1
|
Pandey J, Larson-Casey JL, Patil MH, He C, Pinthong N, Carter AB. The PERK/ATF4 pathway is required for metabolic reprogramming and progressive lung fibrosis. JCI Insight 2025; 10:e189330. [PMID: 40208691 DOI: 10.1172/jci.insight.189330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
Asbestosis is a prototypical type of fibrosis that is progressive and does not resolve. ER stress is increased in multiple cell types that contribute to fibrosis; however, the mechanism(s) by which ER stress in lung macrophages contributes to fibrosis is poorly understood. Here, we show that ER stress resulted in protein kinase RNA-like ER kinase (PERK; Eif2ak3) activation in humans with asbestosis. Similar results were seen in asbestos-injured mice. Mice harboring a conditional deletion of Eif2ak3 were protected from fibrosis. Lung macrophages from asbestosis individuals had evidence of metabolic reprogramming to fatty acid oxidation (FAO). Eif2ak3fl/fl mice had increased oxygen consumption rate (OCR), whereas OCR in Eif2ak3-/- Lyz2-cre mice was reduced to control levels. PERK increased activating transcription factor 4 (Atf4) expression, and ATF4 bound to the Ppargc1a promoter to increase its expression. GSK2656157, a PERK-specific inhibitor, reduced FAO, Ppargc1a, and Aft4 in lung macrophages and reversed established fibrosis in mice. These observations suggest that PERK is a therapeutic target to reverse established fibrosis.
Collapse
Affiliation(s)
- Jyotsana Pandey
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Mallikarjun H Patil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- Baylor College of Medicine, Houston, Texas, USA
| | - Nisarat Pinthong
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Carballo-López GI, Ojeda-González J, Martínez-García KD, Cervantes-Luevano KE, Moreno-Ulloa A, Castro-Ceseña AB. Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of Aloe vera- Moringa oleifera extracts. Mol Omics 2025; 21:185-201. [PMID: 39878065 DOI: 10.1039/d4mo00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Metabolic associated steatohepatitis characterized by lipid accumulation, inflammation and fibrosis, is a growing global health issue, contributing to severe liver-related mortality. With limited effective treatments available, there is an urgent need for novel therapeutic strategies. Moringa oleifera, rich in antioxidants, offers potential for combating steatohepatitis, but its cytotoxicity presents challenges. Aloe vera, renowned for its cytocompatibility and anti-inflammatory effects, shows promise in mitigating these risks. Using infrared spectrometry and mass spectrometry, we identified 1586 metabolites from both plants across 84 chemical classes. By encapsulating these phytochemicals in nanoparticles, we achieved increased solubility, cytocompatibility, and gene modulation to hepatic stellate cells affected by steatohepatitis. Chemoinformatic analysis revealed bioactive metabolites, including hesperetin analogs, known to inhibit TGF-β. Our results demonstrate that these nanoparticles not only improved gene expression modulation related to metabolic associated steatohepatitis, particularly TGF-β and COL1A1, but also outperformed free compounds, highlighting their potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Jhordan Ojeda-González
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Kevin D Martínez-García
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Karla E Cervantes-Luevano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
3
|
Lin Y, Wu H, Wang J, He W, Hou J, Martin VT, Zhu C, Chen Y, Zhong J, Yu B, Lu A, Guan D, Qin G, Chen W. Nicotinamide Adenine Dinucleotide-Loaded Lubricated Hydrogel Microspheres with a Three-Pronged Approach Alleviate Age-Related Osteoarthritis. ACS NANO 2025; 19:17606-17626. [PMID: 40315404 PMCID: PMC12080321 DOI: 10.1021/acsnano.5c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
Chondrocyte senescence, synovitis, and decreased level of lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (AROA). However, there are currently no effective therapeutic interventions capable of altering the progression of OA until it reaches advanced stages, necessitating joint replacement. In this study, lubricious and drug-loaded hydrogel microspheres were designed and fabricated by utilizing microfluidic technology for radical polymerization of chondroitin sulfate methacrylate and incorporating nicotinamide adenine dinucleotide (NAD)-loaded liposomes modified with lactoferrin that are positively charged. Mechanical, tribological, and drug release analyses demonstrated enhanced lubrication properties and an extended drug dissemination time for the NAD@NPs@HM microspheres. In vitro assays unveiled the ability of NAD@NPs@HM to counteract chondrocyte senescence. RNA sequencing analysis, untargeted metabolomics analysis, and in vitro experiments on macrophages revealed that NAD@NPs@HM can regulate the metabolic reprogramming of synovial macrophages, promoting their repolarization from the M1 to M2 phenotype, thereby alleviating synovitis. Intra-articular injection of NAD@NPs@HM in aged mice reduced the mechanisms associated with AROA. These results suggest that NAD@NPs@HM may provide extended drug release, improved joint lubrication leading to better gait, and attenuation of AROA pathogenic processes, indicating its potential as a therapeutic approach for AROA.
Collapse
Affiliation(s)
- Yanpeng Lin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hangtian Wu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jun Wang
- School
of Animal Science and Technology, Foshan
University, Foshan, Guangdong 528231, People’s Republic of China
| | - Wanling He
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jiahui Hou
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Vidmi Taolam Martin
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Chencheng Zhu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yupeng Chen
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Junyuan Zhong
- Department
of Medical Imaging, Ganzhou People’s
Hospital, Ganzhou, Jiangxi 341000, P. R. China
| | - Bin Yu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Aiping Lu
- Institute
of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong 999077, P. R. China
- Guangdong-Hong
Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510515, P. R. China
| | - Daogang Guan
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Genggeng Qin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Weiguo Chen
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
4
|
Wang J, Zhang Y, Cao C, Hua J, Xing L, Wu C. The anti-atherosclerosis effect and molecular mechanism of AMPKα1 by polarizing monocytes to an M2 phenotype via cell-intrinsic lysosomal lipolysis. Cardiovasc Pathol 2025; 78:107742. [PMID: 40354887 DOI: 10.1016/j.carpath.2025.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025] Open
Abstract
Regulating the differentiation of monocytes into M2 macrophages can promote the regression of Atherosclerosis (AS) plaque. However, the key molecules regulating the differentiation of monocytes to M2 are unknown. In this study, we reported that adenosine-activated protein kinase α1 (AMPKα1) plays an anti-AS role by polarizing monocytes to an M2 phenotype via promoting fatty acid oxidation (FAO). AMPKα1 enhances the decomposition of cholesterol esters by increasing lysosomal acid lipase expression to provide fatty acids for FAO. Furthermore, AMPKα1 can induce lysosomal biogenesis and enhance lipolysis by promoting the transcription factor EB (TFEB) expression and facilitating TFEB nuclear translocation. In conclusion, AMPKα1 enhances the decomposition of cholesterol esters by increasing lysosomal acid lipase expression to produce fatty acids, which may represent a mechanism to promote FAO and inflammatory monocytes differentiation towards M2 phenotype.
Collapse
Affiliation(s)
- Jing Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
| | - Yahui Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Caixing Cao
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Jiale Hua
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
| |
Collapse
|
5
|
Zhang Y, Yang M, Li Y, Wang Z, Zhang S, Zhao L, Liu Y, Li X, Wang X, Lan F, Zhang L. Role of CD44 +CCR2 +CD64 -monocyte-derived macrophage in chronic rhinosinusitis with nasal polyps. Cell Immunol 2025; 411-412:104953. [PMID: 40239553 DOI: 10.1016/j.cellimm.2025.104953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Heterogeneity of monocyte-derived macrophages (MDMs) is gradually recognized in polyp tissue of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the contributions of MDM subsets for sustaining inflammation remain unclear. This study therefore aimed to characterize MDM subsets in polyp tissues and estimate their functions. We identified MDM subsets in polyp tissues by flow cytometry, and analyzed the correlation between the expression of these subsets and disease severity. We also explored the similarities and differences between tissue MDMs and classical ex vivo polarized MDMs. By using appropriate substitutes for tissue MDMs, we investigated the function of MDMs. MDM1 (lin-CD44+CD64+) and MDM3 (lin-CD44+CCR2+CD64-) were identified in polyp tissues by flow cytometry. Recurrent CRSwNP patients exhibited higher levels of MDM3 compared to non-recurrent patients. This increase in MDM3 was positively correlated with the Lund-Mackay score, the number of infiltrated tissue eosinophils, and IL-5 expression levels. Ex vivo polarized alternatively activated (M2a) macrophage preferentially expressed MDM3 marker genes, which can be used as the substitute for MDM3 within the polyp tissues. M2a macrophages engulfed more Staphylococcus aureus than classically activated (M1) macrophages. However, interferon lambda 1 (IFN-λ1) did not alter the bacterial killing efficiency of M2a macrophages, nor did it affect the activation of reactive oxidase substrate (ROS) and signal transducer and activator of transcription 1 (STAT1) pathway and viability. The increase in MDM3 within polyp tissues, similar to classical M2a macrophages, acted as bacterial reservoirs and contributed to persistent inflammation, offering insights into the underlying mechanisms of CRSwNP.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mengzhe Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Disease, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing 100005, China
| | - Zaichuan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Shujian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Limin Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yingyue Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xue Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Feng Lan
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Disease, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing 100005, China.
