1
|
Salolin Vargas VP, Gasbarra M, Calderon-Martinez E, Shah YR, Dahiya DS, Saenz de Sicilia MG. Non-alcoholic fatty liver disease and drug induced liver injury: A metabolic storm waiting to happen. World J Hepatol 2025; 17:105255. [PMID: 40177208 PMCID: PMC11959661 DOI: 10.4254/wjh.v17.i3.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
In this editorial, we comment on the article by Zhao et al which highlighted how patients having nonalcoholic fatty liver disease (NAFLD) were more susceptible to drug-induced lung injury (DILI). This article looked at the downstream effects of metabolic profiles and biochemical processes after medication and substance use. Although previous studies looked at how NAFLD and DILI were related, there is a lack of information on the consequences of everyday medication and substance use. NAFLD is one of the most common chronic liver diseases worldwide and it has been found to be closely related to metabolic syndrome and cardiovascular disease. The aim of this editorial is to analyze the interaction between NAFLD and DILI, what clinical manifestations can occur and what the prognosis of these patients will be.
Collapse
Affiliation(s)
| | - Marisa Gasbarra
- Department of Internal Medicine, Ross University School of Medicine, Florida, FL 11015, United States
| | - Ernesto Calderon-Martinez
- Department of Internal Medicine, The University of Texas Science Medical Center at Houston, Houston, TX 77375, United States.
| | - Yash R Shah
- Department of Internal Medicine, Trinity HealthOakland/Wayne State University, Michigan, MI 48341, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology, and Motility, The University of Kansas School of Medicine, Kansas, KS 66160, United States
| | | |
Collapse
|
2
|
Kasarinaite A, Ramos MJ, Beltran-Sierra M, Sutherland EF, Rei PA, Zhao M, Chi Y, Beniazza M, Corsinotti A, Kendall TJ, Henderson NC, Fallowfield JA, Saunders PTK, Hay DC. Hormone correction of dysfunctional metabolic gene expression in stem cell-derived liver tissue. Stem Cell Res Ther 2025; 16:130. [PMID: 40069876 PMCID: PMC11899078 DOI: 10.1186/s13287-025-04238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The increase in metabolic dysfunction-associated steatotic liver disease (MASLD) and its progression to metabolic dysfunction-associated steatohepatitis (MASH) is a worldwide healthcare challenge. Heterogeneity between men and women in the prevalence and mechanisms of MASLD and MASH is related to differential sex hormone signalling within the liver, and declining hormone levels during aging. In this study we used biochemically characterised pluripotent stem cell derived 3D liver spheres to model the protective effects of testosterone and estrogen signalling on metabolic liver disease 'in the dish'. We identified sex steroid-dependent changes in gene expression which were protective against metabolic dysfunction, fibrosis, and advanced cirrhosis patterns of gene expression, providing new insight into the pathogenesis of MASLD and MASH, and highlighting new druggable targets. Additionally, we highlight gene targets for which drugs already exist for future translational studies.
Collapse
Affiliation(s)
- Alvile Kasarinaite
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Maria Jimenez Ramos
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Mariana Beltran-Sierra
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Elena F Sutherland
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Pedro Arede Rei
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Make Zhao
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| | - Ying Chi
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| | - Meryam Beniazza
- Single-Cell Multi-Omics Facility, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Andrea Corsinotti
- Single-Cell Multi-Omics Facility, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonathan A Fallowfield
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Philippa T K Saunders
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China.
