1
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
2
|
Huang JC, Tong XL, Xiang MSW, Boumelhem BB, Foulis DP, Zhang M, McKenzie CA, McCaughan GW, Reinheckel T, Zhang HE, Gorrell MD. Dipeptidyl peptidase 9 (DPP9) depletion from hepatocytes in experimental primary liver cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167819. [PMID: 40187163 DOI: 10.1016/j.bbadis.2025.167819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an indispensable intracellular protease. Among its many molecular functions is suppression of the NLRP1 inflammasome. Inhibitors targeting all four proteases of the DPP4 family, including DPP9, can reduce tumour burden, including in mouse liver. To explore hepatocyte DPP9 in experimental hepatocellular carcinoma (HCC), we generated hepatocyte-specific DPP9-KO mice by crossing albumin-Cre mice with DPP9 floxed mice and treated sequentially with diethylnitrosamine, then with thioacetamide combined with an atherogenic high-fat diet until 28 weeks of age. DPP9-KO mice had less body, liver and subcutaneous adipose tissue mass, lower fasting plasma glucose and fewer small macroscopic liver nodules compared to DPP9-WT control mice. However, there were no differences in the total number of macroscopic liver nodules, or of microscopic tumour burden, inflammation, fibrosis or steatosis. Consistent with the known function of DPP9 to suppress NLRP1 activation, activated caspase-1 protein and inflammation markers Nfkbib, Cxcl10 and Ccl5 were elevated in DPP9-KO liver. The tumour suppressor protein p53 was increased and the autophagy proteins beclin1, LC3B and p62 were altered. In conclusion, hepatocyte-specific DPP9 gene deletion in experimental primary liver cancer improved energy metabolism and may reduce liver cancer initiation, via mechanisms that may include increased autophagy and tumour suppression.
Collapse
MESH Headings
- Animals
- Hepatocytes/pathology
- Hepatocytes/metabolism
- Hepatocytes/enzymology
- Mice
- Mice, Knockout
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Male
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Diet, High-Fat/adverse effects
- Mice, Inbred C57BL
- Inflammasomes/metabolism
- Liver/pathology
- Liver/metabolism
Collapse
Affiliation(s)
- JiaLi Carrie Huang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xinlin Linda Tong
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michelle Sui Wen Xiang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Badwi B Boumelhem
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Diarmid P Foulis
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - MingChang Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Catriona A McKenzie
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Geoffrey W McCaughan
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Hui E Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mark D Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Watanabe N, Kobayashi T, Iwaki M, Nogami A, Wada N, Shimizu A, Komori T, Koike H, Sahashi Y, Nakajima A, Yoneda M. Prior Immune Checkpoint Inhibitor Treatment Is a Risk Factor for Treatment-Related Adverse Events in Unresectable Hepatocellular Carcinoma Treated With Durvalumab Plus Tremelimumab. JGH Open 2025; 9:e70163. [PMID: 40276064 PMCID: PMC12018275 DOI: 10.1002/jgh3.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Aims In March 2024, the American Society of Clinical Oncology recommended the combination of tremelimumab plus durvalumab as a treatment for advanced hepatocellular carcinoma (HCC). Although safety data for first-line treatments are available, information on adverse events related to late-line treatments is limited. This study aimed to identify risk factors for adverse events in patients who received this combination. Methods and Results We conducted a retrospective cohort study from March 2023 to January 2025 at Yokohama City University Hospital, involving 24 patients aged 18 years or older with unresectable HCC. All 24 patients experienced at least one adverse event during treatment. Of these, the incidence of treatment-related adverse events leading to treatment discontinuation after tremelimumab plus durvalumab therapy was 50.0% (12/24). In the discontinuation group, prior atezolizumab plus bevacizumab therapy (66.7% vs. 16.7%, p = 0.036) was more frequent than in the continuation group. Conclusion In patients with unresectable HCC who received tremelimumab plus durvalumab, the risk of treatment-related adverse events was associated with prior atezolizumab plus bevacizumab therapy. These factors may increase the likelihood of developing treatment-related adverse events.
Collapse
Affiliation(s)
- Naohiro Watanabe
- Department of PharmacyYokohama City University HospitalKanazawa WardJapan
| | - Takashi Kobayashi
- Department of Gastroenterology and HepatologyYokohama City University HospitalKanazawa WardJapan
| | - Michihiro Iwaki
- Department of Gastroenterology and HepatologyYokohama City University HospitalKanazawa WardJapan
| | - Asako Nogami
- Department of Gastroenterology and HepatologyYokohama City University HospitalKanazawa WardJapan
| | - Naohiro Wada
- Department of Gastroenterology and HepatologyYokohama City University HospitalKanazawa WardJapan
| | - Ayako Shimizu
- Department of PharmacyYokohama City University HospitalKanazawa WardJapan
| | - Tomoya Komori
- Department of PharmacyYokohama City University HospitalKanazawa WardJapan
| | - Hirofumi Koike
- Department of PharmacyYokohama City University HospitalKanazawa WardJapan
| | - Yukiko Sahashi
- Department of PharmacyYokohama City University HospitalKanazawa WardJapan
| | - Atsushi Nakajima
- Department of Gastroenterology and HepatologyYokohama City University HospitalKanazawa WardJapan
| | - Masato Yoneda
- Department of Gastroenterology and HepatologyYokohama City University HospitalKanazawa WardJapan
| |
Collapse
|
4
|
Sun R, Wu C, Gou Y, Zhao Y, Huang P. Advancements in second-line treatment research for hepatocellular carcinoma. Clin Transl Oncol 2025; 27:837-857. [PMID: 39162977 DOI: 10.1007/s12094-024-03653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, characterized by high incidence and mortality rates. Due to its insidious onset, most patients are diagnosed at an advanced stage, often missing the opportunity for surgical resection. Consequently, systemic treatments play a pivotal role. In recent years, an increasing number of drugs have been approved for first-line systemic treatment of HCC. However, their efficacy is limited, and some patients develop drug resistance after a period of treatment. For such patients, there is currently a lack of standard second-line systemic treatment options. This review summarizes the latest advancements in second-line systemic treatment research for HCC patients who have developed resistance to various first-line systemic treatments, aiming to provide more rational and personalized second-line treatment strategies.
Collapse
Affiliation(s)
- Ruirui Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Chenrui Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yang Gou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yaowu Zhao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
5
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
6
|
Hakoda H, Ichida A, Hasegawa K. Advances in systemic therapy leading to conversion surgery for advanced hepatocellular carcinoma. Biosci Trends 2025; 18:525-534. [PMID: 39647858 DOI: 10.5582/bst.2024.01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Recently, a systemic therapy for advanced hepatocellular carcinoma (HCC) has been developed. The regimen for unresectable HCC varies and includes single or multi-tyrosine kinase inhibitors, monoclonal antibodies, immune checkpoint inhibitors, or their combinations. Treatment with these agents begins with sorafenib as the first-line drug for unresectable HCC. Subsequently, several systemic therapies, including lenvatinib, ramucirumab, cabozantinib, and regorafenib have been investigated and established. With advances in systemic therapy for unresectable HCC, the prognosis of patients with unresectable HCC has improved significantly than previously. Conversion surgery, consisting of systemic therapy and surgery, showed the possibility of improving the prognosis than systemic therapy alone. Although a combination of atezolizumab and bevacizumab is mostly used for initially unresectable HCC to conduct conversion surgery because of the high response rate and fewer adverse events compared to others, many trials are being conducted to assess their efficacy for initially unresectable HCC. However, the appropriate timing of surgery and interval between systemic therapy and surgery remain controversial. To address these issues, a multidisciplinary team can play a vital role in determining the strategies for treating unresectable HCC. This review describes previous and current trends in the treatment of HCC, with a particular focus on conversion surgery for initially unresectable HCC.
Collapse
Affiliation(s)
- Hiroyuki Hakoda
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiko Ichida
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
8
|
Wang Q, Yu J, Sun X, Li J, Cao S, Han Y, Wang H, Yang Z, Li J, Hu C, Zhang Y, Jin L. Sequencing of systemic therapy in unresectable hepatocellular carcinoma: A systematic review and Bayesian network meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2024; 204:104522. [PMID: 39332750 DOI: 10.1016/j.critrevonc.2024.104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE For patients with advanced or unresectable hepatocellular carcinoma (HCC), safe and effective therapies are urgently needed to improve their long-term prognosis. Although the guidelines recommend first-line treatments such as sorafenib, lenvatinib, and atezolizumab in combination with bevacizumab (T+A) and second-line treatments such as regorafenib, the efficacy comparison between drugs is lacking, that is, a treatment is not recommended as the optimal or alternative choice for a specific patient population. Therefore, we will conduct a high-quality network meta-analysis based on Phase III randomized controlled trials (RCTs) to systematically evaluate and compare overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and serious adverse events (SAE) of different treatment protocols in the context of first-line and second-line therapies, which are critical for clinical decision making and prognostic improvement in advanced HCC patients. METHODS The studies of interest were Phase III RCTs evaluating the efficacy or safety of first- or second-line therapies in patients with unresectable or advanced HCC. Literature published in English from the four databases of PubMed, Embase, Cochrane Library, and Web of Science was comprehensively searched from the inception to May 23, 2022. Outcomes of interest included OS, PFS, ORR, and SAE. A league table was developed to show the results of the comparison between different treatments. A histogram of cumulative probability was drawn to discuss the ranking probability of treatments based on different outcomes. The effectiveness and safety of various treatments were comprehensively considered and the two-dimensional diagram was plotted to guide clinical practice. The Gemtc package in R Studio was used for network meta-analysis in a Bayesian framework. RESULTS The results showed that HAIC-FO was superior to T+A regimen, regardless of OS, PFS or ORR. TACE combined with lenvatinib performed better than T+A in PFS, and ORR. In addition to the T+A regimen, Sintilimab combined with IBI305 and camrelizumab combined with apatinib were also associated with longer OS, PFS, and ORR, and their SAE incidence was not higher than that of T+A, especially for camrelizumab combined with apatinib, its safety was better than that of T+A regimen. There were no new treatments or combinations that were more effective than regorafenib. It was important to note that for PFS, the efficacy of apatinib and cabozantinib was not statistically different from that of regorafenib, so these two treatments could be used as alternative treatment options in cases where regorafenib was not tolerated or treatment failed. CONCLUSIONS We conducted a network meta-analysis to evaluate the efficacy and safety of multiple treatment modalities by integrating the results of direct and indirect comparisons. This study included high-quality multicenter Phase III RCTs, collated and summarized all treatments involved in advanced or unresectable HCC in first-line and second-line settings, and compared with T+A and regorafenib, respectively, and ranked based on efficacy and safety to support clinical decision making.
Collapse
Affiliation(s)
- Qi Wang
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianan Yu
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xuedong Sun
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jian Li
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shasha Cao
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yanjing Han
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haochen Wang
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zeran Yang
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianjun Li
- Interventional therapy center for oncology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Caixia Hu
- Interventional therapy center for oncology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Yonghong Zhang
- Interventional therapy center for oncology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China.
| | - Long Jin
- Department of interventional radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
9
|
Gujarathi R, Franses JW, Pillai A, Liao CY. Targeted therapies in hepatocellular carcinoma: past, present, and future. Front Oncol 2024; 14:1432423. [PMID: 39267840 PMCID: PMC11390354 DOI: 10.3389/fonc.2024.1432423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted therapies are the mainstay of systemic therapies for patients with advanced, unresectable, or metastatic hepatocellular carcinoma. Several therapeutic targets, such as c-Met, TGF-β, and FGFR, have been evaluated in the past, though results from these clinical studies failed to show clinical benefit. However, these remain important targets for the future with novel targeted agents and strategies. The Wnt/β-catenin signaling pathway, c-Myc oncogene, GPC3, PPT1 are exciting novel targets, among others, currently undergoing evaluation. Through this review, we aim to provide an overview of previously evaluated and potentially novel therapeutic targets and explore their continued relevance in ongoing and future studies for HCC.