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Disease, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
6
|
Varghese M, Thekkelnaycke R, Soni T, Zhang J, Maddipati K, Singer K. Sex differences in the lipid profiles of visceral adipose tissue with obesity and gonadectomy. J Lipid Res 2025; 66:100803. [PMID: 40245983 DOI: 10.1016/j.jlr.2025.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/05/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
In obesity, adipose tissue (AT) expansion is accompanied by chronic inflammation. Altered lipid composition in the visceral or gonadal white AT (GWAT) directly drive AT macrophage accumulation and activation to a proinflammatory phenotype. Sex steroid hormones modulate visceral versus subcutaneous lipid accumulation that correlates with metabolic syndrome, especially in men and postmenopausal women who are more prone to abdominal obesity. Prior studies demonstrated sex differences in GWAT lipid species in HFD-fed mice, but the role of sex hormones is still unclear. We hypothesized that sex hormone alterations with gonadectomy (GX) would further impact lipid composition in the obese GWAT. Untargeted lipidomics of obese GWAT identified sex differences in phospholipids, sphingolipids, sterols, fatty acyls, saccharolipids and prenol lipids. Males had significantly more precursor fatty acids (palmitic, oleic, linoleic, and arachidonic acid) than females and GX mice. Targeted lipidomics for fatty acids and oxylipins in the HFD-fed male and female GWAT stromal vascular fraction identified higher omega-6 to omega-3 free fatty acid profile in males and differences in PUFAs-derived prostaglandins, thromboxanes, and leukotrienes. Both obese male and female GWAT stromal vascular fraction showed increased levels of arachidonic acid-derived oxylipins compared to their lean counterparts. Bulk RNA-seq of sorted GWAT AT macrophages highlighted sex and diet differences in PUFA and oxylipin metabolism genes. These findings of sexual dimorphism in both stored lipid species and PUFA-derived mediators with diet and GX emphasize sex differences in lipid metabolism pathways that drive inflammation responses and metabolic disease risk in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rajendiran Thekkelnaycke
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Jiayu Zhang
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Ying Y, Zhang C, Wu S, Wang S, Lian J, Lin Y, Guan H, Cai D. Health Implications Associated with Fat-Free Mass: A Phenome-Wide Mendelian Randomization Study. Cardiorenal Med 2025; 15:295-308. [PMID: 40179848 DOI: 10.1159/000545641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION Fat-free mass (FFM) is a critical component of the human body, with implications for various diseases. METHODS We conducted a comprehensive analysis integrating a phenome-wide association study (PheWAS), a two-sample Mendelian randomization (MR) analysis, and a systematic review to investigate the associations between FFM and health outcomes. RESULTS PheWAS identified 183 phenotypes enriched for FFM associations, including diseases, body composition, and lifestyle factors. A two-sample MR analysis using the FinnGen and UK Biobank dataset revealed significant associations between genetically determined FFM and 36 disease outcomes, including cardiovascular diseases, metabolic disorders, and musculoskeletal conditions. The mediation MR analysis indicates that FFM indirectly influences the levels of five biomarkers in visceral adipose tissue. A systematic review identified consistent associations between FFM and several diseases, including type 2 diabetes and cervical disc disorders. Moreover, new associations such as low back pain and ovarian cancer were discovered. CONCLUSION These findings challenge the conventional notion of FFM as a protective factor in health, suggesting that higher FFM levels may be linked to an increased risk of various diseases. Further clinical studies are warranted to validate these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yuchen Ying
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Chunxia Zhang
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Shanshan Wu
- Cardiac Care Unit, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Shudan Wang
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Jiangfang Lian
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yupin Lin
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Haiwang Guan
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Dihui Cai
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| |
Collapse
|
8
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Duan X, Lv X, Wang X, Zhang Y, Hu Y, Li H, Zhou Y, Jing Y. Impact of immune cell metabolism on membranous nephropathy and prospective therapy. Commun Biol 2025; 8:405. [PMID: 40065158 PMCID: PMC11893770 DOI: 10.1038/s42003-025-07816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure. Central to MN is immune system dysfunction, particularly the dysregulation of B and T cell responses. B cells contribute to renal injury through the production of autoantibodies, particularly IgG targeting the phospholipase A2 receptor (PLA2R) on podocytes, while T cells modulate immune responses that influence disease progression. Metabolic reprogramming alters lymphocyte survival, differentiation, proliferation, and function, potentially triggering autoimmune processes. Although the link between immune cell metabolism and MN remains underexplored, this review highlights recent advances in understanding immune metabolism and its role in MN. These insights may provide novel biomarkers and therapeutic strategies for MN treatment.
Collapse
Affiliation(s)
- Xuemei Duan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaocui Wang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Zhang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Hu
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Haonan Li
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
10
|
Zhang Z, Liu Y, Yu T, Liu Z. Unraveling the Complex Nexus of Macrophage Metabolism, Periodontitis, and Associated Comorbidities. J Innate Immun 2025; 17:211-225. [PMID: 40058341 PMCID: PMC11968099 DOI: 10.1159/000542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/07/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up. BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up.
Collapse
Affiliation(s)
- Zihan Zhang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,
| | - Tian Yu
- Department of Stomatology, Nanbu Country People's Hospital, Nanchong, China
| | - Zhen Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
11
|
Kwon Y, Yoon H, Ha J, Lee HS, Pahk K, Kwon H, Kim S, Park S. Changes in pancreatic levodopa uptake in patients with obesity and new-onset type 2 diabetes: an 18F-FDOPA PET-CT study. Front Endocrinol (Lausanne) 2025; 16:1460253. [PMID: 40099262 PMCID: PMC11911206 DOI: 10.3389/fendo.2025.1460253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Levodopa (L-3,4-dihydroxyphenylalanine)g, a dopamine precursor that circulates in the peripheral region, is involved in pancreatic glycemic control. Although previous animal studies have shown that peripheral levodopa is correlated with insulin secretion in pancreatic beta cells, the mechanism by which the pancreas uses levodopa differently in humans with obesity and type 2 diabetes remains unknown. Our study aimed to observe how the pancreas uptakes and utilizes levodopa differently under obese and diabetic conditions. Materials and method 18F-fluoro-L-dopa positron emission tomography-computed tomography (18F-FDOPA PET-CT) was used to visualize how the human body uses levodopa under obese and diabetic conditions and presented its clinical implications. 10 patients were divided into 3 groups: 1) Group A, normal weight without type 2 diabetes; 2) Group B, obese without type 2 diabetes; and 3) Group C, obese with new-onset type 2 diabetes. All patients' lifestyle modification was conducted prior to 18F-FDOPA PET-CT, and plasma samples were collected to confirm changes in amino acid metabolites. Results Pancreatic levodopa uptake increased in obese patients with insulin resistance, whereas it decreased in obese patients with new-onset type 2 diabetes [standardized uptake value (SUV) mean in participants with normal weight, 2.6 ± 0.7; SUVmean in patients with obesity, 3.6 ± 0.1; SUVmean in patients with obesity and new-onset type 2 diabetes, 2.6 ± 0.1, P = 0.02]. Conclusions This suggested that the alterations in the functional capacity of pancreatic beta cells to take up circulating levodopa are potentially linked to the insulin resistance and the pathogenesis of type 2 diabetes. The differences in the uptake values between the groups implied that pancreatic levodopa uptake could be an early indicator of type 2 diabetes.
Collapse
Affiliation(s)
- Yeongkeun Kwon
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea
- Gut & Metabolism Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hanseok Yoon
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jane Ha
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Hyeon-seong Lee
- Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungsoo Park
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea
- Gut & Metabolism Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Bouck T, Monteleone J, Duffy J, Ainslie PN, Little JP, Thomas KN, Gibbons TD, Islam H. Changes in plasma cytokines following a 60-h fast are not influenced by the addition of exercise despite elevated ketones in healthy young adults. Physiol Rep 2025; 13:e70294. [PMID: 40129260 PMCID: PMC11933719 DOI: 10.14814/phy2.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
Immunometabolic processes maintain physiological homeostasis and are implicated in various chronic diseases. Fasting and exercise independently alter metabolic and immunological processes; their combination could provide insights into immunometabolic interactions. Using a randomized crossover design, 15 healthy adults (six females, nine males, 26.5 ± 4.3 years) fasted for 60 h with and without the addition of a 3 h cycling bout (65%-80% VO2 peak). Fasting alone (FAST) and with exercise (FEX) reduced plasma glucose, insulin, respiratory exchange ratio, and increased β-hydroxybutyrate (BHB; all p < 0.01). FEX elicited more rapid changes in glucose and BHB and higher BHB concentrations at 60 h (all p < 0.01). Both conditions decreased circulating TNF-⍺ concentrations and increased IL-10 (p < 0.01), although the increase in IL-10 appeared to be driven by the FEX condition (p = 0.03). IL-6 concentrations tended to increase in both conditions (p = 0.1). Total white blood cell count remained unchanged after 60 h in both conditions, with only modest changes in some leukocyte subpopulations. Collectively, the observed changes in circulating cytokine concentrations support an overall anti-inflammatory effect of prolonged fasting, while the maintenance of leukocyte concentrations suggests immune function is not compromised. Despite greater metabolic strain, the addition of prolonged exercise did not appear to augment changes in systemic cytokines and leukocytes.
