and these findings suggested that AdipoRon might contribute to beneficial effects on metabolic homeostasis in teleosts.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Xiao Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Renlei Ji
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Liao X, Li X, Mou A, Zhang Q, Dong Y, Li Y, Zhang X, Xu Q. Thermal acclimatization mechanisms in the cold-water Ophiuroid Ophiura sarsii vadicola: Regulation of protein homeostasis and metabolic pathways. J Therm Biol 2025; 130:104137. [PMID: 40413918 DOI: 10.1016/j.jtherbio.2025.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/27/2025]
Abstract
Global climate change is driving rapid warming in the Pacific Arctic cold-water regions. As dominant species in these areas, the Ophiura sarsii complex suffer from ocean warming stress, resulting in altered distribution patterns, physiological behaviors, and thermotolerance. However, their molecular response mechanisms to ocean warming remain unclear. We conducted transcriptomic analyses of O. sarsii vadicola under various temperature treatments: a control group at in-situ temperature (7 °C), two warming groups at the sub-lethal temperature 19 °C for one week (short-term) and two months (long-term), and a low-temperature reference group of O. sarsii at 0 °C. The results showed that a total of 66 core differentially expressed genes (58 up-regulated, 8 downregulated) were identified, with expression patterns varying by warming duration. Ophiura sarsii vadicola exhibited a more pronounced response to long-term warming than short-term ones. Three transcription factors HMGB3, METTL19, and HEAT were identified as key regulators within the co-expression networks. Furthermore, changes in folding enzymes activity and an upregulation of protein processing and chaperone genes were observed, indicating a potential activation of the unfolded protein response in brittle stars. Elevated temperatures also induced changes in multiple energy metabolism-related pathways. These findings suggest that O. sarsii vadicola may mitigate the negative effects of ocean warming by regulating key gene expression, enhancing protein homeostasis control and energy redistribution. This study provides valuable insights into the evolution and adaptability mechanisms of cold-water species under global climate change.
Collapse
Affiliation(s)
- Xiaomei Liao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Xinlong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Anning Mou
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Yixuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
Zhang Z, Hu C, Chi Y, Su B, Chen H, Xie H. Effect of peripheral adiponectin on perioperative neurocognitive disorder via regulation of glucose metabolism in aged rats. Neuroreport 2025:00001756-990000000-00358. [PMID: 40377973 DOI: 10.1097/wnr.0000000000002169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Perioperative neurocognitive disorder (PND) is a significant complication affecting elderly patients after surgery, with limited effective interventions to improve its prognosis yet. We have found that decreased serum adiponectin (APN) and increased cerebrospinal fluid (CSF) lactate are involved in the pathophysiological process of PND in elderly patients. APN is known for its anti-insulin resistance property. In this study, we further explored the regulatory effects of APN on cerebral glucose metabolism in PND rats. Twelve-month-old male Sprague-Dawley rats were divided into 3 groups: the sham, PND (splenectomy) and PND+APN (50 mg/kg/day intragastrically) groups. ELISA, quantitative PCR and colorimetric analysis were conducted to analyze tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), pyruvate and lactate in serum, CSF and hippocampus. Open field and Morris water maze (MWM) tests were used to detect hippocampus-dependent cognitive function. Western blot and flow cytometry were conducted to detect neuronal apoptosis in primary hippocampal neurons. In vivo, peripheral APN administration reversed surgery-induced reductions in serum APN expression and elevated levels of cerebral lactate, the ratio of lactate/pyruvate, TNF-α and IL-1β, thereby improving cognitive performance in MWM and Open Field tests. In vitro, APN at concentrations of 2 and 10 ng/ml dose-dependently reduced lipopolysaccharide-induced caspase 3 expression and p38 phosphorylation in neurons, inhibiting apoptosis. Cerebral hypometabolism is one of the pathogenic mechanisms of PND. APN shows its effects on regulating glucose metabolism to inhibit neuroinflammation and neuronal apoptosis in PND. And the underlying mechanism of APN should be investigated further.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Anesthesiology, Dongguan People's Hospital (The Tenth Affiliated Hospital of Southern Medical University), Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dongguan Key Laboratory of Anesthesia and Organ Protection, Dongguan, China
| | - Chengyuan Hu
- Department of Anesthesiology, Dongguan People's Hospital (The Tenth Affiliated Hospital of Southern Medical University), Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuqing Chi
- Department of Anesthesiology, Dongguan People's Hospital (The Tenth Affiliated Hospital of Southern Medical University), Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Baiqin Su
- Department of Anesthesiology, Dongguan People's Hospital (The Tenth Affiliated Hospital of Southern Medical University), Dongguan, China
- Dongguan Key Laboratory of Anesthesia and Organ Protection, Dongguan, China
| | - Huiqun Chen
- Department of Anesthesiology, Dongguan People's Hospital (The Tenth Affiliated Hospital of Southern Medical University), Dongguan, China
- Dongguan Key Laboratory of Anesthesia and Organ Protection, Dongguan, China
| | - Haihui Xie
- Department of Anesthesiology, Dongguan People's Hospital (The Tenth Affiliated Hospital of Southern Medical University), Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dongguan Key Laboratory of Anesthesia and Organ Protection, Dongguan, China
| |
Collapse
|
7
|
Ghaffary EM, Bjørklund G, Bhat RS, Mirmosayyeb O. Adipokines in multiple sclerosis: Immune dysregulation, neuroinflammation, and therapeutic opportunities. Autoimmun Rev 2025; 24:103825. [PMID: 40311722 DOI: 10.1016/j.autrev.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS), characterized by demyelination, neuroinflammation, and the progressive accumulation of neurologic deficits. Adipose tissue secretes predominantly the bioactive molecules, known as adipokines, which have drawn considerable attention for their roles in modulating immune and metabolic pathways in people with MS (PwMS). Dysregulated adipokines, such as resistin, leptin, and chemerin, induce pro-inflammatory T-cell polarization while deteriorating Blood-Brain Barrier (BBB) integrity. Adiponectin, by contrast, has both immunomodulatory and neuroprotective functions. The opposing functionality highlights the biomarker and the therapeutic potential of adipokines. Preclinical and translational findings have shed light on the role of adipokines in the pathophysiology of MS by influencing T-cell, glial, and BBB functions. In clinical settings, the assessment of adipokines can function as an indicator of prognosis and diagnosis via distinct patterns of expression. In addition, alterations to adipokine profiles through lifestyle changes and pharmaceutical treatment may complement established disease-modifying treatments (DMTs). This study has highlighted the multifaceted role of adipokines in MS management, while further studies exploring the role of adipokine-mediated immunometabolic regulation are suggested.
Collapse
Affiliation(s)
- Elham Moases Ghaffary
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, USA
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College of King Saud University, Riyadh, Saudi Arabia
| | - Omid Mirmosayyeb
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
8
|
Magen-Rimon R, Cohen M, Rosen I, Spector-Cohen I, Garah J, Weiss R, Shaoul R. Adipokine Profiles and Their Association with Body Composition and Disease Activity in Pediatric Crohn's Disease. Dig Dis Sci 2025:10.1007/s10620-025-08941-z. [PMID: 40299289 DOI: 10.1007/s10620-025-08941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/18/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVES Emerging evidence implicates an important role for visceral fat, particularly "creeping fat," in the pathogeneses and progression of inflammatory bowel diseases (IBD), specifically Crohn's disease (CD). In this study, we aimed to explore the association between body composition, adipocytokine profiles, and disease activity in pediatric CD patients. METHODS We recruited patients with active and quiescent CD, aged 6-18, along with age matched healthy controls. Body composition was analyzed via bio-impedance analysis, and adipocytokines were assessed by ELISA-multiplex. RESULTS Patients with active CD exhibited significantly elevated levels of adiponectin and resistin compared to healthy controls and patients in remission even upon adjustment for body composition indices. Leptin correlated only with body composition and not with disease activity. Patients with active CD had relatively higher percentage of body fat and total body fat than the other groups. CONCLUSIONS This study underscores the complex interactions between adipocytokine profiles and disease activity in CD. Further studies are needed to investigate the potential mechanistic role of adiponectin and resistin in CD pathogenesis.
Collapse
Affiliation(s)
- Ramit Magen-Rimon
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel.
| | - Michal Cohen
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Pediatric Endocrinology Institute, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Irit Rosen
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Inna Spector-Cohen
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Jamal Garah
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Ram Weiss
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Ron Shaoul
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
9
|
Jahanbani A, Rezazadeh D, Sajadi E, Haj Hosseini M, Ketabchi D, EskandariRoozbahani N. Human adaptation response to obesity. Int J Obes (Lond) 2025:10.1038/s41366-025-01791-9. [PMID: 40287541 DOI: 10.1038/s41366-025-01791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
This article examines the human body's adaptive responses to obesity from biological, behavioral, and evolutionary perspectives. It explores how ancient survival mechanisms, such as fat storage during scarcity, have persisted but become maladaptive in modern contexts of food abundance and sedentary lifestyles. Using the Thrifty Gene Hypothesis and General Adaptation Syndrome (GAS), the study investigates how chronic stress and genetic predispositions contribute to obesity. Chronic stress, as described in GAS, is linked to obesity through mechanisms like prolonged cortisol elevation, which promotes fat storage, particularly in the abdominal region, and disrupts hunger and satiety regulation. The article also explores the possibility that contemporary chronic stress may cause the body to buffer stressful conditions through fat accumulation. While the Thrifty Gene Hypothesis suggests that genetic traits evolved to optimize energy storage during scarcity, contributing to obesity in modern environments, it remains controversial. Critics argue that it oversimplifies obesity's causes, such as lifestyle and environmental factors. Although genetic variations influencing obesity susceptibility continue to evolve, the physiological mechanisms of fat storage and stress adaptation have remained largely unchanged since ancient times.
