1
|
Yao J, Ning B, Ding J. The gut microbiota: an emerging modulator of drug resistance in hepatocellular carcinoma. Gut Microbes 2025; 17:2473504. [PMID: 40042184 PMCID: PMC11901387 DOI: 10.1080/19490976.2025.2473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/08/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Liver cancer is usually diagnosed at an advanced stage and is the third most common cause of cancer-related death worldwide. In addition to the lack of effective treatment options, resistance to therapeutic drugs is a major clinical challenge. The gut microbiota has recently been recognized as one of the key factors regulating host health. The microbiota and its metabolites can directly or indirectly regulate gene expression in the liver, leading to gut-liver axis dysregulation, which is closely related to liver cancer occurrence and the treatment response. Gut microbiota disturbance may participate in tumor progression and drug resistance through metabolite production, gene transfer, immune regulation, and other mechanisms. However, systematic reviews on the role of the gut microbiota in drug resistance in liver cancer are lacking. Herein, we review the relationships between the gut microbiota and the occurrence and drug resistance of hepatocellular carcinoma, summarize the emerging mechanisms underlying gut microbiota-mediated drug resistance, and propose new personalized treatment options to overcome this resistance.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Almonte AA, Thomas S, Zitvogel L. Microbiota-centered interventions to boost immune checkpoint blockade therapies. J Exp Med 2025; 222:e20250378. [PMID: 40261296 PMCID: PMC12013646 DOI: 10.1084/jem.20250378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint blockade therapies have markedly advanced cancer treatment by invigorating antitumor immunity and extending patient survival. However, therapeutic resistance and immune-related toxicities remain major concerns. Emerging evidence indicates that microbial dysbiosis diminishes therapeutic response rates, while a diverse gut ecology and key beneficial taxa correlate with improved treatment outcomes. Therefore, there is a growing understanding that manipulating the gut microbiota could boost therapy efficacy. This review examines burgeoning methods that target the gut microbiome to optimize therapy and innovative diagnostic tools to detect dysbiosis, and highlights challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Andrew A. Almonte
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
| | - Simon Thomas
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
4
|
Xu DQ, Geng JX, Gao ZK, Fan CY, Zhang BW, Han X, He LQ, Dai L, Gao S, Yang Z, Zhang Y, Arshad M, Fu Y, Mu XQ. To explore the potential combined treatment strategy for colorectal cancer: Inhibition of cancer stem cells and enhancement of intestinal immune microenvironment. Eur J Pharmacol 2025; 998:177533. [PMID: 40120791 DOI: 10.1016/j.ejphar.2025.177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The antibiotic salinomycin, a well-known cancer stem cell inhibitor, may impact the diversity of the intestinal microbiota in colorectal cancer (CRC) mice, which plays a pivotal role in shaping the immune system. This study explores the anti-cancer effects and mechanisms of combining salinomycin and fecal microbiota transplantation (FMT) in treating CRC. METHODS FMT was given via enema, while salinomycin was injected intraperitoneally into the CRC mouse model induced by azoxymethane/dextran sodium sulfate. RESULTS In CRC mice, a large number of LGR5-labeled cancer stem cells and severe disturbances in the intestinal microbiota were observed. Interestingly, salinomycin inhibited the proliferation of cancer stem cells without exacerbating the microbial disorder as expected. In comparison to salinomycin treatment, the combination of salinomycin and FMT significantly improved pathological damage and restored intestinal microbial diversity, which is responsible for shaping the anti-cancer immune microenvironment. The supplementation of FMT significantly increased the levels of propionic acid and butyric acid while also promoting the infiltration of CD8+ T cells and Ly6G+ neutrophils, as well as reducing F4/80+ macrophage recruitment. Notably, cytokines that were not impacted by salinomycin exhibited robust reactions to alterations in the gut microbiota. These included pro-inflammatory factors (IL6, IL12b, IL17, and IL22), chemokine-like protein OPN, and immunosuppressive factor PD-L1. CONCLUSIONS Salinomycin plays the role of "eliminating pathogenic qi," targeting cancer stem cells; FMT plays the role of "strengthening vital qi," reversing the intestinal microbiota disorder and enhancing anti-cancer immunity. They have a synergistic effect on the development of CRC.
Collapse
Affiliation(s)
- Dan-Qi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Geng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhan-Kui Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Chao-Yuan Fan
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xing Han
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Li-Qian He
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Lin Dai
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuo Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhou Yang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yang Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Muhammad Arshad
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yin Fu
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150006, China.
| | - Xiao-Qin Mu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Ballal S, Naidu KS, Bareja L, Chahar M, Gupta S, Sameer HN, Yaseen A, Athab ZH, Adil M. Exploring preventive and treatment strategies for oral cancer: Modulation of signaling pathways and microbiota by probiotics. Gene 2025; 952:149380. [PMID: 40089085 DOI: 10.1016/j.gene.2025.149380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/11/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
The evidence suggests that the microbiome plays a crucial role in cancer development. The oral cavity has many microorganisms that can influence oral cancer progression. Understanding the mechanisms and signaling pathways of the oral, gum, and teeth microbiome in tumor progression can lead to new treatment strategies. Probiotics, which are friendly microorganisms, have shown potential as anti-cancer agents. These positive characteristics of probiotic strains make them suitable for cancer prevention or treatment. The oral-gut microbiome axis supports health and homeostasis, and imbalances in the oral microbiome can disrupt immune signaling pathways, epithelial barriers, cell cycles, apoptosis, genomic stability, angiogenesis, and metabolic processes. Changes in the oral microbiome in oral cancer may suggest using probiotics-based treatments for their direct or indirect positive roles in cancer development, progression, and metastasis, specifically oral squamous cell carcinoma (OSCC). Here, reported relationships between probiotics, oral microbiota, and oral cancer are summarized.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003 Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
6
|
Das M, Kiruthiga C, Shafreen RB, Nachammai K, Selvaraj C, Langeswaran K. Harnessing the human microbiome and its impact on immuno-oncology and nanotechnology for next-generation cancer therapies. Eur J Pharmacol 2025; 996:177436. [PMID: 40023356 DOI: 10.1016/j.ejphar.2025.177436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The integration of microbiome research and nanotechnology represents a significant advancement in immuno-oncology, potentially improving the effectiveness of cancer immunotherapies. Recent studies highlight the influential role of the human microbiome in modulating immune responses, presenting new opportunities to enhance immune checkpoint inhibitors (ICIs) and other cancer therapies. Nanotechnology offers precise drug delivery and immune modulation capabilities, minimizing off-target effects while maximizing therapeutic outcomes. This review consolidates current knowledge on the interactions between the microbiome and the immune system, emphasizing the microbiome's impact on ICIs, and explores the incorporation of nanotechnology in cancer treatment strategies. Additionally, it provides a forward-looking perspective on the synergistic potential of microbiome modulation and nanotechnology to overcome existing challenges in immuno-oncology. This integrated approach may enhance the personalization and effectiveness of next-generation cancer treatments, paving the way for transformative patient care.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | | | - R Beema Shafreen
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | - Kathiresan Nachammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to Be University), Pimpri, Pune, 411018, India.
| | - K Langeswaran
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India; Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
7
|
Silveira MAD, Rodrigues RR, Trinchieri G. Intestinal Microbiome Modulation of Therapeutic Efficacy of Cancer Immunotherapy. Gastroenterol Clin North Am 2025; 54:295-315. [PMID: 40348489 PMCID: PMC12066836 DOI: 10.1016/j.gtc.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bacteria are associated with certain cancers and may induce genetic instability and cancer progression. The gut microbiome modulates the response to cancer therapy. Training machine learning models with response associated taxa or bacterial genes predict patients' response to immunotherapies with moderate accuracy. Clinical trials targeting the gut microbiome to improve immunotherapy efficacy have been conducted. While single bacterial strains or small consortia have not be reported yet to be successful, encouraging results have been reported in small single arm and randomized studies using transplant of fecal microbiome from cancer patients who successfully responded to therapy or from healthy volunteers.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4146, Bethesda, MD 20852, USA
| | - Richard R Rodrigues
- Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4140B, Bethesda, MD 20852, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4146, Bethesda, MD 20852, USA.
| |
Collapse
|
8
|
Zhang X, Fam KT, Dai T, Hang HC. Microbiota mechanisms in cancer progression and therapy. Cell Chem Biol 2025; 32:653-677. [PMID: 40334660 DOI: 10.1016/j.chembiol.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The composition of the microbiota in patients has been shown to correlate with cancer progression and response to therapy, highlighting unique opportunities to improve patient outcomes. In this review, we discuss the challenges and advancements in understanding the chemical mechanisms of specific microbiota species, pathways, and molecules involved in cancer progression and treatment. We also describe the modulation of cancer and immunotherapy by the microbiota, along with approaches for investigating microbiota enzymes and metabolites. Elucidating these specific microbiota mechanisms and molecules should offer new opportunities for developing enhanced diagnostics and therapeutics to improve outcomes for cancer patients. Nonetheless, many microbiota mechanisms remain to be determined and require innovative chemical genetic approaches.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tingting Dai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Skelly DA, Graham JP, Cheng M, Furuta M, Walter A, Stoklasek TA, Yang H, Stearns TM, Poirion O, Zhang JG, Grassmann JDS, Luo D, Flynn WF, Courtois ET, Chang CH, Serreze DV, Menghi F, Reinholdt LG, Liu ET. Mapping the genetic landscape establishing a tumor immune microenvironment favorable for anti-PD-1 response. Cell Rep 2025; 44:115698. [PMID: 40343794 DOI: 10.1016/j.celrep.2025.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/03/2025] [Accepted: 04/23/2025] [Indexed: 05/11/2025] Open
Abstract
Identifying host genetic factors modulating immune checkpoint inhibitor (ICI) efficacy is experimentally challenging. Our approach, utilizing the Collaborative Cross mouse genetic resource, fixes the tumor genomic configuration while varying host genetics. We find that response to anti-PD-1 (aPD1) immunotherapy is significantly heritable in four distinct murine tumor models (H2: 0.18-0.40). For the MC38 colorectal carcinoma system, we map four significant ICI response quantitative trait loci (QTLs) with significant epistatic interactions. The differentially expressed genes within these QTLs that define responder genetics are highly enriched for processes involving antigen processing and presentation, allograft rejection, and graft vs. host disease (all p < 1 × 10-10). Functional blockade of two top candidate immune targets, GM-CSF and IL-2RB, completely abrogates the MC38 transcriptional response to aPD1 therapy. Thus, our in vivo experimental platform is a powerful approach for discovery of host genetic factors that establish the tumor immune microenvironment propitious for ICI response.