Collapse
Affiliation(s)
- Tori Bouck
- School of Health and Exercise Sciences, The University of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Justin Monteleone
- School of Health and Exercise Sciences, The University of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Jennifer Duffy
- School of Health and Exercise Sciences, The University of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Philip N. Ainslie
- School of Health and Exercise Sciences, The University of British Columbia OkanaganKelownaBritish ColumbiaCanada
- Centre for Heart, Lung and Vascular HealthSchool of Health and Exercise Sciences, The University of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, The University of British Columbia OkanaganKelownaBritish ColumbiaCanada
- Centre for Chronic Disease Prevention and Management, Faculty of MedicineThe University of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Kate N. Thomas
- Department of Surgical SciencesDunedin School of Medicine, University of OtagoDunedinNew Zealand
| | - Travis D. Gibbons
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Hashim Islam
- School of Health and Exercise Sciences, The University of British Columbia OkanaganKelownaBritish ColumbiaCanada
- Centre for Chronic Disease Prevention and Management, Faculty of MedicineThe University of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
13
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2025; 480:1763-1783. [PMID: 39198360 PMCID: PMC11842501 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
14
|
Chen Y, Lin Q, Cheng H, Xiang Q, Zhou W, Wu J, Wang X. Immunometabolic shifts in autoimmune disease: Mechanisms and pathophysiological implications. Autoimmun Rev 2025; 24:103738. [PMID: 39743123 DOI: 10.1016/j.autrev.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages. In systemic lupus erythematosus (SLE), type I interferon (IFN) causes immune cell metabolic dysregulation, linking activation to metabolic shifts that may worsen the disease. In systemic sclerosis (SSc), mitochondrial changes affect fibroblast metabolism and the immune response. Idiopathic inflammatory myopathies (IIMs) patients have mitochondrial and metabolic issues. In primary Sjögren's syndrome (pSS), immune cell metabolism is imbalanced and mitochondrial damage can lead to cell/tissue damage. Metabolic reprogramming links cellular energy needs and immune dysfunctions, causing inflammation, damage, and symptoms in these diseases. It also affects immune cell functions like differentiation, proliferation, and secretion. This review discusses the potential of targeting metabolic pathways to restore immune balance, offering directions for future autoimmune disease research and treatment.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Hui Cheng
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
15
|
Peng W, Qin Q, Li R, Liu Y, Li L, Zhang Y, Zhu L. Blimp-1 orchestrates macrophage polarization and metabolic homeostasis via purine biosynthesis in sepsis. Cell Death Dis 2025; 16:72. [PMID: 39915460 PMCID: PMC11802726 DOI: 10.1038/s41419-025-07405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Sepsis is a life-threatening condition characterized by a dysregulated immune response to infection, leading to systemic inflammation and organ dysfunction. Macrophage polarization plays a critical role in pathogenesis of sepsis, and the influence of B lymphocyte-induced maturation protein-1 (Blimp-1) on this polarization is an underexplored yet pivotal aspect. This study aimed to elucidate the role of Blimp-1 in macrophage polarization and metabolism during sepsis. Using a murine cecal ligation and puncture model, we observed elevated Blimp-1 expression in M2 macrophages. Knockdown of Blimp-1 by macrophage-targeted adeno-associated virus in this model resulted in decreased survival rates, exacerbated tissue damage, and impaired M2 polarization, underscoring its protective role in sepsis. In vitro studies with bone marrow-derived macrophage (BMDM), RAW264.7, and THP-1 cells further demonstrated Blimp-1 promotes M2 polarization and modulates key metabolic pathways. Metabolomics and dual-luciferase assays revealed Blimp-1 significantly influences purine biosynthesis and the downstream Ornithine cycle, which are essential for M2 macrophage polarization. In vitro studies with BMDM further suggested that the purine biosynthesis and Ornithine cycle metabolic regulation is involved in Blimp-1's effects on M2 macrophage polarization, and mediates Blimp-1's impact on septic mice. Our findings unveil a novel mechanism by which Blimp-1 modulates macrophage polarization through metabolic regulation, presenting potential therapeutic targets for sepsis. This study highlights the significance of Blimp-1 in orchestrating macrophage responses and metabolic adaptations in sepsis, offering valuable insights into its role as a critical regulator of immune and metabolic homeostasis.
Collapse
Affiliation(s)
- Wenjuan Peng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiushi Qin
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, 100015, China
| | - Rui Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yujia Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Lan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
16
|
Zhu G, Yu H, Li X, Ye W, Chen X, Gu W. CD147 mitochondria translocation induced airway remodeling in asthmatic mouse models by regulating M2 macrophage polarization via ANT1-mediated mitophagy. Am J Physiol Cell Physiol 2025; 328:C604-C616. [PMID: 39740799 DOI: 10.1152/ajpcell.00735.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages. Here, we found that CD147 expression levels increased significantly both in vivo and in vitro. CD147 undergoes mitochondrial translocation in M2 macrophages. Reducing the expression of CD147 resulted in a decline in M2 polarization levels within macrophages, as well as a decrease in the levels of mitochondrial respiratory chain complexes I, II, and IV proteins. This effect may be attained by interacting with adenine nucleotide translocase 1 (ANT1), subsequently impacting the levels of mitophagy. We also discovered that CD147 knockdown significantly reduced airway remodeling and inflammation in addition to lowering the polarization level of M2 in the lung tissues of chronic asthmatic model mice. The findings represent the first evidence of the distinct function of CD147 in the process of airway remodeling in asthma.NEW & NOTEWORTHY The interaction between CD147 and ANT1 in M2 macrophages occurs via mitochondrial translocation, resulting in alterations in ANT1 expression levels. This, in turn, triggers the activation of the mitophagy pathway, leading to modifications in OXPHOS levels. Ultimately, these changes contribute to the enhancement of M2 polarization, thereby exacerbating airway remodeling in asthma.
Collapse
Affiliation(s)
- Guiyin Zhu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haiyang Yu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoming Li
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wenjing Ye
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xi Chen
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Zhang QY, Zhang HY, Feng SG, Yao MD, Ding JJ, Li XM, Ye R, Liu Q, Yao J, Yan B. Macrophage metabolic reprogramming ameliorates diabetes-induced microvascular dysfunction. Redox Biol 2025; 79:103449. [PMID: 39647239 PMCID: PMC11667058 DOI: 10.1016/j.redox.2024.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Macrophages play an important role in the development of vascular diseases, with their homeostasis closely linked to metabolic reprogramming. This study aims to explore the role of circular RNA-mediated epigenetic remodeling in maintaining macrophage homeostasis during diabetes-induced microvascular dysfunction. We identified a circular RNA, circRNA-sperm antigen with calponin homology and coiled-coil domains 1 (cSPECC1), which is significantly up-regulated in diabetic retinas and in macrophages under diabetic stress. cSPECC1 knockdown in macrophages attenuates M1 macrophage polarization and disrupts macrophage-endothelial crosstalk in vitro. cSPECC1 knockdown in macrophages mitigates diabetes-induced retinal inflammation and ameliorates retinal vascular dysfunction. Mechanistically, cSPECC1 regulates GPX2 expression by recruiting eIF4A3, enhancing GPX2 mRNA stability and altering arachidonic acid metabolism. The metabolic intermediate 12-HETE has emerged as a key mediator, regulating both macrophage homeostasis and the crosstalk between macrophages and endothelial cells. Exogenous 12-HETE supplementation interrupts the anti-angiogenic effects of cSPECC1 knockdown. Collectively, circSPECC1 emerges as a novel regulator of macrophage-mediated vascular integrity and inflammation. Targeting the metabolic reprogramming of macrophages presents a promising therapeutic strategy for mitigating diabetes-induced vascular dysfunction.
Collapse
Affiliation(s)
- Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Hui-Ying Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Si-Guo Feng
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Mu-Di Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing-Juan Ding
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Rong Ye
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Qing Liu
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
18
|
Feng S, Wang J, Peng Q, Zhang P, Jiang Y, Zhang H, Song X, Li Y, Huang W, Zhang D, Deng C. Schisandra sphenanthera extract modulates sweet taste receptor pathway, IRS/PI3K, AMPK/mTOR pathway and endogenous metabolites against T2DM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156348. [PMID: 39740377 DOI: 10.1016/j.phymed.2024.156348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Southern Schisandra is the dried and matured fruit of Schisandra sphenanthera Rehd. et Wils. in the family of Magnoliaceae; Traditional medicine reports that Schisandra sphenanthera has astringent and astringent properties, benefiting qi and promoting the production of body fluid, tranquilising the heart and calming the mind; it is clinically utilized for prolonged cough, thirst due to injury of the body fluid, internal heat and thirst, palpitation and insomnia, etc., and thirst belongs to the category of diabetes mellitus; the literature reports and the preliminary study of our team showed that Schisandra sphenanthera can be used to prevent and control diabetes mellitus. PURPOSE In the research, we investigated the mechanism of action of SDP against T2DM by integrating pharmacodynamics, endogenous metabolite assays and signalling pathways. MATERIALS AND METHODS UPLC-MS/MS was used to identify the chemical constituents. HPLC was utilized to determine the content of eight lignan-like components in SDP. A T2DM rat model was established by the combined induction of high-fat and high-sugar feed and STZ, and the mechanism of action of SDP on T2DM was investigated by using biochemical indices, Western blot analysis of protein expression, mRNA expression, immunohistochemistry and endogenous metabolites. RESULTS The chemical components in SDP were determined by UPLC-MS/MS and HPLC, and biochemical indicators determined that SDP has the effects of lowering blood glucose, anti-glycolipid metabolism, and anti-oxidative stress, and is able to restore pathological damage in the liver and pancreas, activate the PI3K/AKT, AMPK/mTOR, and sweetness receptor signalling pathways, restore the sweetness receptor mRNAs, and modulate the urinary compounds such as malic acid, γ-aminobutyric acid, leucine, N-acetylaspartic acid and other compounds thereby achieving the therapeutic effect of T2DM. CONCLUSION SDP can ameliorate diabetes-induced symptoms related to elevated blood glucose, dyslipidaemia, elevated fasting insulin levels and impaired glucose tolerance in rats; the anti-T2DM of SDP may be through the regulation of the sweet taste receptor pathway, the PI3K/AKT/mTOR and the AMPK/mTOR signalling pathway, which leads to the development of a normal level and exerts an antidiabetic effect.