Collapse
Affiliation(s)
- Rushabh Gujarathi
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Joseph W Franses
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Chicago, Chicago, IL, United States
| | - Chih-Yi Liao
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Raghav A, Jeong GB. Phase I-IV Drug Trials on Hepatocellular Carcinoma in Asian Populations: A Systematic Review of Ten Years of Studies. Int J Mol Sci 2024; 25:9286. [PMID: 39273237 PMCID: PMC11395253 DOI: 10.3390/ijms25179286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Despite advances in the treatment of hepatocellular carcinoma (HCC) over the last few decades, treatment opportunities for patients with HCC remain limited. HCC is the most common form of liver cancer, accounting for approximately 90% of all cases worldwide. Moreover, apart from the current pharmacological interventions, hepatic resection and liver transplantation are the mainstay curative approaches for patients with HCC. This systematic review included phase I, II, III, and IV clinical trials (CTs) and randomized controlled trials (RCTs) on current treatments for patients with HCC in Asian populations (2013-2023). A total of 427 articles were screened, and 184 non-duplicate publications were identified. After screening the titles and abstracts, 96 publications were excluded, and another 28 were excluded after full-text screening. The remaining 60 eligible RCTs/CTs were finally included. A total of 60 clinical trials fulfilled our inclusion criteria with 36 drugs used as monotherapy or combination therapy for HCC. Most studies used sorafenib alone or in combination with any of the treatment regimens. Lenvatinib or atezolizumab with bevacizumab was used for HCC after initial sorafenib treatment. Eighteen studies compared the efficacy of sorafenib with that of other drugs, including lenvatinib, cabozantinib, tepotinib, tigatuzumab, linifanib, erlotinib, resminostat, brivanib, tislelizumab, selumetinib, and refametinib. This study provides comprehensive insights into effective treatment interventions for HCC in Asian populations. The overall assessment indicates that sorafenib, used alone or in combination with atezolizumab and bevacizumab, has been the first treatment choice in the past decade to achieve better outcomes in patients with HCC in Asian populations.
Collapse
Affiliation(s)
- Alok Raghav
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
11
|
Lu F, Zhao K, Ye M, Xing G, Liu B, Li X, Ran Y, Wu F, Chen W, Hu S. Efficacy and safety of second-line therapies for advanced hepatocellular carcinoma: a network meta-analysis of randomized controlled trials. BMC Cancer 2024; 24:1023. [PMID: 39160484 PMCID: PMC11331808 DOI: 10.1186/s12885-024-12780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The selection of appropriate second-line therapy for liver cancer after first-line treatment failure poses a significant clinical challenge due to the lack of direct comparative studies and standard treatment protocols. A network meta-analysis (NMA) provides a robust method to systematically evaluate the clinical outcomes and adverse effects of various second-line treatments for hepatocellular carcinoma (HCC). METHODS We systematically searched PubMed, Embase, Web of Science and the Cochrane Library to identify phase III/IV randomized controlled trials (RCTs) published up to March 11, 2024. The outcomes extracted were median overall survival (OS), median progression-free survival (PFS), time to disease progression (TTP), disease control rate (DCR), objective response rate (ORR), and adverse reactions. This study was registered in the Prospective Register of Systematic Reviews (CRD42023427843) to ensure transparency, novelty, and reliability. RESULTS We included 16 RCTs involving 7,005 patients and 10 second-line treatments. For advanced HCC patients, regorafenib (HR = 0.62, 95%CI: 0.53-0.73) and cabozantinib (HR = 0.74, 95%CI: 0.63-0.85) provided the best OS benefits compared to placebo. Cabozantinib (HR = 0.42, 95%CI: 0.32-0.55) and regorafenib (HR = 0.46, 95% CI: 0.31-0.68) also offered the most significant PFS benefits. For TTP, apatinib (HR = 0.43, 95% CI: 0.33-0.57), ramucirumab (HR = 0.44, 95% CI: 0.34-0.57), and regorafenib (HR = 0.44, 95% CI: 0.38-0.51) showed significant benefits over placebo. Regarding ORR, ramucirumab (OR = 9.90, 95% CI: 3.40-42.98) and S-1 (OR = 8.68, 95% CI: 1.4-154.68) showed the most significant increases over placebo. Apatinib (OR = 3.88, 95% CI: 2.48-6.10) and cabozantinib (OR = 3.53, 95% CI: 2.54-4.90) provided the best DCR benefits compared to placebo. Tivantinib showed the most significant advantages in terms of three different safety outcome measures. CONCLUSIONS Our findings suggest that, in terms of overall efficacy and safety, regorafenib and cabozantinib are the optimal second-line treatment options for patients with advanced HCC.
Collapse
Affiliation(s)
- Fenping Lu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Kai Zhao
- Shaanxi Shuangbo Hospital of Traditional Chinese Medicine for Liver and Kidney Diseases, Xi'an, China
| | - Miaoqing Ye
- Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Guangyan Xing
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Bowen Liu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Xiaobin Li
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Yun Ran
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Fenfang Wu
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Wei Chen
- Department of Pharmacy, Emergency General Hospital, Beijing, China
| | - Shiping Hu
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
12
|
Payo-Serafín T, Méndez-Blanco C, Fernández-Palanca P, Martínez-Geijo J, Reviejo M, Ortiz-de-Urbina JJ, González-Gallego J, Marin JJG, Mauriz JL, San-Miguel B. Risk versus Benefit of Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Pharmacol Ther 2024; 116:328-345. [PMID: 38803056 DOI: 10.1002/cpt.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Although the treatment landscape has rapidly evolved over the last years, hepatocellular carcinoma (HCC) is one of the most lethal cancers. With recent advances, both immunotherapy and tyrosine kinase inhibitors (TKIs)-based chemotherapy constitute the standard treatment for advanced HCC. A systematic search of randomized clinical trials employing TKIs was performed in 17 databases, obtaining 25 studies evaluating the prognosis, tumor response, and presence of adverse events (AEs) related to TKIs in HCC. Overall effect sizes were estimated for the hazard ratios (HR) and odds ratios (OR) with 95% confidence interval (CI), either extracted or calculated with the Parmar method, employing STATA 16. Heterogeneity was assessed by Chi-square-based Q-test and inconsistency (I2) statistic; source of heterogeneity by meta-regression and subgroup analysis; and publication bias by funnel plot asymmetry and Egger's test. The research protocol was registered in PROSPERO (CRD42023397263). Meta-analysis revealed a correlation between survival and tumor response parameters and TKI treatment vs. placebo, despite detecting high heterogeneity. Combined TKI treatment showed a significantly better objective response rate (ORR) with no heterogeneity, whereas publication bias was only detected with time to progression (TTP). Few gastrointestinal and neurological disorders were associated with TKI treatment vs. placebo or with combined treatment. However, a higher number of serious AEs were related to TKI treatment vs. sorafenib alone. Results show positive clinical benefits from TKI treatment, supporting the approval and maintenance of TKI-based therapy for advanced HCC, while establishing appropriate strategies to maximize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Tania Payo-Serafín
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jennifer Martínez-Geijo
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Reviejo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Juan José Ortiz-de-Urbina
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Pharmacy Service, Complejo Asistencial Universitario de León (CAULE), Hospital of León, León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Liu J, Xia S, Zhang B, Mohammed DM, Yang X, Zhu Y, Jiang X. Small molecule tyrosine kinase inhibitors approved for systemic therapy of advanced hepatocellular carcinoma: recent advances and future perspectives. Discov Oncol 2024; 15:259. [PMID: 38960980 PMCID: PMC11222362 DOI: 10.1007/s12672-024-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death in the world, and hepatocellular carcinoma (HCC) is the most common form of liver cancer. More than half of the HCC patients are diagnosed at an advanced stage and often require systemic therapy. Dysregulation of the activity of receptor tyrosine kinases (RTKs) is involved in the development and progress of HCC, RTKs are therefore the potential targets for systemic therapy of advanced HCC (aHCC). Currently, a total of six small molecule tyrosine kinase inhibitors (TKIs) have been approved for aHCC, including first-line sorafenib, lenvatinib, and donafenib, and second-line regorafenib, cabozantinib, and apatinib. These TKIs improved patients survival, which are associated with disease stage, etiology, liver function, tumor burden, baseline levels of alpha-fetoprotein, and treatment history. This review focuses on the clinical outcomes of these TKIs in key clinical trials, retrospective and real-world studies and discusses the future perspectives of TKIs for aHCC, with an aim to provide up-to-date evidence for decision-making in the treatment of aHCC.
Collapse
Affiliation(s)
- Jianzhong Liu
- Clinical Laboratory, Wuhan No.7 Hospital, Zhong Nan 2nd Road, Wuhan, 430071, China
| | - Shuai Xia
- Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, 272067, Shandong, China
| | - Baoyi Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xinnong Jiang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
14
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
15
|
Teufel A, Kudo M, Qian Y, Daza J, Rodriguez I, Reissfelder C, Ridruejo E, Ebert MP. Current Trends and Advancements in the Management of Hepatocellular Carcinoma. Dig Dis 2024; 42:349-360. [PMID: 38599204 DOI: 10.1159/000538815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a significant global health burden with a high mortality rate. Over the past 40 years, significant progress has been achieved in the prevention and management of HCC. SUMMARY Hepatitis B vaccination programs, the development of direct acting antiviral drugs for Hepatitis C, and effective surveillance strategies provide a profound basis for the prevention of HCC. Advanced surgery and liver transplantation along with local ablation techniques potentially offer cure for the disease. Also, just recently, the introduction of immunotherapy opened a new chapter in systemic treatment. Finally, the introduction of the BCLC classification system for HCC, clearly defining patient groups and assigning reasonable treatment options, has standardized treatment and become the basis of almost all clinical trials for HCC. With this review, we provide a comprehensive overview of the evolving landscape of HCC management and also touch on current challenges. KEY MESSAGE A comprehensive and multidisciplinary approach is crucial for effective HCC management. Continued research and clinical trials are imperative to further enhance treatment options and will ultimately reduce the global burden of this devastating disease.
Collapse
Affiliation(s)
- Andreas Teufel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health (CPD), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuquan Qian
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jimmy Daza
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health (CPD), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isaac Rodriguez
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health (CPD), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ezequiel Ridruejo
- Hepatology Section, Department of Medicine, Center for Medical Education and Clinical Research, Buenos Aires, Argentina
| | - Matthias P Ebert
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
16
|
Younis MA, Harashima H. Understanding Gene Involvement in Hepatocellular Carcinoma: Implications for Gene Therapy and Personalized Medicine. Pharmgenomics Pers Med 2024; 17:193-213. [PMID: 38737776 PMCID: PMC11088404 DOI: 10.2147/pgpm.s431346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the dominant type of liver cancers and is one of the deadliest health threats globally. The conventional therapeutic options for HCC are hampered by low efficiency and intolerable side effects. Gene therapy, however, now offers hope for the treatment of many disorders previously considered incurable, and gene therapy is beginning to address many of the shortcomings of conventional therapies. Herein, we summarize the involvement of genes in the pathogenesis and prognosis of HCC, with a special focus on dysregulated signaling pathways, genes involved in immune evasion, and non-coding RNAs as novel two-edged players, which collectively offer potential targets for the gene therapy of HCC. Herein, the opportunities and challenges of HCC gene therapy are discussed. These include innovative therapies such as genome editing and cell therapies. Moreover, advanced gene delivery technologies that recruit nanomedicines for use in gene therapy for HCC are highlighted. Finally, suggestions are offered for improved clinical translation and future directions in this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
17
|
Cabibbo G, Daniele B, Borzio M, Casadei-Gardini A, Cillo U, Colli A, Conforti M, Dadduzio V, Dionisi F, Farinati F, Gardini I, Giannini EG, Golfieri R, Guido M, Mega A, Cinquini M, Piscaglia F, Rimassa L, Romanini L, Pecorelli A, Sacco R, Scorsetti M, Viganò L, Vitale A, Trevisani F. Multidisciplinary treatment of hepatocellular carcinoma in 2023: Italian practice Treatment Guidelines of the Italian Association for the Study of the Liver (AISF), Italian Association of Medical Oncology (AIOM), Italian Association of Hepato-Bilio-Pancreatic Surgery (AICEP), Italian Association of Hospital Gastroenterologists (AIGO), Italian Association of Radiology and Clinical Oncology (AIRO), Italian Society of Pathological Anatomy and Diagnostic Cytology (SIAPeC-IAP), Italian Society of Surgery (SIC), Italian Society of Gastroenterology (SIGE), Italian Society of Medical and Interventional Radiology (SIRM), Italian Organ Transplant Society (SITO), and Association of Patients with Hepatitis and Liver Disease (EpaC) - Part II - Non-surgical treatments. Dig Liver Dis 2024; 56:394-405. [PMID: 38052656 DOI: 10.1016/j.dld.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Worldwide, hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. The remarkable improvements in treating HCC achieved in the last years have increased the complexity of its management. Following the need to have updated guidelines on the multidisciplinary treatment management of HCC, the Italian Scientific Societies involved in the management of this cancer have promoted the drafting of a new dedicated document. This document was drawn up according to the GRADE methodology needed to produce guidelines based on evidence. Here is presented the second part of guidelines, focused on the multidisciplinary tumor board of experts and non-surgical treatments of HCC.