Collapse
Affiliation(s)
- Daniel A Skelly
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - John P Graham
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | | | - Mayuko Furuta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Andrew Walter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | | | | | - Timothy M Stearns
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - Olivier Poirion
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ji-Gang Zhang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - Jessica D S Grassmann
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Diane Luo
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - William F Flynn
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Elise T Courtois
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; OB/Gyn Department, UConn Health, Farmington, CT 06032, USA
| | - Chih-Hao Chang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - David V Serreze
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Laura G Reinholdt
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
10
|
Zhou H, Zhuang Y, Liang Y, Chen H, Qiu W, Xu H, Zhou H. Curcumin exerts anti-tumor activity in colorectal cancer via gut microbiota-mediated CD8 + T Cell tumor infiltration and ferroptosis. Food Funct 2025; 16:3671-3693. [PMID: 40244948 DOI: 10.1039/d4fo04045g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Colorectal cancer (CRC), as a high-incidence malignancy, continues to present significant challenges in prevention, screening, and treatment. Curcumin (Cur) exhibits notable anti-inflammatory and anticancer properties. Despite its poor solubility in water and low bioavailability, high concentrations of Cur are detected in the gastrointestinal tract after oral administration, suggesting that it may directly interact with the gut microbiota and exert regulatory effects. This study aims to explore the mechanisms by which Cur improves CRC by modulating gut microbiota. Firstly, we evaluated the effect of Cur on CRC cell viability in vitro using the MTT assay, and the results showed a significant inhibitory effect on CRC cell growth. The IC50 values for Cur in CT26 and RKO cells were 23.52 μM, 16.11 μM, and 13.62 μM at 24, 48, and 72 hours, respectively, and 26.3 μM, 16.52 μM, and 14.22 μM at 24, 48, and 72 hours, respectively. Cur induced apoptosis and caused G2 phase cell cycle arrest in tumor cells. Subsequently, we established a CRC mouse model. Oral administration of Cur at 15 mg kg-1 and 30 mg kg-1 inhibited CRC progression, as evidenced by reduced tumor volume, histological analysis, immunohistochemistry, and an increased number of CD8+ T cells infiltrating the tumors. Ferroptosis in tumor cells was also observed. Cur partially restored the gut microbiota of CRC mice, altering the abundance and diversity of the gut microbiota and affecting serum metabolite distribution, with significant increases in the abundance of SCFA-producing microbes such as Lactobacillus and Kineothrix. To verify causality, we designed a fecal microbiota transplantation (FMT) experiment. Compared with CRC mice, the fecal microbiota from Cur-treated mice significantly alleviated CRC symptoms, including slowed tumor growth, enhanced CD8+ T cell tumor infiltration, and induced ferroptosis in tumor cells. Additionally, when gut microbiota was depleted with antibiotics, Cur's antitumor effects disappeared, suggesting that Cur mitigates CRC in a gut microbiota-dependent manner. These findings provide new insights into the mechanisms underlying CRC and propose novel therapeutic interventions, emphasizing the interaction between gut microbiota and immune responses within the tumor immune microenvironment (TIME).
Collapse
Affiliation(s)
- Hongli Zhou
- Nanjing University of Chinese Medicine, 210023, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, 210023, Nanjing, China
| | - Yupei Zhuang
- Nanjing University of Chinese Medicine, 210023, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, 210023, Nanjing, China
| | - Yuwei Liang
- Nanjing University of Chinese Medicine, 210023, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, 210023, Nanjing, China
| | - Haibin Chen
- Nanjing University of Chinese Medicine, 210023, Nanjing, China.
| | - Wenli Qiu
- Nanjing University of Chinese Medicine, 210023, Nanjing, China.
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Huiqin Xu
- Nanjing University of Chinese Medicine, 210023, Nanjing, China.
| | - Hongguang Zhou
- Nanjing University of Chinese Medicine, 210023, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, 210023, Nanjing, China
| |
Collapse
|
11
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025:10.1038/s42255-025-01287-w. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
12
|
Szlachetko JA, Hofmann-Vega F, Budeus B, Schröder LJ, Dumitru CA, Schmidt M, Deuss E, Vollmer S, Hanschmann EM, Busch M, Kehrmann J, Lang S, Dünker N, Hussain T, Brandau S. Tumor cells that resist neutrophil anticancer cytotoxicity acquire a prometastatic and innate immune escape phenotype. Cell Mol Immunol 2025; 22:527-540. [PMID: 40155451 PMCID: PMC12041228 DOI: 10.1038/s41423-025-01283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
In the tumor host, neutrophils may exhibit protumor or antitumor activity. It is hypothesized that in response to host-derived or therapy-induced factors, neutrophils adopt diverse functional states to ultimately execute these differential functions. Here, we provide an alternative scenario in which the response of an individual tumor cell population determines the overall protumor versus antitumor outcome of neutrophil‒tumor interactions. Experimentally, we show that human neutrophils, which are sequentially stimulated with bacteria and secreted factors from tumor cells, kill a certain proportion of tumor target cells. However, the majority of the tumor cells remained resistant to this neutrophil-mediated killing and underwent a functional, phenotypic and transcriptomic switch that was reminiscent of partial epithelial‒to-mesenchymal transition. This cell biological switch was associated with physical escape from NK-mediated killing and resulted in enhanced metastasis to the lymph nodes in a preclinical orthotopic mouse model. Mechanistically, we identified the antimicrobial neutrophil granule proteins neutrophil elastase (NE) and matrix metalloprotease-9 (MMP-9) as the molecular mediators of this functional switch. We validated these data in patients with head and neck cancer and identified bacterially colonized intratumoral niches that were enriched for mesenchymal tumor cells and neutrophils expressing NE and MMP-9. Our data reveal the parallel execution of tumor cytotoxic and prometastatic activity by activated neutrophils and identify NE and MMP-9 as mediators of lymph node metastasis. The identified mechanism explains the functional dichotomy of tumor-associated neutrophils at the level of the tumor target cell response and has implications for superinfected cancers and the dysbiotic tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Bettina Budeus
- Institute of Cell Biology, University Hospital Essen, Essen, 45147, Germany
| | - Lara-Jasmin Schröder
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
- Institute of Pathology, Medical School Hannover, Hannover, 30625, Germany
| | - Claudia Alexandra Dumitru
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, 39106, Germany
| | - Mathias Schmidt
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Eric Deuss
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Sebastian Vollmer
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Eva-Maria Hanschmann
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Medical Faculty, Essen, 45147, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, Essen, 45147, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Medical Faculty, Essen, 45147, Germany
| | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University Munich, Munich, 81675, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany.
- German Cancer Consortium, DKTK, Partner Site Essen-Düsseldorf, Essen, 45147, Germany.
| |
Collapse
|
13
|
Pang F, Jiang Q, Li K, Tang X. Integrative gut microbiota, metabolomics and proteomics studies unraveled the mechanism of Shaoteng decoction in treating Sjogren's syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156631. [PMID: 40088738 DOI: 10.1016/j.phymed.2025.156631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Sjögren's syndrome (SS) is a complicated autoimmune disorder, encompassing multifaceted pathogenesis of inflammatory response, immune dysregulation and metabolic abnormalities. Shaoteng Decoction (STD) is a type of traditional Chinese medicine preparation that has been shown to effectively improve inflammatory damage and immune dysfunction in patients with SS. Nevertheless, the exact mechanism has not been unspecified. PURPOSE This work aims to determine the mechanism of STD treatment on SS, identifying potential therapeutic targets and their relationships. METHODS Non-obese diabetic mice served as a disease model. This study analyzes potential signaling pathways of STD treatment for SS through network pharmacology, and assesses the role of STD in reducing inflammatory damage using pathological staining, ELISA, and immunohistochemistry. Additionally, the study apply gut microbiota, metabolomics, and proteomics analyses to identify the key microbiota, metabolites and proteins, aiming to find potential action targets of STD. We use Western blotting and immunohistochemistry to verify the authenticity of the relevant targets and study the interactions among gut microbiota, metabolites, and proteins. RESULTS Proteobacteria is the important intestinal bacteria, Bile Acid Biosynthesis is the main metabolic pathway, IfI30, Ndufv3, and Ndufs6 are the crucial differential expressed proteins. Moreover, there is a strong correlation among the three. STD treats SS by reducing the abundance of Proteobacteria, increasing Bile Acid Biosynthesis, decreasing IfI30 expression, and increasing the expression of Ndufv3 and Ndufs6. CONCLUSION STD inhibits inflammatory responses, improves immune dysregulation and energy metabolism abnormalities, and prevents the progression of SS through regulating the gut microbiota, enhancing Bile Acid Biosynthesis, and modulating proteins expression levels.