Collapse
Affiliation(s)
- Shibo Feng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Jiaojiao Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Qin Peng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Panpan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Huawei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China.
| |
Collapse
|
19
|
Keremane VR, Yashwanthkumar MH, Uppin V, Halami P, Talahalli RR. Lactobacillus fermentum MCC2760 Attenuates Heated Oil-Induced Brain Oxidative Stress and Inflammation via Modulation of NRF2 and NF-kB in Rats. Mol Nutr Food Res 2024; 68:e2400656. [PMID: 39491792 DOI: 10.1002/mnfr.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
SCOPE Reusing deep-fried oil is a common practice to cut costs, and their consumption may affect brain function. Hence, the study investigates the modulatory potential of Lactobacillus fermentum MCC2760 (LF) on heated oil-induced brain oxidative stress (OS) and inflammation that may have a bearing on cognition in experimental rats. METHODS AND RESULTS Female Wistar rats are fed with diets containing native sunflower oil (N-SFO), native canola oil (N-CNO), heated sunflower oil (H-SFO), heated canola oil (H-CNO), heated sunflower oil with probiotic (H-SFO + LF), or heated canola oil with probiotic (H-CNO + LF} for 60 days. Compared to respective controls, heated oils significantly (p < 0.05) increased OS by decreasing antioxidant defense enzymes and nuclear factor erythroid 2-related factor 2 (NRF2) activity. Further, heated oil elevates brain expression of cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), prostaglandin-E receptor 4 (EP-4), intercellular adhesion molecule 1 (ICAM-1), nitric oxide synthase 2 (NOS-2), followed by an increased production of proinflammatory eicosanoids (prostaglandin E2 [PGE2] and leukotriene B4 [LTB4]) and cytokines (tumor necrosis factor-α [TNF-α], monocyte chemoattractant protein-1 [MCP-1], interleukin-1β [IL-1β], and interleukin-6 [IL-6]). The increased nuclear translocation of nuclear factor kappa beta (NF-kB) in heated oil-fed groups' brains corroborates the heightened inflammatory response. Heated oils decrease neurotrophins and neuron development markers. However, administration of LF abrogates the heated oil-induced alterations significantly (p < 0.05). CONCLUSIONS The present study is novel in demonstrating the protective role of probiotic LF against heated-oil-induced brain OS and inflammation in rats.
Collapse
Affiliation(s)
- Vyshali Ramesh Keremane
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Vinayak Uppin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Prakash Halami
- Department of Microbiology & Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Ramaprasad Ravichandra Talahalli
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
20
|
Jiang T, Zou A, Song W, Zheng J, Lai L, Wang Q, Cui B. Interleukin-27 signaling resists obesity by promoting the accumulation of Treg cells in visceral adipose tissue. Biochem Biophys Res Commun 2024; 733:150690. [PMID: 39276693 DOI: 10.1016/j.bbrc.2024.150690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The prevalence of obesity and its associated metabolic disorders has emerged as one of the most significant health threats worldwide. The visceral adipose tissue regulatory T cells (VAT Treg) play an essential role in maintaining homeostasis and preventing obesity mainly by secreting Interleikin-10 (IL-10) and Transforming Growth Factor β (TGF-β). However, the mechanism that regulates VAT Treg quantity and function remains unclear. Here we elucidate the pivotal role of IL-27 signaling in sustaining the accumulation of VAT Treg cells, thereby conferring protection against obesity. We found that mice with the deficiency of IL-27 receptor Wsx1 gained more body weight and VAT weight than their wild-type littermates when fed both a normal-fat diet (NFD) and a high-fat diet (HFD). Notably, the population of VAT Treg cells was reduced in Wsx1 knockout (KO) mice, regardless of whether they were fed a normal-fat diet (NFD) or a high-fat diet (HFD). Correspondingly, the expression levels of the transcription factors FOXP3 and PPAR-γ, essential for VAT Treg function, were also diminished in Wsx1 KO mice. Taken together, our findings indicate that IL-27 signaling plays a protective role in obesity by supporting the maintenance and accumulation of VAT Treg cells.
Collapse
Affiliation(s)
- Tianqi Jiang
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, PR China
| | - Aixuan Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Wenjun Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jialing Zheng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Lihua Lai
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| | - Bijun Cui
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, PR China; Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| |
Collapse
|
21
|
Rice MC, Imun M, Jung SW, Park CY, Kim JS, Lai RW, Barr CR, Son JM, Tor K, Kim E, Lu RJ, Cohen I, Benayoun BA, Lee C. The Human Mitochondrial Genome Encodes for an Interferon-Responsive Host Defense Peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530691. [PMID: 39553971 PMCID: PMC11565950 DOI: 10.1101/2023.03.02.530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mitochondrial DNA (mtDNA) can trigger immune responses and directly entrap pathogens, but it is not known to encode for active immune factors. The immune system is traditionally thought to be exclusively nuclear-encoded. Here, we report the identification of a mitochondrial-encoded host defense peptide (HDP) that presumably derives from the primordial proto-mitochondrial bacteria. We demonstrate that MOTS-c (mitochondrial open reading frame from the twelve S rRNA type-c) is a mitochondrial-encoded amphipathic and cationic peptide with direct antibacterial and immunomodulatory functions, consistent with the peptide chemistry and functions of known HDPs. MOTS-c targeted E. coli and methicillin-resistant S. aureus (MRSA), in part, by targeting their membranes using its hydrophobic and cationic domains. In monocytes, IFNγ, LPS, and differentiation signals each induced the expression of endogenous MOTS-c. Notably, MOTS-c translocated to the nucleus to regulate gene expression during monocyte differentiation and programmed them into macrophages with unique transcriptomic signatures related to antigen presentation and IFN signaling. MOTS-c-programmed macrophages exhibited enhanced bacterial clearance and shifted metabolism. Our findings support MOTS-c as a first-in-class mitochondrial-encoded HDP and indicates that our immune system is not only encoded by the nuclear genome, but also by the co-evolved mitochondrial genome.
Collapse
|
22
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Fang X, Wang J, Ye C, Lin J, Ran J, Jia Z, Gong J, Zhang Y, Xiang J, Lu X, Xie C, Liu J. Polyphenol-mediated redox-active hydrogel with H 2S gaseous-bioelectric coupling for periodontal bone healing in diabetes. Nat Commun 2024; 15:9071. [PMID: 39433776 PMCID: PMC11494015 DOI: 10.1038/s41467-024-53290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Excessive oxidative response, unbalanced immunomodulation, and impaired mesenchymal stem cell function in periodontitis in diabetes makes it a great challenge to achieve integrated periodontal tissue regeneration. Here, a polyphenol-mediated redox-active algin/gelatin hydrogel encapsulating a conductive poly(3,4-ethylenedioxythiopene)-assembled polydopamine-mediated silk microfiber network and a hydrogen sulfide sustained-release system utilizing bovine serum albumin nanoparticles is developed. This hydrogel is found to reverse the hyperglycemic inflammatory microenvironment and enhance functional tissue regeneration in diabetic periodontitis. Polydopamine confers the hydrogel with anti-oxidative and anti-inflammatory activity. The slow, sustained release of hydrogen sulfide from the bovine serum albumin nanoparticles recruits mesenchymal stem cells and promotes subsequent angiogenesis and osteogenesis. Moreover, poly(3,4-ethylenedioxythiopene)-assembled polydopamine-mediated silk microfiber confers the hydrogel with good conductivity, which enables it to transmit endogenous bioelectricity, promote cell arrangement, and increase the inflow of calcium ion. In addition, the synergistic effects of hydrogen sulfide gaseous-bioelectric coupling promotes bone formation by amplifying autophagy in periodontal ligament stem cells and modulating macrophage polarization via lipid metabolism regulation. This study provides innovative insights into the synergistic effects of conductivity, reactive oxygen species scavenging, and hydrogen sulfide on the periodontium in a hyperglycemic inflammatory microenvironment, offering a strategy for the design of gaseous-bioelectric biomaterials to promote functional tissue regeneration in immune-related diseases.
