1
|
Cornberg M, Sandmann L, Jaroszewicz J, Kennedy P, Lampertico P, Lemoine M, Lens S, Testoni B, Lai-Hung Wong G, Russo FP. EASL Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol 2025:S0168-8278(25)00174-6. [PMID: 40348683 DOI: 10.1016/j.jhep.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 05/14/2025]
Abstract
The updated EASL Clinical Practice Guidelines on the management of hepatitis B virus (HBV) infection provide comprehensive, evidence-based recommendations for its management. Spanning ten thematic sections, the guidelines address diagnostics, treatment goals, treatment indications, therapeutic options, hepatocellular carcinoma surveillance, management of special populations, HBV reactivation prophylaxis, post-transplant care, HBV prevention strategies, and finally address open questions and future research directions. Chronic HBV remains a global health challenge, with over 250 million individuals affected and significant mortality due to cirrhosis and hepatocellular carcinoma. These guidelines emphasise the importance of early diagnosis, risk stratification based on viral and host factors, and tailored antiviral therapy. Attention is given to simplified algorithms, vaccination, and screening to support global HBV elimination targets. The guidelines also discuss emerging biomarkers and evolving definitions of functional and partial cure. Developed through literature review, expert consensus, and a Delphi process, the guidelines aim to equip healthcare providers across disciplines with practical tools to optimise HBV care and outcomes worldwide.
Collapse
|
2
|
Tsai YN, Wu JL, Tseng CH, Tseng SC, Hung CL, Nguyen MH, Lin JT, Hsu YC. Association Between Elevation of Serum Alanine Aminotransferase and HBsAg Seroclearance After Nucleos(t)ide Analog Withdrawal. Aliment Pharmacol Ther 2025; 61:1208-1217. [PMID: 39873357 DOI: 10.1111/apt.18515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Alanine aminotransferase (ALT) frequently elevates in chronic hepatitis B patients stopping nucleos(t)ide analogs (NAs). AIMS To clarify the association between ALT elevation and HBsAg seroclearance after NA withdrawal. METHODS This multicenter cohort study reviewed consecutive patients discontinuing NA between 2004/04/01 and 2022/05/24. Treatment initiation and discontinuation generally followed the Asian-Pacific guidelines. Eligible patients had negative HBeAg and undetectable HBV DNA before treatment cessation, without malignancy, organ transplant or autoimmune disorders. We used competing risk analysis to estimate HBsAg seroclearance incidence and a time-dependent model to investigate post-cessation ALT elevation. RESULTS Among 841 patients (74.7% male; median age, 53.2 years; median treatment duration, 34.7 months), 38 patients cleared HBsAg over a median follow-up of 3.7 years, with a 10-year cumulative incidence of 12.4%. The median peak ALT level was significantly lower in patients achieving HBsAg seroclearance versus not (93 vs. 127 U/L; p < 0.001). Hepatitis flare after NA cessation (> 5 times upper limit) was inversely associated with HBsAg seroclearance in the univariable analysis (sub-distribution hazard ratio [SHR], 0.31; 95% confidence interval [CI], 0.13-0.73; p = 0.007), and the association was not significant (adjusted SHR, 0.42; 95% CI, 0.09-2.01; p = 0.28) in the multivariable analysis adjusted for pretreatment HBV DNA. Consistent results were observed in the sensitivity analyses with different ALT cutoffs and subgroup analysis adjusted for HBsAg levels at treatment cessation. CONCLUSION ALT elevation after NA cessation is not associated with HBsAg seroclearance following NA withdrawal, suggesting cytolytic pathways are not essential for a functional cure.
Collapse
Affiliation(s)
- Ying-Nan Tsai
- Division of Gastroenterology and Hepatology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jia-Ling Wu
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hao Tseng
- Division of Gastroenterology and Hepatology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Shang-Chen Tseng
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Lung Hung
- Administrative Center, E-Da Healthcare System, Kaohsiung, Taiwan
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yao-Chun Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Zhan M, Zhong S, Niu J, Gao X. Activation of immune checkpoint OX40 inhibits HBV replication in a mouse model. Int Immunopharmacol 2025; 149:114120. [PMID: 39923582 DOI: 10.1016/j.intimp.2025.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND & AIMS The costimulatory molecules OX40 and OX40L, members of the tumor necrosis factor (receptor) superfamily, play an important role in viral control through the activation of T cells. We speculate that activating the immune checkpoint OX40 may promote the inhibition of hepatitis B virus (HBV) replication. METHODS To test this hypothesis, we investigated the expression dynamics of OX40/OX40L and studied the effects of activation of OX40 on HBV replication, and further explored the possible mechanism. RESULTS We found that the percentage of T cells expressing OX40 was lower in adult patients with chronic hepatitis B (CHB) than in healthy adults and was negatively correlated with serum viral load. In contrast, the percentage of B cells and monocytes expressing OX40L was increased in adult patients with CHB and positively correlated with liver inflammatory indicators. The expression of OX40 in T cells and OX40L in monocytes was positively correlated with age in healthy donors. In addition, the levels of serum HBsAg and intrahepatic HBV DNA decreased in an HBV mouse model with an agonistic antibody that activates OX40. This viral inhibition process coincides with changes in liver inflammation, the ratio of T cell subsets, and T cell-related cytokines. Finally, we found that the OX40 activation-mediated inhibition of HBV replication was more dependent on CD8+ T cells than on CD4+ T cells. CONCLUSIONS The expression levels of the immune checkpoints OX40/OX40L in adult patients with CHB are closely related to virus clearance. The activation of OX40 can suppress HBV replication through a mechanism that is more dependent on CD8+ T cells than on CD4+ T cells. Thus, OX40 is a promising therapeutic target for the treatment of CHB.
Collapse
Affiliation(s)
- Mengru Zhan
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoling Zhong
- Ultrasound Medical, Hangzhou Lin'an District Third People's Hospital, Hangzhou, China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Public Laboratory Platform, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Liu Z, Li G, Li X, Wang Y, Liao L, Yang T, Han C, Huang K, Chen C, Li X, Liu H, Zhang X. CD163 impairs HBV clearance in mice by regulating intrahepatic T cell immune response via an IL-10-dependent mechanism. Antiviral Res 2025; 235:106093. [PMID: 39855274 DOI: 10.1016/j.antiviral.2025.106093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND & AIMS Chronic hepatitis B (CHB) arises from a persistent hepatitis B virus (HBV) infection, complicating efforts for a functional cure. Kupffer cells (KCs), liver-resident macrophages, are pivotal in mediating immune tolerance to HBV. Although CD163 marks M2-polarized KCs, its precise role in HBV infection remains unclear and warrants further investigation. METHODS CD163 expression in liver tissues of patients with CHB was analyzed using the Gene Expression Omnibus (GEO) database. Cd163 knockout mice were utilized to establish HBV-persistent mouse model, and CD163 deficiency effect on HBV viral markers and T cell immune responses were examined in vivo and in vitro. RESULTS CD163 expression was elevated and correlated with ALT levels in the liver of patients with CHB. In HBV-persistent mouse model, CD163 deficiency facilitated the clearance of HBsAg, HBeAg, HBV DNA, and HBcAg. Additionally, CD163 deficiency promoted the differentiation of naïve T cells into HBV-specific effector T cells. Further, we found that CD163 deficiency reduces KCs-derived IL-10 secretion, and blocking IL-10 further strengthens the enhanced HBV-specific T cell response due to CD163 deficiency. CONCLUSIONS Our findings indicate that CD163 deficiency enhances the HBV-specific T cell response, thereby facilitating HBV clearance through reducing KCs-derived IL-10 secretion. This suggests that CD163 may serve as a potential target for the restoration of exhausted T cell function.
Collapse
MESH Headings
- Animals
- CD163 Antigen
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Hepatitis B virus/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Mice
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Mice, Knockout
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- T-Lymphocytes/immunology
- Humans
- Disease Models, Animal
- Liver/immunology
- Liver/virology
- Kupffer Cells/immunology
- Male
- Female
- Mice, Inbred C57BL
- Hepatitis B Surface Antigens
Collapse
Affiliation(s)
- Ziying Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Guiping Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Xiaoran Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Yiran Wang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ti Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Han
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Kuiyuan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chuyuan Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Xuanyi Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Hongyan Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Xiaoyong Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China.
| |
Collapse
|
5
|
Li F, Qu L, Liu Y, Wu X, Qi X, Wang J, Zhu H, Yang F, Shen Z, Guo Y, Zhang Y, Yu J, Mao R, Zhang Q, Zhang F, Chen L, Huang Y, Zhang X, Li Q, Zhang W, Zhang J. PegIFN alpha-2a reduces relapse in HBeAg-negative patients after nucleo(s)tide analogue cessation: A randomized-controlled trial. J Hepatol 2025; 82:211-221. [PMID: 39094743 DOI: 10.1016/j.jhep.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS Nucleo(s)tide analogue (NUC) cessation can lead to hepatitis B surface antigen (HBsAg) clearance but also a high rate of virological relapse. However, the effect of pegylated interferon alpha-2a (PegIFN-α-2a) on virological relapse after NUC cessation is unknown. Therefore, this study aimed to evaluate the effect of switching from NUC to PegIFN-α-2a treatment for 48 weeks on virological relapse up to week 96. METHODS In this multicenter randomized-controlled clinical trial, 180 non-cirrhotic patients with HBeAg-negative chronic hepatitis B on continuous NUC therapy for ≥2.5 years, with HBV DNA levels <60 IU/ml, were randomized to discontinue NUC therapy (n = 90) or receive 48 weeks of PegIFN-α-2a treatment (n = 90). Patients were followed up for up to 96 weeks. The primary endpoint was the virological relapse rate up to week 96. RESULTS Intention-to-treat analysis revealed patients in the interferon monotherapy group had significantly lower cumulative virological relapse rates than the NUC cessation group until week 96 (20.8% vs. 53.6%, p <0.0001). Consistently, a significantly lower proportion of patients in the interferon monotherapy group had virological relapse than those in the NUC cessation group at 48 weeks off treatment (17.8% vs. 36.7%, p = 0.007). The virological relapse rate positively correlated with HBsAg levels in the NUC cessation group. The interferon monotherapy group had a lower cumulative clinical relapse rate (7.8% vs. 20.9%, p = 0.008) and a higher HBsAg loss rate (21.5% vs. 9.0%, p = 0.03) than the NUC cessation group. CONCLUSIONS Switching from NUC to PegIFN-α-2a treatment for 48 weeks significantly reduces virological relapse rates and leads to higher HBsAg loss rates than NUC treatment cessation alone in patients with HBeAg-negative chronic hepatitis B. IMPACT AND IMPLICATIONS Nucleo(s)tide analogue (NUC) cessation can lead to HBsAg clearance but also a high rate of virological relapse, but an optimized scheme to reduce the virological relapse rate after NUC withdrawal is yet to be reported. This randomized-controlled trial investigated the effect of switching from NUC to PegIFN-α-2a treatment for 48 weeks on virological relapse up to week 96 in patients with HBeAg-negative chronic hepatitis B. The interferon monotherapy group had a significantly lower cumulative virological relapse rate (20.8% vs. 53.6%, p <0.0001) and higher HBsAg loss rate (21.5% vs. 9.0%, p = 0.03) than the NUC cessation group up to week 96. This provides an optimized strategy for NUC cessation in HBeAg-negative patients. TRIAL REGISTRATION NUMBER NCT02594293.