Collapse
Affiliation(s)
- Fengtao Pang
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Quan Jiang
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Kesong Li
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
| | - Xiaopo Tang
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Yang X, Zhao Q, Wang X, Zhang Y, Ma J, Liu Y, Wang H. Investigation of Clostridium butyricum on atopic dermatitis based on gut microbiota and TLR4/MyD88/ NF-κB signaling pathway. Technol Health Care 2025; 33:1532-1547. [PMID: 39973880 DOI: 10.1177/09287329241301680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundProbiotics, as common regulators of the gut microbiota, have been used in research to alleviate clinical symptoms of atopic dermatitis (AD).ObjectiveOur research team has previously identified a potential relieving effect of Clostridium butyricum on the treatment of AD, but the specific mechanism of how Clostridium butyricum alleviates AD has not yet been confirmed.MethodsIn this study, we explored the relieving effect of Clostridium butyricum on AD through in vivo and in vitro experiments. AD mice induced by 2,4-dinitrofluorobenzene (DNFB) were orally administered with 1 × 108 CFU of Clostridium butyricum for three consecutive weeks.ResultsOral administration of Clostridium butyricum reduced ear swelling, alleviated back skin lesions, decreased mast cell and inflammatory cell infiltration, and regulated the levels of inflammation-related cytokines. Clostridium butyricum activated the intestinal immune system through the TLR4/MyD88/NF-κB signaling pathway, suppressed the expression of inflammatory factors IL-10 and IL-13, and protected the damaged intestinal mucosa.ConclusionClostridium butyricum administration improved the diversity and abundance of the gut microbiota, enhanced the functionality of the immune system, and protected the epidermal barrier.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Qian Zhao
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Xing Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Yiming Zhang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Jingyue Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Yuanjun Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| |
Collapse
|
15
|
Huang C, Xiao H, Yang Y, Luo J, Lai Y, Liu S, Mao K, Chen J, Wang L. Adenosine diphosphate-ribosylation greatly affects proteins function: a focus on neurodegenerative diseases. Front Aging Neurosci 2025; 17:1575204. [PMID: 40370754 PMCID: PMC12075376 DOI: 10.3389/fnagi.2025.1575204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Adenosine diphosphate-ribosylation (ADPRylation) is a reversible posttranslational modification that plays a crucial role in cellular homeostasis and disease development. ADPRylation is produced via nicotinamide adenine dinucleotide hydrolysis and modifies proteins via corresponding transferases, mainly poly(ADP-ribose) polymerases (PARPs), the inhibitors of which have been used in the clinical treatment of cancer. ADPRylation is involved in various physiological processes, including pathogen infection, inflammation, DNA repair, and neurological disorders. In neurodegenerative diseases (NDs), dysregulated ADPRylation contributes to protein aggregation, neuroinflammation, and metabolic disturbances, while targeted modulation shows therapeutic potential. ADPRylation differentially regulates neurodegenerative processes, and PARP inhibitors can reduce neuroinflammation, oxidative stress, and metabolic dysfunction. However, challenges such as poor blood-brain barrier penetration and cell type-specific responses limit clinical translation. This review summarizes recent findings on the role of ADPRylation and PARPs in NDs, highlighting their involvement in protein aggregation and cellular signaling. It emphasizes the importance of ADPRylation in neuronal cells and supports the development of precision therapies targeting this pathway to address current treatment challenges in NDs.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Respiratory Medicine, Jiangmen Central Hospital Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Huilin Xiao
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yang Yang
- Department of Rehabilitation, Affiliated Shenzhen Baoan Central Hospital Group of Guangdong Medical University, Shenzhen, China
| | - Jiankun Luo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yixi Lai
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shizhen Liu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Kanmin Mao
- Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialong Chen
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Liling Wang
- Department of Rehabilitation, Affiliated Shenzhen Baoan Central Hospital Group of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
16
|
Cui X, Li C, Zhong J, Liu Y, Xiao P, Liu C, Zhao M, Yang W. Gut microbiota - bidirectional modulator: role in inflammatory bowel disease and colorectal cancer. Front Immunol 2025; 16:1523584. [PMID: 40370465 PMCID: PMC12075242 DOI: 10.3389/fimmu.2025.1523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The gut microbiota is a diverse ecosystem that significantly impacts human health and disease. This article focuses on how the gut microbiota interacts with inflammatory bowel diseases and colorectal tumors, especially through immune regulation. The gut microbiota plays a role in immune system development and regulation, while the body's immune status can also affect the composition of the microbiota. These microorganisms exert pathogenic effects or correct disease states in gastrointestinal diseases through the actions of toxins and secretions, inhibition of immune responses, DNA damage, regulation of gene expression, and protein synthesis. The microbiota and its metabolites are essential in the development and progression of inflammatory bowel diseases and colorectal tumors. The complexity and bidirectionality of this connection with tumors and inflammation might render it a new therapeutic target. Hence, we explore therapeutic strategies for the gut microbiota, highlighting the potential of probiotics and fecal microbiota transplantation to restore or adjust the microbial community. Additionally, we address the challenges and future research directions in this area concerning inflammatory bowel diseases and colorectal tumors.
Collapse
Affiliation(s)
- Xilun Cui
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwei Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
17
|
Yang R, Liu W, Cai S, Feng X, Chen Y, Cheng X, Ma J, Ma W, Tian Z, Yang W. Evaluation of the efficacy of probiotics in the chemoradiotherapy of colorectal cancer: a meta-analysis of Randomized Controlled Trials. BMC Gastroenterol 2025; 25:312. [PMID: 40301781 PMCID: PMC12042389 DOI: 10.1186/s12876-025-03914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
OBJECTIVE We undertook this study to assess the efficacy of probiotics in managing adverse reactions during chemoradiotherapy in patients with colorectal cancer. METHOD A comprehensive literature search was conducted on PubMed, ClinicalTrials.gov, Embase, Cochrane library,Web of Science, and Chinese databases until July 27, 2024. Data analysis was performed using RevMan5.3 statistical software. The risk of bias was assessed using the Cochrane collaboration tool. Relative risk (RR) was employed to incorporate statistical measures and calculate 95% confidence intervals (95%CI) for bipartite data. Standardized mean difference (SMD) was utilized to incorporate statistical measures and calculate 95% confidence intervals for continuous variables. RESULTS A meta-analysis of 633 patients with colorectal cancer was conducted across eight studies. In comparison to the control group, probiotics demonstrated a significant reduction in the incidence of chemoradiotherapy-induced diarrhea among colorectal cancer patients(RR = 0.51,95%Cl:0.38 ~ 0.68,P < 0.001). Additionally, probiotic usage exhibited improvements in pain index (SMD = -2.27,95%Cl: -4.49 ~ -0.05,P = 0.04), dyspnea (SMD = -0.92,95%Cl: -1.61 ~ 0.22, P = 0.01) and insomnia (SMD = -2.95, 95%Cl: -5.44 ~ -0.47, P = 0.02) compared to the control group. However, there were no significant differences between two groups in abdominal distension(RR = 0.79, 95%Cl:0.21 ~ 3.00, P = 0.72), stomatitis risk (RR = 1.23, 95%Cl: 0.48 ~ 3.21, P = 0.67), fatigue (SMD = -7.12, 95%Cl:-14.99 ~ 0.75, P = 0.08)and loss of appetite(SMD = -2.86, 95%Cl: -5.83 ~ 0.11, P = 0.06). Furthermore, the use of probiotics did not significantly improve the quality of life (QOL) (SMD = 8.82, 95%Cl: -1.11 ~ 18.75, P = 0.08)of colorectal cancer patients receiving chemoradiotherapy. CONCLUSIONS This meta-analysis suggested that probiotic consumption may ameliorate certain adverse reactions in patients with colorectal cancer receiving chemoradiotherapy. TRIAL REGISTRATIONS Prospero registration number: PROSPERO (CRD42023465966).
Collapse
Affiliation(s)
- Rong Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Wei Liu
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, China
| | - Shuiyan Cai
- Department of General Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, China
| | - Xiurong Feng
- Department of Ultrasonography Lab, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, China
| | - Yongjing Chen
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Xiangyu Cheng
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Junjie Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Weiyu Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Zhihui Tian
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China.
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China.
| |
Collapse
|
18
|
Adlakha YK, Chhabra R. The human microbiome: redefining cancer pathogenesis and therapy. Cancer Cell Int 2025; 25:165. [PMID: 40296128 PMCID: PMC12039184 DOI: 10.1186/s12935-025-03787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The human microbiome has always been an important determinant of health and recently, its role has also been described in cancer. The altered microbiome could aid cancer progression, modulate chemoresistance and significantly alter drug efficacy. The broad implications of microbes in cancer have prompted researchers to investigate the microbe-cancer axis and identify whether modifying the microbiome could sensitize cancer cells for therapy and improve the survival outcome of cancer patients. The preclinical data has shown that enhancing the number of specific microbial species could restore the patients' response to cancer drugs and the microbial biomarkers may play a vital role in cancer diagnostics. The elucidation of detailed interactions of the human microbiota with cancer would not only help identify the novel drug targets but would also enhance the efficacy of existing drugs. The field exploring the emerging roles of microbiome in cancer is at a nascent stage and an in-depth scientific perspective on this topic would make it more accessible to a wider audience. In this review, we discuss the scientific evidence connecting the human microbiome to the origin and progression of cancer. We also discuss the potential mechanisms by which microbiota affects initiation of cancer, metastasis and chemoresistance. We highlight the significance of the microbiome in therapeutic outcome and evaluate the potential of microbe-based cancer therapy.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh, 201303, India.