Collapse
Affiliation(s)
- Xinyi Fang
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- Hospital of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Chengxinyue Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
- Hospital of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Jinhui Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Zhanrong Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, PR China
| | - Jinglei Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yiming Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Jin Liu
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
24
|
He L, Yin R, Hang W, Han J, Chen J, Wen B, Chen L. Oxygen Glucose Deprivation-Induced Lactylation of H3K9 Contributes to M1 Polarization and Inflammation of Microglia Through TNF Pathway. Biomedicines 2024; 12:2371. [PMID: 39457683 PMCID: PMC11504212 DOI: 10.3390/biomedicines12102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia-induced M1 polarization of microglia and resultant inflammation take part in the damage caused by hypoxic-ischemic encephalopathy (HIE). Histone lactylation, a novel epigenetic modification where lactate is added to lysine residues, may play a role in HIE pathogenesis. This study investigates the role of histone lactylation in hypoxia-induced M1 microglial polarization and inflammation, aiming to provide insights for HIE treatment. METHODS In this study, we assessed the effects of hypoxia on microglial polarization using both an HIE animal model and an oxygen-glucose deprivation cell model. Histone lactylation at various lysine residues was detected by Western blotting. Microglial polarization and inflammatory cytokines were analyzed by immunofluorescence, qPCR, and Western blotting. RNA sequencing, ChIP-qPCR, and siRNA were used to elucidate mechanisms of H3K9 lactylation. RESULTS H3K9 lactylation increased due to cytoplasmic lactate during M1 polarization. Inhibiting P300 or reducing lactate dehydrogenase A expression decreased H3K9 lactylation, suppressing M1 polarization. Transcriptomic analysis indicated that H3K9 lactylation regulated M1 polarization via the TNF signaling pathway. ChIP-qPCR confirmed H3K9 lactylation enrichment at the TNFα locus, promoting OGD-induced M1 polarization and inflammation. CONCLUSIONS H3K9 lactylation promotes M1 polarization and inflammation via the TNF pathway, identifying it as a potential therapeutic target for neonatal HIE.
Collapse
Affiliation(s)
- Lu He
- Division of Neonatology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Rui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.Y.); (J.C.)
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Jinli Han
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.Y.); (J.C.)
| | - Bin Wen
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ling Chen
- Division of Neonatology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
| |
Collapse
|
25
|
Mohaghegh N, Ahari A, Buttles C, Davani S, Hoang H, Huang Q, Huang Y, Hosseinpour B, Abbasgholizadeh R, Cottingham AL, Farhadi N, Akbari M, Kang H, Khademhosseini A, Jucaud V, Pearson RM, Hassani Najafabadi A. Simvastatin-Loaded Polymeric Nanoparticles: Targeting Inflammatory Macrophages for Local Adipose Tissue Browning in Obesity Treatment. ACS NANO 2024; 18:27764-27781. [PMID: 39342648 DOI: 10.1021/acsnano.4c10742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Obesity is defined as chronic, low-grade inflammation within specific tissues. Given the escalating prevalence of obesity among individuals of all ages, obesity has reached epidemic proportions, posing an important public health challenge. Despite significant advancements in treating obesity, conventional approaches remain largely ineffective or involve severe side effects, thus underscoring the pressing need to explore and develop treatment approaches. Targeted and local immunomodulation using nanoparticles (NPs) can influence fat production and utilization processes. Statins, known for their anti-inflammatory properties, show the potential for mitigating obesity-related inflammation. A localized delivery option offers several advantages over oral and parenteral delivery methods. Here, we developed simvastatin (Sim) encapsulated within PLGA NPs (Sim-NP) for localized delivery of Sim to adipose tissues (ATs) for immunomodulation to treat obesity. In vitro experiments revealed the strong anti-inflammatory effects of Sim-NPs, which resulted in enhanced modulation of macrophage (MΦ) polarization and induction of AT browning. We then extended our investigation to an in vivo mouse model of high-fat-diet (HFD)-induced obesity. Sim-NP administration led to the controlled release of Sim within AT, directly impacting MΦ activity and inducing AT browning while inducing weight loss. Our findings demonstrated that Sim-NP administration effectively inhibited the progression of obesity-related inflammation, controlled white fat production, and enhanced AT modulation. These results highlight the potential of Sim-NP as a potent nanotherapy for treating obesity by modulating the immune system.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Surgery, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Briggs Hall, Davis, California 95616, United States
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90024, United States
| | - Qiang Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Bahareh Hosseinpour
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
26
|
Lin C, Chen Y, Ge Y, Niu H, Zhang X, Jiang F, Wu C. A Bibliometric and Knowledge-Map Analysis of Macrophage Polarization in Insulin Resistance From 1999 to 2023. Immun Inflamm Dis 2024; 12:e70048. [PMID: 39465505 PMCID: PMC11513609 DOI: 10.1002/iid3.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Despite numerous studies confirming the association between insulin resistance (IR) and macrophage polarization, there is a lack of bibliometric analysis in this area. Therefore, our objective is to conduct a comprehensive analysis of published literature and identify potential future research trends using bibliometrics. METHOD Publications on the topic of macrophage polarization in IR were gathered from the Web of Science Core Collection database (WoSCC) spanning the years 1999-2023. Bibliometric analysis and visualization were conducted using VOSviewers, CiteSpace, the R package "bibliometrix" and Tableau Public. RESULT A total of 3435 articles published between 1999 and 2023 were included in the analysis. These articles originated from 75 countries, with the United States and China leading in contributions. The top five research institutions are the University of California, San Diego, Harvard University, the University of Michigan, Shanghai Jiao Tong University, and Huazhong University of Science and Technology. In this research domain, Diabetes is the most frequently published journal, and the Journal of Clinical Investigation is the most co-cited. Among the 19,398 authors contributing to these publications, Lumeng CN. not only authored the most papers but also received the highest number of co-citations. "Insulin resistance" emerges as a primary keyword in the analysis of emerging research hotspots. CONCLUSION For the first time, bibliometric methods have been employed to conduct a comprehensive summary of papers relevant to macrophage polarization in IR. This study aims to identify the current research direction and future research hotspots, offering valuable guidance and insights for scholars in the field.
Collapse
Affiliation(s)
- Chuning Lin
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yuan Chen
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yao Ge
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Huimin Niu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Xinyi Zhang
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Feng Jiang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiJiangsu ProvinceChina
| | - Chuyan Wu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
27
|
Tang W, Ni Z, Wei Y, Hou K, Valencak TG, Wang H. Extracellular vesicles of Bacteroides uniformis induce M1 macrophage polarization and aggravate gut inflammation during weaning. Mucosal Immunol 2024; 17:793-809. [PMID: 38777177 DOI: 10.1016/j.mucimm.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Weaning process is commonly associated with gastrointestinal inflammation and dysbiosis of the intestinal microbes. In particular, the impact of gut bacteria and extracellular vesicles on the etiology of intestinal inflammation during weaning is not well understood. We have uncovered a potential link between gut inflammation and the corresponding variation of macrophage bacterial sensing and pro-inflammatory polarization during the weaning process of piglets through single-cell transcriptomic analyses. We conducted a comprehensive analysis of bacterial distribution across the gastrointestinal tract and pinpointed Bacteroides uniformis enriching in piglets undergoing weaning. Next, we found out that exposure to B. uniformis-derived extracellular vesicles (BEVs) exacerbated gut inflammation in a murine colitis model while recruiting and polarizing intestinal macrophages toward a pro-inflammatory phenotype. BEVs modulated the function of macrophages cultured in vitro by suppressing the granulocyte-macrophage colony-stimulating factor/signal transducer and activator of transcription 5/arginase 1 pathway, thereby affecting polarization toward an M1-like state. The effects of BEVs were verified both in the macrophage clearance murine model and by using an adoptive transfer assay. Our findings highlight the involvement of BEVs in facilitating the polarization of pro-inflammatory macrophages and promoting gut inflammation during weaning.
Collapse
Affiliation(s)
- Wenjie Tang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Zhixiang Ni
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Yusen Wei
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Kangwei Hou
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Teresa G Valencak
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
| |
Collapse
|
28
|
Jin J, Xia X, Ruan C, Luo Z, Yang Y, Wang D, Qin Y, Li D, Zhang Y, Hu Y, Lei P. GAPDH-Silence Microsphere via Reprogramming Macrophage Metabolism and eradicating Bacteria for Diabetic infection bone regeneration. J Nanobiotechnology 2024; 22:517. [PMID: 39210435 PMCID: PMC11361104 DOI: 10.1186/s12951-024-02787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophage metabolism dysregulation, which is exacerbated by persistent stimulation in infectious and inflammatory diseases, such as diabetic infectious bone defects (DIBD), eventually leads to the failure of bone repair. Here, we have developed an injectable, macrophage-modulated GAPDH-Silence drug delivery system. This microsphere comprises chondroitin sulfate methacrylate (CM) and methacrylated gelatin (GM), while the dimethyl fumarate (DMF)-loaded liposome (D-lip) is encapsulated within the microsphere (CM@GM), named D-lip/CM@GM. Triggered by the over-expressed collagenase in DIBD, the microspheres degrade and release the encapsulated D-lip. D-lip could modulate metabolism by inhibiting GAPDH, which suppresses the over-activation of glycolysis, thus preventing the inflammatory response of macrophages in vitro. While beneficial for macrophages, D-lip/CM@GM is harmful to bacteria. GAPDH, while crucial for glycolysis of staphylococcal species (S. aureus), can be effectively countered by D-lip/CM@GM. We are utilizing existing drugs in innovative ways to target central metabolism for effective eradication of bacteria. In the DIBD model, our results confirmed that the D-lip/CM@GM enhanced bacteria clearance and reprogrammed dysregulated metabolism, thereby significantly improving bone regeneration. In conclusion, this GAPDH-Silence microsphere system may provide a viable strategy to promote diabetic infection bone regeneration.