Collapse
Affiliation(s)
- Giuseppe Cabibbo
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties PROMISE, University of Palermo, Gastroenterology Unit, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", Palermo, Italy.
| | - Bruno Daniele
- Oncology Unit, Ospedale del Mare, ASL Napoli 1 Centro, Napoli, Italy
| | - Mauro Borzio
- Centro Diagnostico Italiano (CDI), Milano, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Umberto Cillo
- General Surgery 2-Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padua University Hospital, 35128 Padua, Italy
| | - Agostino Colli
- Dipartimento di Medicina Trasfusionale ed Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Vincenzo Dadduzio
- Medical Oncology Unit, "Mons. A.R.Dimiccoli" Hospital, Barletta, ASL BT, Italy
| | - Francesco Dionisi
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute - Rome, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35128 Padova, Italy
| | - Ivan Gardini
- EpaC Onlus, Italian Liver Patient Association, Turin, Italy
| | - Edoardo Giovanni Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rita Golfieri
- Alma Mater Studiorum" Bologna University, Bologna, Italy; Radiology Unit Madre Fortunata Toniolo Private Hospital, coordinator of Radiology centers Medipass Bologna, Bologna, Italy
| | - Maria Guido
- Department of Medicine, University of Padova, Padova - Italy
| | - Andrea Mega
- Department of Gastronterology, Regional Hospital Bolzano, Italy
| | - Michela Cinquini
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Laura Romanini
- Radiology Unit, Ospedale di Cremona, ASST Cremona, Cremona, Italy
| | - Anna Pecorelli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rodolfo Sacco
- Gastroenterology and Endoscopy Unit, Department of Surgical and Medical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Radiotherapy and Radiosurgery, Humanitas Research Hospital IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Luca Viganò
- Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, Viale M. Gavazzeni 21, 24125 Bergamo, Italy; Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090 Milan, Italy
| | - Alessandro Vitale
- General Surgery 2-Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padua University Hospital, 35128 Padua, Italy
| | - Franco Trevisani
- Department of Medical and Surgical Sciences, University of Bologna, Italy; Unit of Semeiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| |
Collapse
|
18
|
Chen C, Li Z, Xiong X, Yao A, Wang S, Liu X, Liu X, Wang J. Intraperitoneal PD-1 monoclonal antibody for the treatment of advanced primary liver cancer with malignant ascites: a single-arm, single-center, phase Ib trial. ESMO Open 2024; 9:102206. [PMID: 38194882 PMCID: PMC10820330 DOI: 10.1016/j.esmoop.2023.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Advanced primary liver cancer patients with malignant ascites have a poor prognosis and lack effective treatment plans. This phase Ib study aims to explore the safety and clinical efficacy of intraperitoneal anti-programmed cell death protein 1 (PD-1) antibody in these patients. PATIENTS AND METHODS Patients received sintilimab 100 mg intraperitoneally plus best supportive care on days 1, 8, and 15 in three cycles of 4 weeks. The course was repeated every 28 days until intolerable toxicity had developed or disease progression. The primary endpoint was safety, while the secondary endpoints were objective response rate (ORR), ascites control rate (ACR), and overall survival (OS). RESULTS From February 2021 through November 2022, a total of 21 patients (14 hepatocellular carcinoma and 7 cholangiocarcinoma) were enrolled to receive intraperitoneal sintilimab. Twelve patients had adverse events (AEs). The most common grade 3 AEs were fatigue, rash, and abdominal pain. No grade ≥4 AEs occurred in any patients. ORR was only evaluated in 13 patients, including partial response in 4, stable disease in 7, and progressive disease in 2. A reduction in the median maximum diameter of the tumor after treatment was observed; however, there was no statistical significance among patients. The objective remission rate of ascites was 43.75%, and the median OS for all 21 patients was 17.6 weeks. CONCLUSIONS This exploratory study represents the first trial to demonstrate the safety and clinical efficacy of intraperitoneal anti-PD-1 antibody administration. No unexpected safety concerns were identified. A large, multicenter, prospective study is needed to confirm the promising clinical efficacy.
Collapse
Affiliation(s)
- C Chen
- Department of Oncology, Jinling Hospital, Nanjing Medical University, Nanjing
| | - Z Li
- Department of Oncology, Jinling Hospital, Nanjing Medical University, Nanjing
| | - X Xiong
- Department of Hepatology, Jinling Hospital, Nanjing Medical University, Nanjing
| | - A Yao
- Department of Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing
| | - S Wang
- Department of Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing
| | - X Liu
- Department of Oncology, Jinling Hospital, Nanjing Medical University, Nanjing
| | - X Liu
- Department of Oncology, Jinling Hospital, Nanjing Medical University, Nanjing.
| | - J Wang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing; Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, PR China.
| |
Collapse
|
19
|
Bejjani A, Finn RS. Evolution of Systemic Therapy in Advanced Hepatocellular Carcinoma. Surg Oncol Clin N Am 2024; 33:73-85. [PMID: 37945146 DOI: 10.1016/j.soc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The recognition that hepatocellular carcinoma (HCC) is a rising problem globally dates back decades; however, the development of effective medical treatment for the disease has only led to robust improvements in patient outcomes in the recent past. As knowledge evolves and regimens are proven to be more active, the importance of multidisciplinary management in patients with all stages of HCC will become more important to optimize patient outcomes. Key to optimizing patient outcomes is an understanding of the evolution and current role of these therapies in the HCC landscape.
Collapse
Affiliation(s)
- Anthony Bejjani
- Hematology/Oncology, VA Greater Los Angeles Health System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Richard S Finn
- Department of Medicine, Division of Hematology/ Oncology, Geffen School of Medicine at UCLA, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA.
| |
Collapse
|
20
|
Campani C, Vallot A, Ghannouchi H, Allaire M, Evain M, Sultanik P, Sidali S, Blaise L, Thabut D, Nahon P, Seror O, Ganne-Carrié N, Nault JC, Wagner M, Sutter O. Impact of radiological response and pattern of progression in patients with HCC treated by atezolizumab-bevacizumab. Hepatology 2024; 79:49-60. [PMID: 37870270 DOI: 10.1097/hep.0000000000000636] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND AND AIMS We aim to assess the role of radiological response to atezolizumab-bevacizumab in patients with HCC to predict overall survival. APPROACH AND RESULTS We retrospectively included patients with HCC treated by atezolizumab-bevacizumab in 2 tertiary centers. A retrospective blinded analysis was performed by 2 radiologists to assess Response Evaluation Criteria in Solid Tumor (RECIST 1.1) and modified RECIST (mRECIST) criteria at 12 weeks. Imaging response and treatment decisions in the multidisciplinary tumor board at 12 weeks were registered. Among 125 patients, 9.6% and 20.8% had a response, 39.2% and 35.2% had stable disease, and 51.2% and 44% had progression, according to RECIST 1.1 and mRECIST, respectively, with a substantial interobserver agreement (k coefficient=0.79). Metastasis was independently associated with a higher risk of progression. Patients classified as responders did not reach median survival, which was 16.2 and 15.9 months for patients classified as stable and 9.1 and 9.0 months for patients classified as progressors, in RECIST 1.1 and mRECIST criteria, respectively. We observed a wide variability in the identification of progression in the multidisciplinary tumor board in clinical practice compared with the blind evaluation by radiologists mainly due to discrepancy in the evaluation of the increase in size of intrahepatic lesions. The appearance of new extrahepatic lesions or vascular invasion lesions was associated with a worse overall survival ( p =0.032). CONCLUSIONS RECIST 1.1 and mRECIST criteria predict overall survival with more responders identified by mRECIST and the appearance of new extrahepatic lesion or vascular invasion was associated with a poor prognosis. A noticeable discrepancy was observed between patients classified as progressors at reviewing and the decision reached during the multidisciplinary tumor board.
Collapse
Affiliation(s)
- Claudia Campani
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Cité University, "Functional Genomics of Solid Tumors" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France
- Department of Experimental and Clinical Medicine, Internal Medicine and Hepatology Unit, University of Firenze, Florence, Italy
| | - Ariane Vallot
- Radiology Department, AP-HP, Sorbonne University, Universitary Hospital Pitié Salpêtriére, Paris, France
| | - Haroun Ghannouchi
- Interventional Radiology Department, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitals, AP-HP, Bobigny, France
| | - Manon Allaire
- Hepato-gastroenterology Department, AP-HP, Sorbonne University, Pitié Salpêtriére Universitary Hospital, Paris, France
| | - Manon Evain
- Hepato-gastroenterology Department, AP-HP, Sorbonne University, Pitié Salpêtriére Universitary Hospital, Paris, France
| | - Philippe Sultanik
- Hepato-gastroenterology Department, AP-HP, Sorbonne University, Pitié Salpêtriére Universitary Hospital, Paris, France
| | - Sabrina Sidali
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Cité University, "Functional Genomics of Solid Tumors" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France
- Liver Unit, Paris Cité University, Beaujon Hospital, APHP, DMU DIGEST, Clichy, France
| | - Lorraine Blaise
- Liver Unit, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitals, AP-HP, Bobigny, France
| | - Dominique Thabut
- Hepato-gastroenterology Department, AP-HP, Sorbonne University, Pitié Salpêtriére Universitary Hospital, Paris, France
- INSERM/UMR_S 938/Sorbonne University, Saint-Antoine Research Center (CRSA), Paris, France
| | - Pierre Nahon
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Cité University, "Functional Genomics of Solid Tumors" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France
- Liver Unit, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitals, AP-HP, Bobigny, France
| | - Olivier Seror
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Cité University, "Functional Genomics of Solid Tumors" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France
- Interventional Radiology Department, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitals, AP-HP, Bobigny, France
| | - Nathalie Ganne-Carrié
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Cité University, "Functional Genomics of Solid Tumors" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France
- Liver Unit, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitals, AP-HP, Bobigny, France
| | - Jean-Charles Nault
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Cité University, "Functional Genomics of Solid Tumors" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France
- Liver Unit, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitals, AP-HP, Bobigny, France
| | - Mathilde Wagner
- Radiology Department, AP-HP, Sorbonne University, Universitary Hospital Pitié Salpêtriére, Paris, France
| | - Olivier Sutter
- Interventional Radiology Department, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitals, AP-HP, Bobigny, France
| |
Collapse
|
21
|
Argentiero A, Delvecchio A, Fasano R, Andriano A, Caradonna IC, Memeo R, Desantis V. The Complexity of the Tumor Microenvironment in Hepatocellular Carcinoma and Emerging Therapeutic Developments. J Clin Med 2023; 12:7469. [PMID: 38068521 PMCID: PMC10706931 DOI: 10.3390/jcm12237469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
This review explores various aspects of the HCC TME, including both cellular and non-cellular components, to elucidate their roles in tumor development and progression. Specifically, it highlights the significance of cancer-associated fibroblasts (CAFs) and their contributions to tumor progression, angiogenesis, immune suppression, and therapeutic resistance. Moreover, this review emphasizes the role of immune cells, such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T-cells (Tregs), in shaping the immunosuppressive microenvironment that promotes tumor growth and immune evasion. Furthermore, we also focused only on the non-cellular components of the HCC TME, including the extracellular matrix (ECM) and the role of hypoxia-induced angiogenesis. Alterations in the composition of ECM and stiffness have been implicated in tumor invasion and metastasis, while hypoxia-driven angiogenesis promotes tumor growth and metastatic spread. The molecular mechanisms underlying these processes, including the activation of hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF) signaling, are also discussed. In addition to elucidating the complex TME of HCC, this review focuses on emerging therapeutic strategies that target the TME. It highlights the potential of second-line treatments, such as regorafenib, cabozantinib, and ramucirumab, in improving overall survival for advanced HCC patients who have progressed on or were intolerant to first-line therapy. Furthermore, this review explores the implications of the Barcelona Clinic Liver Cancer (BCLC) staging and classification system in guiding HCC management decisions. The BCLC system, which incorporates tumor stage, liver function, and performance status, provides a framework for treatment stratification and prognosis prediction in HCC patients. The insights gained from this review contribute to the development of novel therapeutic interventions and personalized treatment approaches for HCC patients, ultimately improving clinical outcomes in this challenging disease.