Collapse
Affiliation(s)
- Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lihong Qu
- Department of Infectious Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanhong Liu
- Department of Infectious Diseases, Tongren hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xun Qi
- Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengdi Zhang
- Department of Infectious Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Chen
- Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingxing Li
- Department of Infectious Diseases, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, 325003, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Wu D, Kao JH, Piratvisuth T, Wang X, Kennedy PT, Otsuka M, Ahn SH, Tanaka Y, Wang G, Yuan Z, Li W, Lim YS, Niu J, Lu F, Zhang W, Gao Z, Kaewdech A, Han M, Yan W, Ren H, Hu P, Shu S, Kwo PY, Wang FS, Yuen MF, Ning Q. Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0. Clin Mol Hepatol 2025; 31:S134-S164. [PMID: 39838828 PMCID: PMC11925436 DOI: 10.3350/cmh.2024.0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025] Open
Abstract
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
Collapse
Affiliation(s)
- Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Academic Fields of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenhui Li
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Jilin University, Jilin, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Meifang Han
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Paul Yien Kwo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Fu-sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine & State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Huang CX, Lao XM, Wang XY, Ren YZ, Lu YT, Shi W, Wang YZ, Wu CY, Xu L, Chen MS, Gao Q, Liu L, Wei Y, Kuang DM. Pericancerous cross-presentation to cytotoxic T lymphocytes impairs immunotherapeutic efficacy in hepatocellular carcinoma. Cancer Cell 2024; 42:2082-2097.e10. [PMID: 39547231 DOI: 10.1016/j.ccell.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Hyperprogressive disease can occur in cancer patients receiving immune checkpoint blockade (ICB) therapy, but whether and how reactive cytotoxic T lymphocytes (CTLs) exert protumorigenic effects in this context remain elusive. Herein, our study reveals that pericancerous macrophages cross-present antigens to CD103+ CTLs in hepatocellular carcinoma (HCC) via the endoplasmic reticulum (ER)-associated degradation machinery-mediated cytosolic pathway. This process leads to the retention of CD103+ CTLs in the pericancerous area, whereby they activate NLRP3 inflammasome in macrophages, promoting hepatoma progression and resistance to immunotherapy. Our single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analysis of HCC patients shows that despite their tissue-resident effector phenotype, the aggregation of CD103+ CTLs predicts unfavorable clinical outcomes for HCC patients receiving multiple types of treatment. Correspondingly, therapeutic strategies that redistribute CD103+ CTLs can disrupt this pathogenic interplay with macrophages, enhancing the efficacy of ICB treatment against HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Humans
- Immunotherapy/methods
- Macrophages/immunology
- Mice
- Animals
- Integrin alpha Chains/metabolism
- Integrin alpha Chains/immunology
- Cross-Priming/immunology
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Tumor Microenvironment/immunology
- Cell Line, Tumor
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chun-Xiang Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xu-Yan Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Zheng Ren
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Tong Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Zhe Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cai-Yuan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Min-Shan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Innovation Center of the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Innovation Center of the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Bertoletti A. The immune response in chronic HBV infection. J Viral Hepat 2024; 31 Suppl 2:43-55. [PMID: 38845402 DOI: 10.1111/jvh.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 12/06/2024]
Abstract
Hepatitis B virus (HBV) is an ancient virus that has evolved unique strategies to persist as a chronic infection in humans. Here, I summarize the innate and adaptive features of the HBV-host interaction, and I discuss how different profiles of antiviral immunity cannot be predicted only on the basis of virological and clinical parameters.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
9
|
Hasanpourghadi M, Novikov M, Ambrose R, Chekaoui A, Newman D, Xiang Z, Luber AD, Currie SL, Zhou X, Ertl HC. A therapeutic HBV vaccine containing a checkpoint modifier enhances CD8+ T cell and antiviral responses. JCI Insight 2024; 9:e181067. [PMID: 39226106 PMCID: PMC11601613 DOI: 10.1172/jci.insight.181067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
In patients who progress from acute hepatitis B virus (HBV) infection to a chronic HBV (CHB) infection, CD8+ T cells fail to eliminate the virus and become impaired. A functional cure of CHB likely requires CD8+ T cell responses different from those induced by the infection. Here we report preclinical immunogenicity and efficacy of an HBV therapeutic vaccine that includes herpes simplex virus (HSV) glycoprotein D (gD), a checkpoint modifier of early T cell activation, that augments CD8+ T cell responses. The vaccine is based on a chimpanzee adenovirus serotype 6 (AdC6) vector, called AdC6-gDHBV2, which targets conserved and highly immunogenic regions of the viral polymerase and core antigens fused to HSV gD. The vaccine was tested with and without gD in mice for immunogenicity, and in an AAV8-1.3HBV vector model of antiviral efficacy. The vaccine encoding the HBV antigens within gD stimulates potent and broad CD8+ T cell responses. In a surrogate model of HBV infection, a single intramuscular injection achieved pronounced and sustained declines of circulating HBV DNA copies and HBV surface antigen; both inversely correlated with HBV-specific CD8+ T cell frequencies in spleen and liver.
Collapse
Affiliation(s)
| | | | | | | | - Dakota Newman
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - ZhiQuan Xiang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
10
|
Mak LY, Boettler T, Gill US. HBV Biomarkers and Their Role in Guiding Treatment Decisions. Semin Liver Dis 2024; 44:474-491. [PMID: 39442530 DOI: 10.1055/a-2448-4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Over 300 million individuals worldwide are chronically infected with hepatitis B virus and at risk for progressive liver disease. Due to the lack of a therapy that reliably achieves viral elimination and the variability of liver disease progression, treatment decisions are guided by the degree of liver disease and viral biomarkers as the viral life-cycle is well characterized and largely conserved between individuals. In contrast, the immunological landscape is much more heterogeneous and diverse and the measurement of its components is less well standardized. Due to the lack of a universal and easily measurable set of biomarkers, clinical practice guidelines remain controversial, aiming for a balance between simplifying treatment decisions by reducing biomarker requirements and using all available biomarkers to avoid overtreatment of patients with low risk for disease progression. While approved therapies such as nucleos(t)ide analogs improve patient outcomes, the inability to achieve a complete cure highlights the need for novel therapies. Since no treatment candidate has demonstrated universal efficacy, biomarkers will remain important for treatment stratification. Here, we summarize the current knowledge on virological and immunological biomarkers with a specific focus on how they might be beneficial in guiding treatment decisions in chronic hepatitis B.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
Wang L, Chen H, Yang Y, Huang Y, Chen W, Mu D. Optimization of culture conditions for HBV-specific T cell expansion in vitro from chronically infected patients. BMC Biotechnol 2024; 24:80. [PMID: 39402512 PMCID: PMC11476462 DOI: 10.1186/s12896-024-00908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) clearance depends on an effective adaptive immune response, especially HBV-specific T cell-mediated cellular immunity; however, it is difficult to produce enough HBV-specific T cells effectively. RESULTS In this work, we investigated the proportions of stimulated cells, serum, and culture media as the three primary factors to determine the most effective procedure and applied it to HLA-A2 (+) people. In parallel, we also examined the correlation between clinical parameters and HBV-specific immunity. Concerning amplification efficiency, 4 × 105 cells stimulation was superior to 2 × 106 cells stimulation, AIM-V medium outperformed 1640 medium, and fetal bovine serum (FBS) exceeded human AB serum under comparable conditions. As expected, this procedure is also suitable for developing HBV-specific CD8 + T cells in HLA-A2(+) individuals. Expanded HBV-specific T cell responses decreased with treatment time and were negatively correlated with HBV DNA and HBsAg. Furthermore, the number of HBV-specific IFN-γ + SFCs was strongly correlated with the ALT level and negatively correlated with the absolute lymphocyte count and the ALB concentration. CONCLUSIONS We confirm that stimulating 4 × 105 PBMCs in AIM-V medium supplemented with 10% FBS is the best approach and that HBeAg, HBsAg, and ALB are independent predictors of HBV-specific T-cell responses.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongjiao Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanqi Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Tseng TC, Cheng HR, Su TH, Lin PH, Wang CC, Yang HC, Tsai CS, Liu CJ, Chen PJ, Kao JH. Higher hepatitis B core-specific T cell response is associated with a lower risk of clinical relapse after discontinuation of oral antiviral treatment. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:700-708. [PMID: 39153879 DOI: 10.1016/j.jmii.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Hepatitis B virus (HBV)-specific T cell response is a major host immune response to control the virus. However, it is still unclear how it affects long-term outcomes of chronic hepatitis B patients, especially those who stop nucleos(t)ide analogue (NA) therapy. We aimed to explore whether the HBV-specific T cell response at the end of treatment (EOT) was associated with clinical outcomes. METHODS In a prospective cohort study, 51 HBeAg-negative patients who discontinued NA therapy were enrolled. RESULTS In a mean follow-up of 25.3 months, 25 patients developed clinical relapse. We found that a stronger hepatitis B core (HBc)-specific T cell response at EOT was associated with a lower risk of clinical relapse. Compared to the low-response group, the high-response group had a lower risk of clinical relapse with hazard ratio of 0.21 (95% CI: 0.05-0.88). The high HBc-specific T cell response was associated with reduced surge of HBV DNA and HBcrAg during the first year of follow-up. The T cell response at EOT was comparable between different NA treatments. Notably, the overall HBV-specific T cell response could be partially restored along with clinical relapse; however, such reinvigorated T cell response was not associated with HBsAg seroclearance. CONCLUSIONS A higher HBc-specific T cell response at EOT was associated with lower risk of clinical relapse and reduced surge of HBV DNA and HBcrAg levels off NA therapy.
Collapse
Affiliation(s)
- Tai-Chung Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ru Cheng
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Hung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Chiang Wang
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Chih Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Shiue Tsai
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
13
|
Ye G, Chen C, Zhou Y, Tang L, Cai J, Huang Y, Yang J, Feng Y, Chen L, Wang Y, Ma Y, Lin G, Wu Y, Jiang X, Hou J, Li Y. Anti-HBc mirrors the activation of HBV-specific CD8 + T cell immune response and exhibits a direct effect on HBV control. Antiviral Res 2024; 230:105975. [PMID: 39089333 DOI: 10.1016/j.antiviral.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Hepatitis B core antibody (anti-HBc) is commonly present in patients with chronic hepatitis B virus (HBV) infection and serves as a marker of humoral immunity. Herein, we aim to investigate the correlation between anti-HBc and antiviral immune response and its putative role in HBV control. METHODS Quantitative anti-HBc and levels of anti-HBc subtypes were measured in chronic hepatitis B (CHB) patients. The effects of anti-HBc on immune cells and HBV replication were evaluated using the HBV mouse models and human hepatoma cell lines. RESULTS Baseline levels of IgG1 and IgG3 anti-HBc were elevated in CHB patients with favorable treatment response, and correlated with the virological response observed at week 52. Additionally, increased levels of IgM and IgG1 anti-HBc were observed exclusively in CHB patients with liver inflammation. Notably, significant correlations were identified between quantitative levels of anti-HBc and the frequencies of HBcAg-specific CD8+ T cells. Intriguingly, HBcAg efficiently activates T cells aided by B cells in vitro experiments. Moreover, anti-HBc inhibits HBV replication either by a direct effect or through complement-mediated cytotoxicity in HBV-producing cell lines. CONCLUSIONS Anti-HBc reflects the activation of an HBV-specific CD8+ T cell immune response and may have anti-HBV activity.
Collapse
Affiliation(s)
- Guofu Ye
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Yongjun Zhou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianzhong Cai
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yiyan Huang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayue Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yaoting Feng
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liangxing Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuhao Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanchen Ma
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanfeng Lin
- Institute of Antibody Engineering, School of Laboratory Medicine & Biotechnology, Southern Medical University, China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine & Biotechnology, Southern Medical University, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, China; Guangdong Provincial Key Laboratory of Proteomic, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Quirino A, Marascio N, Branda F, Ciccozzi A, Romano C, Locci C, Azzena I, Pascale N, Pavia G, Matera G, Casu M, Sanna D, Giovanetti M, Ceccarelli G, Alaimo di Loro P, Ciccozzi M, Scarpa F, Maruotti A. Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens 2024; 13:766. [PMID: 39338957 PMCID: PMC11435051 DOI: 10.3390/pathogens13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, GO, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Antonello Maruotti
- Department GEPLI, Libera Università Maria Ss Assunta, 00193 Rome, Italy;
| |
Collapse
|
15
|
Heim K, Sagar, Sogukpinar Ö, Llewellyn-Lacey S, Price DA, Emmerich F, Kraft ARM, Cornberg M, Kielbassa S, Knolle P, Wohlleber D, Bengsch B, Boettler T, Neumann-Haefelin C, Thimme R, Hofmann M. Attenuated effector T cells are linked to control of chronic HBV infection. Nat Immunol 2024; 25:1650-1662. [PMID: 39198634 PMCID: PMC11362014 DOI: 10.1038/s41590-024-01928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
Hepatitis B virus (HBV)-specific CD8+ T cells play a dominant role during acute-resolving HBV infection but are functionally impaired during chronic HBV infection in humans. These functional deficits have been linked with metabolic and phenotypic heterogeneity, but it has remained unclear to what extent different subsets of HBV-specific CD8+ T cells still suppress viral replication. We addressed this issue by deep profiling, functional testing and perturbation of HBV-specific CD8+ T cells during different phases of chronic HBV infection. Our data revealed a mechanism of effector CD8+ T cell attenuation that emerges alongside classical CD8+ T cell exhaustion. Attenuated HBV-specific CD8+ T cells were characterized by cytotoxic properties and a dampened effector differentiation program, determined by antigen recognition and TGFβ signaling, and were associated with viral control during chronic HBV infection. These observations identify a distinct subset of CD8+ T cells linked with immune efficacy in the context of a chronic human viral infection with immunotherapeutic potential.