Collapse
Affiliation(s)
- Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
| | - Chengxin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqi Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongyu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Dongdong Li
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, 200233, China
| | - Yong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
29
|
Gallo G, Desideri G, Savoia C. Update on Obesity and Cardiovascular Risk: From Pathophysiology to Clinical Management. Nutrients 2024; 16:2781. [PMID: 39203917 PMCID: PMC11356794 DOI: 10.3390/nu16162781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Obesity is an epidemic worldwide. Overweight and multiple obesity-related mechanisms, including dysmetabolic alterations, contribute to cardiovascular deleterious effects. Hence, overweight and obesity have been independently associated with increased cardiovascular risk, whose assessment is crucial for preserving life quality and reducing mortality, and to address appropriate therapeutic strategies in obese patients. Beyond the standard of care in managing overweight and obesity in adults (i.e., diet and physical exercise), several relevant pharmacotherapies have been approved, and several procedures and device types for weight loss have been recommended. In such a contest, medical weight management remains one option for treating excess weight. Most drugs used for obesity reduce appetite and increase satiety and, secondarily, slow gastric emptying to reduce body weight and, therefore, act also to improve metabolic parameters. In this contest, agonists of the glucagon-like peptide-1 receptor (GLP-1RAs) modulate different metabolic pathways associated with glucose metabolism, energy homeostasis, antioxidation, and inflammation. Moreover, this class of drugs has shown efficacy in improving glycemic control, reducing the incidence of cardiovascular events in type 2 diabetic patients, and reducing body weight independently of the presence of diabetes. Recently, in overweight or obese patients with pre-existing cardiovascular disease but without diabetes, the GLP-1RA semaglutide reduced the incidence of cardiovascular and cerebrovascular events and death from cardiovascular causes. Thus, semaglutide has been approved for secondary prevention in obese people with cardiovascular disease. Nevertheless, whether this class of drugs is equally effective for primary prevention in obese people has to be demonstrated. In this review, we will summarize updates on the pathophysiology of obesity, the effects of obesity on cardiovascular risk, the impact of different obesity phenotypes on cardiovascular diseases, and the novelties in the clinical management of obesity for cardiovascular prevention.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy;
| | - Giovambattista Desideri
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Carmine Savoia
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy;
| |
Collapse
|
30
|
Zuo X, Lin H, Song Z, Yu B, Zhao C. Antitumor activity of dictamnine against colorectal cancer through induction of ferroptosis and inhibition of M2 macrophage polarization via the MAPK signaling. Arch Biochem Biophys 2024; 758:110051. [PMID: 38851368 DOI: 10.1016/j.abb.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Colorectal cancer (CRC) is an aggressive cancer type globally. Surgery and chemotherapy are often ineffective at curing CRC. Dictamnine is a natural product derived from Dictamnus dasycarpus Turcz. root bark and possesses multi-pharmacological properties, including anticancer effects. Nevertheless, the biological roles and the possible mechanism of dictamnine in CRC are still unclear. Here, we demonstrated that dictamnine blocked cell viability and proliferation in DLD-1 human colorectal adenocarcinoma cells and LoVo human colon cancer cells. Dictamnine triggered CRC cell ferroptosis, as evidenced by enhanced levels of reactive oxygen species, malondialdehyde, and Fe2+ levels, alongside downregulation of glutathione peroxidase 4 protein expression. In addition, CD163 (HPA ID: HPA046404) was highly expressed and CD68 (HPA ID: CAB000051) was lowly expressed in CRC tissues and CRC cell culture medium-cultured THP-1 monocytes-derived macrophages. The patients with CD163 low-expression lived much longer than those with CD163 high-expression, indicating that M2 polarization of macrophages was related to poor prognosis of CRC. Dictamnine markedly inhibited CD163 protein expression, transforming growth factor-β and arginase 1 mRNA expressions and IL-10 production in macrophages with CRC cell co-culture, suggesting that dictamnine impeded M2 polarization of macrophages. Mechanistically, dictamnine repressed ERK phosphorylation in CRC cells. The treatment with the ERK activator tBHQ counteracted the effects of dictamnine on CRC cell proliferation and ferroptosis, as well as its inhibitory effect on M2 polarization of macrophages. Results of a xenograft model showed that dictamnine effectively hindered CRC tumor growth in vivo. Collectively, these data provide evidence for the clinical trials of dictamnine as a novel drug for CRC therapy.
Collapse
Affiliation(s)
- Xingsheng Zuo
- Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Haiguan Lin
- Department of General Surgery, People's Liberation Army Strategic Support Force Characteristic Medical Center, No. 9 Anxiang North Lane, Chaoyang District, Beijing, 100101, China
| | - ZhiYu Song
- Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - BingXin Yu
- Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Chenglong Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
31
|
Uppin V, Zarei M, Acharya P, Nair D, Kempaiah B, Talahalli R. Zerumbone exhibits anti-inflammatory effects by suppressing eicosanoid signaling: Evidence from LPS-induced peripheral blood leukocytes. Prostaglandins Other Lipid Mediat 2024; 173:106852. [PMID: 38761959 DOI: 10.1016/j.prostaglandins.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Zerumbone, a sesquiterpene isolated from Zingiber zerumbet, has many bioactivities, exhibiting anti-inflammatory properties. However, the effect of zerumbone on the eicosanoid signaling pathway has yet to be examined. Here, we deciphered the anti-eicosanoid properties of zerumbone isolated from ginger. The molecular interaction between zerumbone and eicosanoid metabolizing enzymes (COX-2, 5-LOX, FLAP, and LTA4-hydrolase) and receptors (EP-4, BLT-1, and ICAM-1) along with NOS-2 were assessed using Auto-Dock 4.2 and visualized by chimera and Liggplot+ software. Further, the leukocytes were treated with zerumbone (1-20 μM) and activated using bacterial lipopolysaccharide (LPS-10 nM). The oxidative stress (OS) markers, antioxidant enzymes, and the eicosanoid pathway mediators such as COX-2, 5-LOX, BLT-1, and EP-4 were assessed. The molecular interaction of zerumbone with eicosanoids showed a higher binding affinity with mPGES-1, followed by NOS-2, FLAP, COX-2, LTA-4-hydrolase, and BLT-1. The concentration of 5 μM zerumbone effectively prevented the generation of reactive oxygen species (ROS) and nitric oxide (NO). Likewise, zerumbone significantly (p<0.05) inhibited COX-2, 5-LOX, NOS-2, EP-4, BLT-1, and ICAM-1 expression in LPS-induced peripheral blood leukocytes from rats. Further, the zerumbone treatment on the human PBMCs activated with LPS showed significant inhibition in the expression of ICAM1, COX-2, 5-LOX, and the generation of inflammatory cytokines compared to the control. Overall, the data presented infers that zerumbone positively modulates critical enzymes and receptors of eicosanoids in leukocytes activated with lipopolysaccharides. Thus, zerumbone can be a potential anti-eicosanoid drug in managing inflammation.
Collapse
Affiliation(s)
- Vinayak Uppin
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Mehrdad Zarei
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Pooja Acharya
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Devika Nair
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Bettadaiah Kempaiah
- Dept. of Spices and Flavor Sciences, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Ramaprasad Talahalli
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India.
