1
|
Arnob A, Gairola A, Clayton H, Jayaraman A, Wu HJ. Factors Promoting Lipopolysaccharide Uptake by Synthetic Lipid Droplets. ACS OMEGA 2025; 10:5866-5873. [PMID: 39989833 PMCID: PMC11840781 DOI: 10.1021/acsomega.4c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Lipoproteins are essential in removing lipopolysaccharides (LPSs) from blood during bacterial inflammation. The physicochemical properties of lipoproteins and environmental factors can impact LPS uptake. This work prepared synthetic lipid droplets containing triglycerides, cholesterols, and phospholipids to mimic lipoproteins. The physicochemical properties of these lipid droplets, such as charges, sizes, and lipid compositions, were altered to understand the underlying factors affecting LPS uptake. The amphiphilic LPS could spontaneously adsorb on the surface of lipid droplets without lipopolysaccharide-binding protein (LBP); however, the presence of LBP can increase the LPS uptake. The positively charged lipid droplets also enhance the uptake of negatively charged LPS. Most interestingly, the LPS uptake highly depends on the concentrations of Ca2+ near the physiological conditions, but the impact of Mg2+ ions was insignificant. The increase in Ca2+ ions can improve LPS uptake by lipid droplets; this result suggested that Ca2+ may play an essential role in LPS clearance. Since septic shock patients typically suffer from hypocalcemia and low levels of lipoproteins, the supplementation of Ca2+ ions along with synthetic lipoproteins may be a potential treatment for severe sepsis.
Collapse
Affiliation(s)
- Assame Arnob
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Anirudh Gairola
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hannah Clayton
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arul Jayaraman
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Hung-Jen Wu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Arnob A, Gairola A, Clayton H, Jayaraman A, Wu HJ. Factors Promoting Lipopolysaccharide Uptake by Synthetic Lipid Droplets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619182. [PMID: 39464097 PMCID: PMC11507836 DOI: 10.1101/2024.10.19.619182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Lipoproteins are essential in removing lipopolysaccharide (LPS) from blood during bacterial inflammation. The physicochemical properties of lipoproteins and environmental factors can impact LPS uptake. In this work, synthetic lipid droplets containing triglycerides, cholesterols, and phospholipids, were prepared to mimic lipoproteins. The physicochemical properties of these lipid droplets, such as charges, sizes, and lipid compositions, were altered to understand the underlying factors affecting LPS uptake. The amphiphilic LPS could spontaneously adsorb on the surface of lipid droplets without lipopolysaccharide binding protein (LBP); however, the presence of LBP can increase LPS uptake. The positively charged lipid droplets also enhance the uptake of negatively charged LPS. Most interestingly, the LPS uptake highly depends on the concentrations of Ca2+ near the physiological conditions, but the impact of Mg2+ ions was not significant. The increase of Ca2+ ions can improve LPS uptake by lipid droplets; this result suggested that Ca2+ may play an essential role in LPS clearance. Since septic shock patients typically suffer from hypocalcemia and low levels of lipoproteins, the supplementation of Ca2+ ions along with synthetic lipoproteins may be a potential treatment for severe sepsis.
Collapse
Affiliation(s)
- Assame Arnob
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anirudh Gairola
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hannah Clayton
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hung-Jen Wu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Nganou-Makamdop K, Douek DC. The Gut and the Translocated Microbiomes in HIV Infection: Current Concepts and Future Avenues. Pathog Immun 2024; 9:168-194. [PMID: 38807656 PMCID: PMC11132393 DOI: 10.20411/pai.v9i1.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
It is widely acknowledged that HIV infection results in disruption of the gut's mucosal integrity partly due a profound loss of gastrointestinal CD4+ T cells that are targets of the virus. In addition, systemic inflammation and immune activation that drive disease pathogenesis are reduced but not normalized by antiretroviral therapy (ART). It has long been postulated that through the process of microbial translocation, the gut microbiome acts as a key driver of systemic inflammation and immune recovery in HIV infection. As such, many studies have aimed at characterizing the gut microbiota in order to unravel its influence in people with HIV and have reported an association between various bacterial taxa and inflammation. This review assesses both contra-dictory and consistent findings among several studies in order to clarify the overall mechanisms by which the gut microbiota in adults may influence immune recovery in HIV infection. Independently of the gut microbiome, observations made from analysis of microbial products in the blood provide direct insight into how the translocated microbiome may drive immune recovery. To help better understand strengths and limitations of the findings reported, this review also highlights the numerous factors that can influence microbiome studies, be they experimental methodologies, and host-intrinsic or host-extrinsic factors. Altogether, a fuller understanding of the interplay between the gut microbiome and immunity in HIV infection may contribute to preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Mostafa RH, Moustafa A. Beyond acute infection: molecular mechanisms underpinning cardiovascular complications in long COVID. Front Cardiovasc Med 2024; 11:1268571. [PMID: 38495940 PMCID: PMC10942004 DOI: 10.3389/fcvm.2024.1268571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
SARS-CoV-2, responsible for the global COVID-19 pandemic, has manifested significant cardiovascular implications for the infected population. These cardiovascular repercussions not only linger beyond the initial phase of illness but have also been observed in individuals who remain asymptomatic. This extended and pervasive impact is often called the post-acute COVID-19 syndrome (PACS) or "Long COVID". With the number of confirmed global cases approaching an alarming 756 million, the multifaceted challenges of Long COVID are undeniable. These challenges span from individual health complications to considerable burdens on worldwide healthcare systems. Our review comprehensively examines the complications of the persistent cardiovascular complications associated with COVID-19. Furthermore, we shed light on emerging therapeutic strategies that promise to manage and possibly mitigate these complications. We also introduce and discuss the profound concerns regarding the potential transgenerational repercussions of SARS-CoV-2, emphasizing the need for a proactive and informed approach to future research and clinical practice.
Collapse
Affiliation(s)
- Roba Hamed Mostafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| |
Collapse
|
5
|
Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, Loffredo S, Spadaro G, Varricchi G. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Front Immunol 2023; 14:1257398. [PMID: 37841257 PMCID: PMC10568625 DOI: 10.3389/fimmu.2023.1257398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1β, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results Our results showed increased serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1β, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Unità Operativa (UO) Medicina Trasfusionale, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Carla Messuri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| |
Collapse
|
6
|
Upasani V, ter Ellen BM, Sann S, Lay S, Heng S, Laurent D, Ly S, Duong V, Dussart P, Smit JM, Cantaert T, Rodenhuis-Zybert IA. Characterization of soluble TLR2 and CD14 levels during acute dengue virus infection. Heliyon 2023; 9:e17265. [PMID: 37416678 PMCID: PMC10320027 DOI: 10.1016/j.heliyon.2023.e17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Dengue virus infection results in a broad spectrum of diseases ranging from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Hitherto, there is no consensus biomarker for the prediction of severe dengue disease in patients. Yet, early identification of patients who progress to severe dengue is pivotal for better clinical management. We have recently reported that an increased frequency of classical (CD14 ++CD16-) monocytes with sustained high TLR2 expression in acutely infected dengue patients correlates with severe dengue development. Here, we hypothesized that the relatively lower TLR2 and CD14 expression in mild dengue patients is due to the shedding of their soluble forms (sTLR2 and sCD14) and that these could be used as indicators of disease progression. Therefore, using commercial sandwich ELISAs, we evaluated the release of sTLR2 and sCD14 by peripheral blood mononuclear cells (PBMCs) in response to in vitro dengue virus (DENV) infection and assessed their levels in acute-phase plasma of 109 dengue patients. We show that while both sTLR2 and sCD14 are released by PBMCs in response to DENV infection in vitro, their co-circulation in an acute phase of the disease is not always apparent. In fact, sTLR2 was found only in 20% of patients irrespective of disease status. In contrast, sCD14 levels were detected in all patients and were significantly elevated in DF patients when compared to DHF patients and age-matched healthy donors. Altogether, our results suggest that sCD14 may help in identifying patients at risk of severe dengue at hospital admittance.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sothy Heng
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut–liver axis in sepsis: interaction mechanisms and therapeutic potential. Crit Care 2022; 26:213. [PMID: 35831877 PMCID: PMC9277879 DOI: 10.1186/s13054-022-04090-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a potentially fatal condition caused by dysregulation of the body's immune response to an infection. Sepsis-induced liver injury is considered a strong independent prognosticator of death in the critical care unit, and there is anatomic and accumulating epidemiologic evidence that demonstrates intimate cross talk between the gut and the liver. Intestinal barrier disruption and gut microbiota dysbiosis during sepsis result in translocation of intestinal pathogen-associated molecular patterns and damage-associated molecular patterns into the liver and systemic circulation. The liver is essential for regulating immune defense during systemic infections via mechanisms such as bacterial clearance, lipopolysaccharide detoxification, cytokine and acute-phase protein release, and inflammation metabolic regulation. When an inappropriate immune response or overwhelming inflammation occurs in the liver, the impaired capacity for pathogen clearance and hepatic metabolic disturbance can result in further impairment of the intestinal barrier and increased disruption of the composition and diversity of the gut microbiota. Therefore, interaction between the gut and liver is a potential therapeutic target. This review outlines the intimate gut–liver cross talk (gut–liver axis) in sepsis.
Collapse
|
8
|
Chisari E, Cho J, Wouthuyzen-Bakker M, Parvizi J. Gut permeability may be associated with periprosthetic joint infection after total hip and knee arthroplasty. Sci Rep 2022; 12:15094. [PMID: 36064964 PMCID: PMC9445168 DOI: 10.1038/s41598-022-19034-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
A growing number of recent investigations on the human genome, gut microbiome, and proteomics suggests that the loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately influencing the close bidirectional interaction between the gut microbiome and the immune system. This cross-talk is highly influential in shaping the host immune system function and ultimately affecting the outcome of interventions. We hypothesized that the loss of mucosal barrier in the gut may be associatedto acute and chronic periprosthetic joint infections (PJI). Zonulin, soluble CD14 (sCD14), and lipopolysaccharide (LPS) were tested in plasma as part of a prospective cohort study of patients undergoing primary arthroplasty or revision arthroplasty because of an aseptic failure or PJI (as defined by the 2018 criteria). All blood samples were collected before antibiotic administration. Samples were tested using commercially available enzyme-linked immunosorbent assays as markers for gut permeability. A total of 134 patients were included in the study of which 44 patients had PJI (30 chronic and 14 acute), and the remaining 90 patients were categorized as non-infected that included 64 patients revised for aseptic failure, and 26 patients undergoing primary total joint arthroplasty. Both Zonulin (7.642 ± 6.077 ng/mL vs 4.560 ± 3.833 ng/mL; p < 0.001) and sCD14 levels (555.721 ± 216.659 ng/mL vs 396.872 ± 247.920 ng/mL; p = 0.003) were significantly elevated in the PJI group compared to non-infected cases. Higher levels of Zonulin were found in acute infections compared to chronic PJI (11.595 ± 6.722 ng/mL vs. 5.798 ± 4.841 ng/mL; p = 0.005). This prospective study reveals a possible link between gut permeability and the ‘gut-immune-joint axis’ in PJI. If this association continues to be borne out with a larger cohort and more in-depth analysis, it will have a clinically significant implication in managing patients with PJI. It may be that in addition to the administration of antimicrobials, patients with PJI and other orthopaedic infections may benefit from administration of gastrointestinal modulators such as pro and prebiotics.
Collapse
Affiliation(s)
- Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA, 19107, USA. .,Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Jeongeun Cho
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA, 19107, USA
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA, 19107, USA
| |
Collapse
|
9
|
Davidovich NV, Galieva AS, Opravin AS, Gagarina TY, Malygina OG, Leikhter SN, Bashilova EN, Bazhukova TA. Correlation of marker periodontopathogenic bacteria with the immune component sCD 14 secretion level in inflammatory periodontal diseases. Klin Lab Diagn 2022; 67:471-475. [PMID: 36095084 DOI: 10.51620/0869-2084-2022-67-8-471-475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipopolysaccharide of the cell wall of gram-negative bacteria is a highly active biological substance: its interaction with toll-like receptors-4 (TLR-4) of myeloid cells leads to the activation of a cascade of inflammatory reactions, which is accompanied by the release of the soluble CD14 receptor (sCD14), which can be considered not only as a marker of cell activation by endotoxin, but also as a marker of microbial translocation. The aim of the work was to assess the prognostic significance of the sCD14 level in the samples of the periodontal pocket in inflammatory periodontal diseases and the relationship of its secretion with marker periodontopathogens. For the study, washes were obtained from the periodontal pocket (88 samples in total) from patients with chronic periodontitis and intact periodontium. The sCD14 content was determined by ELISA; during real-time PCR, the marker periodontopathogens Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, Porphyromonas gingivalis, Prevotella intermedia, and Candida albicans were isolated. The study revealed differences in the level of sCD14 secretion by groups: in chronic periodontitis, its content was 8,5 times higher than in the control group and amounted to 17,2±4,06 ng/ml (p=0,006). The frequency of detecting genes of periodontal pathogenic bacteria was 89,3% in patients with periodontitis and 31,25% in the group with intact periodontium. An interesting dependence of the detection of periodontal pathogenic bacteria in the group of patients with chronic periodontitis was established depending on the content of sCD14. Thus, at high concentrations of soluble coreceptor, a greater number of periodontopathogenic bacteria of the I and II orders were released. Thus, in inflammatory periodontal diseases, the processes of sCD14 synthesis change, which is probably due to the colonization of periodontal pathogenic bacteria and the action of their toxins and aggression factors. The relationship of marker periodontopathogens with the level of secretion of the immune component sCD14 and its effect on the structure of the periodontal index reflect shifts in the processes of reparative regeneration of the oral mucosa and the regulation of local immunity in response to microbial invasion.