Collapse
Affiliation(s)
- Kathrin Heim
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Özlem Sogukpinar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Florian Emmerich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Sophie Kielbassa
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research, Munich, Germany
- Institute of Molecular Immunology, School of Life Science, TUM, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Tonnerre P, Baumert TF. Unraveling the liver antiviral immunity in functional cure of chronic hepatitis B using scRNAseq. J Hepatol 2024; 81:14-16. [PMID: 38513812 DOI: 10.1016/j.jhep.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Pierre Tonnerre
- Institut de Recherche Saint-Louis, Université Paris-Cité, Inserm U976, Team ATIP-Avenir, Paris, France.
| | - Thomas F Baumert
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, Inserm UMR_S1110, Strasbourg, France; Gastroenterology and Hepatology Service, Strasbourg University Hospitals, Strasbourg, France; Institut Hospitalo-Universitaire (IHU), University of Strasbourg, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
17
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
18
|
Narmada BC, Khakpoor A, Shirgaonkar N, Narayanan S, Aw PPK, Singh M, Ong KH, Owino CO, Ng JWT, Yew HC, Binte Mohamed Nasir NS, Au VB, Sng R, Kaliaperumal N, Khine HHTW, di Tocco FC, Masayuki O, Naikar S, Ng HX, Chia SL, Seah CXY, Alnawaz MH, Wai CLY, Tay AYL, Mangat KS, Chew V, Yu W, Connolly JE, Periyasamy G, Plissonnier ML, Levrero M, Lim SG, DasGupta R. Single-cell landscape of functionally cured chronic hepatitis B patients reveals activation of innate and altered CD4-CTL-driven adaptive immunity. J Hepatol 2024; 81:42-61. [PMID: 38423478 DOI: 10.1016/j.jhep.2024.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS Hepatitis B surface antigen (HBsAg) loss or functional cure (FC) is considered the optimal therapeutic outcome for patients with chronic hepatitis B (CHB). However, the immune-pathological biomarkers and underlying mechanisms of FC remain unclear. In this study we comprehensively interrogate disease-associated cell states identified within intrahepatic tissue and matched PBMCs (peripheral blood mononuclear cells) from patients with CHB or after FC, at the resolution of single cells, to provide novel insights into putative mechanisms underlying FC. METHODS We combined single-cell transcriptomics (single-cell RNA sequencing) with multiparametric flow cytometry-based immune phenotyping, and multiplexed immunofluorescence to elucidate the immunopathological cell states associated with CHB vs. FC. RESULTS We found that the intrahepatic environment in CHB and FC displays specific cell identities and molecular signatures that are distinct from those found in matched PBMCs. FC is associated with the emergence of an altered adaptive immune response marked by CD4 cytotoxic T lymphocytes, and an activated innate response represented by liver-resident natural killer cells, specific Kupffer cell subtypes and marginated neutrophils. Surprisingly, we found MHC class II-expressing hepatocytes in patients achieving FC, as well as low but persistent levels of covalently closed circular DNA and pregenomic RNA, which may play an important role in FC. CONCLUSIONS Our study provides conceptually novel insights into the immuno-pathological control of HBV cure, and opens exciting new avenues for clinical management, biomarker discovery and therapeutic development. We believe that the discoveries from this study, as it relates to the activation of an innate and altered immune response that may facilitate sustained, low-grade inflammation, may have broader implications in the resolution of chronic viral hepatitis. IMPACT AND IMPLICATIONS This study dissects the immuno-pathological cell states associated with functionally cured chronic hepatitis B (defined by the loss of HBV surface antigen or HBsAg). We identified the sustained presence of very low viral load, accessory antigen-presenting hepatocytes, adaptive-memory-like natural killer cells, and the emergence of helper CD4 T cells with cytotoxic or effector-like signatures associated with functional cure, suggesting previously unsuspected alterations in the adaptive immune response, as well as a key role for the innate immune response in achieving or maintaining functional cure. Overall, the insights generated from this study may provide new avenues for the development of alternative therapies as well as patient surveillance for better clinical management of chronic hepatitis B.
Collapse
Affiliation(s)
- Balakrishnan Chakrapani Narmada
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | - Atefeh Khakpoor
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Niranjan Shirgaonkar
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Sriram Narayanan
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Pauline Poh Kim Aw
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Malay Singh
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Kok Haur Ong
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Collins Oduor Owino
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jane Wei Ting Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Chuing Yew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Veonice Bijin Au
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Reina Sng
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Nivashini Kaliaperumal
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Htet Htet Toe Wai Khine
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Otsuka Masayuki
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Shamita Naikar
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hui Xin Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Su Li Chia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Myra Hj Alnawaz
- Department of Medicine, National University Hospital, Singapore
| | - Chris Lee Yoon Wai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amy Yuh Ling Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kamarjit Singh Mangat
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - John Edward Connolly
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Giridharan Periyasamy
- Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | | | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France; Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France; University of Lyon Claude Bernard 1 (UCLB1), Lyon, France; Department of Medicine SCIAC and the Italian Institute of Technology (IIT) Center for Life Nanosciences (CLNS), University of Rome La Sapienza, Rome, Italy
| | - Seng Gee Lim
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Medicine, National University Hospital, Singapore; Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore.
| | - Ramanuj DasGupta
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672.
| |
Collapse
|
19
|
Korkmaz P, Demirtürk N. Discontinuation of Nucleos(t)ide Analogues in HBeAg Negative Chronic Hepatitis B Patients: Risks and Benefits. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2024; 6:70-77. [PMID: 39005698 PMCID: PMC11243777 DOI: 10.36519/idcm.2024.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Chronic hepatitis B (CHB) remains a major threat to global public health, affecting 296 million people worldwide. Although there is no curative treatment for CHB today, the virus can be effectively controlled with current antiviral treatment strategies. Since HBsAg loss can rarely (1%) be achieved with current nucleos(t)ide analogues (NA) options, lifelong treatment is usually required in HBeAg-negative patients. In recent years, guidelines have stated that long-term NA treatments can be discontinued for HBeAg-negative patients without achieving HBsAg loss. There is no general consensus on how discontinuation of NA can be included in the treatment approach. This review aimed to evaluate the current literature regarding the discontinuation of NA treatment in HBeAg-negative patients. Patients with HBeAg-negative CHB who have a higher chance of response after discontinuation of NA therapy can be defined as non-cirrhotic patients who have low HBsAg, HBcrAg, and HBV RNA levels at the discontinuation of treatment and accept close follow-up. The management of relapses that develop after NA discontinuation in patients is also unclear. The agent used in NA treatment itself may also affect the pattern of relapse development. Relapse after NA treatment occurs significantly slower and less frequently with entecavir compared to other regimens, including tenofovir dipivoxil. Prospective studies are needed in order to maintain the chance of HBsAg clearance in case of exacerbation and to treat acute exacerbations that can be fatal in a timely manner. Algorithms to be developed for use after discontinuation of NA treatment will help the clinician manage the patient safely.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|
20
|
Kristensen NP, Dionisio E, Bentzen AK, Tamhane T, Kemming JS, Nos G, Voss LF, Hansen UK, Lauer GM, Hadrup SR. Simultaneous analysis of pMHC binding and reactivity unveils virus-specific CD8 T cell immunity to a concise epitope set. SCIENCE ADVANCES 2024; 10:eadm8951. [PMID: 38608022 PMCID: PMC11014448 DOI: 10.1126/sciadv.adm8951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
CD8 T cells provide immunity to virus infection through recognition of epitopes presented by peptide major histocompatibility complexes (pMHCs). To establish a concise panel of widely recognized T cell epitopes from common viruses, we combined analysis of TCR down-regulation upon stimulation with epitope-specific enumeration based on barcode-labeled pMHC multimers. We assess CD8 T cell binding and reactivity for 929 previously reported epitopes in the context of 1 of 25 HLA alleles representing 29 viruses. The prevalence and magnitude of CD8 T cell responses were evaluated in 48 donors and reported along with 137 frequently recognized virus epitopes, many of which were underrepresented in the public domain. Eighty-four percent of epitope-specific CD8 T cell populations demonstrated reactivity to peptide stimulation, which was associated with effector and long-term memory phenotypes. Conversely, nonreactive T cell populations were associated primarily with naive phenotypes. Our analysis provides a reference map of epitopes for characterizing CD8 T cell responses toward common human virus infections.
Collapse
Affiliation(s)
- Nikolaj Pagh Kristensen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Edoardo Dionisio
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Amalie Kai Bentzen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Tripti Tamhane
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Janine Sophie Kemming
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Grigorii Nos
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Lasse Frank Voss
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Ulla Kring Hansen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Georg Michael Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sine Reker Hadrup
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
21
|
Peters MG, Yuen MF, Terrault N, Fry J, Lampertico P, Gane E, Hwang C, Stamm LM, Leus M, Maini MK, Mendez P, Lonjon-Domanec I, Berg T, Wang S, Mishra P, Donaldson E, Buchholz S, Miller V, Lenz O. Chronic Hepatitis B Finite Treatment: Similar and Different Concerns With New Drug Classes. Clin Infect Dis 2024; 78:983-990. [PMID: 37633256 PMCID: PMC11006103 DOI: 10.1093/cid/ciad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Chronic hepatitis B, a major cause of liver disease and cancer, affects >250 million people worldwide. Currently there is no cure, only suppressive therapies. Efforts to develop finite curative hepatitis B virus (HBV) therapies are underway, consisting of combinations of multiple novel agents with or without nucleos(t)ide reverse-transcriptase inhibitors. The HBV Forum convened a webinar in July 2021, along with subsequent working group discussions to address how and when to stop finite therapy for demonstration of sustained off-treatment efficacy and safety responses. Participants included leading experts in academia, clinical practice, pharmaceutical companies, patient representatives, and regulatory agencies. This Viewpoints article outlines areas of consensus within our multistakeholder group for stopping finite therapies in chronic hepatitis B investigational studies, including trial design, patient selection, outcomes, biomarkers, predefined stopping criteria, predefined retreatment criteria, duration of investigational therapies, and follow-up after stopping therapy. Future research of unmet needs are discussed.