Collapse
Affiliation(s)
| | - Antonella Delvecchio
- Unit of Hepato-Biliary and Pancreatic Surgery, “F. Miulli” General Hospital, 70021 Bari, Italy
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Ingrid Catalina Caradonna
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Riccardo Memeo
- Unit of Hepato-Biliary and Pancreatic Surgery, “F. Miulli” General Hospital, 70021 Bari, Italy
| | - Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
22
|
Requeijo C, Bracchiglione J, Meza N, Acosta-Dighero R, Salazar J, Santero M, Meade AG, Quintana MJ, Rodríguez-Grijalva G, Selva A, Solà I, Urrútia G, Bonfill Cosp X, On behalf of Appropriateness of Systemic Oncological Treatments for Advanced Cancer (ASTAC) Research Group. Anticancer Drugs Compared to No Anticancer Drugs in Patients with Advanced Hepatobiliary Cancer: A Mapping Review and Evidence Gap Map. Clin Epidemiol 2023; 15:1069-1085. [PMID: 38025841 PMCID: PMC10644842 DOI: 10.2147/clep.s431498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Despite being commonly recommended, the impact of anticancer drugs (ACDs) on patient-important outcomes beyond survival for advanced hepatobiliary cancers (HBCs) may not have been sufficiently assessed. We aim to identify and map the evidence regarding ACDs versus best supportive care (BSC) for advanced HBCs, considering patient-centered outcomes. Methods In this mapping review, we included systematic reviews, randomized controlled trials, quasi-experimental, and observational studies comparing ACDs (chemotherapy, immunotherapy, biological/targeted therapy) versus BSC for advanced HBCs. We searched MEDLINE (PubMed), EMBASE (Ovid), Cochrane Library, Epistemonikos, PROSPERO and clinicaltrials.gov for eligible studies. Two reviewers performed the screening and data extraction processes. We developed evidence maps for each type of cancer. Results We included 87 studies (60 for advanced liver cancer and 27 for gallbladder or bile duct cancers). Most of the evidence favored ACDs for survival outcomes, and BSC for toxicity. We identified several evidence gaps for non-survival outcomes, including quality of life or quality of end-of-life care. Discussion Patient-important outcomes beyond survival in advanced HBCs are insufficiently assessed by the available evidence. Future studies need to address these gaps to better inform decision-making processes.
Collapse
Affiliation(s)
- Carolina Requeijo
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Javier Bracchiglione
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Nicolás Meza
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
| | - Roberto Acosta-Dighero
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
| | - Josefina Salazar
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Marilina Santero
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Adriana-G Meade
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - María Jesús Quintana
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | | | - Anna Selva
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Clinical Epidemiology and Cancer Screening, Parc Taulí Hospital Universitari, Parc Taulí Research and Innovation Institute Foundation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Xavier Bonfill Cosp
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - On behalf of Appropriateness of Systemic Oncological Treatments for Advanced Cancer (ASTAC) Research Group
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- Clinical Epidemiology and Cancer Screening, Parc Taulí Hospital Universitari, Parc Taulí Research and Innovation Institute Foundation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| |
Collapse
|
23
|
Coffman-D’Annibale K, Xie C, Hrones DM, Ghabra S, Greten TF, Monge C. The current landscape of therapies for hepatocellular carcinoma. Carcinogenesis 2023; 44:537-548. [PMID: 37428789 PMCID: PMC10588973 DOI: 10.1093/carcin/bgad052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Globally, primary liver cancer is the third leading cause of cancer-related deaths, with approximately 830 000 deaths worldwide in 2020, accounting for 8.3% of total deaths from all cancer types (1). This disease disproportionately affects those in countries with low or medium Human Development Index scores in Eastern Asia, South-Eastern Asia, and Northern and Western Africa (2). Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, often develops in the background of chronic liver disease, caused by hepatitis B or C virus, non-alcoholic steatohepatitis (NASH), or other diseases that cause cirrhosis. Prognosis can vary dramatically based on number, size, and location of tumors. Hepatic synthetic dysfunction and performance status (PS) also impact survival. The Barcelona Clinic Liver Cancer (BCLC) staging system best accounts for these variations, providing a reliable prognostic stratification. Therapeutic considerations of this complex disease necessitate a multidisciplinary approach and can range from curative-intent surgical resection, liver transplantation or image-guided ablation to more complex liver-directed therapies like transarterial chemoembolization (TACE) and systemic therapy. Recent advances in the understanding of the tumor biology and microenvironment have brought new advances and approvals for systemic therapeutic agents, often utilizing immunotherapy or VEGF-targeted agents to modulate the immune response. This review will discuss the current landscape in the treatments available for early, intermediate, and advanced stage HCC.
Collapse
Affiliation(s)
- Kelley Coffman-D’Annibale
- National Cancer Institute, Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
| | - Changqing Xie
- National Cancer Institute, Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
| | - Donna M Hrones
- National Cancer Institute, Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
| | - Shadin Ghabra
- National Cancer Institute, Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
| | - Tim F Greten
- National Cancer Institute, Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
- National Cancer Institute, NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Cecilia Monge
- National Cancer Institute, Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
| |
Collapse
|
24
|
Lominadze Z, Shaik MR, Choi D, Zaffar D, Mishra L, Shetty K. Hepatocellular Carcinoma Genetic Classification. Cancer J 2023; 29:249-258. [PMID: 37796642 PMCID: PMC10686192 DOI: 10.1097/ppo.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) represents a significant global burden, with management complicated by its heterogeneity, varying presentation, and relative resistance to therapy. Recent advances in the understanding of the genetic, molecular, and immunological underpinnings of HCC have allowed a detailed classification of these tumors, with resultant implications for diagnosis, prognostication, and selection of appropriate treatments. Through the correlation of genomic features with histopathology and clinical outcomes, we are moving toward a comprehensive and unifying framework to guide our diagnostic and therapeutic approach to HCC.
Collapse
Affiliation(s)
- Zurabi Lominadze
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| | | | - Dabin Choi
- Department of Medicine, University of Maryland Medical Center
| | - Duha Zaffar
- Department of Medicine, University of Maryland Midtown Medical Center
| | - Lopa Mishra
- Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory; Divisions of Gastroenterology and Hepatology, Northwell Health
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| |
Collapse
|
25
|
Coffin P, He A. Hepatocellular Carcinoma: Past and Present Challenges and Progress in Molecular Classification and Precision Oncology. Int J Mol Sci 2023; 24:13274. [PMID: 37686079 PMCID: PMC10487618 DOI: 10.3390/ijms241713274] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common solid tumor malignancies in the world and represents roughly 90% of all primary malignancies of the liver. The most common risk factors for HCC include hepatitis B virus, hepatitis C virus, alcohol, and increasingly, fatty liver. Most HCC is diagnosed at advanced stages, excluding the possibility of curative resection, which leaves systemic therapy as the only treatment option. However, given the extreme mutational diversity and heterogenous nature of HCC, efforts to develop new targeted systemic therapies were largely unsuccessful until recently. HCC pathogenesis is thought to be a multistage process driven by a wide array of nonmutually exclusive driver mutations accompanied by many passenger mutations, with the average tumor possessing approximately 40 genomic aberrations. Over the past two decades, several efforts to categorize HCC prognostically and therapeutically according to different molecular subclassifications with the intent to guide treatment and identify drug targets have emerged, though, no single consensus has been reached. Recent breakthroughs in drug development have greatly expanded treatment options, but the ideal of uniting each patient's unique HCC with a targeted systemic therapy remains elusive.
Collapse
Affiliation(s)
- Philip Coffin
- MedStar Georgetown University Hospital, Lombardi Cancer Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | | |
Collapse
|
26
|
Gorji L, Brown ZJ, Pawlik TM. Mutational Landscape and Precision Medicine in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4221. [PMID: 37686496 PMCID: PMC10487145 DOI: 10.3390/cancers15174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common malignancy worldwide and exhibits a universal burden as the incidence of the disease continues to rise. In addition to curative-intent therapies such as liver resection and transplantation, locoregional and systemic therapy options also exist. However, existing treatments carry a dismal prognosis, often plagued with high recurrence and mortality. For this reason, understanding the tumor microenvironment and mutational pathophysiology has become the center of investigation for disease control. The use of precision medicine and genetic analysis can supplement current treatment modalities to promote individualized management of HCC. In the search for personalized medicine, tools such as next-generation sequencing have been used to identify unique tumor mutations and improve targeted therapies. Furthermore, investigations are underway for specific HCC biomarkers to augment the diagnosis of malignancy, the prediction of whether the tumor environment is amenable to available therapies, the surveillance of treatment response, the monitoring for disease recurrence, and even the identification of novel therapeutic opportunities. Understanding the mutational landscape and biomarkers of the disease is imperative for tailored management of the malignancy. In this review, we summarize the molecular targets of HCC and discuss the current role of precision medicine in the treatment of HCC.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH 45405, USA;
| | - Zachary J. Brown
- Department of Surgery, Division of Surgical Oncology, New York University—Long Island, Mineola, NY 11501, USA;
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Monge C, Maldonado JA, McGlynn KA, Greten TF. Hispanic Individuals are Underrepresented in Phase III Clinical Trials for Advanced Liver Cancer in the United States. J Hepatocell Carcinoma 2023; 10:1223-1235. [PMID: 37533601 PMCID: PMC10390714 DOI: 10.2147/jhc.s412446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Background Hispanic individuals comprise the second-largest subpopulation after non-Hispanic White (NHW) individuals in the United States (US). We compared the relative contribution of Hispanic individuals to the ten most common causes of cancer-related deaths and studied enrollment of Hispanic patients in multinational phase III advanced liver cancer trials with the aim to investigate whether racial subpopulations are adequately represented in liver cancer trials. Methods Relative cancer incidence rates in Hispanic individuals, NHW individuals, non-Hispanic black (NHB) individuals, and Asian individuals were obtained from both the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results Program and the Center for Disease Control and Prevention (CDC), United States Cancer Statistics (USCS) database. Searching PubMed, Embase, and Web of Science, we identified phase III clinical trials studying advanced liver cancer in the last ten years and collected enrollment for each race and ethnicity. Incidence rates of liver cancer and enrollment rates in phase III trials were compared by race and ethnicity. Results The cancer type with the relatively highest contribution of Hispanic individuals was liver cancer. From 2015 to 2019, 15.1% of liver cancer cases occurred in Hispanic individuals compared to 12.5% in Asian individuals, 11% in NHB individuals, and 7.5% in NHW individuals. In the last ten years, Hispanic individuals made up 1.6% of patients and NHB individuals 1.3% of patients included in phase III multinational liver cancer trials, compared to 31% NHW individuals and 47% Asian individuals. Conclusion Hispanic individuals are disproportionately underrepresented in multinational phase III clinical trials for liver cancer despite having the highest relative incidence rates among the four major racial or ethnic groups in the US.