Collapse
Affiliation(s)
| | - A S Galieva
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - A S Opravin
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - T Yu Gagarina
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - O G Malygina
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - S N Leikhter
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - E N Bashilova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - T A Bazhukova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| |
Collapse
|
10
|
Wang T, Rong X, Zhao C. Circadian Rhythms Coordinated With Gut Microbiota Partially Account for Individual Differences in Hepatitis B-Related Cirrhosis. Front Cell Infect Microbiol 2022; 12:936815. [PMID: 35846774 PMCID: PMC9283756 DOI: 10.3389/fcimb.2022.936815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis is the end stage of chronic liver diseases like chronic hepatitis B. In China, hepatitis B accounts for around 60% of cases of cirrhosis. So far, clinical and laboratory indexes for the early diagnosis of cirrhosis are far from satisfactory. Nevertheless, there haven't been specific drugs for cirrhosis. Thus, it is quite necessary to uncover more specific factors which play their roles in cirrhosis and figure out the possible therapeutic targets. Among emerging factors taking part in the initiation and progression of cirrhosis, gut microbiota might be a pivot of systemic factors like metabolism and immune and different organs like gut and liver. Discovery of detailed molecular mechanism in gut microbiota and gut liver axis leads to a more promising prospect of developing new drugs intervening in these pathways. Time-based medication regimen has been proofed to be helpful in hormonotherapy, especially in the use of glucocorticoid. Thus, circadian rhythms, though haven't been strongly linked to hepatitis B and its complications, are still pivotal to various pathophysiological progresses. Gut microbiota as a potential effective factor of circadian rhythms has also received increasing attentions. Here, our work, restricting cirrhosis to the post-hepatitis B one, is aimed to summarize how circadian rhythms and hepatitis B-related cirrhosis can intersect via gut microbiota, and to throw new insights on the development of new and time-based therapies for hepatitis B-related cirrhosis and other cirrhosis.
Collapse
Affiliation(s)
- Tongyao Wang
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingyu Rong
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chao Zhao
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai, China
| |
Collapse
|
11
|
Bezhaeva T, Karper J, Quax PHA, de Vries MR. The Intriguing Role of TLR Accessory Molecules in Cardiovascular Health and Disease. Front Cardiovasc Med 2022; 9:820962. [PMID: 35237675 PMCID: PMC8884272 DOI: 10.3389/fcvm.2022.820962] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of Toll like receptors (TLR) plays an important role in cardiovascular disease development, progression and outcomes. Complex TLR mediated signaling affects vascular and cardiac function including tissue remodeling and repair. Being central components of both innate and adaptive arms of the immune system, TLRs interact as pattern recognition receptors with a series of exogenous ligands and endogenous molecules or so-called danger associated molecular patterns (DAMPs) that are released upon tissue injury and cellular stress. Besides immune cells, a number of structural cells within the cardiovascular system, including endothelial cells, smooth muscle cells, fibroblasts and cardiac myocytes express TLRs and are able to release or sense DAMPs. Local activation of TLR-mediated signaling cascade induces cardiovascular tissue repair but in a presence of constant stimuli can overshoot and cause chronic inflammation and tissue damage. TLR accessory molecules are essential in guiding and dampening these responses toward an adequate reaction. Furthermore, accessory molecules assure specific and exclusive TLR-mediated signal transduction for distinct cells and pathways involved in the pathogenesis of cardiovascular diseases. Although much has been learned about TLRs activation in cardiovascular remodeling, the exact role of TLR accessory molecules is not entirely understood. Deeper understanding of the role of TLR accessory molecules in cardiovascular system may open therapeutic avenues aiming at manipulation of inflammatory response in cardiovascular disease. The present review outlines accessory molecules for membrane TLRs that are involved in cardiovascular disease progression. We first summarize the up-to-date knowledge on TLR signaling focusing on membrane TLRs and their ligands that play a key role in cardiovascular system. We then survey the current evidence of the contribution of TLRs accessory molecules in vascular and cardiac remodeling including myocardial infarction, heart failure, stroke, atherosclerosis, vein graft disease and arterio-venous fistula failure.
Collapse
Affiliation(s)
- Taisiya Bezhaeva
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jacco Karper
- Department of Cardiology, Wilhelmina Hospital Assen, Assen, Netherlands
| | - Paul H. A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R. de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Margreet R. de Vries
| |
Collapse
|
12
|
McKenna ZJ, Gorini Pereira F, Gillum TL, Amorim FT, Deyhle MR, Mermier CM. High altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol 2022; 322:R192-R203. [PMID: 35043679 DOI: 10.1152/ajpregu.00270.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrointestinal complaints are often reported during ascents to high altitude (> 2500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction, and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggests that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Felipe Gorini Pereira
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, United States
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
13
|
Safadi JM, Quinton AMG, Lennox BR, Burnet PWJ, Minichino A. Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Mol Psychiatry 2022; 27:141-153. [PMID: 33558650 PMCID: PMC8960409 DOI: 10.1038/s41380-021-01032-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Reduced gut-microbial diversity ("gut dysbiosis") has been associated with an anhedonic/amotivational syndrome ("sickness behavior") that manifests across severe mental disorders and represent the key clinical feature of chronic fatigue. In this systematic review and meta-analysis, we investigated differences in proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue vs. controls and the association of these biomarkers with sickness behavior across diagnostic categories. Following PRISMA guidelines, we searched from inception to April 2020 for all the studies investigating proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue. Data were independently extracted by multiple observers, and a random-mixed model was used for the analysis. Heterogeneity was assessed with the I2 index. Thirty-three studies were included in the systematic review; nineteen in the meta-analysis (N = 2758 patients and N = 1847 healthy controls). When compared to controls, patients showed increased levels of zonulin (four studies reporting data on bipolar disorder and depression, SMD = 0.97; 95% Cl = 0.10-1.85; P = 0.03, I2 = 86.61%), lipopolysaccharide (two studies reporting data on chronic fatigue and depression, SMD = 0.77; 95% Cl = 0.42-1.12; P < 0.01; I2 = 0%), antibodies against endotoxin (seven studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.99; 95% CI = 0.27-1.70; P < 0.01, I2 = 97.14%), sCD14 (six studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.54; 95% Cl 0.16-0.81; P < 0.01, I2 = 90.68%), LBP (LBP, two studies reporting data on chronic fatigue and depression, SMD = 0.87; 95% Cl = 0.25-1.48; P < 0.01; I2 = 56.80%), alpha-1-antitripsin (six studies reporting data on bipolar disorder, depression, and schizophrenia, SMD = 1.23; 95% Cl = 0.57-1.88; P < 0.01, I2: 89.25%). Elevated levels of gut dysbiosis markers positively correlated with severity of sickness behavior in patients with severe mental illness and chronic fatigue. Our findings suggest that gut dysbiosis may underlie symptoms of sickness behavior across traditional diagnostic boundaries. Future investigations should validate these findings comparing the performances of the trans-diagnostic vs. categorical approach. This will facilitate treatment breakthrough in an area of unmet clinical need.
Collapse
Affiliation(s)
- Jenelle Marcelle Safadi
- grid.5386.8000000041936877XCornell University, Ithaca, NY USA ,grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alice M. G. Quinton
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Belinda R. Lennox
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Philip W. J. Burnet
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Malazogu F, Rousseau RK, Shivappa N, Huibner S, Walmsley SL, Kovacs CM, Benko E, Reinhard RJ, Rosenes R, Hebert JR, Kaul R. The Dietary Inflammatory Index Is Not Associated With Gut Permeability or Biomarkers of Systemic Inflammation in HIV Immunologic Non-responders. Front Nutr 2021; 8:736816. [PMID: 34881278 PMCID: PMC8646029 DOI: 10.3389/fnut.2021.736816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Immunologic non-responders (INRs) are a subset of individuals living with HIV who have suboptimal blood CD4+ T cell recovery despite effective antiretroviral therapy (ART). They are at an increased risk of serious non-AIDS co-morbidities and death, and demonstrate enhanced systemic immune activation. In other populations diet has been correlated with markers of systemic inflammation through the Diet Inflammatory Index (DII), but this association has not been studied in persons living with HIV (PLWH). Blood was collected from 28 INR PLWH with a blood CD4+ T cell count <350/μL despite ≥2 years of effective ART. Participants completed a Canadian Diet History Questionnaire, and their responses were used to calculate the DII. Plasma inflammatory markers (IFNγ, TNF, IL-6, sVCAM, D-dimer, sCD14 and CRP) were assayed by ELISA, cellular immune activation (HLA-DR and CD38 on CD4+ and CD8+ T cells) was quantified using flow cytometry, and small bowel permeability assessed by calculation of the urine LacMan ratio after drinking a mix of lactulose and mannitol. Participants were a median age of 57 years, had been on effective ART for 15 years, and the median DII was -1.91 (range of -3.78 to +2.23). No correlation was observed between DII and plasma markers of inflammation, levels of T cell activation, gut permeability, or the biomarker of bacterial translocation sCD14. Self-reported alcohol intake, a potential confounder of the relationship between diet and inflammatory biomarkers, was also not associated with systemic inflammation or gut permeability. Our findings suggest that other mechanisms, rather than diet, are likely to be the major driver of systemic inflammation in INR individuals.
Collapse
Affiliation(s)
- Fat Malazogu
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Rodney K Rousseau
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.,Department of Nutrition, Connecting Health Innovations Limited Liability Corporation (LLC), Columbia, SC, United States
| | - Sanja Huibner
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Sharon L Walmsley
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Colin M Kovacs
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada.,Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, ON, Canada
| | | | | | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.,Department of Nutrition, Connecting Health Innovations Limited Liability Corporation (LLC), Columbia, SC, United States
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Chang CJ, Zhang J, Tsai YL, Chen CB, Lu CW, Huo YP, Liou HM, Ji C, Chung WH. Compositional Features of Distinct Microbiota Base on Serum Extracellular Vesicle Metagenomics Analysis in Moderate to Severe Psoriasis Patients. Cells 2021; 10:2349. [PMID: 34571998 PMCID: PMC8467001 DOI: 10.3390/cells10092349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
The bacterial microbiota in the skin and intestine of patients with psoriasis were different compared with that of healthy individuals. However, the presence of a distinct blood microbiome in patients with psoriasis is yet to be investigated. In this study, we investigated the differences in bacterial communities in plasma-derived extracellular vesicles (EVs) between patients with moderate to severe psoriasis (PSOs) and healthy controls (HCs). The plasma EVs from the PSO (PASI > 10) (n = 20) and HC (n = 8) groups were obtained via a series of centrifugations, and patterns were examined and confirmed using transmission electron microscopy (TEM) and EV-specific markers. The taxonomic composition of the microbiota was determined by using full-length 16S ribosomal RNA gene sequencing. The PSO group had lower bacterial diversity and richness compared with HC group. Principal coordinate analysis (PCoA)-based clustering was used to assess diversity and validated dysbiosis for both groups. Differences at the level of amplicon sequence variant (ASV) were observed, suggesting alterations in specific ASVs according to health conditions. The HC group had higher levels of the phylum Firmicutes and Fusobacteria than in the PSO group. The order Lactobacillales, family Brucellaceae, genera Streptococcus, and species Kingella oralis and Aquabacterium parvum were highly abundant in the HC group compared with the PSO group. Conversely, the order Bacillales and the genera Staphylococcus and Sphihgomonas, as well as Ralstonia insidiosa, were more abundant in the PSO group. We further predicted the microbiota functional capacities, which revealed significant differences between the PSO and HC groups. In addition to previous studies on microbiome changes in the skin and gut, we demonstrated compositional differences in the microbe-derived EVs in the plasma of PSO patients. Plasma EVs could be an indicator for assessing the composition of the microbiome of PSO patients.