Collapse
Affiliation(s)
- Marion G Peters
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine & State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Norah Terrault
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John Fry
- Aligos Therapeutics, Clinical Development Consultant, San Francisco, California, USA
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, CRC “A. M. and A. Migliavacca” Center for Liver Disease, University of Milan, Milan, Italy
| | - Ed Gane
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Carey Hwang
- Vir Biotechnology, San Francisco, California, USA
| | - Luisa M Stamm
- Assembly Biosciences, South San Francisco, California, USA
| | - Mitchell Leus
- Forum for Collaborative Research, University of California, Berkeley School of Public Health, Washington, DC, USA
| | - Mala K Maini
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | | | | | - Thomas Berg
- Department of Medicine, Leipzig University Medical Center, Leipzig, Germany
| | - Su Wang
- Cooperman Barnabas Medical Center, RWJBarnabas-Rutgers Medical Group, Livingston, New Jersey, USA
| | - Poonam Mishra
- Division of Antivirals, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Eric Donaldson
- Division of Antivirals, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stephanie Buchholz
- Department 32 Infectiology, Dermatology and Allergology, Federal Institute for Drugs and Medical Devices, Germany
| | - Veronica Miller
- Forum for Collaborative Research, University of California, Berkeley School of Public Health, Washington, DC, USA
| | | |
Collapse
|
22
|
Jiang B, Wang L, Liu H, Wang L, Su R, Xu L, Wei G, Li J, Lu F, Chen X. Association of HBV serological markers with host antiviral immune response relevant hepatic inflammatory damage in chronic HBV infection. J Med Virol 2024; 96:e29569. [PMID: 38549467 DOI: 10.1002/jmv.29569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
The natural progression of chronic hepatitis B virus (HBV) infection is dynamic, but the longitudinal landscape of HBV serological markers with host antiviral immune response relevant hepatic inflammatory damage remains undetermined. To this issue, we studied the association of HBV serological markers with the severity of hepatic inflammatory damage and enumerated HBV-specific T cells using the cultured enzyme-linked immune absorbent spot (ELISpot). Five hundred and twenty-four treatment-naïve chronic HBV infection patients were enrolled. The Spearman correlation analysis revealed that in hepatitis B e antigen (HBeAg)-positive patients, all HBV virologic indicators negatively correlated with liver inflammatory damage and fibrosis (p < 0.01). Stronger correlations were accessed in the subgroup of HBeAg-positive patients with HBV DNA > 2 × 106 IU/mL (p < 0.01), whereas negative correlations disappeared in patients with HBV DNA ≤ 2 × 106 IU/mL. Surprisingly, in HBeAg-negative patients, the HBV DNA level was positively correlated with the hepatic inflammatory damage (p < 0.01). The relationship between type Ⅱ interferon genes expression and HBV DNA levels also revealed a direct shift from the initial negative to positive in HBeAg-positive patients with HBV DNA declined below 2 × 106 IU/mL. The number of HBV-specific T cells were identified by interferon γ ELISpot assays and showed a significant increase from HBeAg-positive to HBeAg-negative group. The host's anti-HBV immunity remains effective in HBeAg-positive patients with HBV DNA levels exceeding 2 × 106 IU/mL, as it efficiently eliminates infected hepatocytes and inhibits HBV replication. However, albeit the increasing number of HBV-specific T cells, the host antiviral immune response shifts towards dysfunctional when the HBV DNA load drops below this threshold, which causes more pathological damage and disease progression.
Collapse
Affiliation(s)
- Bei Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Institute of hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Leijie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huan Liu
- Institute of hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Lin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Rui Su
- Institute of hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Liang Xu
- Institute of hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Guochao Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Jia Li
- Institute of hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| |
Collapse
|
23
|
Murakami H, Takahama S, Akita H, Kobayashi S, Masuta Y, Nagatsuka Y, Higashiguchi M, Tomokuni A, Yoshida K, Takahashi H, Doki Y, Eguchi H, Matsuura N, Yamamoto T. Circulating tumor-associated antigen-specific IFNγ +4-1BB + CD8 + T cells as peripheral biomarkers of treatment outcomes in patients with pancreatic cancer. Front Immunol 2024; 15:1363568. [PMID: 38550601 PMCID: PMC10972947 DOI: 10.3389/fimmu.2024.1363568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
CD8+ T cells affect the outcomes of pancreatic ductal adenocarcinoma (PDAC). Using tissue samples at pre-treatment to monitor the immune response is challenging, while blood samples are beneficial in overcoming this limitation. In this study, we measured peripheral antigen-specific CD8+ T cell responses against four different tumor-associated antigens (TAAs) in PDAC using flow cytometry and investigated their relationships with clinical features. We analyzed the optimal timing within the treatment course for effective immune checkpoint inhibition in vitro. We demonstrated that the frequency of TAA-specific IFNγ+4-1BB+ CD8+ T cells was correlated with a fold reduction in CA19-9 before and after neoadjuvant therapy. Moreover, patients with TAA-specific IFNγ+4-1BB+ CD8+ T cells after surgery exhibited a significantly improved disease-free survival. Anti-PD-1 treatment in vitro increased the frequency of TAA-specific IFNγ+4-1BB+ CD8+ T cells before neoadjuvant therapy in patients, suggesting the importance of the timing of anti-PD-1 inhibition during the treatment regimen. Our results indicate that peripheral immunophenotyping, combined with highly sensitive identification of TAA-specific responses in vitro as well as detailed CD8+ T cell subset profiling via ex vivo analysis, may serve as peripheral biomarkers to predict treatment outcomes and therapeutic efficacy of immunotherapy plus neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Hirotomo Murakami
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shokichi Takahama
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hirofumi Akita
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
- Next-Generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yuta Nagatsuka
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaya Higashiguchi
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Tomokuni
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka, Japan
| | - Keiichi Yoshida
- Next-Generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nariaki Matsuura
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Next-Generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Wu Y, Liu X, Mao Y, Ji R, Xia L, Zhou Z, Ding Y, Li P, Zhao Y, Peng M, Qiu J, Shen C. Routine evaluation of HBV-specific T cell reactivity in chronic hepatitis B using a broad-spectrum T-cell epitope peptide library and ELISpot assay. J Transl Med 2024; 22:266. [PMID: 38468254 PMCID: PMC10929206 DOI: 10.1186/s12967-024-05062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The clinical routine test of HBV-specific T cell reactivity is still limited due to the high polymorphisms of human leukocyte antigens (HLA) in patient cohort and the lack of universal detection kit, thus the clinical implication remains disputed. METHODS A broad-spectrum peptide library, which consists of 103 functionally validated CD8+ T-cell epitopes spanning overall HBsAg, HBeAg, HBx and HBpol proteins and fits to the HLA polymorphisms of Chinese and Northeast Asian populations, was grouped into eight peptide pools and was used to establish an ELISpot assay for enumerating the reactive HBV-specific T cells in PBMCs. Totally 294 HBV-infected patients including 203 ones with chronic hepatitis B (CHB), 13 ones in acute resolved stage (R), 52 ones with liver cirrhosis (LC) and 26 ones with hepatocellular carcinoma (HCC) were detected, and 33 CHB patients were longitudinally monitored for 3 times with an interval of 3-5 months. RESULTS The numbers of reactive HBV-specific T cells were significantly correlated with ALT level, HBsAg level, and disease stage (R, CHB, LC and HCC), and R patients displayed the strongest HBV-specific T cell reactivity while CHB patients showed the weakest one. For 203 CHB patients, the numbers of reactive HBV-specific T cells presented a significantly declined trend when the serum viral DNA load, HBsAg, HBeAg or ALT level gradually increased, but only a very low negative correlation coefficient was defined (r = - 0.21, - 0.21, - 0.27, - 0.079, respectively). Different Nucleotide Analogs (NUCs) did not bring difference on HBV-specific T cell reactivity in the same duration of treatment. NUCs/pegIFN-α combination led to much more reactive HBV-specific T cells than NUCs monotherapy. The dynamic numbers of reactive HBV-specific T cells were obviously increasing in most CHB patients undergoing routine treatment, and the longitudinal trend possess a high predictive power for the hepatitis progression 6 or 12 months later. CONCLUSION The presented method could be developed into an efficient reference method for the clinical evaluation of cellular immunity. The CHB patients presenting low reactivity of HBV-specific T cells have a worse prognosis for hepatitis progression and should be treated using pegIFN-α to improve host T-cell immunity.
Collapse
Affiliation(s)
- Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuan Mao
- Nanjing KingMed Clinical Laboratory, Nanjing, 211899, Jiangsu, China
| | - Ruixue Ji
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lingzhi Xia
- Nanjing KingMed Clinical Laboratory, Nanjing, 211899, Jiangsu, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Pinqing Li
- Division of Hepatitis, Nanjing Second Hospital, Nanjing Hospital affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China
| | - Yu Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Min Peng
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Qiu
- Division of Hepatitis, Nanjing Second Hospital, Nanjing Hospital affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China.
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
25
|
Wang LT, Chen YH, Cheng Y, Fan HL, Chen TW, Shih YL, Hsieh TY, Huang WY, Huang WC. Clinical implications of hepatitis B virus core antigen-mediated immunopathologic T cell responses in chronic hepatitis B. J Med Virol 2024; 96:e29515. [PMID: 38469923 DOI: 10.1002/jmv.29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Hepatitis B virus (HBV) infection significantly impacts Asian populations. The influences of continuous HBV antigen and inflammatory stimulation to T cells in chronic hepatitis B (CHB) remain unclear. In this study, we first conducted bioinformatics analysis to assess T-cell signaling pathways in CHB patients. In a Taiwanese cohort, we examined the phenotypic features of HBVcore -specific T cells and their correlation with clinical parameters. We used core protein overlapping peptides from the Taiwan prevalent genotype B HBV to investigate the antiviral response and the functional implication of HBV-specific T cells. In line with Taiwanese dominant HLA-alleles, we also evaluated ex vivo HBVcore -specific T cells by pMHC-tetramers targeting epitopes within HBV core protein. Compared to healthy subjects, we disclosed CD8 T cells from CHB patients had higher activation marker CD38 levels but showed an upregulation in the inhibitory receptor PD-1. Our parallel study showed HBV-specific CD8 T cells were more activated with greater PD-1 expression than CMV-specific subset and bulk CD8 T cells. Moreover, our longitudinal study demonstrated a correlation between the PD-1 fluctuation pattern of HBVcore -specific CD8 T cells and liver inflammation in CHB patients. Our research reveals the HBV core antigen-mediated immunopathologic profile of CD8 T cells in chronic HBV infection. Our findings suggest the PD-1 levels of HBVcore -specific CD8 T cells can be used as a valuable indicator of personal immune response for clinical application in hepatitis management.
Collapse
Affiliation(s)
- Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hong Chen
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yang Cheng
- Division of Infectious Disease & Immunology, Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Lung Fan
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chen Huang
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
26
|
Jeng WJ, Chien RN, Chen YC, Lin CL, Wu CY, Liu YC, Peng CW, Su CW, Hsu CE, Liaw YF. Hepatocellular carcinoma reduced, HBsAg loss increased, and survival improved after finite therapy in hepatitis B patients with cirrhosis. Hepatology 2024; 79:690-703. [PMID: 37625144 DOI: 10.1097/hep.0000000000000575] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND AIMS Long-term nucleos(t)ide analog (Nuc) treatment can reduce HCC in patients with HBV-related liver cirrhosis (HBV-LC). Earlier small cohort studies showed a comparable 5-year incidence of HCC in HBeAg-negative patients with HBV-LC who stopped and those continued Nuc therapy. This study aimed to validate these findings using a large cohort with 10-year follow-up. APPROACH AND RESULTS From 2 centers, 494 HBeAg-negative patients with HBV-LC who stopped (finite group) and 593 who continued (continuous group) Nuc therapy were recruited. HCC, HBsAg loss, liver-related mortality/transplantation, and overall survival rates were compared between 2 groups with 1:1 propensity score matching of sex, treatment history, types of Nuc, age, transaminases, platelet count, and HBsAg levels at end of therapy in finite group or 3-year on-therapy in continuous groups. During a median follow-up of 6.2 (3.4-8.9) years, the annual and 10-year HCC incidence were lower in finite group (1.6 vs. 3.3%/y and 10-y 15.7% vs. 26.8%, respectively; log-rank test, p <0.0001). The finite group showed greater HBsAg decline/year (-0.116 vs. -0.095 log 10 IU/mL, p =0.0026) and 7.6 times higher 10-year incidence of HBsAg loss (22.7% vs. 3%, p <0.0001). Multivariate Cox regression showed finite therapy an independent factor for HBsAg loss (adjusted HR: 11.79) but protective against HCC (adjusted HR: 0.593), liver-related mortality/transplantation (adjusted HR: 0.312), and overall mortality (adjusted HR: 0.382). CONCLUSIONS Finite Nuc therapy in HBeAg-negative HBV-LC may reduce HCC incidence, increase HBsAg loss, and improve survival. Greater HBsAg decline/loss may reflect enhanced immunity and contribute to the reduction of hepatic carcinogenesis.