Collapse
Affiliation(s)
- Alireza Jahanbani
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Sajadi
- Department of Basic Science, Faculty of veterinary medicine, Shiraz University, Shiraz, Iran
| | - Mahdiyeh Haj Hosseini
- Department of Physical Education and Sport Sciences, National University of Skills (NS), Tehran, Iran
| | - Deniz Ketabchi
- School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Narges EskandariRoozbahani
- Clinical research development center, Imam Reza Hospital, Kermanshah University of Medical sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Grytten E, Laupsa-Borge J, Cetin K, Bohov P, Nordrehaug JE, Skorve J, Berge RK, Strand E, Bjørndal B, Nygård OK, Rostrup E, Mellgren G, Dankel SN. Inflammatory markers after supplementation with marine n-3 or plant n-6 PUFAs: A randomized double-blind crossover study. J Lipid Res 2025; 66:100770. [PMID: 40058591 PMCID: PMC11999210 DOI: 10.1016/j.jlr.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
Omega-3 (n-3) (e.g., EPA/DHA) and omega-6 (n-6) (e.g., linoleic acid [LA]) FAs are suggested to have opposite effects on inflammation, but results are inconsistent and direct comparisons of n-3 and n-6 are lacking. In a double-blind, randomized, and crossover study, females (n = 16) and males (n = 23) aged 30-70 years with abdominal obesity were supplemented with 3-4 g/d EPA/DHA (fish oil) or 15-20 g/d LA (safflower oil) for 7 weeks, with a 9-week washout phase. Cytokines and chemokines (multiplex assay), acute-phase proteins (MALDI-TOF mass spectrometry), endothelial function (vascular reaction index), blood pressure, FA composition (red blood cell membranes/serum/adipose tissue, GC-MS/MS), and adipose gene expression (microarrays, quantitative PCR) were measured. While significant differences between treatments in relative change scores were found for systolic blood pressure (n-3 vs. n-6: -1.81% vs. 2.61%, P = 0.003), no differences between n-3 and n-6 were found for any circulatory inflammatory markers. However, compared with baseline, n-3 was followed by reductions in circulating TNF (-24.9%, P < 0.001), regulated upon activation, normal T cell expressed and secreted (-12.1%, P < 0.001), and macrophage inflammatory protein 1-beta (-12.5%, P = 0.014), and n-6 by lowered TNF (-18.8%, P < 0.001), regulated upon activation, normal T cell expressed and secreted (-7.37%, P = 0.027), monocyte chemoattractant protein-1 (-7.81%, P = 0.020), and macrophage inflammatory protein 1-beta (-14.2%, P = 0.010). Adipose tissue showed significant treatment differences in weight percent of EPA (n-3 vs. n-6: 50.2%∗ vs. -1.38%, P < 0.001, ∗: significant within-treatment change score), DHA (16.0%∗ vs. -3.67%, P < 0.001), and LA (-0.033 vs. 4.91%∗, P < 0.001). Adipose transcriptomics revealed overall downregulation of genes related to inflammatory processes after n-3 and upregulation after n-6, partly correlating with changes in circulatory markers. These data point to tissue-specific proinflammatory effects of high n-6 intake, but a net systemic anti-inflammatory effect as for n-3.
Collapse
Affiliation(s)
- Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Bevital AS, Bergen, Norway
| | - Kaya Cetin
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
11
|
Luong TVT, Yang S, Kim J. Lipotoxicity as a therapeutic target in the type 2 diabetic heart. J Mol Cell Cardiol 2025; 201:105-121. [PMID: 40020774 DOI: 10.1016/j.yjmcc.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Cardiac lipotoxicity, characterized by excessive lipid accumulation in the cardiac tissue, is a critical contributor to the pathogenesis of diabetic heart. Recent research has highlighted the key mechanisms underlying lipotoxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, and cell apoptosis, which ultimately impair the cardiac function. Various therapeutic interventions have been developed to target these pathways, mitigate lipotoxicity, and improve cardiovascular outcomes in diabetic patients. Given the global escalation in the prevalence of diabetes and the urgent demand for effective therapeutic approaches, this review focuses on how targeting cardiac lipotoxicity may be a promising avenue for treating diabetes.
Collapse
Affiliation(s)
- Trang Van T Luong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seonbu Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Giacomello E, Nicoletti C, Canato M, Toniolo L. Exercise Mimetics in Aging: Suggestions from a Systematic Review. Nutrients 2025; 17:969. [PMID: 40289996 PMCID: PMC11944853 DOI: 10.3390/nu17060969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Growth in the aging world population is accompanied by an increase in comorbidities, profoundly impacting the quality of life of older people. This development has motivated a large effort to investigate the mechanisms underlying aging and the search for countermeasures. The most investigated strategies envisage the control of diet and physical exercise, which exploit both common and distinct mechanisms to promote health. Since the application of nutritional and exercise protocols to aged persons introduces several issues due to their disabled state, some strategies have been developed. The nutritional approach exploits a wide range of compounds, including calorie restriction mimetics, supplements, antioxidants, and others. In the context of exercise, in recent years, molecules able to provide similar effects to exercise, the so-called exercise mimetics, have been developed. Methods: To have a better perspective on exercise mimetics and their connection with nutrition, we performed a systematic search of the PubMed and Scopus databases using the term "exercise mimetics". Results: In total, 97 research articles were selected and discussed. The present review provides evidence of the presence of multiple exercise-mimetic compounds and physical strategies that can target metabolic pathways, oxidative stress defense mechanisms, or myokine modulation. Conclusions: Interestingly, this review highlights that an important number of exercise mimetics are represented by products of natural origin and supplements assimilable with diet. This evidence provides a further link between exercise and nutrition and confers a central role on nutrition in the context of exercise mimetics.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Claudio Nicoletti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Marta Canato
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
13
|
Siriphorn SV, Thorsuwan S, Thongam J, Ruangklai S, Hussarin P, Rungruang T, Srisuma S. Alterations in Adiponectin Expression in Models of Cigarette Smoke Extract-Induced Mouse Pulmonary Emphysema and Alveolar Epithelial Cell Injury. COPD 2025; 22:2477235. [PMID: 40079477 DOI: 10.1080/15412555.2025.2477235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE Cigarette smoke activates lung inflammation and destruction and the development of COPD. Among various factors influenced by lung inflammation, adiponectin produced by lung epithelial cells is thought to play a significant role in regulating inflammation and maintaining tissue integrity. This study aims to examine adiponectin expression in a mouse model of cigarette smoke extract (CSE)-induced emphysema and explore the effects of adiponectin on cell survival and cytokine gene expression in CSE-induced lung epithelial cell damage. METHODS CSE was prepared by passing cigarette smoke through a glass tube containing solvent. PBS or CSE was intraperitoneally administered to C57BL/6 mice. Inflammatory cells, cytokines, adiponectin expression in lung, bronchoalveolar lavage fluid (BALF) and adipose tissue were assessed. CSE and adiponectin were administered to A549 cells to determine cell viability and cytokine gene expression. RESULTS Intraperitoneal CSE injection significantly increased the mean alveolar linear intercept by 23.11%. CSE significantly increased total cells, macrophages, neutrophils, eosinophils, TNFα, IL-1β levels in BALF. CSE enhanced lung adiponectin protein expression. Treatment of A549 cells with CSE reduced cell survival and adiponectin gene expression. Furthermore, adiponectin treatment enhanced MCP-1 and IL-8 gene expression in A549 cells post-CSE exposure. CONCLUSION Intraperitoneal CSE treatment induced lung inflammation, airspace enlargement, and increased adiponectin expression in mice. CSE-exposed A549 cells showed reduced cell viability, upregulated proinflammatory genes, downregulated adiponectin genes. Adiponectin treatment further intensified these genes expressions, aligning with in vivo findings. Elevated adiponectin expression in alveolar epithelial cells suggests its potential role in the development of COPD by enhancing lung inflammation.
Collapse
Affiliation(s)
- Siriporn Vongsaiyat Siriphorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathumtani, Thailand
| | - Supitsara Thorsuwan
- Princess Agrarajakumari College of Nursing, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Julalux Thongam
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sukpattaraporn Ruangklai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poungpetch Hussarin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sorachai Srisuma
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Miyake G, Nagasaka A, Bando Y, Sakiyama K, Iseki S, Sakashita H, Amano O. Expression and localization of adiponectin in myoepithelial cells in sublingual glands of normal and diabetic rats. J Oral Biosci 2025; 67:100590. [PMID: 39613095 DOI: 10.1016/j.job.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVES Adiponectin is a hormone produced by adipocytes with anti-atherosclerotic and anti-diabetic properties. We previously discovered that adiponectin is specifically localized in the myoepithelial cells of rat sublingual glands. This study aims to investigate the localization of adiponectin and its receptors, AdipoR1 and AdipoR2, in adult rats, postnatally developing rats, and diabetic model rats. METHODS We examined the localization and expression of adiponectin and its receptors by immunohistochemistry and RT-PCR in the sublingual glands of adult rats and in two diabetic rat models: Streptozotocin (STZ)-treated rats for type 1 diabetes and GK rats for type 2 diabetes. RESULTS In rat sublingual glands, adiponectin was localized in the cytoplasm of myoepithelial cells, while AdipoR1 and AdipoR2 were localized in the basolateral membrane of mucous acinar cells. In GK rats, there was a significant decrease in the immunoreactivity and mRNA levels of adiponectin, while both AdipoR1 and AdipoR2 expression levels were upregulated. In STZ-treated rats, both adiponectin and its receptors showed reduced expression. CONCLUSIONS Adiponectin acts as a paracrine factor in sublingual myoepithelial cells, influencing salivary secretion through upregulated receptors in acinar cells, particularly in type 2 diabetes. This process is associated with a reduction in myoepithelial adiponectin levels.