Collapse
Affiliation(s)
- Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, Taipei 114202, Taiwan;
| | - Chun-Bing Chen
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chun-Wei Lu
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yu-Ping Huo
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Huey-Ming Liou
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Wen-Hung Chung
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Monnig MA, Lamb PS, Parra JM, Cioe PA, Martone CM, Monti PM, Szabo G. Immune Response to an Acute Moderate Dose of Alcohol in Healthy Young Adults. Alcohol Alcohol 2021; 55:616-623. [PMID: 32776108 DOI: 10.1093/alcalc/agaa079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Prior research on alcohol and the immune system has tended to focus on binge doses or chronic heavy drinking. The aim of this single-session preliminary study was to characterize immune response to moderate alcohol (0.60 g alcohol per kilogram body weight) in healthy, nonchronic drinkers. The sample (N = 11) averaged 26.6 years of age and was balanced in gender. Plasma samples were collected at baseline and 1, 2 and 3 hours postconsumption. Markers of microbial translocation [lipopolysaccharide (LPS)] and innate immune response [LPS-binding protein (LBP), soluble cluster of differentiation 14 (sCD14), and selected cytokines] were measured using immunoassays. Participants completed self-report questionnaires on subjective alcohol response and craving. Linear mixed models were used to assess changes in biomarkers and self-report measures. Breath alcohol concentration peaked at 0.069 ± 0.008% 1 hour postconsumption. LPS showed a significant linear decrease. LBP and sCD14 showed significant, nonlinear (U-shaped) trajectories wherein levels decreased at 1 hour then rebounded by 3 hours. Of nine cytokines tested, only MCP-1 and IL-8 were detectable in ≥50% of samples. IL-8 did not change significantly. MCP-1 showed a significant linear decrease and also accounted for significant variance in alcohol craving, with higher levels associated with stronger craving. Results offer novel evidence on acute immune response to moderate alcohol. Changes in LBP and sCD14, relative to LPS, may reflect their role in LPS clearance. Results also support further investigation into the role of MCP-1 in alcohol craving. Limitations include small sample size and lack of a placebo condition.
Collapse
Affiliation(s)
- Mollie A Monnig
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-5, Providence, RI 02912, USA
| | - Philip S Lamb
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-5, Providence, RI 02912, USA
| | - Jose M Parra
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-5, Providence, RI 02912, USA
| | - Patricia A Cioe
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-5, Providence, RI 02912, USA
| | - Christina M Martone
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-5, Providence, RI 02912, USA
| | - Peter M Monti
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-5, Providence, RI 02912, USA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center and Beth Israel Lahey Health, Dept of Medicine, Division of Gastroenterology, ST-214B, 330 Brookline Ave, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
17
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
18
|
Lipopolysaccharide binding protein is associated with CVD risk in older adults. Aging Clin Exp Res 2021; 33:1651-1658. [PMID: 32895891 DOI: 10.1007/s40520-020-01684-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intestinal (i.e., "gut") permeability may be related to cardiovascular disease (CVD) risk, but biomarkers for gut permeability are limited and associations with CVD risk are unknown-particularly among older adults. AIMS This cross-sectional study aimed to determine if serum biomarkers related to gut permeability [intestinal fatty acid-binding protein (iFABP)] and bacterial toxin clearing [cluster of differentiation 14 (CD14), lipopolysaccharide binding protein (LBP)] are associated with CVD risk among older adults. METHODS Older adults (n = 74, 69.6 ± 6.5-years-old) were stratified by CVD risk category. One-way ANOVAs determined differences in each biomarker by risk category, and associations with risk score were evaluated with Pearson correlations. RESULTS LBP (p = 0.007), but not iFABP and CD14, was significantly different between CVD risk categories. Post-hoc tests indicated LBP was higher in moderate risk and high-moderate risk compared to the high risk category (p < 0.005). Evaluation of LBP and individual components in the risk score demonstrated a moderate, negative correlation of LBP with age and systolic blood pressure (r = - 0.335 and r = - 0.297) and a small positive correlation between LBP and total cholesterol and LDL cholesterol (r = 0.204 and r = 0.220). DISCUSSION/CONCLUSION Lower risk for CVD was associated with higher circulating concentrations of LBP, lower iFABP, and lower systemic inflammation in older adults. Further, there were small positive relationships between total and LDL cholesterol and circulating levels of LBP. These data suggest LBP may be a key component in reducing CVD risk in older adults.
Collapse
|
19
|
Patterson GT, Manthi D, Osuna F, Muia A, Olack B, Mbuchi M, Saldarriaga OA, Ouma L, Inziani M, Yu X, Otieno P, Melby PC. Environmental, Metabolic, and Inflammatory Factors Converge in the Pathogenesis of Moderate Acute Malnutrition in Children: An Observational Cohort Study. Am J Trop Med Hyg 2021; 104:1877-1888. [PMID: 33755580 PMCID: PMC8103470 DOI: 10.4269/ajtmh.20-0963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 01/04/2023] Open
Abstract
Acute malnutrition affects more than 50 million children worldwide. These children are at an increased risk of morbidity and mortality from infectious disease. However, the pathogenesis of acute malnutrition and mechanisms underlying the increased risk and poor outcomes from infection are not well understood. Our objective was to identify differences in inflammation and inflammatory responses between children with moderate acute malnutrition (MAM) and healthy controls (HCs), and search for environmental, pathophysiological, and metabolic factors that may influence this response. Sixteen children with MAM and 16 HCs aged 18-36 months were studied in Nairobi, Kenya. None of the children had symptoms of an infectious disease (fever, diarrhea, or cough) in the 2 weeks before enrollment and sample collection. Demographic and health data were provided by their primary caregivers. Blood samples were collected to measure various biomarkers and the response to an inflammatory stimulus. Children with MAM were more frequently from households with contaminated water, crowding, and unstable income sources. They also had increases in basal inflammation, circulating bacterial lipopolysaccharide (LPS), markers of intestinal damage, and an exaggerated whole blood inflammatory response to LPS. Metabolic changes in children with MAM led to increased plasma levels of long-chain fatty acids, which were found to contribute to the pro-inflammatory state. These exploratory findings suggest convergence of multiple factors to promote dysregulated inflammatory responses and prompt several mechanistic hypotheses that can be pursued to better understand the pathogenesis of MAM.
Collapse
Affiliation(s)
- Grace T. Patterson
- Department of Internal Medicine and Infectious Disease, University of Texas Medical Branch, Galveston, Texas
| | - Dennis Manthi
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Finnley Osuna
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Alfred Muia
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Beatrice Olack
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Margaret Mbuchi
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Omar A. Saldarriaga
- Department of Internal Medicine and Infectious Disease, University of Texas Medical Branch, Galveston, Texas
| | - Linet Ouma
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Mary Inziani
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Xiaoying Yu
- Department of Preventative Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas
| | - Phelgona Otieno
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya;,Address correspondence to Phelgona Otieno, Kenya Medical Research Institute, Mbagathi Road, Nairobi, Kenya, E-mail: or Peter C. Melby, Department of Internal Medicine and Infectious Disease, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77550, E-mail:
| | - Peter C. Melby
- Department of Internal Medicine and Infectious Disease, University of Texas Medical Branch, Galveston, Texas;,Address correspondence to Phelgona Otieno, Kenya Medical Research Institute, Mbagathi Road, Nairobi, Kenya, E-mail: or Peter C. Melby, Department of Internal Medicine and Infectious Disease, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77550, E-mail:
| |
Collapse
|
20
|
Croci S, D’Apolito LI, Gasperi V, Catani MV, Savini I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021; 13:nu13051389. [PMID: 33919016 PMCID: PMC8142993 DOI: 10.3390/nu13051389] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex pathophysiological state with incidence similar to that of a global epidemic and represents a risk factor for the onset of chronic non-communicable degenerative diseases (NCDDs), including cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and some types of cancer. A plethora of literature data suggest the potential role of gut microbiota in interfering with the host metabolism, thus influencing several MetS risk factors. Perturbation of the gut microbiota’s composition and activity, a condition known as dysbiosis, is involved in the etiopathogenesis of multiple chronic diseases. Recent studies have shown that some micro-organism-derived metabolites (including trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS) of Gram-negative bacteria, indoxyl sulfate and p-cresol sulfate) induce subclinical inflammatory processes involved in MetS. Gut microbiota’s taxonomic species or abundance are modified by many factors, including diet, lifestyle and medications. The main purpose of this review is to highlight the correlation between different dietary strategies and changes in gut microbiota metabolites. We mainly focus on the validity/inadequacy of specific dietary patterns to reduce inflammatory processes, including leaky gut and subsequent endotoxemia. We also describe the chance of probiotic supplementation to interact with the immune system and limit negative consequences associated with MetS.
Collapse
Affiliation(s)
| | | | - Valeria Gasperi
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-72596465 (V.G. & M.V.C.)
| | | | | |
Collapse
|
21
|
Petruk G, Puthia M, Petrlova J, Samsudin F, Strömdahl AC, Cerps S, Uller L, Kjellström S, Bond PJ, Schmidtchen AA. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. J Mol Cell Biol 2021; 12:916-932. [PMID: 33295606 PMCID: PMC7799037 DOI: 10.1093/jmcb/mjaa067] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
There is a link between high lipopolysaccharide (LPS) levels in the blood and the metabolic syndrome, and metabolic syndrome predisposes patients to severe COVID-19. Here, we define an interaction between SARS-CoV-2 spike (S) protein and LPS, leading to aggravated inflammation in vitro and in vivo. Native gel electrophoresis demonstrated that SARS-CoV-2 S protein binds to LPS. Microscale thermophoresis yielded a KD of ∼47 nM for the interaction. Computational modeling and all-atom molecular dynamics simulations further substantiated the experimental results, identifying a main LPS-binding site in SARS-CoV-2 S protein. S protein, when combined with low levels of LPS, boosted nuclear factor-kappa B (NF-κB) activation in monocytic THP-1 cells and cytokine responses in human blood and peripheral blood mononuclear cells, respectively. The in vitro inflammatory response was further validated by employing NF-κB reporter mice and in vivo bioimaging. Dynamic light scattering, transmission electron microscopy, and LPS-FITC analyses demonstrated that S protein modulated the aggregation state of LPS, providing a molecular explanation for the observed boosting effect. Taken together, our results provide an interesting molecular link between excessive inflammation during infection with SARS-CoV-2 and comorbidities involving increased levels of bacterial endotoxins.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Ann-Charlotte Strömdahl
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Samuel Cerps
- Unit of Respiratory Immunopharmacology, Department of Experimental Medicine, Lund University, SE-22184 Lund, Sweden
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medicine, Lund University, SE-22184 Lund, Sweden
| | - Sven Kjellström
- Division of Mass Spectrometry, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - And Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden.,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, DK-2400 Copenhagen, Denmark.,Dermatology, Skåne University Hospital, SE-22185 Lund, Sweden
| |
Collapse
|
22
|
Analysis of Inflammatory Mediator Profiles in Sepsis Patients Reveals That Extracellular Histones Are Strongly Elevated in Nonsurvivors. Mediators Inflamm 2021; 2021:8395048. [PMID: 33790693 PMCID: PMC7994100 DOI: 10.1155/2021/8395048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
The timely recognition of sepsis and the prediction of its clinical course are challenging due to the complex molecular mechanisms leading to organ failure and to the heterogeneity of sepsis patients. Treatment strategies relying on a “one-fits-all” approach have failed to reduce mortality, suggesting that therapeutic targets differ between patient subgroups and highlighting the need for accurate analysis of the molecular cascades to assess the highly variable host response. Here, we characterized a panel of 44 inflammatory mediators, including cytokines, chemokines, damage-associated molecular patterns, and coagulation-related factors, as well as markers of endothelial activation in 30 patients suffering from renal failure in the course of sepsis. All patients received continuous veno-venous hemodialysis with either high cut-off filters or with standard filters, and mediators were quantified for all patients at the initiation of dialysis and after 24 h and 48 h. Mediator concentrations in individual patients ranged widely, demonstrating the heterogeneity of sepsis patients. None of the mediators correlated with SAPS III or TISS scores. The overall in-hospital mortality of the study population was 56.7% (57.1% vs. 56.3% for high cut-off vs. standard filter). The two filter groups differed regarding most of the mediator levels at baseline, prohibiting conclusions regarding the effect of standard filters versus high cut-off filters on mediator depletion. The elevation and correlation of damage-associated molecular patterns and markers of endothelial activation gave evidence of severe tissue damage. In particular, extracellular histones were strongly increased and were almost 30-fold higher in nonsurvivors as compared to survivors, indicating their diagnostic and prognostic potential.