| |
Collapse
|
32
|
Rajamanickam A, Babu S. Helminth Infections and Diabetes: Mechanisms Accounting for Risk Amelioration. Annu Rev Nutr 2024; 44:339-355. [PMID: 38724017 DOI: 10.1146/annurev-nutr-061121-100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The global prevalence of type 2 diabetes mellitus (T2D) is increasing rapidly, with an anticipated 600 million cases by 2035. While infectious diseases such as helminth infections have decreased due to improved sanitation and health care, recent research suggests a link between helminth infections and T2D, with helminths such as Schistosoma, Nippostrongylus, Strongyloides, and Heligmosomoides potentially mitigating or slowing down T2D progression in human and animal models. Helminth infections enhance host immunity by promoting interactions between innate and adaptive immune systems. In T2D, type 1 immune responses are suppressed and type 2 responses are augmented, expanding regulatory T cells and innate immune cells, particularly type 2 immune cells and macrophages. This article reviews recent research shedding light on the favorable effects of helminth infections on T2D. The potential defense mechanisms identified include heightened insulin sensitivity and reduced inflammation. The synthesis of findings from studies investigating parasitic helminths and their derivatives underscores promising avenues for defense against T2D.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| | - Subash Babu
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| |
Collapse
|
33
|
Li X, Zhou L, Xu X, Liu X, Wu W, Feng Q, Tang Z. Metabolic reprogramming in hepatocellular carcinoma: a bibliometric and visualized study from 2011 to 2023. Front Pharmacol 2024; 15:1392241. [PMID: 39086383 PMCID: PMC11289777 DOI: 10.3389/fphar.2024.1392241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Background and aims Metabolic reprogramming has been found to be a typical feature of tumors. Hepatocellular carcinoma (HCC), a cancer with high morbidity and mortality, has been extensively studied for its metabolic reprogramming-related mechanisms. Our study aims to identify the hotspots and frontiers of metabolic reprogramming research in HCC and to provide guidance for future scientific research and decision-making in HCC metabolism. Methods Relevant studies on the metabolic reprogramming of HCC were derived from the Web of Science Core Collection (WoSCC) database up until November 2023. The bibliometrix tools in R were used for scientometric analysis and visualization. Results From 2011 to 2023, a total of 575 publications were obtained from WoSCC that met the established criteria. These publications involved 3,904 researchers and 948 organizations in 37 countries, with an average annual growth rate of 39.11% in research. These studies were published in 233 journals, with Cancers (n = 29) ranking first, followed by Frontiers in Oncology (n = 20) and International Journal of Molecular Sciences (n = 19). The top ten journals accounted for 26% of the 575 studies. The most prolific authors were Wang J (n = 14), Li Y (n = 12), and Liu J (n = 12). The country with the most publications is China, followed by the United States, Italy, and France. Fudan University had the largest percentage of research results with 15.48% (n = 89). Ally A's paper in Cell has the most citations. A total of 1,204 keywords were analyzed, with the trend themes such as "glycolysis," "tumor microenvironment," "Warburg effect," "mitochondria," "hypoxia ," etc. Co-occurrence network and cluster analysis revealed the relationships between keywords, authors, publications, and journals. Moreover, the close collaboration between countries in this field was elucidated. Conclusion This bibliometric and visual analysis delves into studies related to metabolic reprogramming in HCC between 2012 and 2023, elucidating the characteristics of research in this field, which has gradually moved away from single glycolipid metabolism studies to the integration of overall metabolism in the body, pointing out the trend of research topics, and the dynamics of the interaction between the tumor microenvironment and metabolic reprogramming will be the future direction of research, which provides blueprints and inspirations for HCC prevention and treatment programs to the researchers in this field. Systematic Review Registration: [https://www.bibliometrix.org].
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Xu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Tang
- The Beibei Affiliated Hospital of Chongqing Medical University, The Ninth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
34
|
Xie Q, Zeng Y, Zhang X, Yu F. The significance of lipid metabolism reprogramming of tumor-associated macrophages in hepatocellular carcinoma. Cancer Immunol Immunother 2024; 73:171. [PMID: 38954021 PMCID: PMC11220057 DOI: 10.1007/s00262-024-03748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
In the intricate landscape of the tumor microenvironment, tumor-associated macrophages (TAMs) emerge as a ubiquitous cellular component that profoundly affects the oncogenic process. The microenvironment of hepatocellular carcinoma (HCC) is characterized by a pronounced infiltration of TAMs, underscoring their pivotal role in modulating the trajectory of the disease. Amidst the evolving therapeutic paradigms for HCC, the strategic reprogramming of metabolic pathways presents a promising avenue for intervention, garnering escalating interest within the scientific community. Previous investigations have predominantly focused on elucidating the mechanisms of metabolic reprogramming in cancer cells without paying sufficient attention to understanding how TAM metabolic reprogramming, particularly lipid metabolism, affects the progression of HCC. In this review article, we intend to elucidate how TAMs exert their regulatory effects via diverse pathways such as E2F1-E2F2-CPT2, LKB1-AMPK, and mTORC1-SREBP, and discuss correlations of TAMs with these processes and the characteristics of relevant pathways in HCC progression by consolidating various studies on TAM lipid uptake, storage, synthesis, and catabolism. It is our hope that our summary could delineate the impact of specific mechanisms underlying TAM lipid metabolic reprogramming on HCC progression and provide useful information for future research on HCC and the development of new treatment strategies.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
35
|
Trandafir MF, Savu OI, Gheorghiu M. The Complex Immunological Alterations in Patients with Type 2 Diabetes Mellitus on Hemodialysis. J Clin Med 2024; 13:3687. [PMID: 38999253 PMCID: PMC11242658 DOI: 10.3390/jcm13133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
It is widely known that diabetes mellitus negatively impacts both the innate immunity (the inflammatory response) and the acquired immunity (the humoral and cellular immune responses). Many patients with diabetes go on to develop chronic kidney disease, which will necessitate hemodialysis. In turn, long-term chronic hemodialysis generates an additional chronic inflammatory response and impairs acquired immunity. The purpose of this paper is to outline and compare the mechanisms that are the basis of the constant aggression towards self-components that affects patients with diabetes on hemodialysis, in order to find possible new therapeutic ways to improve the functionality of the immune system. Our study will take a detailed look at the mechanisms of endothelial alteration in diabetes and hemodialysis, at the mechanisms of inflammatory generation and signaling at different levels and also at the mechanisms of inflammation-induced insulin resistance. It will also discuss the alterations in leukocyte chemotaxis, antigen recognition and the dysfunctionalities in neutrophils and macrophages. Regarding acquired immunity, we will outline the behavioral alterations of T and B lymphocytes induced by diabetes mellitus and chronic hemodialysis.
Collapse
Affiliation(s)
- Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Octavian Ionel Savu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
36
|
Han J, Chen Y, Xu X, Li Q, Xiang X, Shen J, Ma X. Development of Recombinant High-Density Lipoprotein Platform with Innate Adipose Tissue-Targeting Abilities for Regional Fat Reduction. ACS NANO 2024; 18:13635-13651. [PMID: 38753978 DOI: 10.1021/acsnano.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.
Collapse
Affiliation(s)
- Junhua Han
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yingxian Chen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolong Xu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Qingmeng Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xin Xiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, P. R. China
| |
Collapse
|
37
|
Liu H, Yao M, Ren J. Codonopsis pilosula-derived glycopeptide dCP1 promotes the polarization of tumor-associated macrophage from M2-like to M1 phenotype. Cancer Immunol Immunother 2024; 73:128. [PMID: 38743074 PMCID: PMC11093951 DOI: 10.1007/s00262-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.
Collapse
Affiliation(s)
- Hongxu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China
| | - Maojin Yao
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China.
| |
Collapse
|
38
|
Chen X, Hong L, Diao L, Yin T, Liu S. Hyperandrogenic environment regulates the function of ovarian granulosa cells by modulating macrophage polarization in PCOS. Am J Reprod Immunol 2024; 91:e13854. [PMID: 38716832 DOI: 10.1111/aji.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.
Collapse
Affiliation(s)
- Xi Chen
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| |
Collapse
|
39
|
Sun H, Chang Z, Li H, Tang Y, Liu Y, Qiao L, Feng G, Huang R, Han D, Yin DT. Multi-omics analysis-based macrophage differentiation-associated papillary thyroid cancer patient classifier. Transl Oncol 2024; 43:101889. [PMID: 38382228 PMCID: PMC10900934 DOI: 10.1016/j.tranon.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The reclassification of Papillary Thyroid Carcinoma (PTC) is an area of research that warrants attention. The connection between thyroid cancer, inflammation, and immune responses necessitates considering the mechanisms of differential prognosis of thyroid tumors from an immunological perspective. Given the high adaptability of macrophages to environmental stimuli, focusing on the differentiation characteristics of macrophages might offer a novel approach to address the issues related to PTC subtyping. METHODS Single-cell RNA sequencing data of medullary cells infiltrated by papillary thyroid carcinoma obtained from public databases was subjected to dimensionality reduction clustering analysis. The RunUMAP and FindAllMarkers functions were utilized to identify the gene expression matrix of different clusters. Cell differentiation trajectory analysis was conducted using the Monocle R package. A complex regulatory network for the classification of Immune status and Macrophage differentiation-associated Papillary Thyroid Cancer Classification (IMPTCC) was constructed through quantitative multi-omics analysis. Immunohistochemistry (IHC) staining was utilized for pathological histology validation. RESULTS Through the integration of single-cell RNA and bulk sequencing data combined with multi-omics analysis, we identified crucial transcription factors, immune cells/immune functions, and signaling pathways. Based on this, regulatory networks for three IMPTCC clusters were established. CONCLUSION Based on the co-expression network analysis results, we identified three subtypes of IMPTCC: Immune-Suppressive Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (ISMPTCC), Immune-Neutral Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (INMPTCC), and Immune-Activated Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (IAMPTCC). Each subtype exhibits distinct metabolic, immune, and regulatory characteristics corresponding to different states of macrophage differentiation.