Collapse
Affiliation(s)
- Genki Miyake
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan; Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Yasuhiko Bando
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Koji Sakiyama
- Division of Anatomy, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Shoichi Iseki
- Faculty of Health Sciences Department of Clinical Engineering, Komatsu University, Komatsu, Ishikawa, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan; Department of Oral and Maxillofacial Surgery, Abiko Seijinkai Hospital, Abiko, Chiba, Japan
| | - Osamu Amano
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan.
| |
Collapse
|
15
|
Goli SH, Lim JY, Basaran-Akgul N, Templeton SP. Adiponectin pathway activation dampens inflammation and enhances alveolar macrophage fungal killing via LC3-associated phagocytosis. PLoS Pathog 2025; 21:e1012363. [PMID: 40096083 PMCID: PMC11949351 DOI: 10.1371/journal.ppat.1012363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/27/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Although innate immunity is critical for antifungal host defense against the human opportunistic fungal pathogen Aspergillus fumigatus, potentially damaging inflammation must be controlled. Adiponectin (APN) is an adipokine produced mainly in adipose tissue that exerts anti-inflammatory effects in adipose-distal tissues such as the lung. We observed increased mortality and increased fungal burden and inflammation in neutropenic mice with invasive aspergillosis (IA) that lack APN or the APN receptors AdipoR1 or AdipoR2. Alveolar macrophages (AMs), early immune sentinels that detect and respond to lung infection, express both receptors, and APN-deficient AMs exhibited an inflammatory phenotype that was associated with decreased fungal killing. Pharmacological stimulation of AMs with AdipoR agonist AdipoRon rescued deficient killing in APN-/- AMs and was dependent on the presence of either receptor. Finally, APN-enhanced fungal killing was associated with increased activation of the non-canonical LC3 pathway of autophagy. Thus, our study identifies a novel role for APN in LC3-mediated killing of A.fumigatus.
Collapse
Affiliation(s)
- Sri Harshini Goli
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Joo-Yeon Lim
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
| | - Nese Basaran-Akgul
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
| |
Collapse
|
16
|
Jeong AY, Ma EB, Hong SJ, Kim E, Ko S, Huh JY, Kim YM. Kombucha inhibits adipogenesis and promotes lipolytic activity in 3T3-L1 adipocytes. Food Sci Biotechnol 2025; 34:1037-1043. [PMID: 39974855 PMCID: PMC11832843 DOI: 10.1007/s10068-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 02/21/2025] Open
Abstract
This research was conducted to investigate the anti-obesity effects of black tea or green tea kombucha (BK, GK) and compared their compositional differences. As a result of kombucha treatment during the adipocyte differentiation process, peroxisome proliferator-activated receptor γ was significantly decreased, and CCAAT/enhancer binding protein α and adipocyte protein 2 showed a tendency to decrease with BK treatment. Oil red O staining results also demonstrated a reduction of lipid accumulation by BK treatment compared to the control. In mature adipocytes, BK significantly upregulated the gene expression of hormone-sensitive lipase and tended to increase the expression of adipose triglyceride lipase and adiponectin. Additionally, as a biomarker of lipolysis, glycerol content also marginally increased with either BK or GK treatment. The differences were observed in tea polyphenol compound and organic acid contents between BK and GK. In conclusion, these results suggest that black tea kombucha may have anti-obesity activity. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01740-8.
Collapse
Affiliation(s)
- Ah-Young Jeong
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Eun-Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Jin Hong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
- Research Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Eunhye Kim
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
| | - Sugju Ko
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
17
|
Doua S, Germain N, Geandrot A, Defour C, Gay A, Massoubre C, Lang F, Estour B, Galusca B. A scoping review of circulating peptides assessments in anorexia nervosa: Uncovering diversity and nuanced findings. J Proteomics 2025; 312:105370. [PMID: 39716569 DOI: 10.1016/j.jprot.2024.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Understanding biological mechanisms underlying anorexia nervosa (AN) is necessary to develop care strategies. Despite many articles dedicated to peptides assessment in AN, there is no systematic review. A scoping review of circulating peptides published in relation to AN, comparing their results with those of controls, was conducted. Embase and PubMed databases were search from 1966 to 2022 (PROSPERO CRD42022323716). All original English articles, assessing peptides in AN (except classical markers) were analyzed. 1151 studies for 207 peptides, in 486 published articles were selected, and evidences/trends in AN were compared to controls. Fifteen clusters of function gathering peptides covering physiopathological aspects of AN were identified. This scoping review revealed a large variety of circulating peptides explored in AN. Some peptides presented with convincing results and helped understanding pathophysiologic aspects. Other peptides presented with nuanced results, partly due to insufficient number of studies, multiple assay techniques, inadequate sampling time, and lack of phenotyping. Conversion from bench-to-bed remains difficult and may explain why peptides evaluations did not currently lead to specific international recommendations or tailored therapeutic/preventive strategies. Peptide evaluation in anorexia nervosa could explore secretion profiles, and test it in well-phenotyped patients with AN, to conclude for potential clinical use, and finally design therapeutic tests.
Collapse
Affiliation(s)
- Sandra Doua
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France; Endocrinology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Natacha Germain
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France; Endocrinology Department, University Hospital of Saint-Etienne, Saint-Etienne, France; Eating Disorder Reference Center, University hospital of Saint-Etienne, Saint-Etienne, France.
| | - Amale Geandrot
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France
| | - Cloé Defour
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France
| | - Aurélia Gay
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France; Psychiatry Department, University hospital of Saint-Etienne, Saint-Etienne, France
| | - Catherine Massoubre
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France; Eating Disorder Reference Center, University hospital of Saint-Etienne, Saint-Etienne, France; Psychiatry Department, University hospital of Saint-Etienne, Saint-Etienne, France
| | - Francois Lang
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France; Eating Disorder Reference Center, University hospital of Saint-Etienne, Saint-Etienne, France; Psychiatry Department, University hospital of Saint-Etienne, Saint-Etienne, France
| | - Bruno Estour
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France; Endocrinology Department, University Hospital of Saint-Etienne, Saint-Etienne, France; Eating Disorder Reference Center, University hospital of Saint-Etienne, Saint-Etienne, France
| | - Bogdan Galusca
- TAPE Research Group, Jean Monnet University, Lyon University, Saint-Etienne, France; Endocrinology Department, University Hospital of Saint-Etienne, Saint-Etienne, France; Eating Disorder Reference Center, University hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
18
|
Matovic S, Rummel C, Neumann E, McGrath J, Gouin JP. Adverse Childhood Experiences Influence Longitudinal Changes in Leptin But Not Adiponectin. BIOPSYCHOSOCIAL SCIENCE AND MEDICINE 2025; 87:118-128. [PMID: 39909010 DOI: 10.1097/psy.0000000000001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
OBJECTIVE Adverse childhood experiences (ACEs) are associated with a greater risk of obesity and cardiometabolic disease. Adipokines, including leptin and adiponectin, play vital roles in biological processes linked to obesity and cardiometabolic risk. The adiponectin/leptin ratio may represent a marker of impaired hormonal regulation of adipose tissue. Prior cross-sectional studies suggest patterns of higher plasma leptin and lower adiponectin among adults who have experienced ACEs. This study addresses whether ACEs influence longitudinal changes in leptin, adiponectin, and the adiponectin/leptin ratio, after accounting for current chronic stress and adiposity. METHODS This longitudinal study included 192 middle-aged mothers (mean age = 46.78 years) experiencing higher (n = 108) and lower (n = 84) chronic caregiving stress. Adipokines and adiposity were measured at three timepoints: T1 (baseline), T2 (15 months later), and T3 (30 months after T1). ACEs were assessed retrospectively using the Childhood Trauma Questionnaire. RESULTS Mixed-effect models showed that leptin and adiponectin increased over time. Greater ACEs exposure was associated with larger increases in leptin over time, but it was not related to adiponectin or the adiponectin/leptin ratio. Current caregiving stress was not related to leptin and adiponectin levels and did not interact with ACEs in predicting adipokine levels. Mediation analyses revealed that increases in waist circumference partially mediated the association between ACEs and increases in leptin over time. CONCLUSIONS ACEs may increase vulnerability to cardiometabolic risk in midlife caregiving mothers through its influence on longitudinal changes in leptin and central adiposity.
Collapse
Affiliation(s)
- Sara Matovic
- From Concordia University (Matovic, McGrath, Gouin), Montreal, Canada; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen (Rummel), Giessen, Germany; Center for Mind, Brain and Behavior (CMMB), University of Marburg and Justus Liebig University Giessen (Rummel, Neumann), Marburg and Giessen, Germany; and Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University of Giessen (Neumann), Bad Nauheim, Germany
| | | | | | | | | |
Collapse
|
19
|
Guo L, Jin K, Sun Q, Zhang C, Chen X, Geng Z. Adiponectin regulates proliferation and differentiation of chicken skeletal muscle satellite cells via ERK1/2 and p38 signaling pathways. Poult Sci 2025; 104:104813. [PMID: 39823838 PMCID: PMC11786077 DOI: 10.1016/j.psj.2025.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
Skeletal muscle satellite cells (SMSCs) are critical for postnatal skeletal muscle growth and regeneration. Adiponectin plays a pivotal role in regulating muscle glucose uptake and fatty acid metabolism. However, its function in the proliferation and differentiation of chicken SMSCs remains poorly understood. In this study, we investigated the effects of adiponectin on the proliferation and differentiation of in vitro cultured chicken SMSCs. Our results demonstrated that adiponectin promoted SMSCs proliferation while inhibiting myogenic differentiation and inducing adipogenic differentiation. RNA-seq analysis revealed enrichment of the MAPK signaling pathway, suggesting its potential involvement in the regulation of adiponectin on SMSCs activity. Western blot analysis revealed that adiponectin activated ERK1/2 phosphorylation and inhibited p38 phosphorylation during the process of the inhibition on myogenic differentiation in chicken SMSCs. Furthermore, suppression of ERK1/2 signaling with U0126 or activation of p38 signaling with SSK1 reversed the downregulated expression of myogenic differentiation marker MyHC, MyOD1, and MyOG induced by adiponectin. These findings validated that adiponectin impeded myogenic differentiation through activation of ERK1/2 and inhibition of p38 signaling pathways. Additionally, activation of p38 signaling pathway reduced the increased percentage of EdU-positive cells induced by adiponectin. Collectively, these findings demonstrated that adiponectin impedes myogenic differentiation of SMSCs through activating ERK1/2 and inhibiting p38 signaling pathways, while promoting proliferation by inhibiting p38 signaling pathway.