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
19
|
Chen L, Ma S, Wu H, Zheng L, Yi Y, Liu G, Li B, Sun J, Du Y, Wang B, Liu Y, Zhang C, Chang J, Pang Y, Wang W, Wang M, Zhu M. Zonated Copper-Driven Breast Cancer Progression Countered by a Copper-Depleting Nanoagent for Immune and Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412434. [PMID: 40270472 DOI: 10.1002/advs.202412434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/14/2025] [Indexed: 04/25/2025]
Abstract
While studies of various carcinomas have reported aberrant metal metabolism, much remains unknown regarding their spatial accumulation and regulatory impacts in tumors. Here, elevated copper levels are detected in breast cancer tumors from patients and animal models, specifically exhibiting a zonate spatial pattern. Spatially resolved multiomics analyses reveal that copper zonation drives a tumor metabolic preference for oxidative phosphorylation (OXPHOS) over glycolysis and promotes tumor metastatic and immune-desert phenotypes. Then, a copper-depleting nanoagent is developed based on copper chelator tetrathiomolybdate (TM)-loaded hybridized bacterial outer membrane vesicles (hOMVs) from both Akkermansia muciniphila bacteria and CD326-targeting peptide-engineered Escherichia coli (TM@CD326hOMV). Systemic administration of TM@CD326hOMV reduces the labile copper level in tumors and inhibits both tumor growth and metastatic phenotypes, specifically through metabolic reprograming of OXPHOS toward glycolysis and restoration of antitumor immunity responses involving natural killer cells, CD4+ T cells, and cytotoxic CD8+ T cells in tumors. Assessing survival in murine breast cancer models, a combination of TM@CD326hOMV and a checkpoint blockade agent outperforms monotherapies. Notably, a copper-rich diet undermines the therapeutic efficacy of TM@CD326hOMV. Beyond demonstrating an effective nanoagent for treating breast cancer, this study deepens the understanding of how the pattern of copper accumulation in tumors affects pathophysiology and immunity.
Collapse
Affiliation(s)
- Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Saibo Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Hao Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lingna Zheng
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Guangnian Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100035, China
| | - Baoyi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100035, China
| | - Jiayi Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yang Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bing Wang
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Yuheng Pang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Wenjing Wang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Meng Wang
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
20
|
Liu S, Liu J, Mei Y, Zhang W. Gut microbiota affects PD-L1 therapy and its mechanism in melanoma. Cancer Immunol Immunother 2025; 74:169. [PMID: 40214675 PMCID: PMC11992302 DOI: 10.1007/s00262-025-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have shown great success in treating melanoma. PD-L1 (B7-H1, CD274), a ligand of PD-1, binds to PD-1 on T cells, inhibiting their activation and proliferation through multiple pathways, thus dampening tumor-reactive T cell activity. Studies have linked PD-L1 expression in melanoma with tumor growth, invasion, and metastasis, making the PD-1/PD-L1 pathway a critical target in melanoma therapy. However, immune-related adverse events are common, reducing the effectiveness of anti-PD-L1 treatments. Recent evidence suggests that the gut microbiome significantly influences anti-tumor immunity, with the microbiome potentially reprogramming the tumor microenvironment and overcoming resistance to anti-PD-1 therapies in melanoma patients. This review explores the mechanisms of PD-1/PD-L1 in melanoma and examines how gut microbiota and its metabolites may help address resistance to anti-PD-1 therapy, offering new insights for improving melanoma treatment strategies.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiahui Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjuan Zhang
- Beijing Life Science Academy (BLSA), Beijing, China.
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Chen C, Wang X, Han X, Peng L, Zhang Z. Gut microbiota and gastrointestinal tumors: insights from a bibliometric analysis. Front Microbiol 2025; 16:1558490. [PMID: 40264971 PMCID: PMC12012581 DOI: 10.3389/fmicb.2025.1558490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Despite the growing number of studies on the role of gut microbiota in treating gastrointestinal tumors, the overall research trends in this field remain inadequately characterized. Methods A bibliometric analysis was conducted using publications retrieved from the Web of Science Core Collection (up to September 30, 2024). Analytical tools including VOSviewer, CiteSpace, and an online bibliometric platform were employed to evaluate trends and hotspots. Results Analysis of 1,421 publications revealed significant geographical disparities in research output, with China and the United States leading contributions. Institutionally, the University of Adelaide, Zhejiang University, and Shanghai Jiao Tong University were prominent contributors. Authorship analysis identified Hannah R. Wardill as the most prolific author, while the International Journal of Molecular Sciences emerged as a leading journal. Rapidly growing frontiers include "proliferation," "inhibition," "immunotherapy," "drug delivery," and "tumorigenesis." Discussion This study provides a comprehensive overview of research trends and highlights emerging directions, aiming to advance scientific and clinical applications of gut microbiota in gastrointestinal tumor therapy.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaolan Wang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xu Han
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lifan Peng
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
22
|
Nakashima M, Fukumoto A, Matsuda S. Beneficial Probiotics with New Cancer Therapies for Improved Treatment of Hepatocellular Carcinoma. Diseases 2025; 13:111. [PMID: 40277821 PMCID: PMC12025462 DOI: 10.3390/diseases13040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant form of primary liver cancer. Intricate networks linked to the host immune system may be associated with the pathogenesis of HCC. A huge amount of interdisciplinary medical information for the treatment of HCC has been accumulated over recent years. For example, advances in new immunotherapy have improved the results of treatment for HCC. This approach can be advantageously combined with standard conventional treatments such as surgical resection to improve the therapeutic effect. However, several toxic effects of treatments may pose a significant threat to human health. Now, a shift in mindset is important for achieving superior cancer therapy, where probiotic therapy may be considered, at least within the bounds of safety. The interplay between the gut microbiota and immune system could affect the efficacy of several anticancer treatments, including of immune checkpoint therapy via the alteration of Th17 cell function against various malignant tumors. Here, some recent anticancer techniques are discussed, whereby the growth of HCC may be effectively and safely repressed by probiotic therapy.
Collapse
Affiliation(s)
| | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
23
|
Kim K, Lee M, Shin Y, Lee Y, Kim TJ. Optimizing Cancer Treatment Through Gut Microbiome Modulation. Cancers (Basel) 2025; 17:1252. [PMID: 40227841 PMCID: PMC11988035 DOI: 10.3390/cancers17071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome plays a pivotal role in modulating cancer therapies, including immunotherapy and chemotherapy. Emerging evidence demonstrates its influence on treatment efficacy, immune response, and resistance mechanisms. Specific microbial taxa enhance immune checkpoint inhibitor efficacy, while dysbiosis can contribute to adverse outcomes. Chemotherapy effectiveness is also influenced by microbiome composition, with engineered probiotics and prebiotics offering promising strategies to enhance drug delivery and reduce toxicity. Moreover, microbial metabolites, such as short-chain fatty acids, and engineered microbial systems have shown potential to improve therapeutic responses. These findings underscore the importance of personalized microbiome-based approaches in optimizing cancer treatments.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 03760, Republic of Korea;
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
24
|
Nahm WJ, Sakunchotpanit G, Nambudiri VE. Abscopal Effects and Immunomodulation in Skin Cancer Therapy. Am J Clin Dermatol 2025:10.1007/s40257-025-00943-x. [PMID: 40180765 DOI: 10.1007/s40257-025-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Radiation therapy (RT) is a crucial modality in cancer treatment, functioning through direct DNA damage and immune stimulation. However, RT's effects extend beyond targeted cells, influencing neighboring cells through the bystander effect (ByE) and distant sites via the abscopal effect (AbE). The AbE, first described by Mole in 1953, encompasses biological reactions at sites distant from the irradiation field. While RT can enhance antitumor immune responses, it may also contribute to an immunosuppressive microenvironment. To address this limitation, combining RT with immune checkpoint inhibitors (ICIs) has gained renewed interest, aiming to amplify antitumor immune responses. Evidence of AbEs has been observed in various metastatic or advanced cutaneous cancers, including melanoma, basal cell carcinoma, cutaneous lymphoma, Merkel cell carcinoma, and cutaneous squamous cell carcinoma. Clinical studies suggest combining RT with ICIs targeting CTLA-4 and PD-1/PD-L1 may enhance AbE incidence in these cancers. This review primarily explores the current understanding of AbEs in skin cancers, briefly acknowledging the ByE focusing on combining RT with immunomodulation. It focuses on proposed mechanisms, preclinical and clinical evidence, challenges in clinical translation, and future directions for harnessing AbEs in managing advanced skin malignancies. Alternative modalities for inducing abscopal-like responses are also explored. While promising, challenges remain in consistently reproducing AbEs in clinical practice, necessitating further research to optimize treatment combinations, timing, and patient selection.
Collapse
Affiliation(s)
- William J Nahm
- New York University Grossman School of Medicine, New York, NY, USA.
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA.
| | - Goranit Sakunchotpanit
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Clavijo-Salomon MA, Trinchieri G. Unlocking the power of the microbiome for successful cancer immunotherapy. J Immunother Cancer 2025; 13:e011281. [PMID: 40180421 PMCID: PMC11966956 DOI: 10.1136/jitc-2024-011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
In recent years, evidence has shown that the gut microbiome significantly influences responses to immunotherapy. This has sparked interest in targeting it to improve therapy outcomes and predictions of response and toxicity. Research has demonstrated that dysbiosis, often resulting from antibiotic use, can diminish the effectiveness of immune checkpoint inhibitors, and this lack of efficacy could be linked to systemic inflammation. Certain bacterial species have been identified as having beneficial and harmful effects on immunotherapy in the clinic. While a clear consensus has yet to emerge on the optimal species for therapeutic use, introducing a new microbiome into immunotherapy-refractory patients may boost their chances of responding to further treatment attempts. State-of-the-art interventions targeting the microbiome-such as fecal microbiota transplantation-are being assessed clinically for their safety and potential to enhance treatment outcomes, with promising results. Additionally, the microbiome has been leveraged for its power to predict clinical outcomes using machine learning, and surprisingly, its predictive capability is comparable to that of other described multi-biomarker clinical scores. Here, we discuss developing knowledge concerning the microbiome's significance in cancer immunotherapy and outline future strategies for maximizing its potential in immuno-oncology.