Collapse
Affiliation(s)
- Cecilia Monge
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Alberto Maldonado
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Betheda, MD, USA
| |
Collapse
|
28
|
Yan X, Bai L, Qi P, Lv J, Song X, Zhang L. Potential Effects of Regulating Intestinal Flora on Immunotherapy for Liver Cancer. Int J Mol Sci 2023; 24:11387. [PMID: 37511148 PMCID: PMC10380345 DOI: 10.3390/ijms241411387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal flora plays an important role in the occurrence and development of liver cancer, affecting the efficacy and side effects of conventional antitumor therapy. Recently, immunotherapy for liver cancer has been a palliative treatment for patients with advanced liver cancer lacking surgical indications. Representative drugs include immune checkpoint inhibitors, regulators, tumor vaccines, and cellular immunotherapies. The effects of immunotherapy on liver cancer vary because of the heterogeneity of the tumors. Intestinal flora can affect the efficacy and side effects of immunotherapy for liver cancer by regulating host immunity. Therefore, applying probiotics, prebiotics, antibiotics, and fecal transplantation to interfere with the intestinal flora is expected to become an important means of assisting immunotherapy for liver cancer. This article reviews publications that discuss the relationship between intestinal flora and immunotherapy for liver cancer and further clarifies the potential relationship between intestinal flora and immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Singal AG, Kudo M, Bruix J. Breakthroughs in Hepatocellular Carcinoma Therapies. Clin Gastroenterol Hepatol 2023; 21:2135-2149. [PMID: 36813012 PMCID: PMC10293061 DOI: 10.1016/j.cgh.2023.01.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Several breakthroughs in hepatocellular carcinoma (HCC) therapy across tumor stages provide hope to improve its dismal prognosis. Although surgical and local ablative therapies have few significant changes in technique, an improved understanding of tumor biology has facilitated increase numbers of patients who are now eligible to undergo curative-intent procedures. Most notably, acceptable post-transplant outcomes can be achieved in well selected patients whose tumors are downstaged into Milan Criteria. Adjuvant therapy in patients at high risk of recurrence also significantly improves recurrence-free survival after resection or ablation. For patients with liver-localized disease who are not eligible for curative-intent procedures, transarterial chemoembolization (TACE) was historically the treatment modality of choice, regardless of tumor burden; however, there is now increased recognition of patients who are "TACE unsuitable" and may be better treated with systemic therapy. The greatest evolution in HCC treatment options has occurred with systemic therapy, where several new agents are now available in the first- and second-line setting, including immune checkpoint inhibitor combinations. Objective responses are observed in approximately 30% of patients and median survival is approaching 2 years. The availability of immune checkpoint inhibitors has renewed interest in combination therapies for earlier tumor stages, with several phase III trials ongoing. Considering increasing complexities of HCC care, requiring decisions between therapies delivered by different providers, multidisciplinary care is critical and is associated with improved clinical outcomes. In this review, we detail major breakthroughs in HCC therapy, how these breakthroughs can be applied in clinical practice, and remaining areas in need of further research.
Collapse
Affiliation(s)
- Amit G Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka Japan.
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer Group, Liver Unit, August Pi i Sunyer Biomedical Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Guo H, Zhang S, Zhang B, Shang Y, Liu X, Wang M, Wang H, Fan Y, Tan K. Immunogenic landscape and risk score prediction based on unfolded protein response (UPR)-related molecular subtypes in hepatocellular carcinoma. Front Immunol 2023; 14:1202324. [PMID: 37457742 PMCID: PMC10348016 DOI: 10.3389/fimmu.2023.1202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of cancer and causes a significant number of cancer-related deaths worldwide. The molecular mechanisms underlying the development of HCC are complex, and the heterogeneity of HCC has led to a lack of effective prognostic indicators and drug targets for clinical treatment of HCC. Previous studies have indicated that the unfolded protein response (UPR), a fundamental pathway for maintaining endoplasmic reticulum homeostasis, is involved in the formation of malignant characteristics such as tumor cell invasiveness and treatment resistance. The aims of our study are to identify new prognostic indicators and provide drug treatment targets for HCC in clinical treatment based on UPR-related genes (URGs). Methods Gene expression profiles and clinical information were downloaded from the TCGA, ICGC and GEO databases. Consensus cluster analysis was performed to classify the molecular subtypes of URGs in HCC patients. Univariate Cox regression and machine learning LASSO algorithm were used to establish a risk prognosis model. Kaplan-Meier and ROC analyses were used to evaluate the clinical prognosis of URGs. TIMER and XCell algorithms were applied to analyze the relationships between URGs and immune cell infiltration. Real time-PCR was performed to analyze the effect of sorafenib on the expression levels of four URGs. Results Most URGs were upregulated in HCC samples. According to the expression pattern of URGs, HCC patients were divided into two independent clusters. Cluster 1 had a higher expression level, worse prognosis, and higher expression of immunosuppressive factors than cluster 2. Patients in cluster 1 were more prone to immune escape during immunotherapy, and were more sensitive to chemotherapeutic drugs. Four key UPR genes (ATF4, GOSR2, PDIA6 and SRPRB) were established in the prognostic model and HCC patients with high risk score had a worse clinical prognosis. Additionally, patients with high expression of four URGs are more sensitive to sorafenib. Moreover, ATF4 was upregulated, while GOSR2, PDIA6 and SRPRB were downregulated in sorafenib-treated HCC cells. Conclusion The UPR-related prognostic signature containing four URGs exhibits high potential application value and performs well in the evaluation of effects of chemotherapy/immunotherapy and clinical prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yumei Fan
- *Correspondence: Yumei Fan, ; Ke Tan,
| | - Ke Tan
- *Correspondence: Yumei Fan, ; Ke Tan,
| |
Collapse
|
31
|
Pinto E, Pelizzaro F, Farinati F, Russo FP. Angiogenesis and Hepatocellular Carcinoma: From Molecular Mechanisms to Systemic Therapies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1115. [PMID: 37374319 PMCID: PMC10305396 DOI: 10.3390/medicina59061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. The hypervascular nature of the majority of HCCs and the peculiar vascular derangement occurring during liver carcinogenesis underscore the importance of angiogenesis in the development and progression of these tumors. Indeed, several angiogenic molecular pathways have been identified as deregulated in HCC. The hypervascular nature and the peculiar vascularization of HCC, as well as deregulated angiogenic pathways, represent major therapeutic targets. To a large extent, intra-arterial locoregional treatments (transarterial-(chemo)embolization) rely on tumor ischemia caused by embolization of tumor feeding arteries, even though this may represent the "primum movens" of tumor recurrence through the activation of neoangiogenesis. Considering systemic therapies, the currently available tyrosine kinase inhibitors (sorafenib, regorafenib, cabozantinib and lenvatinib) and monoclonal antibodies (ramucirumab and bevacizumab, in combination with the anti-PD-L1, atezolizumab) primarily target, among others, angiogenic pathways. Considering the importance of angiogenesis in the pathogenesis and treatment of liver cancer, in this paper, we aim to review the role of angiogenesis in HCC, addressing the molecular mechanisms, available antiangiogenic therapies and prognostic biomarkers in patients receiving these treatments.
Collapse
Affiliation(s)
- Elisa Pinto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| |
Collapse
|
32
|
Liu H, Su H, Wang F, Dang Y, Ren Y, Yin S, Lu H, Zhang H, Wu J, Xu Z, Zheng M, Gao J, Cao Y, Xu J, Chen L, Wu X, Ma M, Xu L, Wang F, Chen J, Su C, Wu C, Xie H, Gu J, Xi JJ, Ge B, Fei Y, Chen C. Pharmacological boosting of cGAS activation sensitizes chemotherapy by enhancing antitumor immunity. Cell Rep 2023; 42:112275. [PMID: 36943864 DOI: 10.1016/j.celrep.2023.112275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Enhancing chemosensitivity is one of the largest unmet medical needs in cancer therapy. Cyclic GMP-AMP synthase (cGAS) connects genome instability caused by platinum-based chemotherapeutics to type I interferon (IFN) response. Here, by using a high-throughput small-molecule microarray-based screening of cGAS interacting compounds, we identify brivanib, known as a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor, as a cGAS modulator. Brivanib markedly enhances cGAS-mediated type I IFN response in tumor cells treated with platinum. Mechanistically, brivanib directly targets cGAS and enhances its DNA binding affinity. Importantly, brivanib synergizes with cisplatin in tumor control by boosting CD8+ T cell response in a tumor-intrinsic cGAS-dependent manner, which is further validated by a patient-derived tumor-like cell clusters model. Taken together, our findings identify cGAS as an unprecedented target of brivanib and provide a rationale for the combination of brivanib with platinum-based chemotherapeutics in cancer treatment.
Collapse
Affiliation(s)
- Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai HUASHEN Institute of Microbes and Infections, Shanghai 200052, China.
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yifang Dang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai HUASHEN Institute of Microbes and Infections, Shanghai 200052, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Shenyi Yin
- College of Future Technology, Peking University, Beijing 100871, China
| | - Huinan Lu
- GeneX Health Co. Ltd., Beijing 100195, China
| | - Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mengge Zheng
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiani Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yajuan Cao
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jijie Gu
- WuXi Biologics (Shanghai) Co., Ltd., Shanghai City 201401, China
| | - Jianzhong Jeff Xi
- College of Future Technology, Peking University, Beijing 100871, China
| | - Baoxue Ge
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
33
|
Girardi DM, Sousa LP, Miranda TA, Haum FNC, Pereira GCB, Pereira AAL. Systemic Therapy for Advanced Hepatocellular Carcinoma: Current Stand and Perspectives. Cancers (Basel) 2023; 15:1680. [PMID: 36980566 PMCID: PMC10046570 DOI: 10.3390/cancers15061680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Hepatocellular carcinoma often develops in the context of chronic liver disease. It is the sixth most frequently diagnosed cancer and the third most common cause of cancer-related mortality worldwide. Although the mainstay of therapy is surgical resection, most patients are not eligible because of liver dysfunction or tumor extent. Sorafenib was the first tyrosine kinase inhibitor that improved the overall survival of patients who failed to respond to local therapies or had advanced disease, and for many years, it was the only treatment approved for the first-line setting. However, in recent years, trials have demonstrated an improvement in survival with treatments based on immunotherapy and new targeting agents, thereby extending the treatment options. A phase III trial showed that a combination of immunotherapy and targeted therapy, including atezolizumab plus bevacizumab, improved survival in the first-line setting, and is now considered the new standard of care. Other agents and combinations are being tested, including the combination of nivolumab plus ipilimumab and tremelimumab plus durvalumab, and they reportedly have clinical benefits. The aim of this manuscript is to review the latest approved therapeutic options in first- and second-line settings for advanced HCC and discuss future perspectives.