Collapse
Affiliation(s)
- Hanlin Sun
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hongqiang Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yifeng Tang
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yihao Liu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Lixue Qiao
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Guicheng Feng
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China.
| | - Dongyan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - De-Tao Yin
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China; Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China; Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
40
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
41
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
42
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
44
|
Chen YF. Temporal Single-Cell Sequencing Analysis Reveals That GPNMB-Expressing Macrophages Potentiate Muscle Regeneration. RESEARCH SQUARE 2024:rs.3.rs-4108866. [PMID: 38585871 PMCID: PMC10996783 DOI: 10.21203/rs.3.rs-4108866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Macrophages play a crucial role in coordinating the skeletal muscle repair response, but their phenotypic diversity and the transition of specialized subsets to resolution-phase macrophages remain poorly understood. To address this issue, we induced injury and performed single-cell RNA sequencing on individual cells in skeletal muscle at different time points. Our analysis revealed a distinct macrophage subset that expressed high levels of Gpnmb and that coexpressed critical factors involved in macrophage-mediated muscle regeneration, including Igf1, Mertk, and Nr1h3. Gpnmb gene knockout inhibited macrophage-mediated efferocytosis and impaired skeletal muscle regeneration. Functional studies demonstrated that GPNMB acts directly on muscle cells in vitro and improves muscle regeneration in vivo. These findings provide a comprehensive transcriptomic atlas of macrophages during muscle injury, highlighting the key role of the GPNMB macrophage subset in regenerative processes. Targeting GPNMB signaling in macrophages could have therapeutic potential for restoring skeletal muscle integrity and homeostasis.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taiwan
| |
Collapse
|
45
|
Demšar Luzar A, Korošec P, Košnik M, Zidarn M, Rijavec M. Blood Transcriptomics Identifies Multiple Gene Expression Pathways Associated with the Clinical Efficacy of Hymenoptera Venom Immunotherapy. Int J Mol Sci 2024; 25:3499. [PMID: 38542470 PMCID: PMC10971012 DOI: 10.3390/ijms25063499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Allergen-specific venom immunotherapy (VIT) is a well-established therapy for Hymenoptera venom allergy (HVA). However, the precise mechanism underlying its clinical effect remains uncertain. Our study aimed to identify the molecular mechanisms associated with VIT efficiency. We prospectively included 19 patients with HVA undergoing VIT (sampled before the beginning of VIT, after reaching the maintenance dose, one year after finishing VIT, and after a sting challenge) and 9 healthy controls. RNA sequencing of whole blood was performed on an Illumina sequencing platform. Longitudinal transcriptomic profiling revealed the importance of the inhibition of the NFκB pathway and the downregulation of DUX4 transcripts for the early protection and induction of tolerance after finishing VIT. Furthermore, successful treatment was associated with inhibiting Th2, Th17, and macrophage alternative signalling pathways in synergy with the inhibition of the PPAR pathway and further silencing of the Th2 response. The immune system became activated when reaching the maintenance dose and was suppressed after finishing VIT. Finally, successful VIT restores the immune system's balance to a state similar to that of healthy individuals. Our results underline the important role of the inhibition of four pathways in the clinical effect of VIT: Th2, Th17, NFκB, and macrophage signalling. Two biomarkers specific for successful VIT, regardless of the time of sampling, were C4BPA and RPS10-NUDT3 and should be further tested as potential biomarkers.
Collapse
Affiliation(s)
- Ajda Demšar Luzar
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Mitja Košnik
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mihaela Zidarn
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matija Rijavec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
46
|
Malemnganba T, Rattan A, Prajapati VK. Decoding macrophage immunometabolism in human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:493-523. [PMID: 38762278 DOI: 10.1016/bs.apcsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
47
|
Wang XX, Li ZH, Du HY, Liu WB, Zhang CJ, Xu X, Ke H, Peng R, Yang DG, Li JJ, Gao F. The role of foam cells in spinal cord injury: challenges and opportunities for intervention. Front Immunol 2024; 15:1368203. [PMID: 38545108 PMCID: PMC10965697 DOI: 10.3389/fimmu.2024.1368203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024] Open
Abstract
Spinal cord injury (SCI) results in a large amount of tissue cell debris in the lesion site, which interacts with various cytokines, including inflammatory factors, and the intrinsic glial environment of the central nervous system (CNS) to form an inhibitory microenvironment that impedes nerve regeneration. The efficient clearance of tissue debris is crucial for the resolution of the inhibitory microenvironment after SCI. Macrophages are the main cells responsible for tissue debris removal after SCI. However, the high lipid content in tissue debris and the dysregulation of lipid metabolism within macrophages lead to their transformation into foamy macrophages during the phagocytic process. This phenotypic shift is associated with a further pro-inflammatory polarization that may aggravate neurological deterioration and hamper nerve repair. In this review, we summarize the phenotype and metabolism of macrophages under inflammatory conditions, as well as the mechanisms and consequences of foam cell formation after SCI. Moreover, we discuss two strategies for foam cell modulation and several potential therapeutic targets that may enhance the treatment of SCI.
Collapse
Affiliation(s)
- Xiao-Xin Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Wu-Bo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
48
|
Zambre S, Bangar N, Mistry A, Katarmal P, Khan MS, Ahmed I, Tupe R, Roy B. Aldosterone, Methylglyoxal, and Glycated Albumin Interaction with Macrophage Cells Affects Their Viability, Activation, and Differentiation. ACS OMEGA 2024; 9:11848-11859. [PMID: 38497023 PMCID: PMC10938338 DOI: 10.1021/acsomega.3c09420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The inflammatory response in diabetes is strongly correlated with increasing amounts of advanced glycation end products (AGEs), methylglyoxal (MGO), aldosterone (Aldo), and activation of macrophages. Aldo is known to be associated with increased pro-inflammatory responses in general, but its significance in inflammatory responses under glycated circumstances has yet to be understood. In the current work, the aim of our study was to study the macrophage immune response in the presence of AGEs, MGO, and Aldo to comprehend their combined impact on diabetes-associated complications. METHODS AND RESULTS The viability of macrophages upon treatment with glycated HSA (Gly-HSA) promoted cell growth as the concentration increased from 100 to 500 μg/mL, whereas MGO at a high concentration (≥300 μM) significantly hampered cell growth. At lower concentrations (0.5-5 nM), Aldo strongly promoted cell growth, whereas at higher concentrations (50 nM), it was seen to inhibit growth when used for cell treatment for 24 h. Aldo had no effect on MGO-induced cell growth inhibition after 24 h of treatment. However, compared to MGO or Aldo treatment alone, an additional decrease in viability could be seen after 48 h of treatment with a combination of MGO and Aldo. Treatment with Aldo and MGO induced expression of TNF-α independently and when combined. However, when combined, Aldo and MGO significantly suppressed the expression of TGF-β. Aldo, Gly-HSA, and MGO strongly induced the transcription of NF-κB and RAGE mRNA and, as expected, also promoted the formation of reactive oxygen species. Also, by inducing iNOS and MHC-II and suppressing CD206 transcript expression, Gly-HSA strongly favored the differentiation of macrophages into M1 type (pro-inflammatory). On the other hand, the combination of Aldo and MGO strongly induced the expression of MHC-II, CD206, and ARG1 (M2 macrophage marker). These findings suggest that Gly-HSA, MGO, and Aldo differently influence macrophage survival, activation, and differentiation. CONCLUSIONS Overall, this study gives an insight into the effects of glycated protein and MGO in the presence of Aldo on macrophage survival, activation, differentiation, and inflammatory response.
Collapse
Affiliation(s)
- Saee Zambre
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Nilima Bangar
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Mistry
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Poonam Katarmal
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Irshad Ahmed
- Department
of Biochemistry and Structural Biology, School of Medicine, UT Health Science Center, San Antonio, Texas 78229, United States
| | - Rashmi Tupe
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Bishnudeo Roy
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
49
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
50
|
Lin X, Lei Y, Pan M, Hu C, Xie B, Wu W, Su J, Li Y, Tan Y, Wei X, Xue Z, Xu R, Di M, Deng H, Liu S, Yang X, Qu J, Chen W, Zhou X, Zhao F. Augmentation of scleral glycolysis promotes myopia through histone lactylation. Cell Metab 2024; 36:511-525.e7. [PMID: 38232735 DOI: 10.1016/j.cmet.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Myopia is characterized of maladaptive increases in scleral fibroblast-to-myofibroblast transdifferentiation (FMT). Scleral hypoxia is a significant factor contributing to myopia, but how hypoxia induces myopia is poorly understood. Here, we showed that myopia in mice and guinea pigs was associated with hypoxia-induced increases in key glycolytic enzymes expression and lactate levels in the sclera. Promotion of scleral glycolysis or lactate production induced FMT and myopia; conversely, suppression of glycolysis or lactate production eliminated or inhibited FMT and myopia. Mechanistically, increasing scleral glycolysis-lactate levels promoted FMT and myopia via H3K18la, and this promoted Notch1 expression. Genetic analyses identified a significant enrichment of two genes encoding glycolytic enzymes, ENO2 and TPI1. Moreover, increasing sugar intake in guinea pigs not only induced myopia but also enhanced the response to myopia induction via the scleral glycolysis-lactate-histone lactylation pathway. Collectively, we suggest that scleral glycolysis contributes to myopia by promoting FMT via lactate-induced histone lactylation.
Collapse
Affiliation(s)
- Xiaolei Lin
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yi Lei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Miaozhen Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Changxi Hu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Bintao Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Wenjing Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jianzhong Su
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Yating Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuhan Tan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaohuan Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zhengbo Xue
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ruiyan Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Mengqi Di
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hanyu Deng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shengcong Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xingxing Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Wei Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China.
| | - Xiangtian Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China.
| | - Fei Zhao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China.
| |
Collapse
|