Collapse
Affiliation(s)
- Maria A Clavijo-Salomon
- Laboratory of Integrative Cancer Immunology, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
27
|
Golshani M, Taylor JA, Woolbright BL. Understanding the microbiome as a mediator of bladder cancer progression and therapeutic response. Urol Oncol 2025; 43:254-265. [PMID: 39117491 DOI: 10.1016/j.urolonc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bladder cancer (BCa) remains a significant source of morbidity and mortality. BCa is one of the most expensive tumors to treat, in part because of a lack of nonsurgical options. The recent advent of immunotherapy, alone or in combination with other compounds, has improved therapeutic options. Resistance to immunotherapy remains common, and many patients do not have durable response. Recent advances indicate immunotherapy efficacy may be tied in part to the endogenous bacteria present in our body, more commonly referred to as the microbiome. Laboratory and clinical data now support the idea that a healthy microbiome is critical to effective response to immunotherapy. At the same time, pathogenic interactions between the microbiome and immune cells can also serve to drive formation of tumors, increasing the complexity of these interactions. Given the rising importance of immunotherapy in BCa, understanding how we might be able to alter the microbiome to improve therapeutic efficacy offers a novel route to improved patient care. The goal of this review is to examine our current understanding of microbial interactions with the immune system and cancer with an emphasis on BCa. We will further attempt to define both current gaps in knowledge and future directions that may yield beneficial results to the field.
Collapse
Affiliation(s)
- Mahgol Golshani
- School of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
28
|
Zitvogel L, Derosa L, Routy B, Loibl S, Heinzerling L, de Vries IJM, Engstrand L, Segata N, Kroemer G. Impact of the ONCOBIOME network in cancer microbiome research. Nat Med 2025; 31:1085-1098. [PMID: 40217075 DOI: 10.1038/s41591-025-03608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
The European Union-sponsored ONCOBIOME network has spurred an international effort to identify and validate relevant gut microbiota-related biomarkers in oncology, generating a unique and publicly available microbiome resource. ONCOBIOME explores the effects of the microbiota on gut permeability and metabolism as well as on antimicrobial and antitumor immune responses. Methods for the diagnosis of gut dysbiosis have been developed based on oncomicrobiome signatures associated with the diagnosis, prognosis and treatment responses in patients with cancer. The mechanisms explaining how dysbiosis compromises natural or therapy-induced immunosurveillance have been explored. Through its integrative approach of leveraging multiple cohorts across populations, cancer types and stages, ONCOBIOME has laid the theoretical and practical foundations for the recognition of microbiota alterations as a hallmark of cancer. ONCOBIOME has launched microbiota-centered interventions and lobbies in favor of official guidelines for avoiding diet-induced or iatrogenic (for example, antibiotic- or proton pump inhibitor-induced) dysbiosis. Here, we review the key advances of the ONCOBIOME network and discuss the progress toward translating these into oncology clinical practice.
Collapse
Affiliation(s)
- Laurence Zitvogel
- INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
- Clinicobiome, Gustave Roussy, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.
| | - Lisa Derosa
- INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Clinicobiome, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- University of Montreal Research Center (CR-CHUM), Montreal, Quebec, Canada
- Department of Hematology-Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Sibylle Loibl
- German Breast Group c/ GBG Forschungs GmbH, Neu-Isenburg, Goethe University, Frankfurt, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - I Jolanda M de Vries
- Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Engstrand
- Department of Microbiology Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology IRCCS, Milan, Italy
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
29
|
Chalif J, Goldstein N, Mehra Y, Spakowicz D, Chambers LM. The Role of the Microbiome in Cancer Therapies: Current Evidence and Future Directions. Hematol Oncol Clin North Am 2025; 39:269-294. [PMID: 39856008 DOI: 10.1016/j.hoc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The microbiome is essential for maintaining human health and is also a key factor in the development and progression of various diseases, including cancer. Growing evidence has highlighted the microbiome's significant impact on cancer development, progression, and treatment outcomes. As research continues to unfold, the microbiome and its modulation stand out as a promising frontier in cancer research and therapy. This review highlights current literature on the interplay between various cancer treatment modalities and human microbiotas, focusing on how the microbiome may affect treatment efficacy and toxicity and its potential as a therapeutic target to enhance future outcomes.
Collapse
Affiliation(s)
- Julia Chalif
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Naomi Goldstein
- Division of Obstetrics & Gynecology, The Ohio State University, Columbus, OH, USA
| | - Yogita Mehra
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Dan Spakowicz
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Laura M Chambers
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
30
|
Patra D, Dev G, Hand TW, Overacre-Delgoffe A. Friends close, enemies closer: the complex role of the microbiome in antitumor immunity. Curr Opin Immunol 2025; 93:102537. [PMID: 40015179 DOI: 10.1016/j.coi.2025.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Immunotherapy has achieved remarkable advances in cancer treatment by harnessing the immune system to combat tumors, yet its effectiveness remains inconsistent across patients and tumor types. The microbiota, a diverse assemblage of microorganisms residing at host barrier surfaces, is pivotal in shaping immune responses. This review explores the direct and indirect mechanisms via which the microbiota modulates antitumor immune responses both locally within the tumor microenvironment and systemically by affecting distant tumors. We discuss recent findings linking microbiota-derived metabolites and microbiota-derived antigens with antitumor immunity and immunotherapy response. Additionally, we discuss recent advances in microbiome-based therapies, including fecal microbiota transplantation. We propose the use and development of new analytical techniques to further characterize the complex functions and interactions between the microbiome and immune system. To conclude, we outline recommendations for future research and therapeutic approaches to leverage the microbiome to improve current immunotherapies.
Collapse
Affiliation(s)
- Dipyaman Patra
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, USA
| | - Gagan Dev
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Timothy W Hand
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, USA.
| |
Collapse
|
31
|
Wang M, Zhang Q, Wang J. Expression of PCED1A in Hepatocellular Carcinoma and Colorectal Cancer and Its Relationship with Immune Infiltration: Potential as a Diagnostic Marker. J Gastroenterol Hepatol 2025; 40:873-883. [PMID: 39865523 DOI: 10.1111/jgh.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) pose a significant threat to human health worldwide, characterized by intricate pathogenesis. A PC-esterase domain containing 1A (PCED1A) is a critical number of the GDSL/SGNH superfamily. AIM The aim of this study is to explore the diagnostic value of PCED1A in HCC and CRC and its relationship with immune infiltration. METHODS The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database, the Cancer Cell Line Encyclopedia database (CCLE), and the Human Protein Atlas (HPA) were used to detect the expression of PCED1A in tissues and cells. Cibersoft, Timer, and Xcell were used to analyze the effect of PCED1A on immune cell infiltration. The relationship between PCED1A and the immune checkpoint was analyzed. The coexpression analysis of PCED1A was conducted using the LinkedOmics database. RESULTS PCED1A was increased in HCC and CRC with poor prognosis. Immunohistochemistry demonstrated that PCED1A was highly expressed in HCC and CRC compared to corresponding normal tissues. PCED1A expression was related to poor overall survival (OS) and progression-free survival (PFS). High PCED1A expression was strongly associated with M2 macrophages, impacting HCC progression. Conversely, low PCED1A expression was closely related to Th2 cells in CRC. In addition, the checkpoint named PDCD1 showed a good correlation with PCED1A high expression group in HCC and CRC. Lastly, the PCED1A and ZNF family showed a complex and intertwined relationship through coexpression analysis on the LinkedOmics database. CONCLUSION PCED1A, related to tumor immune infiltration, is a promising diagnostic biomarker and a valuable therapeutic target for HCC and CRC.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Gastroenterology, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiqi Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Gastroenterology, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Alves Costa Silva C, Almonte AA, Zitvogel L. Oncobiomics: Leveraging Microbiome Translational Research in Immuno-Oncology for Clinical-Practice Changes. Biomolecules 2025; 15:504. [PMID: 40305219 PMCID: PMC12024955 DOI: 10.3390/biom15040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Growing evidence suggests that cancer should not be viewed solely as a genetic disease but also as the result of functional defects in the metaorganism, including disturbances in the gut microbiota (i.e., gut dysbiosis). The human microbiota plays a critical role in regulating epithelial barrier function in the gut, airways, and skin, along with host metabolism and systemic immune responses against microbes and cancer. Collaborative international networks, such as ONCOBIOME, are essential in advancing research equity and building microbiome resources to identify and validate microbiota-related biomarkers and therapies. In this review, we explore the intricate relationship between the microbiome, metabolism, and cancer immunity, and we propose microbiota-based strategies to improve outcomes for individuals at risk of developing cancer or living with the disease.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Andrew A. Almonte
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, 94805 Villejuif, France
| |
Collapse
|
33
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
34
|
Wilson RP, Rink L, Tükel Ç. Microbiota and cancer: unraveling the significant influence of microbial communities on cancer treatment. Cancer Metastasis Rev 2025; 44:42. [PMID: 40120010 DOI: 10.1007/s10555-025-10256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Affiliation(s)
- R Paul Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lori Rink
- Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
35
|
MAFFEZZOLI MICHELE, GIUDICE GIULIACLAIRE, IOVANE GIACOMO, MANINI MARTINA, RAPACCHI ELENA, CARUSO GIUSEPPE, SIMONI NICOLA, FERRETTI STEFANIA, PULIATTI STEFANO, CAMPOBASSO DAVIDE, BUTI SEBASTIANO. The effect of concomitant drugs on oncological outcomes in patients treated with immunotherapy for metastatic urothelial carcinoma: a narrative review. Oncol Res 2025; 33:741-757. [PMID: 40191722 PMCID: PMC11964881 DOI: 10.32604/or.2024.057278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 04/09/2025] Open
Abstract
Background immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic urothelial carcinoma (mUC), significantly improving survival outcomes. However, a subset of patients do not respond to ICIs, prompting research into potential predictive factors. Commonly prescribed medications such as corticosteroids, proton-pump inhibitors (PPIs), antibiotics (Abs), antihypertensives, and analgesics may influence ICI effectiveness. Methods we conducted a literature search on PubMed to investigate the impact of concomitant medications on the outcomes of patients with mUC, treated with ICIs. We selected the most relevant studies and performed a narrative review. Results corticosteroids, PPIs and Abs have been associated with reduced survival in ICI-treated patients, including those with mUC. In contrast, antihypertensive agents like renin-angiotensin system inhibitors and beta-blockers may enhance ICI efficacy, though evidence remains inconclusive. The impact of other medications, such as statins, metformin, and analgesics, on ICI outcomes is less clear, with some data suggesting a detrimental impact on immune response. Conclusions this narrative review synthesizes current evidence on how concomitant medications affect outcomes in mUC patients treated with ICIs.