Collapse
|
23
|
Njunge JM, Gonzales GB, Ngari MM, Thitiri J, Bandsma RH, Berkley JA. Systemic inflammation is negatively associated with early post discharge growth following acute illness among severely malnourished children - a pilot study. Wellcome Open Res 2021; 5:248. [PMID: 33969227 PMCID: PMC8080977 DOI: 10.12688/wellcomeopenres.16330.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Rapid growth should occur among children with severe malnutrition (SM) with medical and nutritional management. Systemic inflammation (SI) is associated with death among children with SM and is negatively associated with linear growth. However, the relationship between SI and weight gain during therapeutic feeding following acute illness is unknown. We hypothesised that growth post-hospital discharge is associated with SI among children with SM. Methods: We conducted secondary analysis of data from HIV-uninfected children with SM (n=98) who survived and were not readmitted to hospital during one year of follow-up. We examined the relationship between changes in absolute deficits in weight and mid-upper-arm circumference (MUAC) from enrolment at stabilisation to 60 days and one year later, and untargeted plasma proteome, targeted cytokines/chemokines, leptin, and soluble CD14 using multivariate regularized linear regression. Results: The mean change in absolute deficit in weight and MUAC was -0.50kg (standard deviation; SD±0.69) and -1.20cm (SD±0.89), respectively, from enrolment to 60 days later. During the same period, mean weight and MUAC gain was 3.3g/kg/day (SD±2.4) and 0.22mm/day (SD±0.2), respectively. Enrolment interleukins; IL17-alpha and IL-2, and serum amyloid P were negatively associated with weight and MUAC gain during 60 days. Lipopolysaccharide binding protein and complement component 2 were negatively associated with weight gain only. Leptin was positively associated with weight gain. Soluble CD14, beta-2 microglobulin, and macrophage inflammatory protein 1 beta were negatively associated with MUAC gain only. Glutathione peroxidase 3 was positively associated with weight and MUAC gain during one year. Conclusions: Early post-hospital discharge weight and MUAC gain were rapid and comparable to children with uncomplicated SM treated in the community. Higher concentrations of SI markers were associated with less weight and MUAC gain, suggesting inflammation negatively impacts recovery from wasting. This finding warrants further research on reducing inflammation on growth among children with SM.
Collapse
Affiliation(s)
- James M. Njunge
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gerard Bryan Gonzales
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Moses M. Ngari
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Thitiri
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Robert H.J. Bandsma
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A. Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Voigt RM, Raeisi S, Yang J, Leurgans S, Forsyth CB, Buchman AS, Bennett DA, Keshavarzian A. Systemic brain derived neurotrophic factor but not intestinal barrier integrity is associated with cognitive decline and incident Alzheimer's disease. PLoS One 2021; 16:e0240342. [PMID: 33661922 PMCID: PMC7932071 DOI: 10.1371/journal.pone.0240342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
The inflammatory hypothesis posits that sustained neuroinflammation is sufficient to induce neurodegeneration and the development of Alzheimer's disease (AD) and Alzheimer's dementia. One potential source of inflammation is the intestine which harbors pro-inflammatory microorganisms capable of promoting neuroinflammation. Systemic inflammation is robustly associated with neuroinflammation as well as low levels of brain derived neurotrophic factor (BDNF) in the systemic circulation and brain. Thus, in this pilot study, we tested the hypothesis that intestinal barrier dysfunction precedes risk of death, incident AD dementia and MCI, cognitive impairment and neuropathology. Serum BDNF was associated with changes in global cognition, working memory, and perceptual speed but not risk of death, incident AD dementia, incident MCI, or neuropathology. Neither of the markers of intestinal barrier integrity examined, including lipopolysaccharide binding protein (LBP) nor intestinal fatty acid binding protein (IFABP), were associated with risk of death, incident AD dementia, incident mild cognitive impairment (MCI), change in cognition (global or domains), or neuropathology. Taken together, the data in this pilot study suggest that intestinal barrier dysfunction does not precede diagnosis of AD or MCI, changes in cognition, or brain pathology. However, since MCI and AD are related to global cognition, the findings with BDNF and the contiguous cognitive measures suggest low power with the trichotomous cognitive status measures. Future studies with larger sample sizes are necessary to further investigate the results from this pilot study.
Collapse
Affiliation(s)
- Robin M. Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| | - Shohreh Raeisi
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sue Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Christopher B. Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
25
|
Ancona G, Merlini E, Tincati C, Barassi A, Calcagno A, Augello M, Bono V, Bai F, Cannizzo ES, d'Arminio Monforte A, Marchetti G. Long-Term Suppressive cART Is Not Sufficient to Restore Intestinal Permeability and Gut Microbiota Compositional Changes. Front Immunol 2021; 12:639291. [PMID: 33717191 PMCID: PMC7952451 DOI: 10.3389/fimmu.2021.639291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: We explored the long-term effects of cART on markers of gut damage, microbial translocation, and paired gut/blood microbiota composition, with a focus on the role exerted by different drug classes. Methods: We enrolled 41 cART naïve HIV-infected subjects, undergoing blood and fecal sampling prior to cART (T0) and after 12 (T12) and 24 (T24) months of therapy. Fifteen HIV-uninfected individuals were enrolled as controls. We analyzed: (i) T-cell homeostasis (flow cytometry); (ii) microbial translocation (sCD14, EndoCab, 16S rDNA); (iii) intestinal permeability and damage markers (LAC/MAN, I-FABP, fecal calprotectin); (iv) plasma and fecal microbiota composition (alpha- and beta-diversity, relative abundance); (v) functional metagenome predictions (PICRUSt). Results: Twelve and twenty four-month successful cART resulted in a rise in EndoCAb (p = 0.0001) and I-FABP (p = 0.039) vis-à-vis stable 16S rDNA, sCD14, calprotectin and LAC/MAN, along with reduced immune activation in the periphery. Furthermore, cART did not lead to substantial modifications of microbial composition in both plasma and feces and metabolic metagenome predictions. The stratification according to cART regimens revealed a feeble effect on microbiota composition in patients on NNRTI-based or INSTI-based regimens, but not PI-based regimens. Conclusions: We hereby show that 24 months of viro-immunological effective cART, while containing peripheral hyperactivation, exerts only minor effects on the gastrointestinal tract. Persistent alteration of plasma markers indicative of gut structural and functional impairment seemingly parallels enduring fecal dysbiosis, irrespective of drug classes, with no effect on metabolic metagenome predictions.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Esther Merlini
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Barassi
- Biochemistry Laboratory, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Elvira S Cannizzo
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
26
|
Zingaropoli MA, Nijhawan P, Carraro A, Pasculli P, Zuccalà P, Perri V, Marocco R, Kertusha B, Siccardi G, Del Borgo C, Curtolo A, Ajassa C, Iannetta M, Ciardi MR, Mastroianni CM, Lichtner M. Increased sCD163 and sCD14 Plasmatic Levels and Depletion of Peripheral Blood Pro-Inflammatory Monocytes, Myeloid and Plasmacytoid Dendritic Cells in Patients With Severe COVID-19 Pneumonia. Front Immunol 2021; 12:627548. [PMID: 33777012 PMCID: PMC7993197 DOI: 10.3389/fimmu.2021.627548] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Emerging evidence argues that monocytes, circulating innate immune cells, are principal players in COVID-19 pneumonia. The study aimed to investigate the role of soluble (s)CD163 and sCD14 plasmatic levels in predicting disease severity and characterize peripheral blood monocytes and dendritic cells (DCs), in patients with COVID-19 pneumonia (COVID-19 subjects). Methods On admission, in COVID-19 subjects sCD163 and sCD14 plasmatic levels, and peripheral blood monocyte and DC subsets were compared to healthy donors (HDs). According to clinical outcome, COVID-19 subjects were divided into ARDS and non-ARDS groups. Results Compared to HDs, COVID-19 subjects showed higher sCD163 (p<0.0001) and sCD14 (p<0.0001) plasmatic levels. We observed higher sCD163 plasmatic levels in the ARDS group compared to the non-ARDS one (p=0.002). The cut-off for sCD163 plasmatic level greater than 2032 ng/ml was predictive of disease severity (AUC: 0.6786, p=0.0022; sensitivity 56.7% [CI: 44.1–68.4] specificity 73.8% [CI: 58.9–84.7]). Positive correlation between plasmatic levels of sCD163, LDH and IL-6 and between plasmatic levels of sCD14, D-dimer and ferritin were found. Compared to HDs, COVID-19 subjects showed lower percentages of non-classical (p=0.0012) and intermediate monocytes (p=0.0447), slanDCs (p<0.0001), myeloid DCs (mDCs, p<0.0001), and plasmacytoid DCs (pDCs, p=0.0014). Compared to the non-ARDS group, the ARDS group showed lower percentages of non-classical monocytes (p=0.0006), mDCs (p=0.0346), and pDCs (p=0.0492). Conclusions The increase in sCD163 and sCD14 plasmatic levels, observed on hospital admission in COVID-19 subjects, especially in those who developed ARDS, and the correlations of these monocyte/macrophage activation markers with typical inflammatory markers of COVID-19 pneumonia, underline their potential use to assess the risk of progression of the disease. In an early stage of the disease, the assessment of sCD163 plasmatic levels could have clinical utility in predicting the severity of COVID-19 pneumonia.
Collapse
Affiliation(s)
| | - Parni Nijhawan
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paola Zuccalà
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Blerta Kertusha
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Siccardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Ambrogio Curtolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Camilla Ajassa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Marco Iannetta
- Department of System Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
27
|
Keane JM, Khashan AS, McCarthy FP, Kenny LC, Collins JM, O'Donovan S, Brown J, Cryan JF, Dinan TG, Clarke G, O'Mahony SM. Identifying a biological signature of prenatal maternal stress. JCI Insight 2021; 6:143007. [PMID: 33301421 PMCID: PMC7934857 DOI: 10.1172/jci.insight.143007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Psychological stress affects maternal gastrointestinal (GI) permeability, leading to low-grade inflammation, which can negatively affect fetal development. We investigated a panel of circulating markers as a biological signature of this stress exposure in pregnant women with and without the stress-related GI disorder irritable bowel syndrome (IBS). Markers of GI permeability and inflammation were measured in plasma from healthy and IBS cohorts of women at 15 and 20 weeks’ gestation. Biomarkers were evaluated with respect to their degree of association to levels of stress, anxiety, and depression as indicated by responses from the Perceived Stress Scale, State-Trait Anxiety Inventory, and Edinburgh Postnatal Depression Scale. High levels of stress were associated with elevations of soluble CD14, lipopolysaccharide binding protein (LBP), and tumor necrosis factor–α, while anxiety was associated with elevated concentrations of C-reactive protein (CRP) in otherwise healthy pregnancies. Prenatal depression was associated with higher levels of soluble CD14, LBP, and CRP in the healthy cohort. High levels of prenatal anxiety and depression were also associated with lower concentrations of tryptophan and kynurenine, respectively, in the IBS cohort. These markers may represent a core maternal biological signature of active prenatal stress, which can be used to inform intervention strategies via stress reduction techniques or other lifestyle approaches. Such interventions may need to be tailored to reflect underlying GI conditions, such as IBS.
Collapse
Affiliation(s)
| | - Ali S Khashan
- School of Public Health, University College Cork, Ireland.,The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.,Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
| | - Louise C Kenny
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, United Kingdom
| | - James M Collins
- APC Microbiome Ireland and.,Department of Anatomy and Neuroscience and
| | | | | | - John F Cryan
- APC Microbiome Ireland and.,Department of Anatomy and Neuroscience and
| | - Timothy G Dinan
- APC Microbiome Ireland and.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland and.,The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | |
Collapse
|
28
|
Alarcón-Vila C, Baroja-Mazo A, de Torre-Minguela C, Martínez CM, Martínez-García JJ, Martínez-Banaclocha H, García-Palenciano C, Pelegrin P. CD14 release induced by P2X7 receptor restricts inflammation and increases survival during sepsis. eLife 2020; 9:60849. [PMID: 33135636 PMCID: PMC7690950 DOI: 10.7554/elife.60849] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
P2X7 receptor activation induces the release of different cellular proteins, such as CD14, a glycosylphosphatidylinositol (GPI)-anchored protein to the plasma membrane important for LPS signaling via TLR4. Circulating CD14 has been found at elevated levels in sepsis, but the exact mechanism of CD14 release in sepsis has not been established. Here, we show for first time that P2X7 receptor induces the release of CD14 in extracellular vesicles, resulting in a net reduction in macrophage plasma membrane CD14 that functionally affects LPS, but not monophosphoryl lipid A, pro-inflammatory cytokine production. Also, we found that during a murine model of sepsis, P2X7 receptor activity is important for maintaining elevated levels of CD14 in biological fluids and a decrease in its activity results in higher bacterial load and exacerbated organ damage, ultimately leading to premature deaths. Our data reveal that P2X7 is a key receptor for helping to clear sepsis because it maintains elevated concentrations of circulating CD14 during infection. When the immune system detects an infection, it often launches an inflammatory response to fight off the disease. This defense mechanism is activated by a cascade of signaling molecules that can aggravate inflammation, causing it to damage the body’s own tissues and organs. This life-threatening reaction is referred to as sepsis, and kills around 11 million people each year. New approaches are therefore needed to help alleviate the damage caused by this condition. The inflammatory response is often triggered by proteins called receptors, which sit on the surface of immune cells. When these receptors are activated, they induce cells to secrete proteins that travel around the body and activate immune cells that can eliminate the infection. In 2016, a group of researchers showed that a receptor called P2X7 stimulates the release of a signaling molecule called CD14. Patients with sepsis often have elevated amounts of CD14 in their bloodstream. Yet, it remained unclear what causes this rise in CD14 and what role this molecule plays in the development of sepsis. Now, Alarcón-Vila et al. – including some of the researchers involved in the 2016 study – have investigated the role of P2X7 in mice undergoing sepsis. This was done by puncturing the mice’s intestines, causing bacteria to leak out and initiate an over-active immune response. Alarcón-Vila et al. found that mice lacking the P2X7 receptor had less CD14 and struggled to eliminate the bacterial infection from their system. This increase in bacteria caused excessive damage to the mice’s organs, ultimately leading to premature death. These findings suggest that P2X7 plays an important role in preventing the onset of sepsis by helping maintain high levels of CD14 following infection. This result could help to identify new therapies that reduce the mortality rates of septic infections.