Collapse
Affiliation(s)
- Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
- Liver Research Unit, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Yi-Cheng Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
- Liver Research Unit, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Chih-Lang Lin
- College of Medicine, Chang Gung University, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Keelung Branch, Taiwan
| | - Chia-Ying Wu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Yen-Chun Liu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Chien-Wei Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Chung-Wei Su
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Cheng-Er Hsu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Yun-Fan Liaw
- College of Medicine, Chang Gung University, Taiwan
- Liver Research Unit, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| |
Collapse
|
27
|
Brakenhoff SM, Claassen M, Honkoop P, de Knegt RJ, van der Eijk AA, Boonstra A, de Man RA, Sonneveld MJ. Sustained response and HBsAg loss after nucleo(s)tide analogue discontinuation in chronic hepatitis B patients: the prospective SNAP study. Clin Res Hepatol Gastroenterol 2024; 48:102257. [PMID: 38065523 DOI: 10.1016/j.clinre.2023.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND & AIM(S) Current guidelines suggest that nucleos(t)ide analogues (NA) can be discontinued before HBsAg loss in a selected group of chronic hepatitis B (CHB) patients. We aimed to study the safety and off-treatment response after NA cessation. METHODS This is a prospective, multicentre, cohort study in which eligible patients discontinued NA therapy. Adult patients, with a CHB mono-infection, HBeAg-negative, without a (history of) liver cirrhosis, who had achieved long-term viral suppression were eligible. Follow-up visits were planned at week 2-4-8-12-24-36-48-72-96. Re-treatment criteria included severe hepatitis (ALT >10x ULN), signs of imminent liver failure (bilirubin >1.5x ULN or INR >1.5), or at the physician's own discretion. RESULTS In total, 33 patients were enrolled. Patients were predominantly Caucasian (45.5%) and had genotype A/B/C/D/unknown in 3/4/6/10/10 (9.1/12.1/18.2/30.3/30.3%). At week 48, 15 patients (45.5%) achieved a sustained response (HBV DNA <2,000 IU/mL). At week 96, 13 patients (39.4%) achieved a sustained response, 4 (12.1%) achieved HBsAg loss, and 12 (36.4%) were re-treated. Severe hepatitis was the main reason for re-treatment (n=7, 21.2%). One patient with severe hepatitis developed jaundice, without signs of hepatic decompensation. Re-treatment was successful in all patients. CONCLUSION NA therapy can be ceased in a highly selected group of CHB patients if close follow-up can be guaranteed. Treatment cessation may increase the chance of HBsAg loss in selected patients, which is counterbalanced by a significant risk of severe hepatitis.
Collapse
Affiliation(s)
- Sylvia M Brakenhoff
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Mark Claassen
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, The Netherlands
| | - Pieter Honkoop
- Department of Gastroenterology and Hepatology, Albert Schweitzer hospital, Dordrecht, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annemiek A van der Eijk
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Milan J Sonneveld
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Tsai YN, Wu JL, Tseng CH, Chen TH, Wu YL, Chen CC, Fang YJ, Yang TH, Nguyen MH, Lin JT, Hsu YC. Hepatitis B core-related antigen dynamics and risk of subsequent clinical relapses after nucleos(t)ide analog cessation. Clin Mol Hepatol 2024; 30:98-108. [PMID: 38092551 PMCID: PMC10776300 DOI: 10.3350/cmh.2023.0194] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND/AIMS Finite nucleos(t)ide analog (NA) therapy has been proposed as an alternative treatment strategy for chronic hepatitis B (CHB), but biomarkers for post-treatment monitoring are limited. We investigated whether measuring hepatitis B core-related antigen (HBcrAg) after NA cessation may stratify the risk of subsequent clinical relapse (CR). METHODS This retrospective multicenter analysis enrolled adults with CHB who were prospectively monitored after discontinuing entecavir or tenofovir with negative HBeAg and undetectable HBV DNA at the end of treatment (EOT). Patients with cirrhosis or malignancy were excluded. CR was defined as serum alanine aminotransferase > two times the upper limit of normal with recurrent viremia. We applied time-dependent Cox proportional hazard models to clarify the association between HBcrAg levels and subsequent CR. RESULTS The cohort included 203 patients (median age, 49.8 years; 76.8% male; 60.6% entecavir) who had been treated for a median of 36.9 months (interquartile range [IQR], 36.5-40.1). During a median post-treatment follow-up of 31.7 months (IQR, 16.7-67.1), CR occurred in 104 patients with a 5-year cumulative incidence of 54.8% (95% confidence interval [CI], 47.1-62.4%). Time-varying HBcrAg level was a significant risk factor for subsequent CR (adjusted hazard ratio [aHR], 1.53 per log U/mL; 95% CI, 1.12-2.08) with adjustment for EOT HBsAg, EOT anti-HBe, EOT HBcrAg and time-varying HBsAg. During follow-up, HBcrAg <1,000 U/mL predicted a lower risk of CR (aHR, 0.41; 95% CI, 0.21-0.81). CONCLUSION Dynamic measurement of HBcrAg after NA cessation is predictive of subsequent CR and may be useful to guide post-treatment monitoring.
Collapse
Affiliation(s)
- Ying-Nan Tsai
- Division of Gastroenterology and Hepatology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jia-Ling Wu
- Department of Public Health, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Cheng-Hao Tseng
- Division of Gastroenterology and Hepatology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Tzu-Haw Chen
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ling Wu
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Jen Fang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Tzeng-Huey Yang
- Division of Gastroenterology, Department of Medicine, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yao-Chun Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Gill US, Peppa D. Pegylated interferon-α for chronic hepatitis B … not ready to be shelved yet! New insights on its role using single-cell transcriptomics. Hepatology 2024; 79:18-20. [PMID: 37676248 DOI: 10.1097/hep.0000000000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Upkar S Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
30
|
Chua C, Salimzadeh L, Ma AT, Adeyi OA, Seo H, Boukhaled GM, Mehrotra A, Patel A, Ferrando-Martinez S, Robbins SH, La D, Wong D, Janssen HL, Brooks DG, Feld JJ, Gehring AJ. IL-2 produced by HBV-specific T cells as a biomarker of viral control and predictor of response to PD-1 therapy across clinical phases of chronic hepatitis B. Hepatol Commun 2023; 7:e0337. [PMID: 38055623 PMCID: PMC10984660 DOI: 10.1097/hc9.0000000000000337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND There are no immunological biomarkers that predict control of chronic hepatitis B (CHB). The lack of immune biomarkers raises concerns for therapies targeting PD-1/PD-L1 because they have the potential for immune-related adverse events. Defining specific immune functions associated with control of HBV replication could identify patients likely to respond to anti-PD-1/PD-L1 therapies and achieve a durable functional cure. METHODS We enrolled immunotolerant, HBeAg+ immune-active (IA+), HBeAg- immune-active (IA-), inactive carriers, and functionally cured patients to test ex vivo PD-1 blockade on HBV-specific T cell functionality. Peripheral blood mononuclear cells were stimulated with overlapping peptides covering HBV proteins +/-α-PD-1 blockade. Functional T cells were measured using a 2-color FluoroSpot assay for interferon-γ and IL-2. Ex vivo functional restoration was compared to the interferon response capacity assay, which predicts overall survival in cancer patients receiving checkpoint inhibitors. RESULTS Ex vivo interferon-γ+ responses did not differ across clinical phases. IL-2+ responses were significantly higher in patients with better viral control and preferentially restored with PD-1 blockade. Inactive carrier patients displayed the greatest increase in IL-2 production, which was dominated by CD4 T cell and response to the HBcAg. The interferon response capacity assay significantly correlated with the degree of HBV-specific T cell restoration. CONCLUSIONS IL-2 production was associated with better HBV control and superior to interferon-γ as a marker of T cell restoration following ex vivo PD-1 blockade. Our study suggests that responsiveness to ex vivo PD-1 blockade, or the interferon response capacity assay, may support stratification for α-PD-1 therapies.
Collapse
Affiliation(s)
- Conan Chua
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Loghman Salimzadeh
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ann T. Ma
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Oyedele A. Adeyi
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hobin Seo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Giselle M. Boukhaled
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anjali Patel
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Scott H. Robbins
- Late Stage Oncology Development, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Danie La
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Wong
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Harry L.A. Janssen
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David G. Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan J. Feld
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam J. Gehring
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
32
|
Ju T, Jiang D, Zhong C, Zhang H, Huang Y, Zhu C, Yang S, Yan D. Characteristics of circulating immune cells in HBV-related acute-on-chronic liver failure following artificial liver treatment. BMC Immunol 2023; 24:47. [PMID: 38007423 PMCID: PMC10676598 DOI: 10.1186/s12865-023-00579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND AND AIM Liver failure, which is predominantly caused by hepatitis B (HBV) can be improved by an artificial liver support system (ALSS). This study investigated the phenotypic heterogeneity of immunocytes in patients with HBV-related acute-on-chronic liver failure (HBV-ACLF) before and after ALSS therapy. METHODS A total of 22 patients with HBV-ACLF who received ALSS therapy were included in the study. Patients with Grade I according to the ACLF Research Consortium score were considered to have improved. Demographic and laboratory data were collected and analyzed during hospitalization. Immunological features of peripheral blood in the patients before and after ALSS were detected by mass cytometry analyses. RESULTS In total, 12 patients improved and 10 patients did not. According to the immunological features data after ALSS, the proportion of circulating monocytes was significantly higher in non-improved patients, but there were fewer γδT cells compared with those in improved patients. Characterization of 37 cell clusters revealed that the frequency of effector CD8+ T (P = 0.003), CD4+ TCM (P = 0.033), CD4+ TEM (P = 0.039), and inhibitory natural killer (NK) cells (P = 0.029) decreased in HBV-ACLF patients after ALSS therapy. Sub group analyses after treatment showed that the improved patients had higher proportions of CD4+ TCM (P = 0.010), CD4+ TEM (P = 0.021), and γδT cells (P = 0.003) and a lower proportion of monocytes (P = 0.012) compared with the non-improved patients. CONCLUSIONS Changes in effector CD8+ T cells, effector and memory CD4+ T cells, and inhibitory NK cells are associated with ALSS treatment of HBV-ACLF. Moreover, monocytes and γδT cells exhibited the main differences when patients obtained different prognoses. The phenotypic heterogeneity of lymphocytes and monocytes may contribute to the prognosis of ALSS and future immunotherapy strategies.
Collapse
Affiliation(s)
- Tao Ju
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Chengli Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Huafen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yandi Huang
- Department of Laboratory Medicine, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Chunxia Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
33
|
Huang CW, Yang CT, Su PY, Chen YY, Huang SP, Yen HH. Long-Term Hepatitis B Surface Antigen Profile and Seroclearance Following Antiviral Treatment: A Single-Center, Real-World Cohort Study. Biomedicines 2023; 11:2966. [PMID: 38001966 PMCID: PMC10669103 DOI: 10.3390/biomedicines11112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B surface antigen (HBsAg) seroclearance, an indicator of recovery from hepatitis B virus (HBV) infection, is uncommon in long-term nucleos(t)ide analog (NUC) therapy. We compared the incidence of HBsAg seroclearance in patients with and without NUC discontinuation to identify predictors of HBsAg seroclearance. This retrospective study enrolled adult patients with a chronic HBV infection followed for ≥12 months after NUC discontinuation (finite group) and those treated with NUCs for >3 years (non-finite group). Demographic, clinical, and laboratory data were analyzed. The study cohort included 978 patients, including 509 and 469 patients in the finite and non-finite groups, respectively. Cumulative HBsAg seroclearance incidence was significantly higher in the finite group than in the non-finite group (p = 0.006). The 5- and 10-year cumulative HBsAg seroclearance incidence were 6.6% and 18.9% in the finite group and 3% and 14.6% in the non-finite group, respectively. The likelihood of HBsAg seroclearance was higher in those with end of treatment (EOT) HBsAg levels of <100 IU/mL and in those without clinical relapse (CR). The cumulative 3-year CR incidence was 16.8%. The incidence of liver decompensation and hepatocellular carcinoma were 4.1 and 0.4 per 1000 person-years, respectively. The hepatocellular carcinoma incidence did not significantly differ between the finite and non-finite groups (p = 0.941). In conclusion, higher HBsAg seroclearance incidence in patients receiving finite therapy, and the increased likelihood of HBsAg seroclearance in those with EOT HBsAg levels of <100 IU/mL and in those without CR should be considered during decision-making of treatment options.