Collapse
Affiliation(s)
- Daniel M. Girardi
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Lara P. Sousa
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Thiago A. Miranda
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Fernanda N. C. Haum
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Gabriel C. B. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Allan A. L. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| |
Collapse
|
34
|
Korean Liver Cancer Association (KLCA) and National Cancer Center (NCC) Korea. 2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2023; 23:1-120. [PMID: 37384024 PMCID: PMC10202234 DOI: 10.17998/jlc.2022.11.07] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the fourth most common cancer among men in South Korea, where the prevalence of chronic hepatitis B infection is high in middle and old age. The current practice guidelines will provide useful and sensible advice for the clinical management of patients with HCC. A total of 49 experts in the fields of hepatology, oncology, surgery, radiology, and radiation oncology from the Korean Liver Cancer Association-National Cancer Center Korea Practice Guideline Revision Committee revised the 2018 Korean guidelines and developed new recommendations that integrate the most up-to-date research findings and expert opinions. These guidelines provide useful information and direction for all clinicians, trainees, and researchers in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Korean Liver Cancer Association (KLCA) and National Cancer Center (NCC) Korea
- Corresponding author: KLCA-NCC Korea Practice Guideline Revision Committee (KPGRC) (Committee Chair: Joong-Won Park) Center for Liver and Pancreatobiliary Cancer, Division of Gastroenterology, Department of Internal Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Korea Tel. +82-31-920-1605, Fax: +82-31-920-1520, E-mail:
| |
Collapse
|
35
|
Bracchiglione J, Rodríguez-Grijalva G, Requeijo C, Santero M, Salazar J, Salas-Gama K, Meade AG, Antequera A, Auladell-Rispau A, Quintana MJ, Solà I, Urrútia G, Acosta-Dighero R, Bonfill Cosp X. Systemic Oncological Treatments versus Supportive Care for Patients with Advanced Hepatobiliary Cancers: An Overview of Systematic Reviews. Cancers (Basel) 2023; 15:cancers15030766. [PMID: 36765723 PMCID: PMC9913533 DOI: 10.3390/cancers15030766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The trade-off between systemic oncological treatments (SOTs) and UPSC in patients with primary advanced hepatobiliary cancers (HBCs) is not clear in terms of patient-centred outcomes beyond survival. This overview aims to assess the effectiveness of SOTs (chemotherapy, immunotherapy and targeted/biological therapies) versus UPSC in advanced HBCs. METHODS We searched for systematic reviews (SRs) in PubMed, EMBASE, the Cochrane Library, Epistemonikos and PROSPERO. Two authors assessed eligibility independently and performed data extraction. We estimated the quality of SRs and the overlap of primary studies, performed de novo meta-analyses and assessed the certainty of evidence for each outcome. RESULTS We included 18 SRs, most of which were of low quality and highly overlapped. For advanced hepatocellular carcinoma, SOTs showed better overall survival (HR = 0.62, 95% CI 0.55-0.77, high certainty for first-line therapy; HR = 0.85, 95% CI 0.79-0.92, moderate certainty for second-line therapy) with higher toxicity (RR = 1.18, 95% CI 0.87-1.60, very low certainty for first-line therapy; RR = 1.58, 95% CI 1.28-1.96, low certainty for second-line therapy). Survival was also better for SOTs in advanced gallbladder cancer. No outcomes beyond survival and toxicity could be meta-analysed. CONCLUSION SOTs in advanced HBCs tend to improve survival at the expense of greater toxicity. Future research should inform other patient-important outcomes to guide clinical decision making.
Collapse
Affiliation(s)
- Javier Bracchiglione
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar 46383, Chile
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Gerardo Rodríguez-Grijalva
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Carolina Requeijo
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence:
| | - Marilina Santero
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Josefina Salazar
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Karla Salas-Gama
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Quality, Process and Innovation Direction, Valld’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Adriana-Gabriela Meade
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Alba Antequera
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Ariadna Auladell-Rispau
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - María Jesús Quintana
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Roberto Acosta-Dighero
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar 46383, Chile
| | - Xavier Bonfill Cosp
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
36
|
Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Cheng AL, Vogel A, Tovoli F, Ueshima K, Aikata H, López CL, Pracht M, Meng Z, Daniele B, Park JW, Palmer D, Tamai T, Saito K, Dutcus CE, Lencioni R. Overall survival and objective response in advanced unresectable hepatocellular carcinoma: A subanalysis of the REFLECT study. J Hepatol 2023; 78:133-141. [PMID: 36341767 DOI: 10.1016/j.jhep.2022.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Validated surrogate endpoints for overall survival (OS) are important for expediting the clinical study and drug-development processes. Herein, we aimed to validate objective response as an independent predictor of OS in individuals with unresectable hepatocellular carcinoma (HCC) receiving systemic anti-angiogenic therapy. METHODS We investigated the association between objective response (investigator-assessed mRECIST, independent radiologic review [IRR] mRECIST and RECIST v1.1) and OS in REFLECT, a phase III study of lenvatinib vs. sorafenib. We conducted landmark analyses (Simon-Makuch) of OS by objective response at 2, 4, and 6 months after randomization. RESULTS Median OS was 21.6 months (95% CI 18.6-24.5) for responders (investigator-assessed mRECIST) vs. 11.9 months (95% CI 10.7-12.8) for non-responders (hazard ratio [HR] 0.61; 95% CI 0.49-0.76; p <0.001). Objective response by IRR per mRECIST and RECIST v1.1 supported the association with OS (HR 0.61; 95% CI 0.51-0.72; p <0.001 and HR 0.50; 95% CI 0.39-0.65; p <0.001, respectively). OS was significantly prolonged for responders vs. non-responders (investigator-assessed mRECIST) at the 2-month (HR 0.61; 95% CI 0.49-0.76; p <0.001), 4-month (HR 0.63; 95% CI 0.51-0.80; p <0.001), and 6-month (HR 0.68; 95% CI 0.54-0.86; p <0.001) landmarks. Results were similar when assessed by IRR, with both mRECIST and RECIST v1.1. An exploratory multivariate Cox regression analysis identified objective response by investigator-assessed mRECIST (HR 0.55; 95% CI 0.44-0.68; p <0.0001) and IRR-assessed RECIST v1.1 (HR 0.49; 95% CI, 0.38-0.64; p <0.0001) as independent predictors of OS in individuals with unresectable HCC. CONCLUSIONS Objective response was an independent predictor of OS in individuals with unresectable HCC in REFLECT; additional studies are needed to confirm surrogacy. Participants achieving a complete or partial response by mRECIST or RECIST v1.1 had significantly longer survival vs. those with stable/progressive/non-evaluable disease. GOV NUMBER NCT01761266. IMPACT AND IMPLICATIONS This analysis of data taken from a completed clinical trial (REFLECT) looked for any link between objective response and overall survival time in individuals with unresectable HCC receiving anti-angiogenic treatments. Significantly longer median overall survival was found for responders (21.6 months) vs. non-responders (11.9 months). Overall survival was also significantly longer for responders vs. non-responders (based on objective response status at 2, 4, and 6 months) in the landmark analysis. Our results indicate that objective response is an independent predictor of overall survival in this setting, confirming its validity as a rapid marker of efficacy that can be applied in phase II trials; however, further validation is required to determine is validity for other systemic treatments (e.g. immunotherapies), or as a surrogate of overall survival.
Collapse
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| | - Richard S Finn
- Department of Gastroenterology and Hepatology, Geffen School of Medicine, UCLA Medical Center, Santa Monica, CA, USA
| | - Shukui Qin
- Director of Chinese PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, Jiangsu, China
| | - Kwang-Hyub Han
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kenji Ikeda
- Department of Gastroenterology, Toranomon Hospital, Tokyo, Japan
| | - Ann-Lii Cheng
- Oncology, Internal and General Medicine, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Francesco Tovoli
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hiroshi Aikata
- Department of Medicine and Molecular Science, Hiroshima University Hospital, Hiroshima, Japan
| | - Carlos López López
- Department of Medical Oncology, Marqués de Valdecilla University Hospital, IDIVAL, Santander, Spain
| | - Marc Pracht
- Department of Medical Oncology, Comprehensive Cancer Center Eugène Marquis, Rennes, France
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Bruno Daniele
- Department of Oncology, Azienda Ospedaliera G. Rummo, Benevento, Italy and Ospedale del Mare, Naples, Italy
| | - Joong-Won Park
- Department of Internal Medicine, National Cancer Center Korea, Goyang-si, Republic of Korea
| | - Daniel Palmer
- Department of Medical Oncology, The Clatterbridge Cancer Centre, Birkenhead, England, UK
| | | | - Kenichi Saito
- Biostatistics and Clinical Research, Eisai Inc., Nutley, NJ, USA
| | - Corina E Dutcus
- Biostatistics and Clinical Research, Eisai Inc., Nutley, NJ, USA
| | - Riccardo Lencioni
- Department of Radiology, Miami Cancer Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Radiology, University of Pisa School of Medicine, Pisa, Italy
| |
Collapse
|
37
|
Cai J, Zhang R. Molecular Structure and Supramolecular Architecture of Brivanib: (R)-1-(4-(4-Fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f] [1,2,4]triazin-6-yloxy)propan-2-ol. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522070045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
38
|
2022 KLCA-NCC Korea Practice Guidelines for the Management of Hepatocellular Carcinoma. Korean J Radiol 2022; 23:1126-1240. [PMID: 36447411 PMCID: PMC9747269 DOI: 10.3348/kjr.2022.0822] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the fourth most common cancer among men in South Korea, where the prevalence of chronic hepatitis B infection is high in middle and old age. The current practice guidelines will provide useful and sensible advice for the clinical management of patients with HCC. A total of 49 experts in the fields of hepatology, oncology, surgery, radiology, and radiation oncology from the Korean Liver Cancer Association-National Cancer Center Korea Practice Guideline Revision Committee revised the 2018 Korean guidelines and developed new recommendations that integrate the most up-to-date research findings and expert opinions. These guidelines provide useful information and direction for all clinicians, trainees, and researchers in the diagnosis and treatment of HCC.
Collapse
|
39
|
Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Psilopatis I, Sarantis P, Koustas E, Kanavidis P, Prevezanos D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Antoniou EA. Targeted Therapies for Hepatocellular Carcinoma Treatment: A New Era Ahead-A Systematic Review. Int J Mol Sci 2022; 23:14117. [PMID: 36430594 PMCID: PMC9698799 DOI: 10.3390/ijms232214117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common malignancies and the third cause of cancer-related death worldwide, with surgery being the best prognostic tool. Among the well-known causative factors of HCC are chronic liver virus infections, chronic virus hepatitis B (HBV) and chronic hepatitis virus C (HCV), aflatoxins, tobacco consumption, and non-alcoholic liver disease (NAFLD). There is a need for the development of efficient molecular markers and alternative therapeutic targets of great significance. In this review, we describe the general characteristics of HCC and present a variety of targeted therapies that resulted in progress in HCC therapy.
Collapse
Affiliation(s)
- Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iason Psilopatis
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Prodromos Kanavidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Gregory Kouraklis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kontzoglou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstathios A. Antoniou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
40
|
Giuffrida P, Celsa C, Antonucci M, Peri M, Grassini MV, Rancatore G, Giacchetto CM, Cannella R, Incorvaia L, Corsini LR, Morana P, La Mantia C, Badalamenti G, Brancatelli G, Cammà C, Cabibbo G. The Evolving Scenario in the Assessment of Radiological Response for Hepatocellular Carcinoma in the Era of Immunotherapy: Strengths and Weaknesses of Surrogate Endpoints. Biomedicines 2022; 10:2827. [PMID: 36359347 PMCID: PMC9687474 DOI: 10.3390/biomedicines10112827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a challenging malignancy characterised by clinical and biological heterogeneity, independent of the stage. Despite the application of surveillance programs, a substantial proportion of patients are diagnosed at advanced stages when curative treatments are no longer available. The landscape of systemic therapies has been rapidly growing over the last decade, and the advent of immune-checkpoint inhibitors (ICIs) has changed the paradigm of systemic treatments. The coexistence of the tumour with underlying cirrhosis exposes patients with HCC to competing events related to tumour progression and/or hepatic decompensation. Therefore, it is relevant to adopt proper clinical endpoints to assess the extent of treatment benefit. While overall survival (OS) is the most accepted endpoint for phase III randomised controlled trials (RCTs) and drug approval, it is affected by many limitations. To overcome these limits, several clinical and radiological outcomes have been used. For instance, progression-free survival (PFS) is a useful endpoint to evaluate the benefit of sequential treatments, since it is not influenced by post-progression treatments, unlike OS. Moreover, radiological endpoints such as time to progression (TTP) and objective response rate (ORR) are frequently adopted. Nevertheless, the surrogacy between these endpoints and OS in the setting of unresectable HCC (uHCC) remains uncertain. Since most of the surrogate endpoints are radiology-based (e.g., PFS, TTP, ORR), the use of standardised tools is crucial for the evaluation of radiological response. The optimal way to assess the radiological response has been widely debated, and many criteria have been proposed over the years. Furthermore, none of the criteria have been validated for immunotherapy in advanced HCC. The coexistence of the underlying chronic liver disease and the access to several lines of treatments highlight the urgent need to capture early clinical benefit and the need for standardised radiological criteria to assess cancer response when using ICIs in mono- or combination therapies. Here, we review the most commonly used clinical and radiological endpoints for trial design, as well as their surrogacy with OS. We also review the criteria for radiological response to treatments for HCC, analysing the major issues and the potential future perspectives.