Collapse
Affiliation(s)
- Cristina Alarcón-Vila
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Alberto Baroja-Mazo
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Carlos de Torre-Minguela
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Carlos M Martínez
- Plataforma de Patología, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Murcia, Spain
| | - Juan J Martínez-García
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | - Pablo Pelegrin
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
29
|
Njunge JM, Gonzales GB, Ngari MM, Thitiri J, Bandsma RH, Berkley JA. Systemic inflammation is negatively associated with early post discharge growth following acute illness among severely malnourished children - a pilot study. Wellcome Open Res 2020; 5:248. [PMID: 33969227 PMCID: PMC8080977 DOI: 10.12688/wellcomeopenres.16330.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 11/03/2023] Open
Abstract
Background: Rapid growth should occur among children with severe malnutrition (SM) when medically and nutritionally treated. Systemic inflammation (SI) is associated with death among children with SM and is negatively associated with linear growth. However, the relationship between SI and weight gain during therapeutic feeding following acute illness is unknown. We hypothesised that growth in the first 60 days post-hospital discharge is associated with SI among children with SM. Methods: We conducted secondary analysis of data from HIV-uninfected children with SM (n=98) who survived and were not readmitted to hospital during one year of follow up. We examined the relationship between changes in absolute deficits in weight and mid-upper-arm circumference (MUAC) from enrolment at stabilisation to 60 days later and untargeted plasma proteome, targeted cytokines/chemokines, leptin, and soluble CD14 (sCD14) using multivariate regularized linear regression. Results: The mean change in absolute deficit in weight and MUAC was -0.50kg (standard deviation; SD±0.69) and -1.20cm (SD±0.89), respectively, from enrolment to 60 days later. During the same period, mean weight and MUAC gain was 3.3g/kg/day (SD±2.4) and 0.22mm/day (SD±0.2), respectively. Enrolment inflammatory cytokines interleukin 17 alpha (IL17α), interleukin 2 (IL2), and serum amyloid P (SAP) were negatively associated with weight and MUAC gain. Lipopolysaccharide binding protein (LBP) and complement component 2 were negatively associated with weight gain only. Leptin was positively associated with weight gain. sCD14, beta-2 microglobulin (β2M), and macrophage inflammatory protein 1 beta (MIP1β) were negatively associated with MUAC gain only. Conclusions: Early post-hospital discharge weight and MUAC gain were rapid and comparable to children with uncomplicated SM treated with similar diet in the community. Higher concentrations of SI markers were associated with less weight and MUAC gain, suggesting inflammation negatively impacts recovery from wasting. This finding warrants further research on the role of inflammation on growth among children with SM.
Collapse
Affiliation(s)
- James M. Njunge
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gerard Bryan Gonzales
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Moses M. Ngari
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Thitiri
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Robert H.J. Bandsma
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A. Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Kyosiimire-Lugemwa J, Anywaine Z, Abaasa A, Levin J, Gombe B, Musinguzi K, Kaleebu P, Grosskurth H, Munderi P, Pala P. Effect of Stopping Cotrimoxazole Preventive Therapy on Microbial Translocation and Inflammatory Markers Among Human Immunodeficiency Virus-Infected Ugandan Adults on Antiretroviral Therapy: The COSTOP Trial Immunology Substudy. J Infect Dis 2020; 222:381-390. [PMID: 31714954 PMCID: PMC7336573 DOI: 10.1093/infdis/jiz494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cotrimoxazole preventive therapy (CPT) in human immunodeficiency virus (HIV) infection is a World Health Organization-recommended standard of care in resource-limited settings, but the mechanism of CPT's beneficial effects is unclear. The COSTOP trial (ISRCTN44723643) evaluated the noninferiority of discontinuing CPT in stabilized patients on antiretroviral therapy. The COSTOP immunology substudy was conducted on a subset of COSTOP participants randomized to continue CPT (n = 86) or discontinue CPT (placebo, n = 86) as daily treatment for 1 year. METHODS We evaluated whether CPT reduces microbial translocation, indicated by the presence of bacterial lipopolysaccharide (LPS) and LPS control factors such as soluble CD14 (sCD14) and endotoxin core antibody (EndoCAb immunoglobulin M [IgM]) in plasma. Intestinal barrier damage as indicated by plasma intestinal fatty acid binding protein (IFABP), T-cell activation, and the inflammatory markers C-reactive protein (CRP), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) were also evaluated. RESULTS We found no significant change in markers of microbial translocation (LPS, IFABP, sCD14, and T-cell activation), with decreased EndoCAb IgM. There was significant increase in inflammation markers (CRP and IL-6) after stopping CPT compared to those who continued CPT. CONCLUSIONS These results add to the evidence of immunological benefits of CPT among HIV-infected populations in resource-limited settings. However, no evidence of reducing microbial translocation was observed.
Collapse
Affiliation(s)
- Jacqueline Kyosiimire-Lugemwa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda,Correspondence: J. Kyosiimire-Lugemwa, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, c/o Uganda Virus Research Institute, PO Box 49, Plot 51–59 Nakiwogo Road, Entebbe, Uganda ()
| | - Zacchaeus Anywaine
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Andrew Abaasa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Jonathan Levin
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Ben Gombe
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Kenneth Musinguzi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Heiner Grosskurth
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paula Munderi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda,International Association of Providers of AIDS Care, Washington, District of Columbia, USA
| | - Pietro Pala
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| |
Collapse
|
31
|
Association between yogurt consumption and plasma soluble CD14 in two prospective cohorts of US adults. Eur J Nutr 2020; 60:929-938. [PMID: 32548645 DOI: 10.1007/s00394-020-02303-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Although evidence suggests an inverse association between yogurt consumption and the risk of disorders, such as type 2 diabetes and certain cancers, the mechanisms remain poorly understood. We aimed to examine the association between yogurt consumption and concentrations of plasma soluble CD14, a marker of gut barrier dysfunction. METHODS We analyzed cross-sectional data from 632 women in the Nurses' Health Study (1989-1990) and 444 men in the Health Professionals Follow-up Study (1993-1994) with soluble CD14 concentrations. We estimated yogurt consumption from food frequency questionnaires. We used multivariable-adjusted linear regression models to estimate the percentage difference (95% CI) of soluble CD14 concentrations by yogurt consumption. RESULTS Among men, higher consumption was associated with a lower soluble CD14 concentration (at least 2 cups/week vs. non-consumers; unadjusted % difference: - 7.6%; 95% CI - 13.0%, - 2.1%; Ptrend = 0.003). The inverse association was slightly attenuated following multivariable adjustment (% difference: - 5.8%; 95% CI - 11.0%, - 0.1%; Ptrend = 0.01). For the same comparison, yogurt consumption was inverse, but not statistically significant associated with soluble CD14 concentration in women (% difference: - 1.2%; 95% CI - 5.6%, 3.5%; Ptrend = 0.64). In stratified analyses, the inverse association between yogurt consumption and the concentrations of soluble CD14 was slightly stronger in men who consumed alcohol at least 20 g/day. CONCLUSIONS Higher yogurt consumption was associated with lower soluble CD14 concentrations, especially in men. Our findings suggest the strengthening of gut barrier function as a plausible mechanism for the observed inverse associations of yogurt consumption with gastrointestinal diseases and disorders involving other systems.
Collapse
|
32
|
Vinton CL, Starke CE, Ortiz AM, Lai SH, Flynn JK, Sortino O, Knox K, Sereti I, Brenchley JM. Biomarkers of Cellular Stress Do Not Associate with sCD14 in Progressive HIV and SIV Infections in Vivo. Pathog Immun 2020; 5:68-88. [PMID: 32426577 PMCID: PMC7224679 DOI: 10.20411/pai.v5i1.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Microbial translocation occurs after damage to the structural and/or immunological barrier of the gastrointestinal (GI) tract into circulation. Microbial components that trans-locate from the lumen of the GI tract directly stimulate the immune system and contribute to inflammation. When microbial translocation becomes chronic, the inflammation has detrimental consequences. Given that microbial translocation is an important phenomenon in many diseases, defining biomarkers that reliably reflect microbial translocation is critical. Measurement of systemic microbial products is difficult since: 1) robust assays to measure microbial antigens simultaneously are lacking; 2) confounding factors influence assays used to detect microbial products; and 3) biological clearance mechanisms limit their detection in circulation. Thus, host proteins produced in response to microbial stimulation are used as surrogates for microbial translocation; however, many of these proteins are also produced in response to host proteins expressed by dying cells. Methods We measured plasma levels of biomarkers associated with GI tract damage, immune responses to microbial products, and cell-death in people living with HIV before and after antiretroviral administration, and in macaque nonhuman primates before and after SIV infection. Results Proteins secreted during cellular stress (receptor for advanced glycation endproducts-RAGE and high motility group box 1-HMGB1), which can induce sCD14 production in vitro and in vivo, do not associate with elevated levels of biomarkers associated with microbial translocation in progressively HIV-infected individuals and SIV-infected NHPs. Conclusions Bystander cell death and generalized inflammation do not contribute to elevated levels of sCD14 observed in HIV/SIV-infected individuals.
Collapse
Affiliation(s)
- Carol L Vinton
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Carly E Starke
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Alexandra M Ortiz
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Stephen H Lai
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Jacob K Flynn
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Ornella Sortino
- HIV Pathogenesis Section; Laboratory of Immunoregulation; NIAID, NIH; Bethesda, Maryland
| | - Kenneth Knox
- Department of Medicine; University of Arizona; Tucson, Arizona
| | - Irini Sereti
- HIV Pathogenesis Section; Laboratory of Immunoregulation; NIAID, NIH; Bethesda, Maryland
| | - Jason M Brenchley
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| |
Collapse
|
33
|
Lin TL, Shu CC, Chen YM, Lu JJ, Wu TS, Lai WF, Tzeng CM, Lai HC, Lu CC. Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome. Front Pharmacol 2020; 11:554. [PMID: 32425790 PMCID: PMC7212368 DOI: 10.3389/fphar.2020.00554] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbiome maintains local gut integrity and systemic host homeostasis, where optimal control of intestinal lipopolysaccharides (LPS) activity may play an important role. LPS mainly produced from gut microbiota are a group of lipid-polysaccharide chemical complexes existing in the outer membrane of Gram-negative bacteria. Traditionally, LPS mostly produced from Proteobacteria are well known for their ability in inducing strong inflammatory responses (proinflammatory LPS, abbreviated as P-LPS), leading to septic shock or even death in animals and humans. Although the basic structures and chemical properties of P-LPS derived from different bacterial species generally show similarity, subtle and differential immune activation activities are observed. On the other hand, frequently ignored, a group of LPS molecules mainly produced by certain microbiota bacteria such as Bacteroidetes show blunt or even antagonistic activity in initiating pro-inflammatory responses (anti-inflammatory LPS, abbreviated as A-LPS). In this review, besides the immune activation properties of P-LPS, we also focus on the description of anti-inflammatory effects of A-LPS, and their potential antagonistic mechanism. We address the possibility of using native or engineered A-LPS for immune modulation in prevention or even treatment of P-LPS induced chronic inflammation related diseases. Understanding the exquisite interactive relationship between structure-activity correlation of P- and A-LPS not only contributes to molecular understanding of immunomodulation and homeostasis, but also re-animates the development of novel LPS-based pharmacological strategy for prevention and therapy of chronic inflammation related diseases.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan.,Central Research Laboratory, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Chen Lu
- Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
34
|
Piktel E, Wnorowska U, Cieśluk M, Deptuła P, Prasad SV, Król G, Durnaś B, Namiot A, Markiewicz KH, Niemirowicz-Laskowska K, Wilczewska AZ, Janmey PA, Reszeć J, Bucki R. Recombinant Human Plasma Gelsolin Stimulates Phagocytosis while Diminishing Excessive Inflammatory Responses in Mice with Pseudomonas aeruginosa Sepsis. Int J Mol Sci 2020; 21:ijms21072551. [PMID: 32272559 PMCID: PMC7177774 DOI: 10.3390/ijms21072551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
Plasma gelsolin (pGSN) is a highly conserved abundant circulating protein, characterized by diverse immunomodulatory activities including macrophage activation and the ability to neutralize pro-inflammatory molecules produced by the host and pathogen. Using a murine model of Gram-negative sepsis initiated by the peritoneal instillation of Pseudomonas aeruginosa Xen 5, we observed a decrease in the tissue uptake of IRDye®800CW 2-deoxyglucose, an indicator of inflammation, and a decrease in bacterial growth from ascitic fluid in mice treated with intravenous recombinant human plasma gelsolin (pGSN) compared to the control vehicle. Pretreatment of the murine macrophage line RAW264.7 with pGSN, followed by addition of Pseudomonas aeruginosa Xen 5, resulted in a dose-dependent increase in the proportion of macrophages with internalized bacteria. This increased uptake was less pronounced when cells were pretreated with pGSN and then centrifuged to remove unbound pGSN before addition of bacteria to macrophages. These observations suggest that recombinant plasma gelsolin can modulate the inflammatory response while at the same time augmenting host antibacterial activity.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (E.P.); (U.W.); (M.C.); (P.D.); (S.V.P.); (K.N.-L.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (E.P.); (U.W.); (M.C.); (P.D.); (S.V.P.); (K.N.-L.)