Collapse
Affiliation(s)
- MICHELE MAFFEZZOLI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIULIA CLAIRE GIUDICE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIACOMO IOVANE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - MARTINA MANINI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - ELENA RAPACCHI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - GIUSEPPE CARUSO
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - NICOLA SIMONI
- Radiotherapy Unit, University Hospital of Parma, Parma, 43126, Italy
| | - STEFANIA FERRETTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - STEFANO PULIATTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | | | - SEBASTIANO BUTI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| |
Collapse
|
36
|
Roy B, Cao K, Singh CO, Fang X, Yang H, Wei D. Advances in gut microbiota-related treatment strategies for managing colorectal cancer in humans. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0263. [PMID: 40072039 PMCID: PMC11899591 DOI: 10.20892/j.issn.2095-3941.2024.0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global cancer-related mortality with increasing incidence rates in both developed and developing regions. Therefore, CRC presents a significant challenge to global health. The development of innovative tools for enhancing early CRC screening and diagnosis, along with novel treatments and therapies for improved management, remains an urgent necessity. CRC is intricately associated with the gut microbiota, which is integral to food digestion, nutrient generation, drug metabolism, metabolite production, immune enhancement, endocrine regulation, neurogenesis modulation, and the maintenance of physiologic and psychological equilibrium. Dysbiosis or imbalances in the gut microbiome have been implicated in various disorders, including CRC. Emerging evidence highlights the critical role of the gut microbiome in CRC pathogenesis and treatment, which presents potential opportunities for early detection and diagnosis. Despite substantial advances in understanding the relationship between the gut microbiota and CRC, significant challenges persist. Gaining a deeper and more detailed understanding of the interactions between the human microbiota and cancer is essential to fully realize the potential of the microbiota in cancer management. Unlike genetic factors, the gut microbiome is subject to modification, offering a promising avenue for the development of CRC treatments and drug discovery. This review provides an overview of the interactions between the human gut microbiome and CRC, while examining prospects for precision management of CRC.
Collapse
Affiliation(s)
- Bhaskar Roy
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Science, Hangzhou 310022, China
| | - Kunfeng Cao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Science, Hangzhou 310022, China
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Huanming Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Science, Hangzhou 310022, China
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310029, China
| | - Dong Wei
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Science, Hangzhou 310022, China
- BGI Research, Shenzhen 518083, China
- Clin Lab, BGI Genomics, Beijing 100000, China
| |
Collapse
|
37
|
Sun J, Song S, Liu J, Chen F, Li X, Wu G. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. NPJ Biofilms Microbiomes 2025; 11:43. [PMID: 40069181 PMCID: PMC11897378 DOI: 10.1038/s41522-025-00678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
In order to decipher the relationship between gut microbiota imbalance and cancer, this paper reviewed the role of intestinal microbiota in anticancer therapy and related mechanisms, discussed the current research status of gut microbiota as a biomarker of cancer, and finally summarized the reasonable means of regulating gut microbiota to assist cancer therapy. Overall, our study reveals that the gut microbiota can serve as a potential target for improving cancer management.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyan Song
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahua Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
38
|
Soncini D, Becherini P, Ladisa F, Ravera S, Chedere A, Gelli E, Giorgetti G, Martinuzzi C, Piacente F, Mastracci L, Veneziano C, Santamaria G, Monacelli F, Ghanem MS, Cagnetta A, Guolo F, Garibotto M, Aquino S, Passalaqua M, Bruzzone S, Bellotti A, Duchosal MA, Nahimana A, Angelucci E, Nagasuma C, Nencioni A, Lemoli RM, Cea M. NAD+ metabolism restriction boosts high-dose melphalan efficacy in patients with multiple myeloma. Blood Adv 2025; 9:1024-1039. [PMID: 39661983 PMCID: PMC11909440 DOI: 10.1182/bloodadvances.2024013425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
ABSTRACT Elevated levels of the NAD+-generating enzyme nicotinamide phosphoribosyltransferase (NAMPT) are a common feature across numerous cancer types. Accordingly, we previously reported pervasive NAD+ dysregulation in multiple myeloma (MM) cells in association with upregulated NAMPT expression. Unfortunately, albeit being effective in preclinical models of cancer, NAMPT inhibition has proven ineffective in clinical trials because of the existence of alternative NAD+ production routes using NAD+ precursors other than nicotinamide. Here, by leveraging mathematical modeling approaches integrated with transcriptome data, we defined the specific NAD+ landscape of MM cells and established that the Preiss-Handler pathway for NAD+ biosynthesis, which uses nicotinic acid as a precursor, supports NAD+ synthesis in MM cells via its key enzyme nicotinate phosphoribosyltransferase (NAPRT). Accordingly, we found that NAPRT confers resistance to NAD+-depleting agents. Transcriptomic, metabolic, and bioenergetic profiling of NAPRT-knockout (KO) MM cells showed these to have weakened endogenous antioxidant defenses, increased propensity to oxidative stress, and enhanced genomic instability. Concomitant NAMPT inhibition further compounded the effects of NAPRT-KO, effectively sensitizing MM cells to the chemotherapeutic drug, melphalan; NAPRT added-back fully rescues these phenotypes. Overall, our results propose comprehensive NAD+ biosynthesis inhibition, through simultaneously targeting NAMPT and NAPRT, as a promising strategy to be tested in randomized clinical trials involving transplant-eligible patients with MM, especially those with more aggressive disease.
Collapse
Affiliation(s)
| | - Pamela Becherini
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Francesco Ladisa
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Adithya Chedere
- Biological Science Division, Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Elisa Gelli
- Genetics and Epigenetics of Behavior Laboratory, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giulia Giorgetti
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Fiammetta Monacelli
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Moustafa S. Ghanem
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Fabio Guolo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Matteo Garibotto
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Sara Aquino
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Passalaqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michel A. Duchosal
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emanuele Angelucci
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chandra Nagasuma
- Biological Science Division, Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Roberto Massimo Lemoli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Michele Cea
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
39
|
Chen J, Levy A, Tian AL, Huang X, Cai G, Fidelle M, Rauber C, Ly P, Pizzato E, Sitterle L, Piccinno G, Liu P, Durand S, Mao M, Zhao L, Iebba V, Felchle H, de La Varende ALM, Fischer JC, Thomas S, Greten TF, Jones JC, Monge C, Demaria S, Formenti S, Belluomini L, Dionisi V, Massard C, Blanchard P, Robert C, Quevrin C, Lopes E, Clémenson C, Mondini M, Meziani L, Zhan Y, Zeng C, Cai Q, Morel D, Sun R, Laurent PA, Mangoni M, Di Cataldo V, Arilli C, Trommer M, Wegen S, Neppl S, Riechelmann RP, Camandaroba MP, Neto ES, Fournier PE, Segata N, Holicek P, Galluzzi L, Aitziber B, Silva CAC, Derosa L, Kroemer G, Chen C, Zitvogel L, Deutsch E. Low-dose irradiation of the gut improves the efficacy of PD-L1 blockade in metastatic cancer patients. Cancer Cell 2025; 43:361-379.e10. [PMID: 40068595 PMCID: PMC11907695 DOI: 10.1016/j.ccell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 11/03/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
The mechanisms governing the abscopal effects of local radiotherapy in cancer patients remain an open conundrum. Here, we show that off-target intestinal low-dose irradiation (ILDR) increases the clinical benefits of immune checkpoint inhibitors or chemotherapy in eight retrospective cohorts of cancer patients and in tumor-bearing mice. The abscopal effects of ILDR depend on dosimetry (≥1 and ≤3 Gy) and on the metabolic and immune host-microbiota interaction at baseline allowing CD8+ T cell activation without exhaustion. Various strains of Christensenella minuta selectively boost the anti-cancer efficacy of ILDR and PD-L1 blockade, allowing emigration of intestinal PD-L1-expressing dendritic cells to tumor-draining lymph nodes. An interventional phase 2 study provides the proof-of-concept that ILDR can circumvent resistance to first- or second-line immunotherapy in cancer patients. Prospective clinical trials are warranted to define optimal dosimetry and indications for ILDR to maximize its therapeutic potential.