Collapse
Affiliation(s)
- Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, 130 Changjiang West Rd., Hefei 230036, PR China
| | - Kaiming Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Qi Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Chenchao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiongyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, 130 Changjiang West Rd., Hefei 230036, PR China.
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, 130 Changjiang West Rd., Hefei 230036, PR China
| |
Collapse
|
20
|
Gan Y, Zhu L, Li Y, Ge R, Tian J, Chen Y, He X, Ma S, Liu X. AdipoR1 enhances the radiation resistance via ESR1/CCNB1IP1/cyclin B1 pathway in hepatocellular carcinoma cells. Mol Med 2025; 31:21. [PMID: 39849382 PMCID: PMC11755959 DOI: 10.1186/s10020-025-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors, and radiotherapy plays a pivotal role in its therapeutic regimen. However, radiotherapy resistance is the main cause of therapeutic failure in patients. Our previous study revealed that Adiponectin Receptor 1 (AdipoR1) is involved in regulating radiation resistance in liver cancer patients treated with stereotactic body radiotherapy. To explore the mechanism, we performed high-throughput transcriptome sequencing of hepatocellular carcinoma cells with stable knockdown of AdipoR1. KEGG enrichment analysis indicated that the cell cycle and ubiquitination degradation pathways may be involved in the regulation of radiation resistance by AdipoR1.The knockdown of AdipoR1 can attenuate the radiation-induced G2/M phase arrest through cyclin B1.By the ubiquitination IP assay and a rescue experiment, we confirmed that CCNB1IP1 regulated the ubiquitination and degradation of cyclin B1. Combined with information from transcription factor database and AdipoR1 transcriptome sequencing, these results showed that estrogen receptor 1 (ESR1) may be a transcription factor of CCNB1IP1. We found that AdipoR1 promoted the translocation of ESR1 from the cytoplasm to the nucleus, and ESR1 inhibited the transcription of CCNB1IP1.Therefore, we propose that AdipoR1 regulates the ubiquitination level, cell cycle progression, and radiation resistance of HCC cells through the "AdipoR1 /ESR1/CCNB1IP1/cyclin B1" axis. This study will promote the development of novel targeted radiosensitizing drugs.
Collapse
Affiliation(s)
- Yuhan Gan
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Linhui Zhu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yimo Li
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruoting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325809, China
| | - Jiahe Tian
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325809, China
| | - Yuxin Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang He
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325809, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325809, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325809, China.
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
21
|
Nakamura S, Asaba S, Tanaka M, Matsui T. Oral Administration of the Adiponectin Receptor 1 Agonistic Dipeptide Tyr-Pro Prevents Hyperglycemia in Spontaneously Diabetic Torii Rats. ACS OMEGA 2025; 10:1411-1418. [PMID: 39829448 PMCID: PMC11740145 DOI: 10.1021/acsomega.4c09030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025]
Abstract
The dipeptide Tyr-Pro, a novel natural agonist of adiponectin receptor 1 (AdipoR1), promotes glucose uptake in skeletal muscle cells. This study investigated the antidiabetic effect of orally administered Tyr-Pro in spontaneously diabetic Torii (SDT) rats. Oral administration of Tyr-Pro (1 mg/kg/day) improved glucose intolerance in SDT rats at 22 weeks of prediabetic age. By 29 weeks of age, fasting blood glucose levels (BGLs) increased to 142 ± 14 mg/dL in the control group, whereas those in the Tyr-Pro group remained within the normal range (80-99 mg/dL), demonstrating a novel antidiabetic effect in vivo. Substantially increased levels of AdipoR1 and p-AMPK/AMPK were observed in the skeletal muscle of Tyr-Pro-administrated SDT rats. The intake of Tyr-Pro also enhanced insulin secretion and inhibited p-IRS-1(Ser) in skeletal muscle. These findings demonstrate that Tyr-Pro prevented the onset of diabetes and improved impaired insulin signaling pathways in SDT rats by inducing AdipoR1-mediated AMPK activation.
Collapse
Affiliation(s)
- Saya Nakamura
- Department of Bioscience
and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sumire Asaba
- Department of Bioscience
and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Department of Bioscience
and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience
and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Gianopoulos I, Mantzoros CS, Daskalopoulou SS. Adiponectin and Adiponectin Receptors in Atherosclerosis. Endocr Rev 2025; 46:1-25. [PMID: 39106421 PMCID: PMC11720176 DOI: 10.1210/endrev/bnae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Adiponectin is an abundantly secreted hormone that communicates information between the adipose tissue, and the immune and cardiovascular systems. In metabolically healthy individuals, adiponectin is usually found at high levels and helps improve insulin responsiveness of peripheral tissues, glucose tolerance, and fatty acid oxidation. Beyond its metabolic functions in insulin-sensitive tissues, adiponectin plays a prominent role in attenuating the development of atherosclerotic plaques, partially through regulating macrophage-mediated responses. In this context, adiponectin binds to its receptors, adiponectin receptor 1 (AdipoR1) and AdipoR2 on the cell surface of macrophages to activate a downstream signaling cascade and induce specific atheroprotective functions. Notably, macrophages modulate the stability of the plaque through their ability to switch between proinflammatory responders, and anti-inflammatory proresolving mediators. Traditionally, the extremes of the macrophage polarization spectrum span from M1 proinflammatory and M2 anti-inflammatory phenotypes. Previous evidence has demonstrated that the adiponectin-AdipoR pathway influences M1-M2 macrophage polarization; adiponectin promotes a shift toward an M2-like state, whereas AdipoR1- and AdipoR2-specific contributions are more nuanced. To explore these concepts in depth, we discuss in this review the effect of adiponectin and AdipoR1/R2 on 1) metabolic and immune responses, and 2) M1-M2 macrophage polarization, including their ability to attenuate atherosclerotic plaque inflammation, and their potential as therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA 02130, USA
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
23
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
24
|
Bernardi O, Fréville M, Ramé C, Reverchon M, Dupont J. Chicken chemerin alone or in mixture with adiponectin-visfatin impairs progesterone secretion by primary hen granulosa cells. Poult Sci 2024; 103:104398. [PMID: 39447332 PMCID: PMC11539439 DOI: 10.1016/j.psj.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Adipokines including adiponectin (ADIPO), chemerin (CHEM) and visfatin (VISF) are involved in metabolism and reproductive functions. These 3 adipokines are present in ovarian cells in different preovulatory follicles in hens. We have previously shown that VISF and ADIPO are able to modulate in vitro steroid production by hen granulosa cells (GCs). It is, however, unclear whether CHEM acts on hen ovarian cells. In addition, no study has yet investigated the effect of a mixture of several adipokines such ADIPO, VISF, and CHEM on GCs from different preovulatory follicles. In this study, we investigated the effect of CHEM alone and in combination with ADIPO and VISF on cell viability, proliferation and progesterone secretion in cultured granulosa cells (GCs) from the largest follicles F1 and smaller ones (F3/F4) in the presence of gonadotropins (oLH and oFSH) or hIGF-1. First, various concentrations of chemerin were examined (0, 12, 25, 50, and 100 ng/mL) and then we determined the response to CHEM (at 25 ng/mL) in combination with ADIPO (10 µg/mL) and VISF (100 ng/mL). Chemerin exposure did not affect F1 and F3/F4 granulosa cell viability and proliferation whatever the concentation and in the presence of the mixture. However, it reduced progesterone secretion in dose dependent manner in both F1 and F3/F4 follicles. Furthermore, this CHEM inhibitory effect was significantly higher when CHEM was combined with ADIPO and VISF. Furthermore, CHEM reduced significantly oLH and oFSH- induced progesterone secretion in F1 GCs and oFSH and hIGF-1-induced progesterone secretion in F3/F4 GCs. Interestingly, this inhibitory effect of CHEM was similar in F1 GCs when CHEM was in mixture with ADIPO and VISF whereas it was significantly higher in F3/F4 GCs. Taken together, CHEM impairs progesterone secretion in cultured hen GCs and this inhibitory effect can be potentiated when it is in combination with other adipokines.
Collapse
Affiliation(s)
- Ophélie Bernardi
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, Nouzilly, F-37380, France; Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Mathias Fréville
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Christelle Ramé
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, Nouzilly, F-37380, France
| | - Joëlle Dupont
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
| |
Collapse
|
25
|
Fu X, Wang Y, Lu Y, Liu J, Li H. Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection. Life Sci 2024; 358:123192. [PMID: 39488266 DOI: 10.1016/j.lfs.2024.123192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Benign prostatic hyperplasia (BPH), a common cause of lower urinary tract symptoms (LUTS), has been recently regarded as a metabolic disease. Metabolic syndrome (MetS) is a constellation of metabolic disarrangements, including insulin resistance, obesity, hypertension, and dyslipidemia, and it has been established that these components of MetS are important contributing factors exacerbating the degree of prostatic enlargement and bladder outlet obstruction among patients with BPH. Clinical and experimental studies demonstrated that many molecules, such as insulin, insulin-like growth factor 1 (IGF-1), androgen and estrogen, and adipokines, are involved in the overlapping pathogenesis of BPH and MetS, indicating that clinicians might be able to simultaneously alleviate or cure two diseases by choosing appropriate medications. This article aims to systematically review the pathophysiological aspect and traditional etiology and pathogenesis of BPH and discuss the intricate association between MetS and BPH from the molecular point of view, in an attempt to provide stronger evidence for better treatment of two diseases.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yi Lu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Jiang Liu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China.
| |
Collapse
|
26
|
Duran Taş N, Sonel Tur B, Ergüder Bİ, Durmaz M. The relationship of serum adiponectin and leptin levels with pain, function and intervertebral disc degeneration in patients with chronic low back pain. Turk J Phys Med Rehabil 2024; 70:468-475. [PMID: 40028415 PMCID: PMC11868858 DOI: 10.5606/tftrd.2024.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2025] Open
Abstract
Objectives The aim of this study was to investigate the relationship between serum adiponectin and leptin levels, which are cytokines released from fatty tissue, and pain, function and intervertebral disc degeneration (IVDD). Patients and methods Between January 2018 and November 2019, a total of 85 patients (34 males, 51 females; mean age: 42.1±10.7 years; range, 18 to 62 years) who were diagnosed with IVDD and 84 healthy volunteers (34 males, 50 females; mean age: 41.9±10.7 years; range, 22 to 64 years) were included in this cross-sectional study. The Visual Analog Scale (VAS, 0-10 cm) and Oswestry Disability Index (ODI) scales were used in the patient group. Serum adiponectin and leptin levels were measured in all participants. The grading of IVDD was determined using the Pfirrmann Classification. Results There was no significant difference in serum adiponectin (p=0.35) and leptin (p=0.19) levels between the patient group and the control group. No relationship was found between serum adiponectin and leptin levels and pain intensity (VAS), pain duration, and disability (ODI) in patients with low back pain. No relationship was found between the severity of IVDD as evidenced by magnetic resonance imaging (MRI) and adiponectin (p=0.18) and leptin (p=0.11) levels. There was a positive correlation between the severity of disc degeneration and body mass index (r=0.35, p=0.008) and waist circumference (r=0.34, p=0.01). Conclusion Serum adipokine levels were not associated with low back pain symptoms and IVDD severity as evidenced by MRI. These findings suggest that the effects of obesity on chronic low back pain and disc degeneration cannot be explained by systemic inflammatory effects alone.