| |
Collapse
|
3
|
Liu T, Zhang F, Feng Y, Han P, Gao Y. Alcohol-Metabolizing Enzymes, Liver Diseases and Cancer. Semin Liver Dis 2025; 45:99-113. [PMID: 40157374 PMCID: PMC12031026 DOI: 10.1055/a-2551-3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Alcohol is generally believed to be metabolized in the liver by alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and to a much lesser extent cytochrome P450 2E1 (CYP2E1) and other enzymes. Recent studies suggest that gut also play important roles in the promotion of alcohol metabolism. ADH, ALDH, and CYP2E1 have several polymorphisms that markedly impact alcohol metabolism. These alcohol-metabolizing enzymes not only affect alcohol-associated liver disease (ALD), but may also modulate the pathogenesis of other liver diseases and cancer in the absence of alcohol consumption. In this review, we discuss alcohol metabolism and the roles of alcohol-metabolizing enzymes in the pathogenesis of ALD, metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction and alcohol-associated liver disease, viral hepatitis, and liver cancer. We also discuss how alcohol-metabolizing enzymes may affect endogenous ethanol production, and how ethanol metabolism in the gut affects liver disease and cancer. Directions for future research on the roles of alcohol-metabolizing enzymes in liver disease and cancer are also elaborated.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - FeiYu Zhang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - Yue Feng
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - PanShiLi Han
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - YanHang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| |
Collapse
|
4
|
Chakraborty S, Anand S, Wang X, Bhandari RK. Stable Transmission of DNA Methylation Epimutations from Germlines to the Liver and Their Association with Fatty Liver Disease in Medaka. RESEARCH SQUARE 2025:rs.3.rs-6010210. [PMID: 39989969 PMCID: PMC11844629 DOI: 10.21203/rs.3.rs-6010210/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Environmental stressors can induce heritable traits in organisms across phyla, with distinct epigenetic alterations in gametes and phenotypic outcomes across several generations. However, the mechanisms underlying such intergenerational inheritance, mainly from the germline to the germline and from the germline to the soma, are enigmatic, given that postfertilization embryos and germline cells reprogram the epigenome in each generation to gain their cellular identity. Here, we report stable germline transmission of differential DNA methylation alterations (epimutations) and their associations with nonalcoholic fatty liver disease (NAFLD) in medaka exposed to a model estrogenic chemical but a ubiquitous environmental contaminant, bisphenol A (BPA). Results Ancestral BPA exposure in the F0 generation led to advanced NAFLD in the unexposed grandchildren generation (F2) of medaka. The F2 liver transcriptome and histopathology revealed a severe NAFLD phenotype in females. Whole-genome bisulfite sequencing of the sperm and liver revealed a gradual shift in promoter methylation from F0 sperm (hypomethylated) to F1 sperm (mix of hypo- and hypermethylated) and F2 liver (predominantly hypermethylated). Many differentially methylated promoters (DMPs) overlapped in F0 sperm, F1 sperm, and F2 liver, regardless of sex. In females, stable transmission of 1511 DMPs was found across three generations, which are associated with protein-coding genes, miRNAs, and others and linked to NAFLD and nonalcoholic steatohepatitis (NASH). Among them, 27 canonical genes maintained consistently hypermethylated promoters across three generations, with significant downregulation of their expression and enrichment in NAFLD-related pathways, mainly fat digestion, glycerolipid metabolism, and steroid biosynthesis. Conclusions The present results demonstrate stable inter- and transgenerational germline-to-germline and germline-to-soma transmission of environmentally induced DNA epimutations with F0 and F1 gametic epimutations, predicting the F2 liver phenotype-a clear transgenerational passage of the disease phenotype in medaka.
Collapse
|
5
|
Ferron PJ, Pelletier R, Massart J, Narjoz C, Tran VHLJ, Loriot MA, Kernalleguen A, Zins M, Kab S, Morel I, Clément B, Gicquel T, Le Daré B. Role of CYP2D6 polymorphisms in tramadol metabolism in a context of co-medications and overweight. Food Chem Toxicol 2025; 196:115192. [PMID: 39667604 DOI: 10.1016/j.fct.2024.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Very few quantitative data exist on tramadol metabolites, which hampers our understanding of their role in efficacy and safety of tramadol. We aimed to provide quantitative data on tramadol and its 5 main metabolites in a patient cohort and to determine whether metabolite ratios can be predictive of a CYP2D6 metabolism phenotype. We also aimed to investigate the influence of co-medications and patient profile (BMI, glycemia, lipid levels) on tramadol metabolite ratios. Overall, 37 patient samples from the CONSTANCES cohort contained tramadol and its 5 metabolites. Mean concentrations found tramadol at 343.2 ± 223.2 μg/L, M1 at 62.4 ± 41.4 μg/L, M2 at 210.0 ± 272.3, M3 at 1.76 ± 3.0 μg/L, M4 at 1.8 ± 2.8 μg/L and M5 at 31.8 ± 28.4 μg/L. The most frequent CYP2D6 phenotype was extensive metabolizers (51.3%), followed by intermediate metabolizers (24.3%) and poor metabolizers (10.8%). CYP2D6-inhibiting co-medications impacted tramadol metabolism independently of CYP2D6 metabolism phenotype. Lipid parameters and glycemia were significantly associated with changes in tramadol metabolic ratios. Metabolic ratios are not sufficient to determine the CYP2D6 metabolic phenotype in patients. CYP2D6 inhibitors and obesity/NAFLD/diabetes impact tramadol metabolism. These factors are likely to impact the analgesic efficacy and safety profile of tramadol, justifying the need for further studies in this area.