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (E.P.); (U.W.); (M.C.); (P.D.); (S.V.P.); (K.N.-L.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (E.P.); (U.W.); (M.C.); (P.D.); (S.V.P.); (K.N.-L.)
| | - Suhanya V. Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (E.P.); (U.W.); (M.C.); (P.D.); (S.V.P.); (K.N.-L.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, the Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Stefana Żeromskiego 5, 25-001 Kielce, Poland; (G.K.); (B.D.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, the Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Stefana Żeromskiego 5, 25-001 Kielce, Poland; (G.K.); (B.D.)
| | - Andrzej Namiot
- Department of Anatomy, Medical University of Bialystok, Mickiewicza 2b, 15-222 Bialystok, Poland;
| | - Karolina H. Markiewicz
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland; (K.H.M.); (A.Z.W.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (E.P.); (U.W.); (M.C.); (P.D.); (S.V.P.); (K.N.-L.)
| | - Agnieszka Z. Wilczewska
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland; (K.H.M.); (A.Z.W.)
| | - Paul A. Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA 19104, USA;
| | - Joanna Reszeć
- Department of Pathology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (E.P.); (U.W.); (M.C.); (P.D.); (S.V.P.); (K.N.-L.)
- Department of Microbiology and Immunology, the Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Stefana Żeromskiego 5, 25-001 Kielce, Poland; (G.K.); (B.D.)
- Correspondence: ; Tel.: +48-748-54-93
| |
Collapse
|
35
|
Lu H, Surkan PJ, Irwin MR, Treisman GJ, Breen EC, Sacktor N, Stall R, Wolinsky SM, Jacobson LP, Abraham AG. Inflammation and Risk of Depression in HIV: Prospective Findings From the Multicenter AIDS Cohort Study. Am J Epidemiol 2019; 188:1994-2003. [PMID: 31642472 DOI: 10.1093/aje/kwz190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Studies suggest that inflammation might be involved in the pathogenesis of depression. Individuals with human immunodeficiency virus (HIV) have a higher risk of depression and elevated inflammatory profiles. Despite this, research on the link between inflammation and depression among this high-risk population is limited. We examined a sample of men who have sex with men from the Multicenter AIDS Cohort Study in prospective analyses of the association between inflammation and clinically relevant depression symptoms, defined as scores >20 on Center for Epidemiological Studies Depression Scale. We included 1,727 participants who contributed 9,287 person-visits from 1984 to 2010 (8,218 with HIV (HIV+) and 1,069 without (HIV-)). Exploratory factor analysis (EFA) was used to characterize underlying inflammatory processes from 19 immune markers. Logistic regression with generalized estimating equations was used to evaluate associations between inflammatory processes and depressive symptoms stratified by HIV serostatus. Three EFA-identified inflammatory processes (EIPs) were identified. EIP-1 scores-described by soluble tumor necrosis factor receptor 2 (sTNF-R2), soluble interleukin-2 receptor α (sIL-2Rα), sCD27, B-cell activating factor, interferon γ-induced protein 10 (IP-10), soluble interleukin-6 receptor (sIL-6R), sCD14, and sGP130-were significantly associated with 9% higher odds of depressive symptoms in HIV+ participants (odds ratio = 1.09; 95% confidence interval: 1.03, 1.16) and 33% higher odds in HIV- participants (odds ratio = 1.33; 95% confidence interval: 1.09, 1.61). Findings suggest that immune activation might be involved in depression risk among both HIV+ and HIV- men who have sex with men.
Collapse
|
36
|
Tan DHS, Rolon MJ, Figueroa MI, Sued O, Gun A, Kaul R, Raboud JM, Szadkowski L, Hull MW, Walmsley SL, Cahn P, the Argentinean GARDEL research network. Inflammatory biomarker levels over 48 weeks with dual vs triple lopinavir/ritonavir-based therapy: Substudy of a randomized trial. PLoS One 2019; 14:e0221653. [PMID: 31490959 PMCID: PMC6730918 DOI: 10.1371/journal.pone.0221653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
Background Inflammation has been associated with increased morbidity and mortality in HIV-positive patients. We compared inflammatory biomarkers with dual therapy using lopinavir/ritonavir plus lamivudine (LPV/r+3TC) versus triple therapy using LPV/r plus two nucleoside reverse transcriptase inhibitors (LPV/r+2NRTIs) in treatment-naïve HIV-positive adults. Methods This was a substudy among Argentinian participants in the randomized trial GARDEL. We measured hsCRP, IL-6, MCP-1, TNF, D-dimer and sCD14 from plasma collected at baseline, week 24 and week 48. Generalized estimating equations with an identity/logit link were used to model the average impact of dual versus triple therapy on each biomarker over time, controlling for baseline levels. Additional models estimated the average effect of virologic suppression on biomarker levels over time, adjusting for age, sex, and baseline CD4 count. Results Of 191 trial participants enrolled in Argentina, 172 had baseline and follow-up measurements and were included. Median (IQR) age was 35.5 (28.5, 45) years and CD4 cell count was 310 (219, 414) cells/mm3. Dual therapy was not associated with significantly different biomarker levels over 48 weeks relative to triple therapy. Virologic suppression was associated with statistically significant decreases in MCP-1, TNF and D-dimer levels and an unexpected increase in sCD14 levels. No change was observed in hsCRP or the proportion of participants with undetectable IL-6 levels. Conclusions In addition to having virologic non-inferiority, LPV/r+3TC dual therapy is generally associated with similar inflammatory biomarker levels over 48 weeks compared to LPV/r+2NRTIs triple therapy in treatment-naïve adults. Further study of dual treatment regimens is warranted.
Collapse
Affiliation(s)
- Darrell H. S. Tan
- St. Michael’s Hospital Division of Infectious Diseases, Toronto, ON, Canada
- University Health Network Division of Infectious Diseases, Toronto, ON, Canada
- University of Toronto Department of Medicine, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- * E-mail:
| | - Maria Jose Rolon
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Ines Figueroa
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Gun
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rupert Kaul
- University Health Network Division of Infectious Diseases, Toronto, ON, Canada
- University of Toronto Department of Medicine, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- University of Toronto Department of Immunology, Toronto, ON, Canada
| | - Janet M. Raboud
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Leah Szadkowski
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Sharon L. Walmsley
- University Health Network Division of Infectious Diseases, Toronto, ON, Canada
- University of Toronto Department of Medicine, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Pedro Cahn
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
37
|
Zhu J, Dingess KA. The Functional Power of the Human Milk Proteome. Nutrients 2019; 11:E1834. [PMID: 31398857 PMCID: PMC6723708 DOI: 10.3390/nu11081834] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Human milk is the most complete and ideal form of nutrition for the developing infant. The composition of human milk consistently changes throughout lactation to meet the changing functional needs of the infant. The human milk proteome is an essential milk component consisting of proteins, including enzymes/proteases, glycoproteins, and endogenous peptides. These compounds may contribute to the healthy development in a synergistic way by affecting growth, maturation of the immune system, from innate to adaptive immunity, and the gut. A comprehensive overview of the human milk proteome, covering all of its components, is lacking, even though numerous analyses of human milk proteins have been reported. Such data could substantially aid in our understanding of the functionality of each constituent of the proteome. This review will highlight each of the aforementioned components of human milk and emphasize the functionality of the proteome throughout lactation, including nutrient delivery and enhanced bioavailability of nutrients for growth, cognitive development, immune defense, and gut maturation.
Collapse
Affiliation(s)
- Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
38
|
Moon MS, Quinn G, Townsend EC, Ali RO, Zhang GY, Bradshaw A, Hill K, Guan H, Hamilton D, Kleiner DE, Koh C, Heller T. Bacterial Translocation and Host Immune Activation in Chronic Hepatitis C Infection. Open Forum Infect Dis 2019; 6:5510544. [PMID: 31363763 DOI: 10.1093/ofid/ofz255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) infects 71 million individuals, and barriers to treatment remain. Bacterial translocation is a complication of chronic HCV infection, and this study evaluated circulating microbial components including lipopolysaccharide, peptidoglycan, and β-D-glucan in addition to their pattern recognition receptors and degree of hepatic macrophage uptake. The findings suggest that regulation of serum peptidoglycan and β-D-glucan differs from that of lipopolysaccharide. Additionally, macrophage activation in the liver may be better reflected by the degree of macrophage uptake than by circulating levels of microbial markers. These findings allow for a greater understanding of bacterial translocation and host immune activation during HCV infection.
Collapse
Affiliation(s)
- Mi Sun Moon
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gabriella Quinn
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth C Townsend
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rabab O Ali
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Grace Y Zhang
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alyson Bradshaw
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kareen Hill
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hannah Guan
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Destanee Hamilton
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher Koh
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Monnig MA, Cohen R, Ramratnam B, McAdams M, Tashima K, Monti PM. HIV Infection, HCV Coinfection, and Alcohol Use: Associations with Microbial Translocation and Immune Activation. Alcohol Clin Exp Res 2019; 43:1126-1134. [PMID: 30908642 DOI: 10.1111/acer.14032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection and heavy drinking independently promote microbial translocation and inflammation. However, it is not known how alcohol use may affect these processes in people living with HIV (PLWH). This study tested the hypothesis that alcohol exacerbates innate immune dysfunction in PLWH. METHODS Participants were 75 PLWH and 34 uninfected controls. Groups were recruited to have similar proportions of nondrinkers, moderate drinkers, and heavy drinkers. Substance use data and plasma samples were collected at up to 3 visits over a 5-year study period. Recent alcohol use was assessed with the Timeline Followback Interview. Biomarkers of microbial translocation (lipopolysaccharide, LPS) and immune activation (lipopolysaccharide binding protein, LBP; soluble CD14, sCD14; soluble CD163, sCD163) were quantified using enzyme-linked immunosorbent assays. Analyses tested 2 hypotheses: (i) that biomarker levels would be significantly higher in PLWH than controls with comparable alcohol use and (ii) that current alcohol use would exacerbate biomarker elevations in PLWH. The second analysis included the interaction of alcohol use with hepatitis C virus (HCV) coinfection. RESULTS Groups were matched on alcohol use, smoking, and other drug use. All biomarkers were significantly higher in PLWH relative to controls (LBP: p = 0.005; LPS: p = 0.014; sCD14: p < 0.001; sCD163: p < 0.001). In PLWH, alcohol use showed a significant, positive association with sCD163, but not with other biomarkers. However, the interaction of alcohol use with HCV coinfection was significant for all biomarkers (LBP: p = 0.002; LPS: p = 0.026; sCD14: p = 0.0004; sCD163: p = 0.001). In pairwise tests with sequential Bonferroni correction, HIV/HCV coinfected individuals who drank heavily had significantly higher sCD163 compared to coinfected nondrinkers and to HIV monoinfected nondrinkers, moderate drinkers, and heavy drinkers (ps < 0.005). Coinfected moderate drinkers had significantly higher sCD163 than each monoinfected group (ps < 0.003). In addition, sCD14 was significantly higher in coinfected moderate drinkers than coinfected nondrinkers (p = 0.027). CONCLUSIONS As predicted, PLWH had higher levels of LBP, LPS, sCD14, and sCD163 than uninfected individuals with similar alcohol use. In PLWH, alcohol by itself was significantly associated only with higher sCD163. However, heavy or moderate alcohol use was associated with elevations in macrophage activation (sCD163) and monocyte activation (sCD14) in HIV/HCV coinfected individuals.