Collapse
Affiliation(s)
- Nurcan Duran Taş
- Department of Physical Medicine and Rehabilitation, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Birkan Sonel Tur
- Department of Physical Medicine and Rehabilitation, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Mustafa Durmaz
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
27
|
Chen TY, Marín-López A, Raduwan H, Fikrig E. Aedes aegypti adiponectin receptor-like protein signaling facilitates Zika virus infection. mBio 2024; 15:e0243324. [PMID: 39373507 PMCID: PMC11559040 DOI: 10.1128/mbio.02433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The Aedes aegypti mosquito plays a critical role in the transmission of viral diseases, including Zika virus, which poses significant public health challenges. Understanding the complex interactions between mosquitoes and viruses is paramount for the development of effective control strategies. In this study, we demonstrate that silencing the A. aegypti adiponectin receptor-like protein (AaARLP) results in a reduction of Zika virus infection. Transcriptomic analysis identified alterations in several trypsin genes and further revealed that AaARLP-knockdown mosquitoes had diminished trypsin activity. Moreover, silencing of selected trypsins resulted in a similar delay in Zika virus infection in mosquitoes, further highlighting the connection between the AaARLP and trypsin. Overall, our findings demonstrate that AaARLP signaling is important for Zika virus infection of A. aegypti. IMPORTANCE Arboviruses pose a significant threat to public health, with mosquitoes, especially Aedes aegypti, being a major vector for their transmission. Gaining insight into the complex interaction between mosquitoes and viruses is essential to build successful control strategies. In this study, we identified a novel pathway connecting the A. aegypti adiponectin receptor-like protein and its association with trypsin, key enzymes involved in blood digestion. Furthermore, we demonstrated the significance of signaling via the adiponectin receptor-like protein in virus infection within the mosquito. Together, our discoveries illuminate mosquito metabolic pathways essential in viral infection.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
29
|
Fazio S, Bellavite P, Affuso F. Chronically Increased Levels of Circulating Insulin Secondary to Insulin Resistance: A Silent Killer. Biomedicines 2024; 12:2416. [PMID: 39457728 PMCID: PMC11505545 DOI: 10.3390/biomedicines12102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Despite all the progress made by science in the prevention and treatment of cardiovascular diseases and cancers, these are still the main reasons for hospitalizations and death in the Western world. Among the possible causes of this situation, disorders related to hyperinsulinemia and insulin resistance (Hyperin/IR) are still little-known topics. An analysis of the literature shows that this condition is a multiple risk factor for type 2 diabetes, cardiovascular diseases, cellular senescence and cancer, and neurodegenerative diseases. Hyperin/IR is progressively increasing worldwide, and its prevalence has now exceeded 50% of the general population and in overweight children. Asymptomatic or poorly symptomatic, it can last for many years before manifesting itself as diabetes, cardiovascular disease, neoplasm, cognitive deficit, or dementia, therefore leading to enormous social and healthcare costs. For these reasons, a screening plan for this pathology should be implemented for the purpose of identifying people with Hyperin/IR and promptly starting them on preventive treatment.
Collapse
Affiliation(s)
- Serafino Fazio
- School of Medicine, Federico II University, 80100 Naples, Italy
| | | | | |
Collapse
|
30
|
Chu JMT, Chiu SPW, Wang J, Chang RCC, Wong GTC. Adiponectin deficiency is a critical factor contributing to cognitive dysfunction in obese mice after sevoflurane exposure. Mol Med 2024; 30:177. [PMID: 39415089 PMCID: PMC11481458 DOI: 10.1186/s10020-024-00954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The number of major operations performed in obese patients is expected to increase given the growing prevalence of obesity. Obesity is a risk factor for a range of postoperative complications including perioperative neurocognitive disorders. However, the mechanisms underlying this vulnerability are not well defined. We hypothesize that obese subjects are more vulnerable to general anaesthesia induced neurotoxicity due to reduced levels of adiponectin. This hypothesis was tested using a murine surgical model in obese and adiponectin knockout mice exposed to the volatile anaesthetic agent sevoflurane. METHODS Obese mice were bred by subjecting C57BL/6 mice to a high fat diet. Cognitive function, neuroinflammatory responses and neuronal degeneration were assessed in both obese and lean mice following exposure to 2 h of sevoflurane to confirm sevoflurane-induced neurotoxicity. Thereafter, to confirm the role of adiponectin deficiency in, adiponectin knockout mice were established and exposed to the sevoflurane. Finally, the neuroprotective effects of adiponectin receptor agonist (AdipoRon) were examined. RESULTS Sevoflurane triggered significant cognitive dysfunction, neuroinflammatory responses and neuronal degeneration in the obese mice while no significant impact was observed in the lean mice. Similar cognitive dysfunction and neuronal degeneration were also observed in the adiponectin knockout mice after sevoflurane exposure. Administration of AdipoRon partially prevented the deleterious effects of sevoflurane in both obese and adiponectin knockout mice. CONCLUSIONS Our findings demonstrate that obese mice are more susceptible to sevoflurane-induced neurotoxicity and cognitive impairment in which adiponectin deficiency is one of the underlying mechanisms. Treatment with adiponectin receptor agonist ameliorates this vulnerability. These findings may have therapeutic implications in reducing the incidence of anaesthesia related neurotoxicity in obese subjects.
Collapse
Affiliation(s)
- John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China
| | - Suki Pak Wing Chiu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Jiaqi Wang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, HKSAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China.
| |
Collapse
|
31
|
Sarankhuu BE, Jeon HJ, Jeong DU, Park SR, Kim TH, Lee SK, Han AR, Yu SL, Kang J. Adiponectin receptor 1 regulates endometrial receptivity via the adenosine monophosphate‑activated protein kinase/E‑cadherin pathway. Mol Med Rep 2024; 30:184. [PMID: 39155876 DOI: 10.3892/mmr.2024.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024] Open
Abstract
Endometrial receptivity is essential for successful embryo implantation and pregnancy initiation and is regulated via various signaling pathways. Adiponectin, an important adipokine, may be a potential regulator of reproductive system functions. The aim of the present study was to elucidate the regulatory role of adiponectin receptor 1 (ADIPOR1) in endometrial receptivity. The endometrial receptivity between RL95‑2 and AN3CA cell lines was confirmed using an in vitro JAr spheroid attachment model. 293T cells were transfected with control or short hairpin (sh)ADIPOR1 vectors and RL95‑2 cells were transduced with lentiviral particles targeting ADIPOR1. Reverse transcription‑quantitative PCR and immunoblot assays were also performed. ADIPOR1 was consistently upregulated in the endometrium during the mid‑secretory phase compared with that in the proliferative phase and in receptive RL95‑2 cells compared with that in non‑receptive AN3CA cells. Stable cell lines with diminished ADIPOR1 expression caused by shRNA showed reduced E‑cadherin expression and attenuated in vitro endometrial receptivity. ADIPOR1 regulated AMP‑activated protein kinase (AMPK) activity in endometrial epithelial cells. Regulation of AMPK activity via dorsomorphin and 5‑aminoimidazole‑4‑carboxamide ribonucleotide affected E‑cadherin expression and in vitro endometrial receptivity. The ADIPOR1/AMPK/E‑cadherin axis is vital to endometrial receptivity. These findings can help improve fertility treatments and outcomes.