Collapse
Affiliation(s)
- Chih-Wen Huang
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chen-Ta Yang
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Yuan Su
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yang-Yuan Chen
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Siou-Ping Huang
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsu-Heng Yen
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
34
|
Bertoletti A, Le Bert N. Quest for immunological biomarkers in the management of CHB patients. Gut 2023; 72:2012-2014. [PMID: 36922017 DOI: 10.1136/gutjnl-2023-329437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
35
|
Chen YC, Hsu CW, Chien RN. Higher HBeAg-reversion virological relapse and lower sustained remission after treatment cessation in tenofovir-treated HBeAg-positive patients. J Med Virol 2023; 95:e29213. [PMID: 37933418 DOI: 10.1002/jmv.29213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
A complete investigation of the clinical outcomes after treatment cessation in HBeAg-positive patients with HBeAg loss is limited. We retrospectively recruited 242 HBeAg-positive patients with HBeAg loss after a median duration of 37.2 months with tenofovir (TDF, n = 77) or entecavir (ETV, n = 165) treatment. There were 77 (31.8%) patients with sustained virological remission (SVR), 85 (35.1%) with HBeAg-reversion virological relapse, 80 (33.1%) with HBeAg-negative virological relapse after treatment cessation, and 23 (9.5%) with HBsAg loss. Clinical data at baseline, on-treatment and during off-treatment follow-up were analyzed. The 3-year cumulative incidences of overall, HBeAg-reversion and HBeAg-negative virological relapse were 70.2%, 54%, and 53.5%, respectively. The common factors associated with HBeAg-reversion and HBeAg-negative virological relapse were tenofovir treatment (hazard ratio [HR] = 5.411, p < 0.001; HR = 2.066, p = 0.006, respectively) and HBsAg at end of treatment (EOT) (HR = 1.461, p = 0.001; HR = 1.303, p = 0.019, respectively). The 5-year cumulative incidence of HBsAg loss in SVR patients was 13.7% and EOT HBsAg was the only associated factor (HR = 0.524, p = 0.024). Compared to that of ETV-treated patients, TDF-treated patients had a significantly higher 3-year cumulative incidence of virological relapse (87.3% vs. 62.8%, p < 0.001), earlier HBeAg-reversion virological relapse (2.9 vs. 7.8 months, p < 0.001), a higher rate of HBeAg-reversion virological relapse (53.2% vs. 26.7%) and a lower SVR rate (15.6% vs. 39.4%) (p < 0.001). In summary, the clinical outcomes after treatment cessation in HBeAg-positive patients with HBeAg loss were composed of HBeAg-reversion virological relapse, HBeAg-negative virological relapse and SVR. TDF was significantly associated with off-treatment virological relapse. EOT HBsAg plays an important role in HBsAg loss among SVR patients and posttreatment virological relapse.
Collapse
Affiliation(s)
- Yi-Cheng Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Wei Hsu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
36
|
Takahama S, Yoshio S, Masuta Y, Murakami H, Sakamori R, Kaneko S, Honda T, Murakawa M, Sugiyama M, Kurosaki M, Asahina Y, Takehara T, Appay V, Kanto T, Yamamoto T. Hepatitis B surface antigen reduction is associated with hepatitis B core-specific CD8 + T cell quality. Front Immunol 2023; 14:1257113. [PMID: 37920475 PMCID: PMC10619684 DOI: 10.3389/fimmu.2023.1257113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023] Open
Abstract
Despite treatment, hepatitis B surface antigen (HBsAg) persists in patients with chronic hepatitis B (CHB), suggesting the likely presence of the virus in the body. CD8+ T cell responses are essential for managing viral replication, but their effect on HBsAg levels remains unclear. We studied the traits of activated CD8+ T cells and HBV-specific CD8+ T cells in the blood of CHB patients undergoing nucleos(t)ide analog (NUC) therapy. For the transcriptome profiling of activated CD8+ T cells in peripheral blood mononuclear cells (PBMCs), CD69+ CD8+ T cells were sorted from six donors, and single-cell RNA sequencing (scRNA-seq) analysis was performed. To detect HBV-specific CD8+ T cells, we stimulated PBMCs from 26 donors with overlapping peptides covering the HBs, HBcore, and HBpol regions of genotype A/B/C viruses, cultured for 10 days, and analyzed via multicolor flow cytometry. scRNA-seq data revealed that CD8+ T cell clusters harboring the transcripts involved in the cytolytic functions were frequently observed in donors with high HBsAg levels. Polyfunctional analysis of HBV-specific CD8+ T cells utilized by IFN-γ/TNFα/CD107A/CD137 revealed that HBcore-specific cells exhibited greater polyfunctionality, suggesting that the quality of HBV-specific CD8+ T cells varies among antigens. Moreover, a subset of HBcore-specific CD8+ T cells with lower cytolytic potential was inversely correlated with HBsAg level. Our results revealed a stimulant-dependent qualitative difference in HBV-specific CD8+ T cells in patients with CHB undergoing NUC therapy. Hence, the induction of HBcore-specific CD8+ T cells with lower cytolytic potential could be a new target for reducing HBsAg levels.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hirotomo Murakami
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Victor Appay
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Université de Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Tatsuya Kanto
- Department of Liver Diseases, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
- The Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Su M, Ye T, Wu W, Shu Z, Xia Q. Possibility of PD-1/PD-L1 Inhibitors for the Treatment of Patients with Chronic Hepatitis B Infection. Dig Dis 2023; 42:53-60. [PMID: 37820605 PMCID: PMC10836741 DOI: 10.1159/000534535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Chronic hepatitis B (CHB) infection is still a major global public health problem, with nearly two billion patients. Although current antiviral drugs can inhibit viral replication and reduce hepatitis B virus (HBV) related complications, it is difficult to achieve clinical endpoints due to drug resistance. SUMMARY Immune checkpoint inhibitors (ICIs) are an important strategy to reverse T-cell exhaustion, and rebuilding an effective functional T-cell response is a promising immunomodulatory approach for CHB patients. However, ICIs may lead to viral reactivation or immune-related adverse effects. There are still many controversies in the application of ICIs in treating patients with CHB. KEY MESSAGES This article reviews the research progress of ICIs in CHB infection and related issues. The goal of this paper was to summarize the possible impact of new therapies for CHB with the aim of reducing potential clinical risks.
Collapse
Affiliation(s)
- Menghan Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,
| | - Ting Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Qi Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Hsu YC, Tseng CH, Kao JH. Safety considerations for withdrawal of nucleos(t)ide analogues in patients with chronic hepatitis B: First, do no harm. Clin Mol Hepatol 2023; 29:869-890. [PMID: 36916171 PMCID: PMC10577354 DOI: 10.3350/cmh.2022.0420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Nucleos(t)ide analogues (NA) are widely used to treat hepatitis B virus (HBV) infection, but they cannot eradicate the virus and treatment duration can be lifelong if the endpoint is set at seroclearance of the hepatitis B surface antigen (HBsAg). As an alternative strategy, finite NA therapy without the prerequisite of HBsAg seroclearance has been proposed to allow treatment cessation in patients with sustained undetectable HBV viremia for two to three years. However, reactivation of viral replication almost always follows NA withdrawal. Whereas HBV reactivation might facilitate HBsAg seroclearance in some, it could lead to serious acute flare-ups in a certain proportion of patients. Occurrence and consequences of NA withdrawal flares are complicated with various factors involving the virus, host, and treatment. Accurate risk prediction for severe flares following NA cessation is essential to ensure patient safety. The risks of life-threatening flares in patients who discontinued NA according to the stopping rules of current guidelines or local reimbursement policies have recently been quantitatively estimated in large-scale studies, which also provided empirical evidence to help identify vulnerable patients at risk of devastating outcomes. Moreover, risk predictors were further explored and validated to hopefully aid in patient selection and management. In this narrative review with a focus on patient safety, we summarize and discuss current literature on the incidence of severe flares following NA cessation, risk stratification for candidate selection, rules of posttreatment monitoring, and indications for treatment resumption. We also share our thoughts on the limitations of existing knowledge and suggestions for future research.
Collapse
Affiliation(s)
- Yao-Chun Hsu
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Internal Medicine, Fu-Jen Catholic University Hospital, New Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Hao Tseng
- School of Medicine College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Division of Gastroenterology and Hepatology, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Jia-Horng Kao
- Department of Internal Medicine and Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
39
|
Fu YL, Zhou SN, Hu W, Li J, Zhou MJ, Li XY, Wang YY, Zhang P, Chen SY, Fan X, Song JW, Jiao YM, Xu R, Zhang JY, Zhen C, Zhou CB, Yuan JH, Shi M, Wang FS, Zhang C. Metabolic interventions improve HBV envelope-specific T-cell responses in patients with chronic hepatitis B. Hepatol Int 2023; 17:1125-1138. [PMID: 36976426 PMCID: PMC10522531 DOI: 10.1007/s12072-023-10490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Restoration of HBV-specific T cell immunity is a promising approach for the functional cure of chronic Hepatitis B (CHB), necessitating the development of valid assays to boost and monitor HBV-specific T cell responses in patients with CHB. METHODS We analyzed hepatitis B virus (HBV) core- and envelope (env)-specific T cell responses using in vitro expanded peripheral blood mononuclear cells (PBMCs) from patients with CHB exhibiting different immunological phases, including immune tolerance (IT), immune activation (IA), inactive carrier (IC), and HBeAg-negative hepatitis (ENEG). Additionally, we evaluated the effects of metabolic interventions, including mitochondria-targeted antioxidants (MTA), polyphenolic compounds, and ACAT inhibitors (iACAT), on HBV-specific T-cell functionality. RESULTS We found that HBV core- and env-specific T cell responses were finely coordinated and more profound in IC and ENEG than in the IT and IA stages. HBV env-specific T cells were more dysfunctional but prone to respond to metabolic interventions using MTA, iACAT, and polyphenolic compounds than HBV core-specific T-cells. The responsiveness of HBV env-specific T cells to metabolic interventions can be predicted by the eosinophil (EO) count and the coefficient of variation of red blood cell distribution width (RDW-CV). CONCLUSION These findings may provide valuable information for metabolically invigorating HBV-specific T-cells to treat CHB.
Collapse
Affiliation(s)
- Yu-Long Fu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yu Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - You-Yuan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
40
|
Jansen DTSL, de Beijer MTA, Luijten RJ, Kwappenberg K, Wiekmeijer AS, Kessler AL, Pieterman RFA, Bouzid R, Krebber WJ, de Man RA, Melief CJM, Buschow SI. Induction of broad multifunctional CD8+ and CD4+ T cells by hepatitis B virus antigen-based synthetic long peptides ex vivo. Front Immunol 2023; 14:1163118. [PMID: 37781393 PMCID: PMC10534072 DOI: 10.3389/fimmu.2023.1163118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Therapeutic vaccination based on synthetic long peptides (SLP®) containing both CD4+ and CD8+ T cell epitopes is a promising treatment strategy for chronic hepatitis B infection (cHBV). Methods We designed SLPs for three HBV proteins, HBcAg and the non-secreted proteins polymerase and X, and investigated their ability to induce T cell responses ex vivo. A set of 17 SLPs was constructed based on viral protein conservation, functionality, predicted and validated binders for prevalent human leukocyte antigen (HLA) supertypes, validated HLA I epitopes, and chemical producibility. Results All 17 SLPs were capable of inducing interferon gamma (IFNɣ) production in samples from four or more donors that had resolved an HBV infection in the past (resolver). Further analysis of the best performing SLPs demonstrated activation of both CD8+ and CD4+ multi-functional T cells in one or more resolver and patient sample(s). When investigating which SLP could activate HBV-specific T cells, the responses could be traced back to different peptides for each patient or resolver. Discussion This indicates that a large population of subjects with different HLA types can be covered by selecting a suitable mix of SLPs for therapeutic vaccine design. In conclusion, we designed a set of SLPs capable of inducing multifunctional CD8+ and CD4+ T cells ex vivo that create important components for a novel therapeutic vaccine to cure cHBV.