Collapse
Affiliation(s)
- Mollie A Monnig
- Center for Alcohol and Addiction Studies , Brown University, Providence, Rhode Island
| | - Ronald Cohen
- Center for Cognitive Aging and Memory , University of Florida, Gainesville, Florida
| | - Bharat Ramratnam
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, Rhode Island.,Division of Infectious Diseases , Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Mikayla McAdams
- The Immunology Center , The Miriam Hospital, Providence, Rhode Island
| | - Karen Tashima
- Division of Infectious Diseases , Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island.,The Immunology Center , The Miriam Hospital, Providence, Rhode Island
| | - Peter M Monti
- Center for Alcohol and Addiction Studies , Brown University, Providence, Rhode Island
| |
Collapse
|
40
|
Barker JH, Weiss JP. Detecting lipopolysaccharide in the cytosol of mammalian cells: Lessons from MD-2/TLR4. J Leukoc Biol 2019; 106:127-132. [PMID: 30694581 DOI: 10.1002/jlb.3mir1118-434r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/21/2022] Open
Abstract
Proinflammatory immune responses to Gram-negative bacterial lipopolysaccharides (LPS) are crucial to innate host defenses but can also contribute to pathology. How host cells sensitively detect structural features of LPS was a mystery for years, especially given that a portion of the molecule essential for its potent proinflammatory properties-lipid A-is buried in the bacterial membrane. Studies of responses to extracellular and vacuolar LPS revealed a crucial role for accessory proteins that specifically bind LPS-rich membranes and extract LPS monomers to generate a complex of LPS, MD-2, and TLR4. These insights provided means to understand better both the remarkable host sensitivity to LPS and the means whereby specific LPS structural features are discerned. More recently, the noncanonical inflammasome, consisting of caspases-4/5 in humans and caspase-11 in mice, has been demonstrated to mediate responses to LPS that has reached the host cytosol. Precisely how LPS gains access to cytosolic caspases-and in what form-is not well characterized, and understanding this process will provide crucial insights into how the noncanonical inflammasome is regulated during infection. Herein, we briefly review what is known about LPS detection by cytosolic caspases-4/5/11, focusing on lessons derived from studies of the better-characterized TLR4 system that might direct future mechanistic questions.
Collapse
Affiliation(s)
- Jason H Barker
- Inflammation Program and the Departments of Internal Medicine and Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,The Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Jerrold P Weiss
- Inflammation Program and the Departments of Internal Medicine and Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,The Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
41
|
Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model. J Immunol Res 2018; 2018:6085095. [PMID: 30525057 PMCID: PMC6247567 DOI: 10.1155/2018/6085095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction Sepsis is the primary cause of death from infection. We wanted to improve the outcome of sepsis by stimulating innate immunity in combination with modulating the severity of inflammatory responses in rats. Method Sepsis was induced by the injection of feces suspension (control). A 5-day course of G-CSF treatment was given before the septic insult (G-CSF). The inflammatory response was decreased using various doses of the LPS-blocking peptide LBPK95A (5 mg/kg = 100% Combi group, 0.5 mg/kg = 10% Combi group, and 0.05 mg/kg = 1% Combi group). Survival rates were observed. Bacterial clearance, neutrophil infiltration, tissue damage, and the induction of hepatic and systemic inflammatory responses were determined 2 h and 12 h after the septic insult. Results High-dose LBPK95A (100% Combi) reduced the survival rate to 10%, whereas low-dose LBPK95A (10% and 1% Combi) increased the survival rates to 50% and 80%, respectively. The survival rates inversely correlated with multiorgan damage as indicated by the serum levels of ALT and urea. G-CSF treatment increased the white blood cell counts, hepatic neutrophil infiltration, and bacterial clearance in the liver, lung, and blood. The blockade of the LPS-LBP interaction decreased neutrophil infiltration, led to increased white blood cell count, and decreased hepatic neutrophil infiltration, irrespective of dose. However, bacterial clearance improved in the 1% and 10% Combi groups but worsened in the 100% Combi group. G-CSF increased TNF-α and IL-6 levels. Irrespective of dose, the blockade of the LPS-LBP interaction was associated with low systemic cytokine levels and delayed increases in hepatic TNF-α and IL-6 mRNA expression. The delayed increase in cytokines was associated with the phosphorylation of STAT3 and AKT. Conclusion Our results revealed that increasing innate immunity by G-CSF pretreatment and decreasing inflammatory responses using LBPK95A improved the survival rates in a rat sepsis model and could be a novel strategy to treat sepsis.
Collapse
|
42
|
Kostadinova L, Shive CL, Zebrowski E, Fuller B, Rife K, Hirsch A, Compan A, Moreland A, Falck-Ytter Y, Popkin DL, Anthony DD. Soluble Markers of Immune Activation Differentially Normalize and Selectively Associate with Improvement in AST, ALT, Albumin, and Transient Elastography During IFN-Free HCV Therapy. Pathog Immun 2018; 3:149-163. [PMID: 30370392 PMCID: PMC6201254 DOI: 10.20411/pai.v3i1.242] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background During chronic hepatitis C virus (HCV) infection, Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT) levels mark active liver inflammation and tissue damage, while albumin reflects synthetic liver function and nutritional status. Transient Elastography (TE) is a clinical measure of liver stiffness that facilitates evaluation of liver damage stage. While a portion of the TE score is attributable to liver fibrosis and relatively irreversible damage, another component of the TE score is attributable to liver inflammation or edema. Markers of inflammation during chronic HCV infection include soluble markers of immune activation, which are also associated with morbid outcome (including cardiovascular disease and liver-disease progression). Whether soluble markers of immune activation or changes in their level during HCV therapy relate to normalization of AST, ALT, Albumin, or TE score, is not clear. Methods We evaluated soluble markers of immune activation (plasma sCD14, IL-6, sCD163, autotaxin [ATX], and Mac2BP) and TE score, and their relationship in 20 HCV-infected patients before, during, and after HCV-directed IFN-free direct-acting antiviral (DAA) therapy. We evaluated normalization of parameters and the relationship between each over a 6-month window. Results Before therapy, serum AST levels positively correlated with plasma levels of sCD14, sCD163, and Mac2BP, while ALT levels positively correlated with Mac2BP. Serum albumin level negatively correlated with plasma IL-6 and ATX levels. IFN-free therapy uniformly resulted in sustained virological response at 12 and 24 weeks after therapy completion. After initiation of therapy AST and ALT normalized, while levels of ATX, Mac2BP, sCD163, and TE score partially normalized over 6 months. Additionally, change in AST level and APRI score correlated with change in sCD163, IL-6, and Mac2BP levels, and change in ALT correlated with change in IL-6 and Mac2BP levels. Improvement in TE score correlated with a decrease in the level of sCD14 at week 4, and almost statistically significant with decrease in sCD14 at weeks 20-24 after initiation of IFN-free HCV therapy. Conclusions Soluble markers of immune activation normalize or partially normalize at different rates after initiation of curative HCV DAA therapy, and TE scores improve, with wide variability in the degree of absolute improvement in liver stiffness from patient to patient. Decline magnitude of sCD14 was associated with improvement in TE score, while magnitude of improvement in AST correlated with reduction in sCD163 levels. These data provide support for a model where monocyte/Kupffer cell activation may account for a portion of the liver inflammation and edema, which is at least partially reversible following initiation of HCV DAA therapy.
Collapse
Affiliation(s)
- Lenche Kostadinova
- The Louis Stokes VA Medical Center, Cleveland, Ohio.,Department of Medicine, University Hospitals Medical Center, and the Center for AIDS Research, Case Western Reserve University, Cleveland, Ohio
| | - Carey L Shive
- The Louis Stokes VA Medical Center, Cleveland, Ohio.,Department of Medicine, University Hospitals Medical Center, and the Center for AIDS Research, Case Western Reserve University, Cleveland, Ohio
| | - Elizabeth Zebrowski
- The Louis Stokes VA Medical Center, Cleveland, Ohio.,Department of Medicine, University Hospitals Medical Center, and the Center for AIDS Research, Case Western Reserve University, Cleveland, Ohio
| | - Brianna Fuller
- The Louis Stokes VA Medical Center, Cleveland, Ohio.,Department of Medicine, University Hospitals Medical Center, and the Center for AIDS Research, Case Western Reserve University, Cleveland, Ohio
| | - Kelsey Rife
- The Louis Stokes VA Medical Center, Cleveland, Ohio
| | - Amy Hirsch
- The Louis Stokes VA Medical Center, Cleveland, Ohio
| | - Anita Compan
- The Louis Stokes VA Medical Center, Cleveland, Ohio
| | | | - Yngve Falck-Ytter
- The Louis Stokes VA Medical Center, Cleveland, Ohio.,Department of Medicine, University Hospitals Medical Center, and the Center for AIDS Research, Case Western Reserve University, Cleveland, Ohio
| | - Daniel L Popkin
- The Louis Stokes VA Medical Center, Cleveland, Ohio.,Department of Dermatology, University Hospitals Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Donald D Anthony
- The Louis Stokes VA Medical Center, Cleveland, Ohio.,Department of Medicine, University Hospitals Medical Center, and the Center for AIDS Research, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
43
|
Inflammation and LPS-Binding Protein Enable the Stimulatory Effect of Endotoxin on Prolactin Secretion in the Ovine Anterior Pituitary: Ex Vivo Study. Mediators Inflamm 2018; 2018:5427089. [PMID: 30186037 PMCID: PMC6112077 DOI: 10.1155/2018/5427089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Prolactin is a hormone that plays an important role in the regulation of many physiological processes including lactation, reproduction, fat metabolism, and immune response. The secretion of prolactin could be disturbed by an immune stress commonly accompanying infection. This study was designed to determine the influence of bacterial endotoxin—lipopolysaccharide (LPS)—on prolactin gene (PRL) expression and prolactin release from the ovine anterior pituitary (AP) explants collected from saline- and LPS-treated ewes in the follicular phase. The expressions of toll-like receptor 4 (TLR4) and proinflammatory cytokines interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α genes were also assayed. The results of the study showed that LPS stimulates prolactin secretion and IL-6 gene expression in the AP explants, but its action on lactotrophs depends on the immunological status of animal. It was demonstrated that an important role in enhancing the effect of LPS on the pituitary in the saline-treated ewes is played by LPS-binding protein (LBP)- “adapter molecule” for LPS binding to the cell surface receptor CD14 and then to TLR4. Also, it was found that bacterial endotoxin acting on the anterior pituitary cells may enhance prolactin secretion, and this effect of LPS could be mediated by IL-6 which is known as prolactin-releasing factor. Identification of the neuroendocrine and immune interactions in the regulation of prolactin secretion could be helpful in developing newer and more effective treatments for dysfunctions connected with disorders in this hormone secretion.
Collapse
|
44
|
Beaumont M, Neyrinck AM, Olivares M, Rodriguez J, de Rocca Serra A, Roumain M, Bindels LB, Cani PD, Evenepoel P, Muccioli GG, Demoulin JB, Delzenne NM. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J 2018; 32:fj201800544. [PMID: 29906245 PMCID: PMC6219839 DOI: 10.1096/fj.201800544] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
The gut microbiota regulates key hepatic functions, notably through the production of bacterial metabolites that are transported via the portal circulation. We evaluated the effects of metabolites produced by the gut microbiota from aromatic amino acids (phenylacetate, benzoate, p-cresol, and indole) on liver inflammation induced by bacterial endotoxin. Precision-cut liver slices prepared from control mice, Kupffer cell (KC)-depleted mice, and obese mice ( ob/ ob) were treated with or without LPS and bacterial metabolites. We observed beneficial effects of indole that dose-dependently reduced the LPS-induced up-regulation of proinflammatory mediators at both mRNA and protein levels in precision-cut liver slices prepared from control or ob/ ob mice. KC depletion partly prevented the antiinflammatory effects of indole, notably through a reduction of nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain-containing 3 (NLRP3) pathway activation. In vivo, the oral administration of indole before an LPS injection reduced the expression of key proteins of the NF-κB pathway and downstream proinflammatory gene up-regulation. Indole also prevented LPS-induced alterations of cholesterol metabolism through a transcriptional regulation associated with increased 4β-hydroxycholesterol hepatic levels. In summary, indole appears as a bacterial metabolite produced from tryptophan that is able to counteract the detrimental effects of LPS in the liver. Indole could be a new target to develop innovative strategies to decrease hepatic inflammation.-Beaumont, M., Neyrinck, A. M., Olivares, M., Rodriguez, J., de Rocca Serra, A., Roumain, M., Bindels, L. B., Cani, P. D., Evenepoel, P., Muccioli, G. G., Demoulin, J.-B., Delzenne, N. M. The gut microbiota metabolite indole alleviates liver inflammation in mice.