Collapse
Affiliation(s)
- Bolor-Erdene Sarankhuu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hye Jin Jeon
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Tae-Hyun Kim
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Sung Ki Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Ae Ra Han
- I‑Dream Clinic, Department of Obstetrics and Gynecology, Mizmedi Hospital, Seoul 07639, Republic of Korea
| | - Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
32
|
Yu M, Fan R, Yang SM. Effect of tannic acid on adiponectin and gonads in male Brandt's voles (Lasiopodomys brandtii). Gen Comp Endocrinol 2024; 357:114592. [PMID: 39043324 DOI: 10.1016/j.ygcen.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Adiponectin regulates steroid production and influences gonadal development. This study examined the effects of tannic acid (TA) on the adiponectin levels and gonads of male Brandt's voles. Male Brandt's voles aged 90 d were randomly separated into three groups: a control group (provided distilled water), a group given 600 mg∙kg-1 TA, and a group that received 1200 mg∙kg-1 TA (continuous gavage for 18 d). In this study, we examined the effects of TA on the adiponectin, antioxidant, and inflammatory levels in the testes. Furthermore, we examined the expression of important regulatory elements that influence adiponectin expression and glucose utilisation. In addition, the body weight, reproductive organ weight, and testicular shape were assessed. Our study observed that TA treatment increased serum adiponectin levels, DsbA-L and Ero1-Lα transcription levels, and AdipoR1, AMPK, GLUT1, and MCT4 expression levels in testicular tissue. TA enhanced pyruvate and lactic acid levels in the testicular tissue, boosted catalase activity, and reduced MDA concentrations. TA reduced the release of inflammatory factors in the testicular tissues of male Brandt's voles. TA increased the inner diameter of the seminiferous tubules. In conclusion, TA appears to stimulate adiponectin secretion and gonadal growth in male Brandt's voles while acting as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Minghao Yu
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China; Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Ruiyang Fan
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
33
|
Omatsu J, Yamashita T, Mori T, Osuji Y, Kawanabe R, Kuzumi A, Yoshizaki A, Yokota T, Yamazaki K, Sato S, Yoshizaki A. Neuromuscular electrical stimulation for facial wrinkles and sagging: The 8-week prospective, split-face, controlled trial in Asians. J Cosmet Dermatol 2024; 23:3222-3233. [PMID: 38992992 DOI: 10.1111/jocd.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE This study aims to fill the knowledge gap regarding the effects of high frequency facial neuromuscular electrical stimulation (fNMES) on facial aging, using a device equipped with CERTEC (Cell Energy Regeneration Technology) operating between 40 and 190 kHz. METHODS This prospective split-face study was conducted at Tokyo University Hospital between March and May 2023 with 24 healthy adult women aged 30-59. The intervention group used the fNMES device along with basic skin care on one side of the face, and basic skin care alone on the other side for 8 weeks. Evaluations included changes in skin wrinkles, sagging, and blood flow. RESULTS This study found significant improvements in skin elasticity and degree of wrinkles in the areas intervened with fNMES (p < 0.05, respectively). In addition, the intervention resulted in significant improvements in jawline angle (p < 0.01), submental volume (p < 0.05), cheek volume (p < 0.05), maximum nasolabial fold depth (p = 0.03), and total volume of the nasolabial folds (p = 0.03). The fNMES intervention also showed improvement in blood flow (p < 0.05). These improvements were also subjectively assessed by the participants in subject questionnaires at 8 weeks after the intervention (p < 0.05). CONCLUSION This study suggests that high frequency fNMES effectively improves facial skin elasticity, reduces wrinkles and sagging, promotes blood flow, and contributes to overall facial appearance rejuvenation. Although further studies are needed, high frequency fNMES appeared promising as a noninvasive anti-aging therapy.
Collapse
Affiliation(s)
- Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Toko Mori
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yurika Osuji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Kawanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Yokota
- Face Lift Laboratory, Research and Development Department, YA-MAN Ltd, Tokyo, Japan
| | - Kentaro Yamazaki
- Face Lift Laboratory, Research and Development Department, YA-MAN Ltd, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Castañón-Apilánez M, García-Cabo C, Martin-Martin C, Prieto B, Cernuda-Morollón E, Rodríguez-González P, Pineda-Cevallos D, Benavente L, Calleja S, López-Cancio E. Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes. Nutrients 2024; 16:3218. [PMID: 39339817 PMCID: PMC11435288 DOI: 10.3390/nu16183218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives. A Mediterranean diet (MD) has been associated with neuroprotective effects. We aimed to assess the MD's association with stroke prognosis and the potential mediators involved. Methods. Seventy patients with acute anterior circulation ischemic stroke were included. Dietary patterns were evaluated using the MEDAS scale, a food-frequency questionnaire, and a 24 h recall. Circulating biomarkers including insulin resistance (HOMA index), adipokines (resistin, adiponectin, leptin), choline pathway metabolites (TMAO, betaine, choline), and endothelial progenitor cells (EPCs) were measured. Early neurological improvement (ENI) at 24 h, final infarct volume, and functional outcome at 3 months were assessed. Results. Adherence to MD and olive oil consumption were associated with a lower prevalence of diabetes and atherothrombotic stroke, and with lower levels of fasting glycemia, hemoglobinA1C, insulin resistance, and TMAO levels. Monounsaturated fatty acids and oleic acid consumption correlated with lower resistin levels, while olive oil consumption was significantly associated with EPC mobilization. Multivariate analysis showed that higher MD adherence was independently associated with ENI and good functional prognosis at 3 months. EPC mobilization, lower HOMA levels, and lower resistin levels were associated with ENI, a smaller infarct volume, and good functional outcome. Conclusions. MD was associated with better prognosis after ischemic stroke, potentially mediated by lower insulin resistance, increased EPC mobilization, and lower resistin levels, among other factors.
Collapse
Affiliation(s)
- María Castañón-Apilánez
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen García-Cabo
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Cristina Martin-Martin
- Translational Immmunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Belén Prieto
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Clinical Biochemistry Service, Laboratory of Medicine, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Eva Cernuda-Morollón
- Clinical Biochemistry Service, Laboratory of Medicine, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | | | | | - Lorena Benavente
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sergio Calleja
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Elena López-Cancio
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Funcional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
35
|
Quispe R, Sweeney T, Martin SS, Jones SR, Allison MA, Budoff MJ, Ndumele CE, Elshazly MB, Michos ED. Associations of Adipokine Levels With Levels of Remnant Cholesterol: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2024; 13:e030548. [PMID: 39248264 PMCID: PMC11935629 DOI: 10.1161/jaha.123.030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/06/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The metabolic syndrome phenotype of individuals with obesity is characterized by elevated levels of triglyceride-rich lipoproteins and remnant particles, which have been shown to be significantly atherogenic. Understanding the association between adipokines, endogenous hormones produced by adipose tissue, and remnant cholesterol (RC) would give insight into the link between obesity and atherosclerotic cardiovascular disease. METHODS AND RESULTS We studied 1791 MESA (Multi-Ethnic Study of Atherosclerosis) participants who took part in an ancillary study on body composition with adipokine levels measured (leptin, adiponectin, and resistin) at either visit 2 or visit 3. RC was calculated as non-high-density lipoprotein cholesterol minus low-density lipoprotein cholesterol, measured at the same visit as the adipokines, as well as subsequent visits 4 through 6. Multivariable-adjusted linear mixed-effects models were used to assess the cross-sectional and longitudinal associations between adipokines and log-transformed levels of RC. Mean±SD age was 64.5±9.6 years; mean±SD body mass index was 29.9±5.0 kg/m2; and 52.0% were women. In fully adjusted cross-sectional models that included body mass index, diabetes, low-density lipoprotein cholesterol, and lipid-lowering therapy, for each 1-unit increment in adiponectin, there was 14.6% (95% CI, 12.2-16.9) lower RC. With each 1-unit increment in leptin and resistin, there was 4.8% (95% CI, 2.7-7.0) and 4.0% (95% CI, 0.2-8.1) higher RC, respectively. Lower adiponectin and higher leptin were also associated with longitudinal increases in RC levels over median follow-up of 5 (interquartile range, 4-8) years. CONCLUSIONS Lower adiponectin and higher leptin levels were independently associated with higher levels of RC at baseline and longitudinal RC increase, even after accounting for body mass index and low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Renato Quispe
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Ty Sweeney
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Seth S. Martin
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Steven R. Jones
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Matthew A. Allison
- Department of Family MedicineUniversity of California San DiegoSan DiegoCA
| | | | - Chiadi E. Ndumele
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Mohamed B. Elshazly
- Department of Cardiovascular MedicineHeart and Vascular Institute, Cleveland ClinicClevelandOH
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
36
|
Sebastià C, Gallopin M, Ramayo-Caldas Y, Estellé J, Valdés-Hernández J, Castelló A, Sánchez A, Crespo-Piazuelo D, Folch JM. Gene co-expression network analysis for porcine intramuscular fatty acid composition. Animal 2024; 18:101259. [PMID: 39137614 DOI: 10.1016/j.animal.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
In pigs, meat quality depends markedly on the fatty acid (FA) content and composition of the intramuscular fat, which is partly determined by the gene expression in this tissue. The aim of this work was to identify the link between muscle gene expression and its FA composition. In an (Iberian × Duroc) × Duroc backcrossed pig population, we identified modules of co-expressed genes, and correlation analyses were performed for each of them versus the phenotypes, finding four relevant modules. Two of the modules were positively correlated with saturated FAs (SFAs) and monounsaturated FAs (MUFAs), while negatively correlated with polyunsaturated FAs (PUFAs) and the omega-6/omega-3 ratio. The gene-enrichment analysis showed that these modules had over-representation of pathways related with the biosynthesis of unsaturated FAs, the Peroxisome proliferator-activated receptor signalling pathway and FA elongation. The two other relevant modules were positively correlated with PUFA and the n-6/n-3 ratio, but negatively correlated with SFA and MUFA. In this case, they had an over-representation of pathways related with fatty and amino acid degradation, and with oxidative phosphorylation. Using a graphical Gaussian model, we inferred a network of connections between the genes within each module. The first module had 52 genes with 87 connections, and the most connected genes were ADIPOQ, which is related with FA oxidation, and ELOVL6 and FABP4, both involved in FA metabolism. The second module showed 196 genes connected by 263 edges, being FN1 and MAP3K11 the most connected genes. On the other hand, the third module had 161 genes connected by 251 edges and ATG13 was the top neighbouring gene, while the fourth module had 224 genes and 655 connections, and its most connected genes were related with mitochondrial pathways. Overall, this work successfully identified relevant muscle gene networks and modules linked with FA composition, providing further insights on how the physiology of the pigs influences FA composition.
Collapse
Affiliation(s)
- C Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain.
| | - M Gallopin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1, Avenue de la Terrasse, Bâtiment 21, 91190 Gif-sur-Yvette, France
| | - Y Ramayo-Caldas
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - J Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - D Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain; R&D Department, Cuarte S.L., Grupo Jorge, Autov. Zaragoza-Logroño, km.9, 50120 Monzalbarba, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| |
Collapse
|
37
|
Rehman IU, Park JS, Choe K, Park HY, Park TJ, Kim MO. Overview of a novel osmotin abolishes abnormal metabolic-associated adiponectin mechanism in Alzheimer's disease: Peripheral and CNS insights. Ageing Res Rev 2024; 100:102447. [PMID: 39111409 DOI: 10.1016/j.arr.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht 6202 AZ, the Netherlands.