Collapse
Affiliation(s)
- Diahann T. S. L. Jansen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Monique T. A. de Beijer
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robbie J. Luijten
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Amy L. Kessler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roel F. A. Pieterman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rachid Bouzid
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
41
|
You M, Gao Y, Fu J, Xie R, Zhu Z, Hong Z, Meng L, Du S, Liu J, Wang FS, Yang P, Chen L. Epigenetic regulation of HBV-specific tumor-infiltrating T cells in HBV-related HCC. Hepatology 2023; 78:943-958. [PMID: 36999652 PMCID: PMC10442105 DOI: 10.1097/hep.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS HBV shapes the T-cell immune responses in HBV-related HCC. T cells can be recruited to the nidus, but limited T cells participate specifically in response to the HBV-related tumor microenvironment and HBV antigens. How epigenomic programs regulate T-cell compartments in virus-specific immune processes is unclear. APPROACH AND RESULTS We developed Ti-ATAC-seq. 2 to map the T-cell receptor repertoire, epigenomic, and transcriptomic landscape of αβ T cells at both the bulk-cell and single-cell levels in 54 patients with HCC. We deeply investigated HBV-specific T cells and HBV-related T-cell subsets that specifically responded to HBV antigens and the HBV + tumor microenvironment, respectively, characterizing their T-cell receptor clonality and specificity and performing epigenomic profiling. A shared program comprising NFKB1/2-, Proto-Oncogene, NF-KB Sub unit, NFATC2-, and NR4A1-associated unique T-cell receptor-downstream core epigenomic and transcriptomic regulome commonly regulated the differentiation of HBV-specific regulatory T-cell (Treg) cells and CD8 + exhausted T cells; this program was also selectively enriched in the HBV-related Treg-CTLA4 and CD8-exhausted T cell-thymocyte selection associated high mobility subsets and drove greater clonal expansion in HBV-related Treg-CTLA4 subset. Overall, 54% of the effector and memory HBV-specific T cells are governed by transcription factor motifs of activator protein 1, NFE2, and BACH1/2, which have been reported to be associated with prolonged patient relapse-free survival. Moreover, HBV-related tumor-infiltrating Tregs correlated with both increased viral titer and poor prognosis in patients. CONCLUSIONS This study provides insight into the cellular and molecular basis of the epigenomic programs that regulate the differentiation and generation of HBV-related T cells from viral infection and HBV + HCC unique immune exhaustion.
Collapse
Affiliation(s)
- Maojun You
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Gao
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Runze Xie
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Zhu
- Senior Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA Centeral Hospital, Beijing, China
| | - Zhixian Hong
- Senior Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA Centeral Hospital, Beijing, China
| | - Lingzhan Meng
- Senior Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA Centeral Hospital, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science and PUMC, Beijing, China
| | - Junliang Liu
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Pengyuan Yang
- Chongqing International Institute for Immunology, Chongqing, China
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
42
|
Li Y, Wen C, Gu S, Wang W, Guo L, Li CK, Yi X, Zhou Y, Dong Z, Fu X, Zhong S, Wang Y, Huang K, Yin J, Zhong C, Liang X, Fan R, Chen H, Jiang D, Zhang X, Sun J, Tang L, Peng J, Hou J. Differential response of HBV envelope-specific CD4 + T cells is related to HBsAg loss after stopping nucleos(t)ide analogue therapy. Hepatology 2023; 78:592-606. [PMID: 36896974 PMCID: PMC10344436 DOI: 10.1097/hep.0000000000000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIM Long-term maintenance of viral control, even HBsAg loss, remains a challenge for chronic hepatitis B (CHB) patients undergoing nucleos(t)ide analogue (NA) discontinuation. This study aimed to investigate the relationship between HBV-specific T-cell responses targeting peptides spanning the whole proteome and clinical outcomes in CHB patients after NA discontinuation. APPROACH AND RESULTS Eighty-eight CHB patients undergoing NA discontinuation were classified as responders (remained relapse-free up to 96 weeks) or relapsers (relapsed patients who underwent NA retreatment for up to 48 weeks and reachieved stable viral control). HBV-specific T-cell responses were detected at baseline and longitudinally throughout the follow-up. We found responders had a greater magnitude of HBV polymerase (Pol)-specific T-cell responses than relapsers at baseline. After long-term NA discontinuation, simultaneously enhanced HBV Core-induced and Pol-induced responses were observed in responders. Particularly, responders with HBsAg loss possessed enhanced HBV Envelope (Env)-induced responses after short-term and long-term follow-up. Notably, CD4 + T cells accounted for the predominance of HBV-specific T-cell responses. Correspondingly, CD4-deficient mice showed attenuated HBV-specific CD8 + T-cell responses, reduced HBsAb-producing B cells, and delayed HBsAg loss; in contrast, in vitro addition of CD4 + T cells promoted HBsAb production by B cells. Besides, IL-9, rather than PD-1 blockade, enhanced HBV Pol-specific CD4 + T-cell responses. CONCLUSION HBV-specific CD4 + T-cell responses induced by the targeted peptide possess specificities for long-term viral control and HBsAg loss in CHB patients undergoing NA discontinuation, indicating that CD4 + T cells specific to distinct HBV antigens may endow with divergent antiviral potential.
Collapse
Affiliation(s)
- Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chris Kafai Li
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheyu Dong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Fu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kuiyuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhua Yin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiu Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xieer Liang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Broquetas T, Carrión JA. Past, present, and future of long-term treatment for hepatitis B virus. World J Gastroenterol 2023; 29:3964-3983. [PMID: 37476586 PMCID: PMC10354584 DOI: 10.3748/wjg.v29.i25.3964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The estimated world prevalence of hepatitis B virus (HBV) infection is 316 million. HBV infection was identified in 1963 and nowadays is a major cause of cirrhosis and hepatocellular carcinoma (HCC) despite universal vaccination programs, and effective antiviral therapy. Long-term administration of nucleos(t)ide analogues (NA) has been the treatment of choice for chronic hepatitis B during the last decades. The NA has shown a good safety profile and high efficacy in controlling viral replication, improving histology, and decreasing the HCC incidence, decompensation, and mortality. However, the low probability of HBV surface antigen seroclearance made necessary an indefinite treatment. The knowledge, in recent years, about the different phases of the viral cycle, and the new insights into the role of the immune system have yielded an increase in new therapeutic approaches. Consequently, several clinical trials evaluating combinations of new drugs with different mechanisms of action are ongoing with promising results. This integrative literature review aims to assess the knowledge and major advances from the past of hepatitis B, the present of NA treatment and withdrawal, and the future perspectives with combined molecules to achieve a functional cure.
Collapse
Affiliation(s)
- Teresa Broquetas
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
| | - José A Carrión
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Facultat de Ciències de la Salut i de la Vida, Barcelona 08003, Spain
| |
Collapse
|
44
|
Maini MK. EASL International Recognition Award Recipient 2023: Prof. Antonio Bertoletti. J Hepatol 2023; 79:10-12. [PMID: 37330748 DOI: 10.1016/j.jhep.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
45
|
Zeng G, Koffas A, Mak LY, Gill US, Kennedy PT. Utility of novel viral and immune markers in predicting HBV treatment endpoints: A systematic review of treatment discontinuation studies. JHEP Rep 2023; 5:100720. [PMID: 37138673 PMCID: PMC10149368 DOI: 10.1016/j.jhepr.2023.100720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 05/05/2023] Open
Abstract
Background & Aims Antivirals represent the mainstay of chronic hepatitis B treatment given their efficacy and tolerability, but rates of functional cure remain low during long-term therapy. Treatment discontinuation has emerged as a strategy to maintain partial cure and achieve functional cure in select patient groups. We aimed to evaluate how data from treatment discontinuation studies exploring novel viral and/or immune markers could be applied to the functional cure program. Methods Treatment discontinuation studies evaluating novel viral and/or immune markers were identified by a systematic search of the PubMed database through to October 30, 2022. Data extraction focused on information regarding novel markers, including identified cut-off levels, timing of measurement, and associated effect on study outcomes of virological relapse, clinical relapse, and HBsAg seroclearance. Results From a search of 4,492 citations, 33 studies comprising a minimum of 2,986 unique patients met the inclusion criteria. Novel viral markers, HBcrAg and HBV RNA, were demonstrated across most studies to be helpful in predicting off-therapy partial cure, with emerging evidence to support a link with functional cure. From novel immune marker studies, we observed that treatment discontinuation has the potential to trigger immune restoration, which may be associated with a transient virological relapse. To this end, these studies support the combination of virus-directing agents with immunomodulator therapies to induce two key steps underlying functional cure: viral antigen load reduction and restoration of the host immune response. Conclusions Patients with a favourable profile of novel viral and immune markers stand to benefit from a trial of antiviral treatment discontinuation alongside novel virus-directing agents with the aim of achieving functional cure without excessive risk of severe clinical relapse. Impact and implications Select patients with chronic hepatitis B undergoing nucleoside analogue therapy may benefit from a trial of treatment discontinuation, aiming to maintain partial cure and/or achieve functional cure. We propose a profile of novel viral and immune markers to identify patients who are likely to achieve these goals without excessive risk of hepatic decompensation. Furthermore, treatment discontinuation may also be considered as a therapeutic strategy to trigger immune restoration, which may increase the chance of functional cure when used in conjunction with novel virus-directing agents.
Collapse
Affiliation(s)
- Georgia Zeng
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Apostolos Koffas
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Upkar S. Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Corresponding author. Address: Department of Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
46
|
van Bömmel F, Stein K, Heyne R, Petersen J, Buggisch P, Berg C, Zeuzem S, Stallmach A, Sprinzl M, Schott E, Pathil-Warth A, von Arnim U, Keitel V, Lohmeyer J, Simon KG, Trautwein C, Trein A, Hüppe D, Cornberg M, Lammert F, Ingiliz P, Zachoval R, Hinrichsen H, Zipprich A, Klinker H, Schulze Zur Wiesch J, Schmiedeknecht A, Brosteanu O, Berg T. A multicenter randomized-controlled trial of nucleos(t)ide analogue cessation in HBeAg-negative chronic hepatitis B. J Hepatol 2023; 78:926-936. [PMID: 37062574 DOI: 10.1016/j.jhep.2022.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 04/18/2023]
Abstract
BACKGROUND & AIMS Nucleos(t)ide analogues (NUCs) are the standard and mostly lifelong treatment for chronic HBeAg-negative hepatitis B, as functional cure (loss of HBsAg) is rarely achieved. Discontinuation of NUC treatment may lead to functional cure; however, to date, the evidence for this has been based on small or non-randomized clinical trials. The STOP-NUC trial was designed with the aim of increasing the HBsAg loss rate using a NUC treatment interruption approach. METHODS In this multicenter, randomized-controlled trial, 166 HBeAg-negative patients with chronic hepatitis B on continuous long-term NUC treatment, with HBV DNA <172 IU/ml (1,000 copies/ml) for ≥4 years, were randomized to either stop (Arm A) or continue NUC treatment (Arm B) for a 96-week observation period. In total, 158 patients were available for final analysis, 79 per arm. The primary endpoint was sustained HBsAg loss up to week 96. RESULTS Our study met its primary objective by demonstrating HBsAg loss in eight patients (10.1%, 95% CI 4.8%-19.5%) in Arm A and in no patient in Arm B (p = 0.006). Among patients with baseline HBsAg levels <1,000 IU/ml, seven (28%) achieved HBsAg loss. In Arm A, re-therapy was initiated in 11 (13.9%) patients, whereas 32 (40.5%) patients achieved sustained remission. A decrease of HBsAg >1 log IU/ml was observed in 16 patients (20.3%) in Arm A and in one patient (1.3%) in Arm B. No serious adverse events related to treatment cessation occurred. CONCLUSIONS Cessation of NUC treatment was associated with a significantly higher rate of HBsAg loss than continued NUC treatment, which was largely restricted to patients with end of treatment HBsAg levels <1,000 IU/ml. IMPACT AND IMPLICATIONS As HBeAg-negative patients with chronic hepatitis B on nucleos(t)ide analogues (NUCs) rarely achieve functional cure, treatment is almost always lifelong. The STOP-NUC trial was conducted to investigate whether discontinuing long-term NUC treatment can increase the cure rate. We found that some patients achieved functional cure after stopping NUCs, which was especially pronounced in patients with HBsAg levels <1,000 at the end of NUC treatment, and that many did not need to resume therapy. The results of the Stop-NUC trial provide evidence for the concept of stopping NUC treatment as a therapeutic option that can induce functional cure.