Collapse
Affiliation(s)
- Paolo Giuffrida
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Ciro Celsa
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
- Department of Surgical, Oncological, and Oral Sciences (Di.Chir.On.S.), University of Palermo, 90127 Palermo, Italy
| | - Michela Antonucci
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Marta Peri
- Department of Surgical, Oncological, and Oral Sciences (Di.Chir.On.S.), University of Palermo, 90127 Palermo, Italy
| | - Maria Vittoria Grassini
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Gabriele Rancatore
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Carmelo Marco Giacchetto
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological, and Oral Sciences (Di.Chir.On.S.), University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Department of Surgical, Oncological, and Oral Sciences (Di.Chir.On.S.), University of Palermo, 90127 Palermo, Italy
| | - Piera Morana
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological, and Oral Sciences (Di.Chir.On.S.), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Brancatelli
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Calogero Cammà
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Cabibbo
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
41
|
Personeni N, Pressiani T, Zanuso V, Casadei-Gardini A, D’Alessio A, Valgiusti M, Dadduzio V, Bergamo F, Soldà C, Rizzato MD, Giordano L, Santoro A, Rimassa L. Determinants of Treatment Benefit and Post-Treatment Survival for Patients with Hepatocellular Carcinoma Enrolled in Second-Line Trials after the Failure of Sorafenib Treatment. J Pers Med 2022; 12:1726. [PMID: 36294865 PMCID: PMC9604940 DOI: 10.3390/jpm12101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Second-line treatments are standard care for advanced hepatocellular carcinoma (HCC) patients with preserved liver function who are intolerant of or progress on first-line therapy. However, determinants of treatment benefit and post-treatment survival (PTS) remain unknown. HCC patients previously treated with sorafenib and enrolled in second-line clinical trials were pooled according to the investigational treatment received and the subsequent regulatory approval: approved targeted agents and immune checkpoint inhibitors (AT) or other agents (OT) not subsequently approved. Univariate and multivariate analyses using Cox proportional hazards models established relationships among treatments received, clinical variables, and overall survival (OS) or PTS. For 174 patients (80 AT; 94 OT) analyzed, baseline factors for longer OS in multivariate analysis were second-line AT, absence of both portal vein thrombosis and extrahepatic spread (EHS). Treatment with AT (versus OT) was associated with significantly longer OS among patients with EHS (pinteraction = 0.005) and patients with low neutrophil-to-lymphocyte ratio (NLR; pinteraction = 0.032). Median PTS was 4.0 months (95% CI 2.8−5.3). At second-line treatment discontinuation, alpha-fetoprotein (AFP) levels <400 ng/dl, albumin-bilirubin (ALBI) grade 1, and enrolment onto subsequent trials independently predicted longer PTS. Treatment with AT, PVT, and EHS were prognostic factors for OS, while AFP, ALBI grade and enrolment onto a third-line trial were prognostic for PTS. Presence of EHS and low NLR were predictors of greater OS benefit from AT.
Collapse
Affiliation(s)
- Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Antonio D’Alessio
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Martina Valgiusti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “DinoAmadori”, 47014 Meldola, Italy
| | - Vincenzo Dadduzio
- Oncology 1 Unit, Veneto Institute of Oncology, IOV, IRCCS, 35128 Padua, Italy
| | - Francesca Bergamo
- Oncology 1 Unit, Veneto Institute of Oncology, IOV, IRCCS, 35128 Padua, Italy
| | - Caterina Soldà
- Oncology 1 Unit, Veneto Institute of Oncology, IOV, IRCCS, 35128 Padua, Italy
| | - Mario Domenico Rizzato
- Oncology 1 Unit, Veneto Institute of Oncology, IOV, IRCCS, 35128 Padua, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35122 Padua, Italy
| | - Laura Giordano
- Biostatistic Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
42
|
2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. Clin Mol Hepatol 2022; 28:583-705. [PMID: 36263666 PMCID: PMC9597235 DOI: 10.3350/cmh.2022.0294] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the fourth most common cancer among men in South Korea, where the prevalence of chronic hepatitis B infection is high in middle and old age. The current practice guidelines will provide useful and sensible advice for the clinical management of patients with HCC. A total of 49 experts in the fields of hepatology, oncology, surgery, radiology, and radiation oncology from the Korean Liver Cancer Association-National Cancer Center Korea Practice Guideline Revision Committee revised the 2018 Korean guidelines and developed new recommendations that integrate the most up-to-date research findings and expert opinions. These guidelines provide useful information and direction for all clinicians, trainees, and researchers in the diagnosis and treatment of HCC.
Collapse
|
43
|
Sato R, Moriguchi M, Iwai K, Tsuchiya S, Seko Y, Takahashi A, Kobayashi K, Ogasawara S, Watanabe S, Morimoto N, Kato N, Itoh Y, Aramaki T. Real-world outcomes of molecular targeted agents for patients with hepatocellular carcinoma over 80 years old. Hepatol Res 2022; 52:859-871. [PMID: 35921253 DOI: 10.1111/hepr.13818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/19/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023]
Abstract
AIM There is insufficient evidence regarding the safety and efficacy of molecular targeted agents (MTAs) for elderly patients with hepatocellular carcinoma (HCC), who are likely to be vulnerable to adverse events (AEs) of therapy. The aim of this study was to compare sorafenib and lenvatinib use in elderly patients with HCC from the viewpoint of overall survival (OS) and rate of AE-induced MTA discontinuation. METHODS This retrospective study included patients with HCC over 80 years old who received first-line molecular targeted therapy (MTT) at four hospitals between June 2009 and September 2019. They were divided into three groups according to the era and type of first-line MTA: E1-Sora (sorafenib, between 2009 and 2016), E2-Sora (sorafenib, between 2017 and 2019), and E2-Len (lenvatinib, between 2017 and 2019). RESULTS The study included 173 patients (E1-Sora, n = 79; E2-Sora, n = 50; E2-Len, n = 44) with a median age of 81.9 years (range, 80-93 years). Median OS was 15.1 months in the entire cohort (E1-Sora, 12.7 months; E2-Sora, 20.5 months; E2-Len, 10.3 months). The rate of treatment discontinuation due to AEs was high in the entire cohort, especially in E1-Sora and E2-Len (49.4% in E1-Sora, 28.0% in E2-Sora, and 54.6% in E2-Len, p = 0.0753). More E2-Sora patients received subsequent MTT than E2-Len patients (E2-Sora, 50%; E2-Len, 28.6%; p = 0.0111). CONCLUSION Both sorafenib and lenvatinib were effective and feasible for elderly patients with HCC. In terms of discontinuation due to AEs and subsequent MTT, sorafenib might be more desirable for elderly patients with HCC over 80 years.
Collapse
Affiliation(s)
- Rui Sato
- Division of Interventional Radiology, Shizuoka Cancer Center, Sunto-Gun, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Iwai
- Division of Interventional Radiology, Shizuoka Cancer Center, Sunto-Gun, Japan
| | - Satoshi Tsuchiya
- Division of Interventional Radiology, Shizuoka Cancer Center, Sunto-Gun, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Takahashi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiva University, Chiba, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiva University, Chiba, Japan
| | - Shunji Watanabe
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoki Morimoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiva University, Chiba, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Aramaki
- Division of Interventional Radiology, Shizuoka Cancer Center, Sunto-Gun, Japan
| |
Collapse
|
44
|
Tian XM, Xiang B, Yu YH, Li Q, Zhang ZX, Zhanghuang C, Jin LM, Wang JK, Mi T, Chen ML, Liu F, Wei GH. A novel cuproptosis-related subtypes and gene signature associates with immunophenotype and predicts prognosis accurately in neuroblastoma. Front Immunol 2022; 13:999849. [PMID: 36211401 PMCID: PMC9540510 DOI: 10.3389/fimmu.2022.999849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background Neuroblastoma (NB) is the most frequent solid tumor in pediatrics, which accounts for roughly 15% of cancer-related mortality in children. NB exhibited genetic, morphologic, and clinical heterogeneity, which limited the efficacy of available therapeutic approaches. Recently, a new term 'cuproptosis' has been used to denote a unique biological process triggered by the action of copper. In this instance, selectively inducing copper death is likely to successfully overcome the limitations of conventional anticancer drugs. However, there is still a gap regarding the role of cuproptosis in cancer, especially in pediatric neuroblastoma. Methods We characterized the specific expression of cuproptosis-related genes (CRGs) in NB samples based on publicly available mRNA expression profile data. Consensus clustering and Lasso-Cox regression analysis were applied for CRGs in three independent cohorts. ESTIMATE and Xcell algorithm was utilized to visualize TME score and immune cell subpopulations' relative abundances. Tumor Immune Dysfunction and Exclusion (TIDE) score was used to predict tumor response to immune checkpoint inhibitors. To decipher the underlying mechanism, GSVA was applied to explore enriched pathways associated with cuproptosis signature and Connectivity map (CMap) analysis for drug exploration. Finally, qPCR verified the expression levels of risk-genes in NB cell lines. In addition, PDHA1 was screened and further validated by immunofluorescence in human clinical samples and loss-of-function assays. Results We initially classified NB patients according to CRGs and identified two cuproptosis-related subtypes that were associated with prognosis and immunophenotype. After this, a cuproptosis-related prognostic model was constructed and validated by LASSO regression in three independent cohorts. This model can accurately predict prognosis, immune infiltration, and immunotherapy responses. These genes also showed differential expression in various characteristic groups of all three datasets and NB cell lines. Loss-of-function experiments indicated that PDHA1 silencing significantly suppressed the proliferation, migration, and invasion, in turn, promoted cell cycle arrest at the S phase and apoptosis of NB cells. Conclusions Taken together, this study may shed light on new research areas for NB patients from the cuproptosis perspective.
Collapse
Affiliation(s)
- Xiao-Mao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Bin Xiang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi-Hang Yu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Qi Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Zhao-Xia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chenghao Zhanghuang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Li-Ming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin-Kui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Mei-Lin Chen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Feng Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Guang-Hui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| |
Collapse
|
45
|
Cammarota A, Zanuso V, Pressiani T, Personeni N, Rimassa L. Assessment and Monitoring of Response to Systemic Treatment in Advanced Hepatocellular Carcinoma: Current Insights. J Hepatocell Carcinoma 2022; 9:1011-1027. [PMID: 36128575 PMCID: PMC9482774 DOI: 10.2147/jhc.s268293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) management has become more complex as novel therapies have been proven effective. After sorafenib, the approval of other multikinase inhibitors (MKIs) and immune checkpoints inhibitors (ICIs) has considerably increased the number of systemic therapies available. Therefore, careful assessment and monitoring of response to systemic treatment are essential to identify surrogate endpoints of overall survival (OS) in clinical trials and reliable tools to gauge treatment benefit in clinical practice. Progression-free survival (PFS) and objective response rate (ORR) are early informative parameters of efficacy that are not influenced by further lines of therapy. However, none of them has shown sufficient surrogacy to be recommended in place of OS in phase 3 trials. With such a wealth of therapeutic options, the prime intent of tumor assessments is no longer limited to identifying progressive disease to spare ineffective treatments to non-responders. Indeed, the early detection of responders could also help tailor treatment sequencing. Tumor assessment relies on the Response Evaluation Criteria for Solid Tumors (RECIST), which are easy to interpret - being based on dimensional principles - but could misread the activity of targeted agents. The HCC-specific modified RECIST (mRECIST), considering both the MKI-induced biological modifications and some of the cirrhosis-induced liver changes, better capture tumor response. Yet, mRECIST could not be considered a standard in advanced HCC. Further prognosticators including progression patterns, baseline and on-treatment liver function deterioration, and baseline alpha-fetoprotein (AFP) levels and AFP response have been extensively evaluated for MKIs. However, limited information is available for patients receiving ICIs and regarding their predictive role. Finally, there is increasing interest in incorporating novel imaging techniques which go beyond sizes and novel serum biomarkers in the advanced HCC framework. Hopefully, multiparametric models grouping dimensional and functional radiological parameters with biochemical markers will most precisely reflect treatment response.