Collapse
Affiliation(s)
- Pierre-Jean Ferron
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France
| | - Romain Pelletier
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Rennes University Hospital, Clinical and Forensic Toxicology Laboratory, F-35033, Rennes, France
| | - Julie Massart
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France
| | - Celine Narjoz
- Department of Clinical Chemistry, Assistance Publique Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| | - Vinh-Hoang-Lan Julie Tran
- Department of Clinical Chemistry, Assistance Publique Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Assistance Publique Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France; Paris cite University, Paris, France
| | - Angéline Kernalleguen
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France
| | - Marie Zins
- Paris cite University, Paris, France; CONSTANCES cohort, Université Paris-Saclay, Université de Paris Cite, UVSQ, Inserm UMS 11, Villejuif, France
| | - Sofiane Kab
- CONSTANCES cohort, Université Paris-Saclay, Université de Paris Cite, UVSQ, Inserm UMS 11, Villejuif, France
| | - Isabelle Morel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Rennes University Hospital, Clinical and Forensic Toxicology Laboratory, F-35033, Rennes, France
| | - Bruno Clément
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Rennes University Hospital, Clinical and Forensic Toxicology Laboratory, F-35033, Rennes, France
| | - Brendan Le Daré
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Rennes University Hospital, Pharmacy department, F-35033, Rennes, France.
| |
Collapse
|
6
|
Gan X, Zhou Y, Li Y, Xu L, Liu G. Development of a novel diagnostic model to monitor the progression of metabolic dysfunction-associated steatotic liver disease to hepatocellular carcinoma in females. Discov Oncol 2024; 15:812. [PMID: 39699604 DOI: 10.1007/s12672-024-01636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND AND AIMS The onset of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma (MASLD-HCC) is insidious and exhibits sex-specific variations. Effective methods for monitoring MASLD-HCC progression in females have not yet been developed. METHODS Transcriptomic data of female liver tissue samples were obtained from multiple public databases. Differentially expressed genes (DEGs) in MASLD-HCC were identified using differential expression and robust rank aggregation analyses. Diagnostic prediction models for MASLD (DP.MASLD) and HCC (DP.HCC) were developed and validated using elastic net analysis, and diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis. Bioinformatics was used to assess the pathogenesis of MASLD-HCC. RESULTS Seven overlapping DEGs were identified in female patients with MASLD and HCC: AKR1B10, CLEC1B, CYP2C19, FREM2, MT1H, NRG1, and THBS1). The area under the ROC curve (AUC) values for the training and validation groups of the DP.MASLD model were 0.864 and 0.782, 0.932 and 1.000, and 0.920 and 0.969 when differentiating between the steatosis and normal liver, steatohepatitis and steatosis, and steatohepatitis and normal liver groups, respectively. The AUCs for DP.HCC were 0.980 and 0.997 in the training and validation groups, respectively. The oncogenesis of female MASLD-HCC is associated with molecular pathways, including cytochrome P450-associated drug metabolism, tyrosine metabolism, fatty acid degradation, focal adhesion, extracellular matrix receptor interactions, and protein digestion and absorption. CONCLUSION A novel and effective method to quantitatively assess the risk of MASLD-HCC progression in female patients was developed, and this method will aid in the generation of precise diagnostic, preventive, and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China.