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, United Kingdom.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Alz-Dementia Korea Co., Jinju 52828, Republic of Korea.
| |
Collapse
|
38
|
Goli SH, Lim JY, Basaran-Akgul N, Templeton SP. Adiponectin pathway activation dampens inflammation and enhances alveolar macrophage fungal killing via LC3-associated phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600373. [PMID: 38979340 PMCID: PMC11230297 DOI: 10.1101/2024.06.24.600373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Although innate immunity is critical for antifungal host defense against the human opportunistic fungal pathogen Aspergillus fumigatus, potentially damaging inflammation must be controlled. Adiponectin (APN) is an adipokine produced mainly in adipose tissue that exerts anti-inflammatory effects in adipose-distal tissues such as the lung. We observed 100% mortality and increased fungal burden and inflammation in neutropenic mice with invasive aspergillosis (IA) that lack APN or the APN receptors AdipoR1 or AdipoR2. Alveolar macrophages (AMs), early immune sentinels that detect and respond to lung infection, express both receptors, and APN-/- AMs exhibited an inflammatory/M1 phenotype that was associated with decreased fungal killing. Pharmacological stimulation of AMs with AdipoR agonist AdipoRon partially rescued deficient killing in APN-/- AMs that was dependent on both receptors. Finally, APN-enhanced fungal killing was associated with increased activation of the non-canonical LC3 pathway of autophagy. Thus, our study identifies a novel role for APN in LC3-mediated killing of A. fumigatus.
Collapse
Affiliation(s)
- Sri Harshini Goli
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Joo-Yeon Lim
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Nese Basaran-Akgul
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| |
Collapse
|
39
|
Li Y, Liu T, Zhang M, Pan C, Liu X, Zhao H, Lan X. A Functional 67-bp Duplication Locating at the Core Promoter Region within the Bovine ADIPOQ Gene Is Associated with Ovarian Traits and mRNA Expression. Animals (Basel) 2024; 14:2362. [PMID: 39199896 PMCID: PMC11350689 DOI: 10.3390/ani14162362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
ADIPOQ plays a crucial role in regulating the reproductive system, but there are few reports on the effects of ADIPOQ on ovarian in dairy cows. Previous studies have verified the presence of a 67-bp mutation in the promoter region of the ADIPOQ gene. Hence, we employed ovarian tissues (n = 2111) and blood samples (n = 108) from Chinese Holstein cows as experimental samples to examine the association between ADIPOQ promoter variants and ovarian traits. We extracted DNA from these samples and conducted genetic typing identification on each sample using advanced techniques like PCR and agarose gel electrophoresis. Consequently, the DD, ID, and II genotypes were discovered. and it has been observed that the mutation frequency of this locus is low in the Chinese Holstein cow. Importantly, the correlational analysis unveiled a significant relationship (p < 0.05) between the weight of ovaries in late estrus and the width of ovaries during the estrus interval with the mutation. Result of the RT-PCR revealed that the ID genotype partially diminished the expression of the ADIPOQ gene. The results of this study suggest that the identified variable duplication could serve as a potential genetic marker for enhancing the ovarian traits of Chinese Holstein cows.
Collapse
Affiliation(s)
- Yufu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Tingting Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China
| | - Mengyang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Haiyu Zhao
- College of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
| |
Collapse
|
40
|
Li K, Xiao X, Li Y, Lu S, Zi J, Sun X, Xu J, Liu HY, Li X, Song T, Cai D. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines. J Anim Sci Biotechnol 2024; 15:114. [PMID: 39118186 PMCID: PMC11308499 DOI: 10.1186/s40104-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianghang Zi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Sun
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Xu
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321017, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
41
|
Ceccarini G, Pelosini C, Paoli M, Tyutyusheva N, Magno S, Gilio D, Palladino L, Sessa MR, Bertelloni S, Santini F. Serum levels of adiponectin differentiate generalized lipodystrophies from anorexia nervosa. J Endocrinol Invest 2024; 47:1881-1886. [PMID: 38358463 DOI: 10.1007/s40618-024-02308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE The differential diagnosis of lipodystrophy involves other disorders characterized by severe fat loss and may be sometimes challenging. Owing to the rarity of lipodystrophy, it is relevant to search for tools and assays that differentiate it from other diseases that may mimic it. We conducted a study on leptin and high molecular weight (HMW) adiponectin serum concentrations in a series of patients diagnosed with lipodystrophy and compared them with those found in anorexia nervosa, one of the illnesses that may be cause of a missed diagnosis of lipodystrophy. METHODS Leptin and HMW adiponectin serum concentrations were measured in six patients diagnosed with generalized lipodystrophy (GL), six with progeroid syndromes (PS), 13 with familial partial lipodystrophy type 1 (FPLD1, Kobberling syndrome), 10 with familial partial lipodystrophy type 2 (FPLD2, Dunnigan syndrome), 18 with acquired partial lipodystrophy (APL) and 12 affected by anorexia nervosa (AN). Measurements were compared to those obtained in 12 normal weight healthy subjects. RESULTS Serum leptin concentrations were reduced to a similar degree in GL, PS and AN, proportionally to the extent of fat loss. Serum concentrations of HMW adiponectin were found extremely low in patients with GL and PS, while comparable to normal weight subjects in patients with AN. CONCLUSION Serum HMW adiponectin can be regarded as a useful tool to discriminate between generalized lipodystrophy syndromes (including PS) and AN.
Collapse
Affiliation(s)
- G Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy.
| | - C Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, Pisa, Italy
| | - M Paoli
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, Pisa, Italy
| | - N Tyutyusheva
- Pediatric Unit, University Hospital of Pisa, Pisa, Italy
| | - S Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - D Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - L Palladino
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - M R Sessa
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, Pisa, Italy
| | - S Bertelloni
- Pediatric Unit, University Hospital of Pisa, Pisa, Italy
| | - F Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
42
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
43
|
Mao TH, Huang HQ, Zhang CH. Clinical characteristics and treatment compounds of obesity-related kidney injury. World J Diabetes 2024; 15:1091-1110. [PMID: 38983811 PMCID: PMC11229974 DOI: 10.4239/wjd.v15.i6.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Disorders in energy homeostasis can lead to various metabolic diseases, particularly obesity. The obesity epidemic has led to an increased incidence of obesity-related nephropathy (ORN), a distinct entity characterized by proteinuria, glomerulomegaly, progressive glomerulosclerosis, and renal function decline. Obesity and its associated renal damage are common in clinical practice, and their incidence is increasing and attracting great attention. There is a great need to identify safe and effective therapeutic modalities, and therapeutics using chemical compounds and natural products are receiving increasing attention. However, the summary is lacking about the specific effects and mechanisms of action of compounds in the treatment of ORN. In this review, we summarize the important clinical features and compound treatment strategies for obesity and obesity-induced kidney injury. We also summarize the pathologic and clinical features of ORN as well as its pathogenesis and potential therapeutics targeting renal inflammation, oxidative stress, insulin resistance, fibrosis, kidney lipid accumulation, and dysregulated autophagy. In addition, detailed information on natural and synthetic compounds used for the treatment of obesity-related kidney disease is summarized. The synthesis of detailed information aims to contribute to a deeper understanding of the clinical treatment modalities for obesity-related kidney diseases, fostering the anticipation of novel insights in this domain.
Collapse
Affiliation(s)
- Tuo-Hua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han-Qi Huang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei Province, China
| | - Chuan-Hai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
44
|
Nguyen MLT, Pham C, Pham VT, Nham PLT, Ta BT, Le DT, Le QV, Hoang XC, Bozko P, Nguyen LT, Bui KC. Adiponectin Receptor Agonist Effectively Suppresses Hepatocellular Carcinoma Growth. Cell Biochem Biophys 2024; 82:687-695. [PMID: 38243102 DOI: 10.1007/s12013-024-01217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the second lethal cancer. Short overall survival, low five-year survival rate, and unimproved treatment efficacy urge the need to improve HCC prognosis. Adiponectin is key protector against cancer and hepatic abnormalities. Hypoadiponectinemia occurs in and promotes carcinogenesis and hepatic diseases. Adiponectin reactivation by different methods showed impressive effect against cancer and hepatic diseases. Recently, AdipoRon, an adiponectin receptor agonist, can interact with both Adiponectin receptors. AdipoRon showed promising anti-cancer effect in some cancers, but no study on HCC yet. The in vitro effect of AdipoRon on HCC was investigated by cell viability, migration, invasion, colony formation and apoptosis assays. The signalling alteration was determined by RT-qPCR and Western blot. The effect of treatment was interpreted by comparison between treatments and control. The difference between two cell lines was relatively compared. Our results showed significant in vitro anti-cancer effect of AdipoRon via AMPK- and dose-dependent manner. Huh7 cells showed a lower level of AdipoR1/2 and a superior proliferation and aggressiveness, compared to Hep3B. In addition, Huh7 cells were more sensitive to AdipoRon treatment (lower IC50, less cell growth, migration, invasion and colonies upon AdipoRon treatment) than Hep3B cells. In conclusion, AdipoRon effectively inhibited HCC growth and invasiveness in vitro. The deficient expression of adiponectin receptors affects efficacy of AdipoRon and aggressiveness of HCC cells.
Collapse
Affiliation(s)
- Mai Ly Thi Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Chi Pham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Van Tran Pham
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Phuong Linh Thi Nham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ba Thang Ta
- Vietnam Military Medical University, Hanoi, Vietnam
- Respiratory Centre, Military Hospital 103, Hanoi, Vietnam
| | - Dinh Tuan Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Rheumatology and Endocrinology, Military Hospital 103, Hanoi, Vietnam
| | - Quoc Vuong Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Medical Examination, Le Huu Trac National Burn Hospital, Hanoi, Vietnam
| | | | - Przemyslaw Bozko
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- The M3 Research Institute, Tübingen, Germany
| | - Linh Toan Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Khac Cuong Bui
- Vietnam Military Medical University, Hanoi, Vietnam.
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam.
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany.