Collapse
Affiliation(s)
- Antonella Cammarota
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| |
Collapse
|
46
|
Zhang L, Wang C, Lu X, Xu X, Shi T, Chen J. Transcriptome sequencing of hepatocellular carcinoma uncovers multiple types of dysregulated ncRNAs. Front Oncol 2022; 12:927524. [PMID: 36132143 PMCID: PMC9484539 DOI: 10.3389/fonc.2022.927524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptome profiling of hepatocellular carcinoma (HCC) by next-generation sequencing (NGS) technology has been broadly performed by previous studies, which facilitate our understanding of the molecular mechanisms of HCC formation, progression, and metastasis. However, few studies jointly analyze multiple types of noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and micro-RNAs (miRNAs), and further uncover their implications in HCC. In this study, we observed that the circRNA cZRANB1 and lncRNA DUXAP10 were not only significantly upregulated in tumor tissues, but also higher expressed in blood exosomes of HCC as compared with healthy donors. From the analysis of subclass-associated dysregulated ncRNAs, we observed that DLX6-AS1, an antisense RNA of DLX6, and the sense gene DLX6 were highly expressed in S1, a subclass with a more invasive/disseminative phenotype. High correlation between DLX6-AS1 and DLX6 suggested that DLX6-AS1 may function via promoting the transcription of DLX6. Integrative analysis uncovers circRNA–miRNA, lncRNA–miRNA, and competing endogenous RNA networks (ceRNAs). Specifically, cZRANB1, LINC00501, CTD-2008L17.2, and SLC7A11-AS1 may function as ceRNAs that regulate mRNAs by competing the shared miRNAs. Further prognostic analysis demonstrated that the dysregulated ncRNAs had the potential to predict HCC patients’ overall survival. In summary, we identified some novel circRNAs and miRNAs, and dysregulated ncRNAs that could participate in HCC tumorigenesis and progression by inducing transcription of their neighboring genes, increasing their derived miRNAs, or acting as miRNA sponges. Moreover, our systematic analysis provides not only rich data resources for related researchers, but also new insights into the molecular basis of how different ncRNAs coordinately or antagonistically participate in the pathogenesis process of diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunmei Wang
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Department of Gastroenterology, Affiliated Fengxian Hospital of Southern Medical University, Shanghai, China
| | - Xiaojie Lu
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
| | - Xiao Xu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| | - Jinlian Chen
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Department of Gastroenterology, Affiliated Fengxian Hospital of Southern Medical University, Shanghai, China
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| |
Collapse
|
47
|
Papaconstantinou D, Tsilimigras DI, Pawlik TM. Recurrent Hepatocellular Carcinoma: Patterns, Detection, Staging and Treatment. J Hepatocell Carcinoma 2022; 9:947-957. [PMID: 36090786 PMCID: PMC9450909 DOI: 10.2147/jhc.s342266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide with the incidence of recurrence being as high as 88% even among patients who have undergone curative-intent treatment. Despite improvements in overall survival, recurrence remains a challenge necessitating accurate reappraisal of patient and disease status. To that end, accurate staging of recurrent HCC is a necessity to provide better care for these patients. Risk factors for poor survival after HCC recurrence have been identified and include characteristics of the primary disease, such as tumor multifocality, large size (≥5 cm), macroscopic vascular or microscopic lymphovascular invasion, preoperative a-fetoprotein (AFP) levels, R0 resection, and the presence of impaired liver function. Close surveillance with imaging is warranted following curative-intent therapy, with magnetic resonance imaging (MRI) being the preferred approach to identify small, early recurrent HCCs. Treatment decisions at the time of recurrence involve ruling out extrahepatic disease and identifying candidates for potentially curative-intent repeat treatment options. Patients with recurrent disease are, however, very diverse in terms of tumor morphology and biologic behavior, as well as residual hepatic functional reserve. Patients with preserved liver function may benefit from repeat liver resection or ablation. Patients with recurrence within the Milan criteria may even be candidates for salvage liver transplantation, while multimodality treatment with combination of liver-directed therapies appears to enhance oncologic outcomes for individuals with advanced recurrent disease. A “one-size-fits-all” approach in staging recurrent HCC does not exist. Rather, individualized and evidence-based decision-making is necessary in order to optimize outcomes for patients with recurrent HCC.
Collapse
Affiliation(s)
- Dimitrios Papaconstantinou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
- Correspondence: Timothy M Pawlik, Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University, Wexner Medical Center, 395 W. 12th Ave., Suite 670, Columbus, OH, USA, Tel +1 614 293 8701, Fax +1 614 293 4063, Email
| |
Collapse
|
48
|
Laface C, Fedele P, Maselli FM, Ambrogio F, Foti C, Molinari P, Ammendola M, Lioce M, Ranieri G. Targeted Therapy for Hepatocellular Carcinoma: Old and New Opportunities. Cancers (Basel) 2022; 14:4028. [PMID: 36011021 PMCID: PMC9406380 DOI: 10.3390/cancers14164028] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primitive cancer of the liver, accounting for 90% of all recorded cases. HCC is the third most common cause of cancer-related death, with a 5-year survival rate of just 3%. In the advanced stages, systemic treatments allow doctors to obtain clinical benefits, although the prognosis remains very poor. In the past few decades, new molecular targeted therapies against receptor tyrosine kinases have been developed and clinically evaluated. Sorafenib was the first oral tyrosine kinase inhibitor (TKI) approved for the treatment of advanced HCC in 2007. Subsequently, other TKIs, including Cabozantinib, Regorafenib, Lenvatinib, and vascular endothelial growth factor receptor (VEGFR) inhibitors such as Ramucirumab and VEGF inhibitors such as Bevacizumab have been approved as first- or second-line treatments. More recently, the combination of immune checkpoint inhibitors and VEGF inhibitors (Atezolizumab plus Bevacizumab) have been analyzed and approved for the treatment of advanced HCC. On the basis of the poor prognoses and the meager benefits deriving from the available systemic therapies, research into new treatments is extremely necessary. In this review, we focus on the available systemic therapies for advanced HCC, with a look toward the future.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, BR, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, BR, Italy
| | | | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | | | - Michele Ammendola
- Department of Health Science, General Surgery, Medicine School of Germaneto, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marco Lioce
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | | |
Collapse
|
49
|
Adhoute X, De Matharel M, Mineur L, Pénaranda G, Ouizeman D, Toullec C, Tran A, Castellani P, Rollet A, Oules V, Perrier H, Si Ahmed SN, Bourliere M, Anty R. Second-line therapy for advanced hepatocellular carcinoma with regorafenib or cabozantinib: Multicenter French clinical experience in real-life after matching. World J Gastrointest Oncol 2022; 14:1510-1527. [PMID: 36160737 PMCID: PMC9412937 DOI: 10.4251/wjgo.v14.i8.1510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Starting a second-line systemic treatment for hepatocellular carcinoma (HCC) is a common situation. The only therapeutic options in France are two broad-spectrum tyrosine kinase inhibitors (TKIs), regorafenib (REG) and cabozantinib (CBZ), but no comparative real-life studies are available.
AIM To evaluate the progression-free survival (PFS) of patients treated with REG or CBZ, we investigated the disease control rate (DCR), overall survival (OS), and safety of both drugs. To identify the variables associated with disease progression over time.
METHODS A retrospective multicenter study was performed on the clinical data of patients attending one of three referral centers (Avignon, Marseille, and Nice) between January 2017 and March 2021 using propensity score matching. PFS and OS were assessed using the Kaplan-Meier method. Multivariate analysis (MA) of progression risk factors over time was performed in matched-pair groups.
RESULTS Fifty-eight patients 68 (62-74) years old with HCC, Barcelona clinic liver cancer (BCLC) B/C (86%), Child-Pugh (CP)-A/B (24%) received REG for 3.4 (1.4-10.5) mo as second-line therapy. Twenty-eight patients 68 (60-73) years, BCLC B/C (75%), CP-A/B (25%) received CBZ for 3.7 (1.8-4.9) mo after first-line treatment with sorafenib [3 (2-4) (CBZ) vs 4 (2.9-11.8) mo (REG), P = 0.0226]. Twenty percent of patients received third-line therapy. After matching, PFS and DCR were not significantly different after a median follow-up of 6.2 (2.7-11.7) mo (REG) vs 5.2 (4-7.2) mo (CBZ), P = 0.6925. There was no difference in grade 3/4 toxicities, dose reductions, or interruptions. The OS of CP-A patients was 8.3 (5.2-24.8) vs 4.9 (1.6-11.7) mo (CP-B), P = 0.0468. The MA of risk factors for progression over time identified C-reactive protein (CRP) > 10 mg/L, neutrophil-to-lymphocyte ratio (NLR) > 3, and aspartate aminotransferase (AST) > 45 IU as predictive factors.
CONCLUSION This multicenter indirect comparative study found no significant difference in PFS between REG and CBZ as second-line therapy for advanced HCC. Elevated levels of inflammatory markers (CRP and NLR) and AST were associated with non-control of TKIs over time. A 2-mo online progression risk calculation is proposed.
Collapse
Affiliation(s)
- Xavier Adhoute
- Department of Gastroenterology and Hepatology, Hôpital Saint-Joseph, Marseille 13000, France
| | - Marie De Matharel
- Department of Gastroenterology and Hepatology, Hôpital Universitaire de l’Archet, Nice 06000, France
| | - Laurent Mineur
- Department of Oncology, Institut Sainte-Catherine, Avignon 84000, France
| | | | - Dann Ouizeman
- Department of Gastroenterology and Hepatology, Hôpital Universitaire de l’Archet, Nice 06000, France
| | - Clemence Toullec
- Department of Oncology, Institut Sainte-Catherine, Avignon 84000, France
| | - Albert Tran
- Department of Gastroenterology and Hepatology, Hôpital Universitaire de l’Archet, Nice 06000, France
| | - Paul Castellani
- Department of Gastroenterology and Hepatology, Hôpital Saint-Joseph, Marseille 13000, France
| | - Armelle Rollet
- Department of Oncology, Institut Sainte-Catherine, Avignon 84000, France
| | - Valérie Oules
- Department of Gastroenterology and Hepatology, Hôpital Saint-Joseph, Marseille 13000, France
| | - Hervé Perrier
- Department of Gastroenterology and Hepatology, Hôpital Saint-Joseph, Marseille 13000, France
| | - Si Nafa Si Ahmed
- Department of Gastroenterology and Hepatology, Hôpital Saint-Joseph, Marseille 13000, France
| | - Marc Bourliere
- Department of Gastroenterology and Hepatology, Hôpital Saint-Joseph, Marseille 13000, France
| | - Rodolphe Anty
- Department of Gastroenterology and Hepatology, Hôpital Universitaire de l’Archet, Nice 06000, France
| |
Collapse
|
50
|
Ogasawara S, Koroki K, Kanzaki H, Kobayashi K, Kiyono S, Nakamura M, Kanogawa N, Saito T, Kondo T, Nakagawa R, Nakamoto S, Muroyama R, Chiba T, Kato N. Changes in therapeutic options for hepatocellular carcinoma in Asia. Liver Int 2022; 42:2055-2066. [PMID: 34780081 DOI: 10.1111/liv.15101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
The incidence rate of hepatocellular carcinoma (HCC) is expected to increase, with most cases occurring in Asia. In some parts of Asia, the occurrence of HCC developing from metabolic-related liver disease has markedly increased in recent years, whereas the occurrence of HCC developing from viral-hepatitis-related liver disease has decreased. Advancements in the treatment of HCC over the past few decades has been remarkable, with most treatment strategies to remove or control liver tumours (hepatic resection, local ablation, radiation therapy, transarterial chemoembolisation, hepatic arterial infusion chemotherapy) primarily developing in Asia. In addition, recent progress in systemic therapies has prolonged the prognosis of advanced HCC. Nowadays, six regimens of systemic therapies have become available in most countries, according to phase III trials (atezolizumab plus bevacizumab, sorafenib, lenvatinib, regorafenib, cabozantinib and ramucirumab). In a global randomised phase III trial (IMbrave 150 trial), the most effective of the latest drug designs was newly emerged combination immunotherapy (atezolizumab plus bevacizumab), which has shown significantly prolonged overall survival compared with sorafenib, which was the first-line systemic therapy for more than a decade. Now, the treatment dynamics for HCC are undergoing a major transition as a result of two important changes: the replacement of viral-related HCC by metabolic-related HCC and the emergence of combination immune therapy.
Collapse
Affiliation(s)
- Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|