Collapse
Affiliation(s)
- Jianzhou Chen
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Antonin Levy
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Ai-Ling Tian
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Xuehan Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Guoxin Cai
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Marine Fidelle
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
- CICBT1428, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Conrad Rauber
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
- Department of Gastroenterology and Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Pierre Ly
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Eugénie Pizzato
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Lisa Sitterle
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Gianmarco Piccinno
- Department of Computational, Cellular and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée – Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Misha Mao
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée – Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée – Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
| | - Valerio Iebba
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
| | - Hannah Felchle
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée – Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Technical University of Munich (TUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Department of Radiation Oncology, 81675 Munich, Germany
| | - Anne-Laure Mallard de La Varende
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Julius Clemens Fischer
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée – Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Technical University of Munich (TUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Department of Radiation Oncology, 81675 Munich, Germany
| | - Simon Thomas
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cecilia Monge
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
| | - Valeria Dionisi
- Department of Radiation Oncology, University of Verona Hospital Trust, 37126 Verona, Italy
| | - Christophe Massard
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
- Drug Development Department (DITEP), Gustave Roussy-Cancer Campus, 94805 Villejuif, France
| | - Pierre Blanchard
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Charlotte Robert
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Clément Quevrin
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Eloise Lopes
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Céline Clémenson
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Michele Mondini
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Yizhou Zhan
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Chengbing Zeng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Qingxin Cai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Daphne Morel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Roger Sun
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Pierre-Antoine Laurent
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences“Mario Serio” University of Florence, 50134 Florence, Italy
| | - Vanessa Di Cataldo
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Chiara Arilli
- Medical Physics Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Maike Trommer
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Department of Radiation Oncology, HEIDELBERG VIC 3084, Melbourne, Australia
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sebastian Neppl
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Rachel P. Riechelmann
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Marcos P. Camandaroba
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Elson Santos Neto
- Department of Radiation Oncology, AC Camargo Cancer Center, São Paulo 01509-001, Brazil
| | | | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, 38123 Trento, Italy
- IEO, Istituto Europeo di Oncologia IRCCS, 20139 Milan, Italy
| | - Peter Holicek
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Sotio Biotech,19000 Prague, Czech Republic
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Buqué Aitziber
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
- CICBT1428, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée – Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Chuangzhen Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée—Ligue Nationale contre le Cancer, 94805 Villejuif, France
- CICBT1428, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Eric Deutsch
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| |
Collapse
|
40
|
Kenneth MJ, Wu CC, Fang CY, Hsu TK, Lin IC, Huang SW, Chiu YC, Hsu BM. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics (Basel) 2025; 14:264. [PMID: 40149075 PMCID: PMC11939702 DOI: 10.3390/antibiotics14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
With nearly half of colorectal cancer (CRC) patients diagnosed at advanced stages where surgery alone is insufficient, chemotherapy remains a cornerstone for this cancer treatment. To prevent infections and improve outcomes, antibiotics are often co-administered. However, chemotherapeutic interactions with the gut microbiota cause significant non-selective toxicity, affecting not only tumor and normal epithelial cells but also the gut microbiota. This toxicity triggers the bacterial SOS response and loss of microbial diversity, leading to bacterial mutations and dysbiosis. Consequently, pathogenic overgrowth and systemic infections increase, necessitating broad-spectrum antibiotics intervention. This review underscores how prolonged antibiotic use during chemotherapy, combined with chemotherapy-induced bacterial mutations, creates selective pressures that drive de novo antimicrobial resistance (AMR), allowing resistant bacteria to dominate the gut. This compromises the treatment efficacy and elevates the mortality risk. Restoring gut microbial diversity may mitigate chemotherapy-induced toxicity and improve therapeutic outcomes, and emerging strategies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, show considerable promise. Given the global threat posed by antibiotic resistance to cancer treatment, prioritizing antimicrobial stewardship is essential for optimizing antibiotic use and preventing resistance in CRC patients undergoing chemotherapy. Future research should aim to minimize chemotherapy's impact on the gut microbiota and develop targeted interventions to restore microbial diversity affected during chemotherapy.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung 413, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua 500, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
41
|
L'Orphelin J, Dompmartin A, Dréno B. The Skin Microbiome: A New Key Player in Melanoma, From Onset to Metastatic Stage. Pigment Cell Melanoma Res 2025; 38:e13224. [PMID: 40016867 PMCID: PMC11868406 DOI: 10.1111/pcmr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
The skin microbiome plays a crucial role in maintaining skin health, defending the body against harmful pathogens, and interacting with melanoma. The composition of the skin microbiome can be affected by factors like age, gender, ethnicity, lifestyle, diet, and UV exposure. Certain bacteria like Staphylococcus and Veillonella are important for wound healing, while Cutibacterium acnes can play a role in dermatoses. UV radiation alters the skin microbiome, originates a "UV-resistome" and can lead to skin cancer initiation. Specifically, Staphylococcus epidermidis has shown protective effects against skin cancer, whereas Cutibacterium acnes can induce apoptosis in melanocytes postirradiation. The microbiome also interacts with melanoma treatment, affecting responses to immune checkpoint inhibitors. Strategies like bacteriotherapy, involving the manipulation of the gut microbiome but also the skin microbiome (with the gut-skin axis or through topical treatment) could improve treatment outcomes and show promise in melanoma therapy. Understanding the complex interplay between the skin microbiome, UV exposure, and melanoma development is crucial for developing personalized therapeutic approaches. Investigation into the skin microbiome and its potential role in melanoma progression continues to be an exciting area of research with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Jean‐Matthieu L'Orphelin
- Unicaen, Inserm U1086 AnticipeNormandie UnivCaenFrance
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Anne Dompmartin
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Brigitte Dréno
- Inserm, Cnrs, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001Nantes UniversitéNantesFrance
| |
Collapse
|
42
|
Bonnefin C, Schneider S, Gérard E, Dutriaux C, Ferte T, Prey S, Guicheney M, Ducharme O, Pedeboscq S, Beylot-Barry M, Pham-Ledard A. Antibiotics use decreases survival in cutaneous squamous cell carcinoma patients receiving immune checkpoint inhibitors. Eur J Cancer 2025; 217:115223. [PMID: 39874910 DOI: 10.1016/j.ejca.2025.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICI) have become the first-line therapy in patients with advanced cutaneous squamous cell carcinoma (cSCC). Antibiotics (ATB) have been reported to reduce ICI response in cancers, but this has not been evaluated in cSCC. AIM To evaluate ATB exposure at the onset of ICI in cSCC patients and to analyze its impact on outcome. METHODS This single-center retrospective study included all patients who started anti-PD-1 for cSCC between March 2019 and July 2023. Exposure to ATB within 3 months prior and after the onset of ICI (ATB 3-3), including patients exposed within 1 month prior and after (ATB 1-1) were recorded. Response to ICI and survival were compared between patients with or without ATB exposure. RESULTS Among 104 patients included, 45 % were classified into ATB 3-3 subgroup, and 20 % to ATB 1-1. Disease control rate at 3 months were lower in both ATB 1-1 and ATB 3-3 subgroups, compared to their control group (p = 0.02 and 0.03, respectively). The overall survival and disease specific survival were lower in the ATB 1-1 subgroup, compared to control group (p = 0.04 and p = 0.01, respectively). Median progression free survival was 127 days in ATB 1-1 group, significantly lower than the control group (not reached), p = 0.005. CONCLUSION ATB intake was very frequent at ICI initiation in cSCC patients. In our cohort, ATB use within 1 month before or after ICI initiation significantly impacted survival, highlighting the need for caution when prescribing antibiotics in this population.
Collapse
Affiliation(s)
- C Bonnefin
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - S Schneider
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - E Gérard
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - C Dutriaux
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France
| | - T Ferte
- Public Health Centre, Methodological Support Unit for Clinical and Epidemiological Research (USMR), CHU Bordeaux, Bordeaux F-33000, France
| | - S Prey
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France
| | - M Guicheney
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - O Ducharme
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - S Pedeboscq
- Department of Pharmacy, CHU Bordeaux, Bordeaux F-33000, France
| | - M Beylot-Barry
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France
| | - A Pham-Ledard
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France.
| |
Collapse
|
43
|
Prasad R, Rehman A, Rehman L, Darbaniyan F, Blumenberg V, Schubert ML, Mor U, Zamir E, Schmidt S, Hayase T, Chang CC, McDaniel L, Flores I, Strati P, Nair R, Chihara D, Fayad LE, Ahmed S, Iyer SP, Wang M, Jain P, Nastoupil LJ, Westin J, Arora R, Turner J, Khawaja F, Wu R, Dennison JB, Menges M, Hidalgo-Vargas M, Reid K, Davila ML, Dreger P, Korell F, Schmitt A, Tanner MR, Champlin RE, Flowers CR, Shpall EJ, Hanash S, Neelapu SS, Schmitt M, Subklewe M, Francois-Fahrmann J, Stein-Thoeringer CK, Elinav E, Jain MD, Hayase E, Jenq RR, Saini NY. Antibiotic-induced loss of gut microbiome metabolic output correlates with clinical responses to CAR T-cell therapy. Blood 2025; 145:823-839. [PMID: 39441941 DOI: 10.1182/blood.2024025366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Antibiotic (ABX)-induced microbiome dysbiosis is widespread in oncology, adversely affecting outcomes and side effects of various cancer treatments, including immune checkpoint inhibitors and chimeric antigen receptor T-cell (CAR-T) therapies. In this study, we observed that prior exposure to broad-spectrum ABXs with extended anaerobic coverage such as piperacillin-tazobactam and meropenem was associated with worse anti-CD19 CAR-T therapy survival outcomes in patients with large B-cell lymphoma (N = 422) than other ABX classes. In a discovery subset of these patients (n = 67), we found that the use of these ABXs was in turn associated with substantial dysbiosis of gut microbiome function, resulting in significant alterations of the gut and blood metabolome, including microbial effectors such as short-chain fatty acids (SCFAs) and other anionic metabolites, findings that were largely reproduced in an external validation cohort (n = 58). Broader evaluation of circulating microbial metabolites revealed reductions in indole and cresol derivatives, as well as trimethylamine N-oxide, in patients who received ABX treatment (discovery, n = 40; validation, n = 28). These findings were recapitulated in an immune-competent CAR-T mouse model, in which meropenem-induced dysbiosis led to a systemic dysmetabolome and decreased murine anti-CD19 CAR-T efficacy. Furthermore, we demonstrate that SCFAs can enhance the metabolic fitness of CAR-Ts, leading to improved tumor killing capacity. Together, these results suggest that broad-spectrum ABX deplete metabolically active commensals whose metabolites are essential for enhancing CAR-T efficacy, shedding light on the intricate relationship between ABX exposure, microbiome function and their impact on CAR-T efficacy. This highlights the potential for modulating the microbiome to augment CAR-T immunotherapy. This trial was registered at www.clinicaltrials.gov as #NCT06218602.