Collapse
Affiliation(s)
- Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig, Germany.
| | - Kerstin Stein
- Praxis Hepatologie - Magdeburg, Breiter Weg 228m, 39104 Magdeburg, Germany
| | - Renate Heyne
- Leberzentrum Checkpoint, Bergmannstraße 5-7, 10961 Berlin, Germany
| | - Jörg Petersen
- Leberzentrum Hamburg an der Asklepios Klinik St. Georg, Lohmühlenstraße 5, 20099 Hamburg, Germany
| | - Peter Buggisch
- Leberzentrum Hamburg an der Asklepios Klinik St. Georg, Lohmühlenstraße 5, 20099 Hamburg, Germany
| | - Christoph Berg
- Universitätsklinikum Tübingen, Medizinische Klinik I, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Stefan Zeuzem
- Universitätsklinikum Frankfurt, Medizinische Klinik 1, Theodor-Stern-Kai, 60590 Frankfurt am Main, Germany
| | - Andreas Stallmach
- Universitätsklinikum Jena, Klinik für Innere Medizin IV, Am Klinikum 1, 07747 Jena, Germany
| | - Martin Sprinzl
- Universitätsmedizin Mainz, I. Medizinische Klinik und Poliklinik. Johannes Gutenberg Universität, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Eckart Schott
- Charité-Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; Klinik für Innere Medizin II, Helios Klinikum Emil von Behring, Walterhöferstrasse 11, 14165 Berlin, Germany
| | - Anita Pathil-Warth
- Universitätsklinikum Frankfurt, Medizinische Klinik 1, Theodor-Stern-Kai, 60590 Frankfurt am Main, Germany; Universitätsklinikum Heidelberg, Innere Medizin IV, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ulrike von Arnim
- Universitätsklinikum Magdeburg AöR, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Verena Keitel
- Universitätsklinikum Magdeburg AöR, Leipziger Str. 44, 39120 Magdeburg, Germany; Universitätsklinikum Düsseldorf, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jürgen Lohmeyer
- Universitätsklinikum Gießen, Medizinische Klinik II, Klinikstraße 33, 35385 Gießen, Germany
| | - Karl-Georg Simon
- MVZ Gastroenterologie Leverkusen, Franz-Kail-Str. 2, 51375 Leverkusen, Germany
| | - Christian Trautwein
- Universitätsklinikum RWTH Aachen, Medizinische Klinik III, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Andreas Trein
- Gemeinschaftspraxis Schwabstrasse 59, 70197 Stuttgart, Germany
| | - Dietrich Hüppe
- Gastroenterologische Gemeinschaftspraxis Herne, Wiescherstr. 20, 44623 Herne, Germany
| | - Markus Cornberg
- Medizinische Hochschule Hannover, Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
| | - Frank Lammert
- Medizinische Hochschule Hannover, Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Universitätsklinikum des Saarlandes, Klinik für Innere Medizin II, Kirrberger Straße 100, 66421 Homburg, Germany
| | - Patrick Ingiliz
- Zentrum für Infektiologie (zibp) Berlin, Driesener Str. 20, 10439 Berlin, Germany; Henri Mondor Universitary Hospital, Hepatology Department, Creteil, France
| | - Reinhart Zachoval
- LMU Klinikum Großhadern, Medizinischen Klinik und Poliklinik II, Marchioninistraße 15, 81377 München, Germany
| | - Holger Hinrichsen
- Gastroenterologisch-Hepatologisches Zentrum Kiel, Goethestr. 11, 24116 Kiel, Germany
| | - Alexander Zipprich
- Universitätsklinikum Jena, Klinik für Innere Medizin IV, Am Klinikum 1, 07747 Jena, Germany; Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Germany
| | - Hartmuth Klinker
- Universitätsklinikum Würzburg, Medizinische Klinik II, Oberdürrbacher Straße 697080 Würzburg, Germany
| | - Julian Schulze Zur Wiesch
- Universitätsklinikum Hamburg-Eppendorf, I. Medizinische Klinik und Poliklinik, Martinistraße 52, 20246 Hamburg, Germany
| | | | | | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Li X, Zheng A, Liu J, Shi M, Liao B, Xie S, Yan R, Gan Y, Zuo X, Gong M, Wu H, Wang Z. Assessing the chronic hepatitis B adaptive immune response by profiling specific T-cell receptor repertoire. Antiviral Res 2023; 214:105608. [PMID: 37084955 DOI: 10.1016/j.antiviral.2023.105608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Challenges in assessing hepatitis B virus (HBV)-specific T cell immunity as an immunological biomarker still remain in chronic hepatitis B (CHB), such as the requirement of large quantities of cells. This study aims to conveniently assess HBV-specific T cells immunity in chronic HBV infected patients. We obtained T cell receptor β chains (TCRβs) from public databases and six acute hepatitis B patients to establish an HBV-specific TCRβs dataset. For some TCRs from one AHB patient, their specificities and epitopes were verified. The potential HBV-specific TCRβs from CHB patients were analyzed using GLIPH2 and established dataset. By analyzing two antiviral therapy cohorts including 42 CHB patients, we showed that individuals with better therapy response may depend more on newly emerging potential HBV-specific TCRβs. In a cross-sectional study containing 207 chronic HBV infected patients, the results exhibited that the characteristics of potential HBV-specific clusters were divergent between CHB and hepatocellular carcinoma patients. Our strategy could profile potential HBV-specific TCRβ repertoire using a small blood sample, which will complement traditional methods for assessing the HBV-specific T cell immunity.
Collapse
Affiliation(s)
- Xueying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiabang Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengfen Shi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baolin Liao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Gan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zuo
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingxing Gong
- Department of Infectious Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
48
|
Wen C, Zhou Y, Zhou Y, Wang Y, Dong Z, Gu S, Wang W, Guo L, Jin Z, Zhong S, Tang L, Li Y. HBV Core-specific CD4 + T cells correlate with sustained viral control upon off-treatment in HBeAg-positive chronic hepatitis B patients. Antiviral Res 2023; 213:105585. [PMID: 36963665 DOI: 10.1016/j.antiviral.2023.105585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND & AIMS Treatment with nucleos(t)ide analogue (NA) efficiently suppresses viral replication in patients with chronic HBV infection, yet HBV relapse frequently upon NA withdrawal; the detailed immunomodulatory compounds for sustained viral control of HBV upon NA interruption have yet to be fully clarified. This study aimed to elucidate the role of T cells specific for distinct HBV peptides in sustained response upon discontinuation of antiviral treatment. METHODS A total of 48 patients with HBeAg-positive chronic hepatitis B receiving NA treatment and withdrawal were included longitudinally in a retrospective and prospective cohort. Enzyme-linked immunosorbent spot (ELISpot) and intracellular cytokine staining (ICS) assays were performed to detect IFN-γ producing HBV-specific T cells following stimulation with overlapping peptides covering the whole HBV genome after 10 days of in vitro expansion. RESULTS ICS assays revealed that T cells specific for HBV Core and Polymerase induced more robust IFN-γ responses compared to envelope and HBx. Notably, at the time of NA discontinuation, the intensity and breadth of HBV Core peptides-induced responses, predominately targeted by CD4+ T cells but not CD8+ T cells, were associated with sustained viral control upon off-treatment. Further exploration of longitudinal features in patients with sustained viral control revealed that the breadth of HBV-specific T cell responses does not increase following treatment cessation. CONCLUSION This report emphasizes the essential role of HBV Core-specific CD4+ T cells in sustained response after therapy withdrawal, indicating it is a potential candidate for immunotherapeutic approaches in chronic HBV patients.
Collapse
Affiliation(s)
- Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyue Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheyu Dong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Guo
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zihan Jin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Mak LY, Hui RWH, Cheung KS, Fung J, Seto WK, Yuen MF. Advances in determining new treatments for hepatitis B infection by utilizing existing and novel biomarkers. Expert Opin Drug Discov 2023; 18:401-416. [PMID: 36943183 DOI: 10.1080/17460441.2023.2192920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) infection is a major global health threat and accounts for significant liver-related morbidity and mortality. An improved understanding of how hepatitis B virus (HBV) interacts with the host immune system allows the discovery of novel biomarkers and new treatment options. Viral biomarkers including hepatitis B surface antigen (HBsAg) and newer ones like HBV RNA and hepatitis B core-related antigen appear to be useful to select patients who are likely to benefit from cessation of long-term antiviral therapy. These markers can also help to confirm target engagement for novel compounds, and efficacy in HBsAg reduction and seroclearance is deemed essential as this is how the current treatment endpoint of functional cure is defined. AREAS COVERED In this review, the authors discuss the current standard of care and the gaps between such standard and the ideal goals for treatment in CHB. The authors highlight novel viral and immunological biomarkers that are potentially useful to evaluate treatment response. Novel treatment approaches in relation to these novel biomarkers are also evaluated. EXPERT OPINION Novel serum viral biomarkers and immunological markers are indispensable in the HBV functional cure program. These will likely become part of standard monitoring soon.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
50
|
Chen CH, Jeng WJ, Hu TH, Liu YC, Wang JH, Hung CH, Lu SN, Chien RN. HBV relapse rates in patients who discontinue tenofovir disoproxil fumarate with or without switching to tenofovir alafenamide. Dig Liver Dis 2023; 55:771-777. [PMID: 36737315 DOI: 10.1016/j.dld.2023.01.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS The incidence and relapse pattern in patients stopping tenofovir alafenamide (TAF), a prodrug of tenofovir which is more concentrated in hepatocytes, is unknown. METHODS HBeAg-negative CHB patients stopping tenofovir disoproxil fumarate (TDF) (off-TDF) or who had switched to TAF more than 3 months before discontinuation (off-TAF) were recruited. The propensity score-matching method (PSM) was used, creating a ratio of 1:3 between the off-TAF versus the off-TDF groups to adjust for associated factors. RESULTS After PSM, 180 off-TDF and 60 off-TAF patients were analyzed. The cumulative rates of virological and clinical relapse at 52 weeks were 75.1% and 58.5% respectively in the off-TDF group and 91.1% and 61.6% in the off-TAF group. Patients in the off-TAF group had significantly higher rates of virological relapse than those in the off-TDF group (p = 0.021), but not clinical relapse (p = 0.785). Multivariate cox regression analysis showed that off-TAF group was an independent factor for virological relapse, but not clinical relapse. Severity of clinical relapse and hepatic decompensation rate were comparable between off-TDF and off-TAF groups CONCLUSIONS: The off-TAF group had a higher virological relapse rate than the off-TDF group. The difference in clinical relapse pattern and severity was not clinically important between the two groups.
Collapse
Affiliation(s)
- Chien-Hung Chen
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan.
| | - Wen-Juei Jeng
- Division of Hepatogastroenterology, Department of Internal Medicine, Linkuo Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Tsung-Hui Hu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Yen-Chun Liu
- Division of Hepatogastroenterology, Department of Internal Medicine, Linkuo Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Jing-Houng Wang
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Chao-Hung Hung
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Sheng-Nan Lu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Rong-Nan Chien
- Division of Hepatogastroenterology, Department of Internal Medicine, Linkuo Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|