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam.
| |
Collapse
|
45
|
Al-Mhanna SB, Batrakoulis A, Norhayati MN, Mohamed M, Drenowatz C, Irekeola AA, Afolabi HA, Gülü M, Alkhamees NH, Wan Ghazali WS. Combined Aerobic and Resistance Training Improves Body Composition, Alters Cardiometabolic Risk, and Ameliorates Cancer-Related Indicators in Breast Cancer Patients and Survivors with Overweight/Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Sports Sci Med 2024; 23:366-395. [PMID: 38841642 PMCID: PMC11149074 DOI: 10.52082/jssm.2024.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Breast cancer survivors with obesity are at a high risk of cancer recurrence, comorbidity, and mortality. This review aims to systematically evaluate the effects of combined aerobic and resistance training (CART) on body composition, lipid homeostasis, inflammation, adipokines, cancer-related fatigue, sleep, and quality of life in breast cancer patients and survivors with overweight/obesity. An electronic search was conducted in PubMed, Web of Science, Scopus, Science Direct, Cochrane, and Google Scholar databases from inception up to January 8, 2024. Randomized controlled trials (RCTs) meeting the inclusion criteria were selected for the analysis. The Cochrane risk of bias tool was used to assess eligible studies, and the GRADE method to evaluate the quality of evidence. A random-effects model was used, and data were analyzed using mean (MD) and standardized mean differences (SMD) for continuous variables with 95% confidence intervals (CI). We assessed the data for risk of bias, heterogeneity, sensitivity, reporting bias, and quality of evidence. A total of 17 randomized controlled trials were included in the systematic review involving 1,148 female patients and survivors (mean age: 54.0 ± 3.4 years). The primary outcomes showed significant improvements in body mass index (SMD -0.57 kg/m2, p = 0.04), body fat (SMD -0.50%, p = 0.02), fat mass (SMD -0.63 kg, p = 0.04), hip circumference (MD -3.14 cm, p = 0.02), and fat-free mass (SMD 1.03 kg, p < 0.001). The secondary outcomes indicated significant increases in high-density lipoprotein cholesterol (MD -0.05 mmol/L, p = 0.008), natural killer cells (SMD 0.42%, p = 0.04), reductions in triglycerides (MD -81.90 mg/dL, p < 0.01), total cholesterol (SMD -0.95 mmol/L, p < 0.01), tumor necrosis factor α (SMD -0.89 pg/mL, p = 0.03), and leptin (SMD -0.63 ng/mL, p = 0.03). Also, beneficial alterations were found in cancer-related fatigue (SMD -0.98, p = 0.03), sleep (SMD -1.17, p < 0.001), and quality of life (SMD 2.94, p = 0.02) scores. There was very low to low confidence in the estimated effect of most of the outcomes. The present findings reveal that CART could be considered an adjunct therapy in supporting the conventional clinical approach observed following exercise. However, further high-quality research is needed to evaluate whether CART would be a valuable intervention to lower aggressive pharmacologic use in breast cancer patients with overweight/obesity.
Collapse
Affiliation(s)
- Sameer Badri Al-Mhanna
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alexios Batrakoulis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Karies, Trikala, Greece
- Department of Physical Education and Sport Science, School of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Kubang Keria, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Clemens Drenowatz
- Division of Sport, Physical Activity and Health, University of Teacher Education Upper Austria, Linz, Austria
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hafeez Abiola Afolabi
- Department of General Surgery, School of Medical Sciences, Hospital University Sains Malaysia, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mehmet Gülü
- Department of Sports Management, Faculty of Sport Sciences, Kirikkale University, Kirikkale, Turkey
| | - Nouf H Alkhamees
- Department of Rehabilitation, College of Health and Rehabilitation Sciences Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
46
|
Liu J, Li L, Xu D, Li Y, Chen T, Liu Y, Bao Y, Wang Y, Yang L, Li P, Xu L. Rab18 maintains homeostasis of subcutaneous adipose tissue to prevent obesity-induced metabolic disorders. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1170-1182. [PMID: 38523235 DOI: 10.1007/s11427-023-2367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/15/2023] [Indexed: 03/26/2024]
Abstract
Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders. These people store fat in subcutaneous adipose tissue (SAT) rather than in visceral adipose tissue (VAT). However, the molecules participating in this specific scenario remain elusive. Rab18, a lipid droplet (LD)-associated protein, mediates the contact between the endoplasmic reticulum (ER) and LDs to facilitate LD growth and maturation. In the present study, we show that the protein level of Rab18 is specifically upregulated in the SAT of obese people and mice. Rab18 adipocyte-specific knockout (Rab18 AKO) mice had a decreased volume ratio of SAT to VAT compared with wildtype mice. When subjected to high-fat diet (HFD), Rab18 AKO mice had increased ER stress and inflammation, reduced adiponectin, and decreased triacylglycerol (TAG) accumulation in SAT. In contrast, TAG accumulation in VAT, brown adipose tissue (BAT) or liver of Rab18 AKO mice had a moderate increase without ER stress stimulation. Rab18 AKO mice developed insulin resistance and systematic inflammation. Rab18 AKO mice maintained body temperature in response to acute and chronic cold induction with a thermogenic SAT, similar to the counterpart mice. Furthermore, Rab18-deficient 3T3-L1 adipocytes were more prone to palmitate-induced ER stress, indicating the involvement of Rab18 in alleviating lipid toxicity. Rab18 AKO mice provide a good animal model to investigate metabolic disorders such as impaired SAT. In conclusion, our studies reveal that Rab18 is a key and specific regulator that maintains the proper functions of SAT by alleviating lipid-induced ER stress.
Collapse
Affiliation(s)
- Jiaming Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shanghai Qi Zhi Institute, Shanghai, 200232, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dijin Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuqi Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Yeyang Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200025, China
| | - Yan Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shanghai Qi Zhi Institute, Shanghai, 200232, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shanghai Qi Zhi Institute, Shanghai, 200232, China.
| |
Collapse
|
47
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
48
|
Balejko EB, Bogacka A, Lichota J, Pawlus J. Effects of Bioactive Dietary Components on Changes in Lipid and Liver Parameters in Women after Bariatric Surgery and Procedures. Nutrients 2024; 16:1379. [PMID: 38732625 PMCID: PMC11085392 DOI: 10.3390/nu16091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Excess adipose tissue, as well as its distribution, correlates strongly with disorders of lipid and liver parameters and chronic inflammation. The pathophysiology of metabolic diseases caused by obesity is associated with the dysfunction of visceral adipose tissue. Effective and alternative interventions such as the Bioenteric Intragastric Balloon and bariatric surgeries such as the Roux-en-Y gastric bypass. The aim of this study was to assess the effect of modifying the recommended standard weight loss diet after bariatric surgery and procedures on reducing chronic inflammation in overweight patients. In the study, bioactive anti-inflammatory dietary components were used supportively. Changes in the concentrations of lipid parameters, liver parameters, antioxidant enzymes, cytokines, and chemokines were demonstrated. The enrichment of the diet, after bariatric surgery, with the addition of n-3 EFAs(Essential Fatty Acids), bioflavonoids, vitamins, and synbiotics resulted in higher weight losses in the patients in the study with a simultaneous reduction in parameters indicating liver dysfunction.
Collapse
Affiliation(s)
- Edyta Barbara Balejko
- Department of Commodity Science, Quality Assessment, Process Engineering and Human Nutrition, West Pomeranian University of Technology in Szczecin, 71-459 Szczecin, Poland
| | - Anna Bogacka
- Department of Commodity Science, Quality Assessment, Process Engineering and Human Nutrition, West Pomeranian University of Technology in Szczecin, 71-459 Szczecin, Poland
| | - Jarosław Lichota
- Unii Lubelskiej 1, Department of General, Minimally Invasive and Gastroenterological Surgery, Independent Public Clinical Hospital No. 1 of Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Jan Pawlus
- Unii Lubelskiej 1, Department of General, Minimally Invasive and Gastroenterological Surgery, Independent Public Clinical Hospital No. 1 of Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| |
Collapse
|
49
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
50
|
Li J, Fan Z, Chen H, Maria Da Costa E, Zhou X, Yu N. Development of a rapid and ultrasensitive magnetic chemiluminescence immunoassay for the detection of adiponectin and its clinical application. J Pharm Biomed Anal 2024; 241:115961. [PMID: 38237546 DOI: 10.1016/j.jpba.2024.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/21/2024]
Abstract
Adiponectin (ADPN), which serum/plasma adiponectin levels are closely associated with insulin resistance and type 2 diabetes, and lower adiponectin levels predict an increased risk of diabetes, is a strong indicator of diabetes risk in people at high risk of diabetes in different races. Using the unique principle and performance advantages of chemiluminescence immunoassay (CLIA), an ADPN-CLIA method with high sensitivity, high specificity and wide detection range was established based on the principle of two-steps method of sandwich-type, with the magnetic particles (MPs) as the solid phase carrier and acridinium ester (AE) as the chemiluminescence reaction system. The selection of the main raw materials required, the preparation conditions of MPs-coated antibodies, the methods of AE-labeled antibodies, sample requirements and reaction modes were optimized and evaluated. AE labeling experiment was successfully performed with the labeling efficiency of 8.366 and the antibody utilization rate of 96.8%. The chemiluminescent immunoassay for ADPN had a good linear relationship from 0 ng/mL to 250 ng/mL (R2 =0.9993), with the detection limit of 0.05 ng/mL. The coefficient of variation (CV) of intra-assay and inter-assay precision were both less than 5% respectively. The recovery rates for accuracy were from 91.26% to 107.46%. The comparison experiment of 80 clinical serum samples between the developed ADPN-CLIA with the immunoturbidimetry showed that the correlation coefficient was 0.956, and the Bland-Altman analysis showed that the limits of agreement were - 0.364 and 0.433.
Collapse
Affiliation(s)
- Jiexia Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China; Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Zhuqiao Fan
- Guangzhou Biotron Technology Co., Ltd., Guangzhou 510530, PR China
| | - Hanqi Chen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Ernestina Maria Da Costa
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xiaomian Zhou
- Guangzhou Biotron Technology Co., Ltd., Guangzhou 510530, PR China.
| | - Nan Yu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|