Collapse
Affiliation(s)
- Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abdur Rehman
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lubna Rehman
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faezeh Darbaniyan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Viktoria Blumenberg
- Department of Medicine III, Ludwig Maximilian University of Munich University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Ludwig Maximilian University of Munich Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
- German Cancer Consortium and Bavarian Center for Cancer Research, Partner Site Munich, Munich, Germany
| | - Maria-Luisa Schubert
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Uria Mor
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Zamir
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Sabine Schmidt
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dai Chihara
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Swaminathan P Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loretta J Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reetakshi Arora
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joel Turner
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Meghan Menges
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Melanie Hidalgo-Vargas
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Kayla Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Marco L Davila
- Department of Stem Cell Transplantation and Cellular Therapy, Roswell Cancer Institute, Buffalo, NY
| | - Peter Dreger
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Felix Korell
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Mark R Tanner
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Schmitt
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, Ludwig Maximilian University of Munich University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Ludwig Maximilian University of Munich Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
- German Cancer Consortium and Bavarian Center for Cancer Research, Partner Site Munich, Munich, Germany
| | - Johannes Francois-Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - C K Stein-Thoeringer
- Department of Internal Medicine I, University Clinic Tüebingen, Tüebingen, Germany
- M3 Research Institute, Faculty of Medicine, University of Tüebingen, Tüebingen, Germany
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Neeraj Y Saini
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
44
|
Lu D, Ma X, Tao K, Lei H. Advancements in the Pathogenesis, Diagnosis, and Therapeutic Implications of Intestinal Bacteria. Curr Issues Mol Biol 2025; 47:106. [PMID: 39996827 PMCID: PMC11853859 DOI: 10.3390/cimb47020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Intestinal bacteria form one of the most complex microbial communities in the human body, playing a crucial role in maintaining host health and contributing to the development of various diseases. Here, we provide a comprehensive overview of the composition and function of intestinal bacteria, the factors affecting their homeostasis, and their association and mechanisms with a range of diseases (e.g., inflammatory bowel diseases, colorectal cancer, metabolic diseases). Additionally, their advanced potential in disease diagnosis and treatment is highlighted. Therapies, such as chemotherapy, radiotherapy, and immunotherapy, are significantly impacted by intestinal bacteria, with research indicating that bacteria can enhance chemoimmunotherapy efficiency by affecting T cell recruitment and immune cell infiltration. Fecal microbiota transplantation has emerged as a promising option for treating recurrent Clostridium difficile infections and certain metabolic and neurological disorders. Gut bacteria-related serum metabolites serve as non-invasive indicators for diagnosing CRC, while fecal immunochemical tests offer promising applications in CRC screening. Future research is needed to better understand the causal relationships between intestinal bacteria and diseases, develop more precise diagnostic tools, and evaluate the effectiveness and safety of microbiome-targeted therapies in clinical treatment. This study provides deeper insights into the role of intestinal bacteria in human health and disease, providing a scientific basis for innovative therapeutic strategies that have the potential to transform the landscape of healthcare.
Collapse
Affiliation(s)
| | | | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| | - Hongwei Lei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| |
Collapse
|
45
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
46
|
Cavic G, Fahrer AM. Tumor-seeking bacterial missiles. Immunol Cell Biol 2025; 103:98-100. [PMID: 39757005 DOI: 10.1111/imcb.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In this Research Highlight, we discuss an exceptionally elegant and far‐reaching study from the Arpaia lab at Columbia University, who have engineered a probiotic Escherichia coli strain to eliminate cancer.
Collapse
Affiliation(s)
- George Cavic
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
47
|
Zang J, Yin F, Liu Z, Li F, Zhang Y. Bacteria-tumor symbiosis destructible novel nanocatalysis drug delivery systems for effective tumor therapy. Nanomedicine (Lond) 2025; 20:305-318. [PMID: 39889806 PMCID: PMC11792809 DOI: 10.1080/17435889.2024.2443388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 02/03/2025] Open
Abstract
Colorectal cancer (CRC) is a significant threat to human health. The dynamic equilibrium between probiotics and pathogenic bacteria within the gut microbiota is crucial in mitigating the risk of CRC. An overgrowth of harmful microorganisms in the gastrointestinal tract can result in an excessive accumulation of bacterial toxins and carcinogenic metabolites, thereby disrupting the delicate balance of the microbiota. This disruption may lead to alterations in microbial composition, impairment of mucosal barrier function, potential promotion of abnormal cell proliferation, and ultimately contribute to the progression of CRC. Recently, research has indicated that intestinal presence of Fusobacterium nucleatum (Fn) significantly influences the onset, progression, and metastasis of CRC. Consequently, disrupting the interaction between CRC cells and Fn presents a promising strategy against CRC. Nanomaterials have been extensively utilized in cancer therapy and bacterial infection control, demonstrating substantial potential in treating bacteria-associated tumors. This review begins by elucidating the mechanisms of gut microbiota and the occurrence and progression of CRC, with a particular emphasis on clarifying the intricate relationship between Fn and CRC. Subsequently, we highlight strategies that utilize nanomaterials to disrupt the association between Fn and CRC. Overall, this review offers valuable insight and guidance for leveraging nanomaterials in CRC therapy.
Collapse
Affiliation(s)
- Jing Zang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fang Yin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ziyuan Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fengqian Li
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Zhang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
48
|
Arnone AA, Ansley K, Heeke AL, Howard-McNatt M, Cook KL. Gut microbiota interact with breast cancer therapeutics to modulate efficacy. EMBO Mol Med 2025; 17:219-234. [PMID: 39820166 PMCID: PMC11822015 DOI: 10.1038/s44321-024-00185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
The gut microbiome, or the community of microorganisms residing in the gastrointestinal tract, has emerged as an important factor in breast cancer etiology and treatment. Specifically, the impact of gut bacterial populations on breast cancer therapeutic outcomes is an emerging area of research. The microbiota's role in modifying the pharmacokinetics of chemotherapy and endocrine-targeting therapies can alter drug efficacy and toxicity profiles. In addition, the gut microbiome's capacity to regulate systemic inflammation and immune responses may influence the effectiveness of both conventional and immunotherapeutic strategies for the treatment of breast cancer. Overall, while the bidirectional interactions between the gut microbiome and breast cancer therapies are still being studied, its impact is increasingly recognized. Future research may provide more definitive insights and help develop personalized therapeutic strategies to harness the microbiome to improve breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine Ansley
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Arielle L Heeke
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Marissa Howard-McNatt
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
49
|
Sahin TK, Sonmezer MC. The role of the microbiome in head and neck squamous cell cancers. Eur Arch Otorhinolaryngol 2025; 282:623-637. [PMID: 39306588 DOI: 10.1007/s00405-024-08966-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 02/09/2025]
Abstract
The human microbiome has garnered tremendous interest in the field of oncology, and microbiota studies in head and neck oncology has also flourished. Given the increasing incidence and mortality of HNSCC, as well as the suboptimal outcomes of available treatments, there is an urgent need for innovative approaches involving the microbiome. This review evaluates the intricate relationship between the microbiome and HNSCC, highlighting the potential of the microbiome as a marker for cancer detection, its role in malignancy, and its impact on the efficacy of conventional treatments like chemotherapy and radiotherapy. The review also explores the effects of treatment modalities on the microbiome and discusses the potential of microbiome alterations to predict and influence treatment toxicities such as mucositis and xerostomia. Further research is warranted to characterize the microbiome-HNSCC association, which holds promise for advancing early diagnosis, enhancing prognostic accuracy, and personalizing treatment strategies to improve patient outcomes. The exploration of the microbiome in clinical trials indicates a burgeoning subject of microbiome-focused therapies, heralding a new frontier in most cancer care.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine and Medical Oncology Department, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| | - Meliha Cagla Sonmezer
- Department of Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
50
|
Salvestrini V, Conti G, D'Amico F, Cristiano G, Candela M, Cavo M, Turroni S, Curti A. Gut Microbiome as a Potential Marker of Hematologic Recovery Following Induction Therapy in Acute Myeloid Leukemia Patients. Cancer Med 2025; 14:e70501. [PMID: 39865898 PMCID: PMC11770270 DOI: 10.1002/cam4.70501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The management of acute myeloid leukemia (AML) is hindered by treatment-related toxicities and complications, particularly cytopenia, which remains a leading cause of mortality. Given the pivotal role of the gut microbiota (GM) in hemopoiesis and immune regulation, we investigated its impact on hematologic recovery during AML induction therapy. METHODS We profiled the GM of 27 newly diagnosed adult AML patients using 16S rRNA amplicon sequencing and correlated it with key clinical parameters before and after induction therapy. RESULTS Our investigation revealed intriguing associations between the GM composition and crucial recovery indicators, including platelet, lymphocyte, and neutrophil counts, and identified early GM signatures predictive of improved hematologic recovery. Remarkably, patients demonstrating superior recovery had higher alpha diversity and enrichment in health-associated taxa belonging to the genera Faecalibacterium, Ruminococcus, Blautia, and Butyricimonas at diagnosis. CONCLUSIONS Despite certain study limitations, our findings suggest that evaluating GM features could serve as a potential marker for hematologic recovery. This preliminary work opens avenues for personalized risk assessment and interventions, possibly involving GM modulation tools, to optimize recovery in AML patients undergoing induction therapy and potentially enhancing overall outcomes in individuals with hematologic diseases.
Collapse
Affiliation(s)
- Valentina Salvestrini
- Istituto di Ematologia "Seràgnoli"IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Gabriele Conti
- Human Microbiomics Unit, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Gianluca Cristiano
- Oncology and Haematology Research Area, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Michele Cavo
- Istituto di Ematologia "Seràgnoli"IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Oncology and Haematology Research Area, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Antonio Curti
- Istituto di Ematologia "Seràgnoli"IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| |
Collapse
|