Collapse
Affiliation(s)
- Martin Beaumont
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey de Rocca Serra
- Pole of Experimental Medicine, De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Pole of Experimental Medicine, De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Soluble CD163 and soluble CD14 plasma levels but not cellular HIV-DNA decrease during successful interferon-free anti-HCV therapy in HIV-1-HCV co-infected patients on effective combined anti-HIV treatment. Med Microbiol Immunol 2018. [PMID: 29523966 DOI: 10.1007/s00430-018-0538-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soluble CD163, soluble CD14 and cellular HIV-1-DNA levels reflect two different aspects of HIV infection: immune activation and the reservoir of infected cells. The aim of this study was to describe their relationships in a cohort of HIV-HCV co-infected patients successfully treated for both HCV and HIV infections. Fifty-five patients were recruited and studied prior to the start of direct-acting antivirals (DAAs) (T0), at week 12 of DAA treatment (T1) and 24 weeks after T0 (T2). The subjects were classified as having undetectable plasma HIV viraemia (UV) or low-level viraemia (LLV) in the 18 months before T2. Plasma levels of sCD163 and of sCD14 were comparable in patients with UV and in subjects with LVL at T0, T1 and T2. The HIV DNA level was positively correlated with LLV but not with sCD163 and sCD14 levels; these two markers of inflammation were positively correlated (p = 0.017). Soluble CD163 and sCD14 decreased over time from T0 to T2 (p = 0.000 and p = 0.034, respectively). In conclusion, the significant decrease in sCD163 and sCD14 levels in patients cured of HCV infection, regardless of the presence of LLV, suggests a main role for HCV in immune activation in HIV-HCV co-infected patients.
Collapse
|
46
|
Kaonga P, Kaimoyo E, Besa E, Zyambo K, Sinkala E, Kelly P. Direct Biomarkers of Microbial Translocation Correlate with Immune Activation in Adult Zambians with Environmental Enteropathy and Hepatosplenic Schistosomiasis. Am J Trop Med Hyg 2017; 97:1603-1610. [PMID: 29140241 PMCID: PMC5817780 DOI: 10.4269/ajtmh.17-0365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microbial translocation is a poorly understood consequence of several disorders such as environmental enteropathy (EE) and hepatosplenic schistosomiasis (HSS). Herein, we compared biomarkers of microbial origin and immune activation in adults with these disorders and in healthy controls. A cross-sectional study was conducted in participants with EE recruited from Misisi compound, Lusaka, Zambia; HSS patients and healthy controls from the University Teaching Hospital, Lusaka. Plasma lipopolysaccharides (LPSs) was measured by limulus amoebocyte lysate assay, plasma 16S ribosomal RNA (16S rRNA) gene copy number was quantified by quantitative real-time polymerase chain reaction, Toll-like receptor ligand (TLRL) activity by QUANTI-Blue detection medium, and cytokines from cell culture supernatant by Cytometric Bead Array. In univariate analysis LPS, 16S rRNA gene copy number, and TLR activity were all high and correlated with each other and with cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-10, and IL-4 secreted by the RAW-Blue cells. After controlling for baseline characteristic, biomarkers of microbial translocation in blood were predictors of TNF-α, IL-6, and IL-10 activation in cell culture supernatant from EE participants and HSS patients but not in healthy controls. TLR activity showed the strongest correlation with TNF-α. These data provide correlative evidence that microbial translocation contributes to systemic cytokine activation in two disorders common in the tropics, with total TLR ligand estimation showing the strongest correlation with TNF-α (r = 0.66, P < 0.001).
Collapse
Affiliation(s)
- Patrick Kaonga
- Tropical Gastroenterology and Nutrition Group, The University of Zambia School of Medicine, Lusaka, Zambia.,Department of Internal Medicine, The University of Zambia School of Medicine, Lusaka, Zambia
| | - Evans Kaimoyo
- Department of Biological Sciences, The University of Zambia, Lusaka, Zambia
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition Group, The University of Zambia School of Medicine, Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology and Nutrition Group, The University of Zambia School of Medicine, Lusaka, Zambia
| | - Edford Sinkala
- Department of Internal Medicine, The University Teaching Hospital, Lusaka, Zambia
| | - Paul Kelly
- Blizard Institute Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.,Tropical Gastroenterology and Nutrition Group, The University of Zambia School of Medicine, Lusaka, Zambia
| |
Collapse
|
47
|
Leccioli V, Oliveri M, Romeo M, Berretta M, Rossi P. A New Proposal for the Pathogenic Mechanism of Non-Coeliac/Non-Allergic Gluten/Wheat Sensitivity: Piecing Together the Puzzle of Recent Scientific Evidence. Nutrients 2017; 9:nu9111203. [PMID: 29099090 PMCID: PMC5707675 DOI: 10.3390/nu9111203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Non-coeliac/non-allergic gluten/wheat sensitivity (NCG/WS) is a gluten-related disorder, the pathogenesis of which remains unclear. Recently, the involvement of an increased intestinal permeability has been recognized in the onset of this clinical condition. However, mechanisms through which it takes place are still unclear. In this review, we attempt to uncover these mechanisms by providing, for the first time, an integrated vision of recent scientific literature, resulting in a new hypothesis about the pathogenic mechanisms involved in NCG/WS. According to this, the root cause of NCG/WS is a particular dysbiotic profile characterized by decreased butyrate-producing-Firmicutes and/or Bifidobacteria, leading to low levels of intestinal butyrate. Beyond a critical threshold of the latter, a chain reaction of events and vicious circles occurs, involving other protagonists such as microbial lipopolysaccharide (LPS), intestinal alkaline phosphatase (IAP) and wheat α-amylase trypsin inhibitors (ATIs). NCG/WS is likely to be a multi-factor-onset disorder, probably transient and preventable, related to quality and balance of the diet, and not to the presence of gluten in itself. If future studies confirm our proposal, this would have important implications both for the definition of the disease, as well as for the prevention and therapeutic-nutritional management of individuals with NCG/WS.
Collapse
Affiliation(s)
- Valentina Leccioli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 1, 27100 Pavia, Italy.
| | - Mara Oliveri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 1, 27100 Pavia, Italy.
| | - Marcello Romeo
- C.E.R.H.M. Center for Experimental Research for Human Microbiome Ludes H.E.I., Pietro Stiges Palace, Strait Street, 1436 Valletta, Malta.
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO-Aviano, National Cancer Institute, Via Franco Gallini 2, 33081 Aviano, Italy.
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 1, 27100 Pavia, Italy.
| |
Collapse
|
48
|
Expression of inflammatory lipopolysaccharide binding protein (LBP) predicts the progression of conventional renal cell carcinoma - a short report. Cell Oncol (Dordr) 2017; 40:651-656. [PMID: 28936621 DOI: 10.1007/s13402-017-0346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The mortality of conventional renal cell carcinoma (RCC) correlates directly with the presence or postoperative development of metastases. The aim of this study was to identify new markers associated with the postoperative progression of conventional RCC. METHODS Tissue microarrays (TMA) of conventional RCC from a cohort of 414 patients were analysed by immunohistochemistry for expression of the lipopolysaccharide binding protein (LBP), which was identified as a candidate biomarker through Affymetrix U133 Plus 2.0 array analysis. Univariate and multivariate Cox regression models were addressed to cancer-specific survival in association with age, sex, clinicopathological parameters and LBP expression. The survival time of the patients was estimated by Kaplan-Meier analyses, and comparisons of survival curves were made using the Log rank test. RESULTS Univariate analysis revealed an association of patient survival with all clinicopathological parameters tested and LBP expression. In multivariate analysis only T classification, grade and LBP staining showed a significant association with postoperative cancer-specific survival (p < 0.001). LBP expression was found to be associated with a poor patient survival in Kaplan-Meier analyses. The estimated median survival time for patients with tumours showing LBP expression was 74 months, whereas the overall survival time was 142 months. CONCLUSION LBP expression in conventional RCC defines a group of patients at a high risk of postoperative progression and may help to direct optimized active surveillance and timely adjuvant therapy.
Collapse
|
49
|
Hanna DB, Lin J, Post WS, Hodis HN, Xue X, Anastos K, Cohen MH, Gange SJ, Haberlen SA, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Palella FJ, Tien PC, Witt MD, Landay AL, Kingsley LA, Tracy RP, Kaplan RC. Association of Macrophage Inflammation Biomarkers With Progression of Subclinical Carotid Artery Atherosclerosis in HIV-Infected Women and Men. J Infect Dis 2017; 215:1352-1361. [PMID: 28199691 DOI: 10.1093/infdis/jix082] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Background Monocytes and monocyte-derived macrophages promote atherosclerosis through increased inflammation and vascular remodeling. This may be especially true in chronic human immunodeficiency virus (HIV) infection. Methods We examined 778 women (74% HIV+) in the Women's Interagency HIV Study and 503 men (65% HIV+) in the Multicenter AIDS Cohort Study who underwent repeated B-mode carotid artery ultrasound imaging in 2004-2013. We assessed baseline associations of the serum macrophage inflammation markers soluble (s)CD163, sCD14, galectin-3 (Gal-3), and Gal-3 binding protein (Gal-3BP) with carotid plaque formation (focal intima-media thickness >1.5 mm) over 7 years. Results Marker levels were higher in HIV+ persons versus HIV- persons. Presence of focal plaque increased over time: from 8% to 15% in women, and 24% to 34% in men. After adjustment for demographic, behavioral, and cardiometabolic factors, and CRP and interleukin-6, each standard deviation increase in sCD14 was associated with increased plaque formation (risk ratio [RR] 1.24, 95% confidence interval [CI] 1.07-1.43). This pattern was consistentby sex. sCD163 was associated with plaque formation in virally suppressed HIV+ men (RR 1.52, 95% CI 1.04-2.22); Gal-3BP and Gal-3 were not associated with increased plaque. Conclusions sCD14 and sCD163 may play important roles in atherogenesis among HIV+ persons.
Collapse
Affiliation(s)
- David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Juan Lin
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Wendy S Post
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Howard N Hodis
- Department of Medicine, University of Southern California, Los Angeles
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Mardge H Cohen
- Department of Medicine, John H. Stroger, Jr Hospital of Cook County, Chicago, Illinois
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Sabina A Haberlen
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York
| | - Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, Los Angeles
| | - Igho Ofotokun
- Department of Medicine, Emory University and Grady Healthcare System, Atlanta, Georgia
| | - Frank J Palella
- Department of Medicine, Northwestern University Medical Center, Chicago, Illinois
| | - Phyllis C Tien
- Department of Medicine, University of California-San Francisco and the Department of Veterans Affairs
| | - Mallory D Witt
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, California
| | - Alan L Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Lawrence A Kingsley
- Departments of Epidemiology and Infectious Diseases and Microbiology, University of Pittsburgh, Pennsylvania; and
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
50
|
Burcelin R. [Gut microbiota and immune crosstalk in metabolic disease]. Biol Aujourdhui 2017; 211:1-18. [PMID: 28682223 DOI: 10.1051/jbio/2017008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Indexed: 05/28/2023]
Abstract
The aim of the review is to discuss about the role played by the defence crosstalk between the gut microbiota and the intestinal immune system, in the development of metabolic disease focusing on obesity and diabetes. Starting from physiological and pathological stand points and based on the latest published data, this review is addressing how the concept of the hologenome theory of evolution can drive the fate of metabolic disease. The notion of "metabolic infection" to explain the "metabolic inflammation" is discussed. This imply comments about the process of bacterial translocation and impaired intestinal immune defense against commensals. Eventually this review sets the soil for personalized medicine. The monthly increase in the number of publications on the gut microbiota to intestinal immune defense and the control of metabolism demonstrate the importance of this field of investigation. The notion of commensal as "self or non-self" has to be reevaluated in the light of the current data. Furthermore, data demonstrate the major role played by short chain fatty acids, secondary bile acids, LPS, peptidoglycans, indole derivatives, and other bacteria-related molecules on the shaping of cells involved in the intestinal protection against commensals is now becoming a central player in the incidence of metabolic diseases. The literature demonstrates that the onset of metabolic diseases and some specific co-morbidities can be explained by a gut microbiota to intestinal immune system crosstalk. Therefore, one should now consider this avenue of investigation as a putative source of biomarkers and therapeutic targets to personalize the treatment of metabolic disease and its co-morbidities. Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, which induces inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France - Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Hôpital Rangueil, 31400 Toulouse, France - Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432 Toulouse Cedex 4, France
| |
Collapse
|