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Yun Zhou
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China
- Department of Oncology, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China.
| |
Collapse
|
7
|
Hendrick V, Pohorylo E, Merchant L, Gerhart J, Arham IN, Draica F, Quercia R, Ayoub A, Mehta R. Pharmacovigilance of Drug-Drug Interactions with Nirmatrelvir/Ritonavir. Infect Dis Ther 2024; 13:2545-2561. [PMID: 39461916 PMCID: PMC11582113 DOI: 10.1007/s40121-024-01050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Nirmatrelvir/ritonavir (NMV/r) is approved in the United States (US) and more than 70 other countries for the treatment of mild to moderate COVID-19 in nonhospitalized adults at high risk for severe disease. Because ritonavir inhibits several drug metabolizing enzymes, potential drug-drug interactions (DDIs) between ritonavir and concomitant medications are an important consideration for prescribers. Here, we conducted a real-world analysis of data from Pfizer's global safety database regarding adverse events (AEs) reported during use of NMV/r concomitantly with potentially interacting drugs. METHODS Data were extracted regarding DDI cases occurring from the start of NMV/r authorization through October 31, 2023. Results regarding concomitant treatment, specific AEs, and clinical outcomes are summarized. Overall NMV/r exposure was estimated based on packs of medication dispensed and was used to calculate reporting rates. RESULTS Among 19,617,670 patients exposed globally to NMV/r, 966 cases of potential DDIs were reported. Of these, 594 occurred in the US against an estimated US exposure of 14,646,990 patients, representing a reporting rate of 0.004%. Globally and in the United States, 66.8% and 77.3% of cases, respectively, were nonserious. Simvastatin and tacrolimus were the most frequently reported drugs associated with potential DDIs, and the most frequently reported AE regarding a specific event or symptom was dysgeusia (altered sense of taste), an AE known to be associated with NMV/r. CONCLUSIONS Low reporting rates of DDIs support the potential for NMV/r treatment to be safely managed with careful use of available drug interaction resources to aid in risk mitigation.
Collapse
Affiliation(s)
- Victoria Hendrick
- Worldwide Medical and Safety, Pfizer Research and Development, Sandwich, Kent, UK
| | - Erast Pohorylo
- Worldwide Medical and Safety, Pfizer Research and Development, Collegeville, PA, USA.
| | - Lubna Merchant
- Worldwide Medical and Safety, Pfizer Research and Development, Collegeville, PA, USA
| | - Jackie Gerhart
- Translational Clinical Sciences, Pfizer Research and Development, Collegeville, PA, USA
| | - Iqra Naz Arham
- US Medical and Scientific Affairs, Pfizer Inc, New York, NY, USA
| | - Florin Draica
- US Medical and Scientific Affairs, Pfizer Inc, New York, NY, USA
| | | | - Ayman Ayoub
- Worldwide Medical and Safety, Pfizer Research and Development, Sandwich, Kent, UK
| | - Reema Mehta
- Worldwide Medical and Safety, Pfizer Research and Development, Peapack, NJ, USA
| |
Collapse
|
8
|
Govaere O, Cockell SJ, Zatorska M, Wonders K, Tiniakos D, Frey AM, Palmowksi P, Walker R, Porter A, Trost M, Anstee QM, Daly AK. Pharmacogene expression during progression of metabolic dysfunction-associated steatotic liver disease: Studies on mRNA and protein levels and their relevance to drug treatment. Biochem Pharmacol 2024; 228:116249. [PMID: 38697308 DOI: 10.1016/j.bcp.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is common worldwide. Genes and proteins contributing to drug disposition may show altered expression as MASLD progresses. To assess this further, we undertook transcriptomic and proteomic analysis of 137 pharmacogenes in liver biopsies from a large MASLD cohort. We performed sequencing on RNA from 216 liver biopsies (206 MASLD and 10 controls). Untargeted mass spectrometry proteomics was performed on a 103 biopsy subgroup. Selected RNA sequencing signals were replicated with an additional 187 biopsies. Comparison of advanced MASLD (fibrosis score 3/4) with milder disease (fibrosis score 0-2) by RNA sequencing showed significant alterations in expression of certain phase I, phase II and ABC transporters. For cytochromes P450, CYP2C19 showed the most significant decreased expression (30 % of that in mild disease) but significant decreased expression of other CYPs (including CYP2C8 and CYP2E1) also occurred. CYP2C19 also showed a significant decrease comparing the inflammatory form of MASLD (MASH) with non-MASH biopsies. Findings for CYP2C19 were confirmed in the replication cohort. Proteomics on the original discovery cohort confirmed decreased levels of several CYPs as MASLD advanced but this decrease was greatest for CYP2C19 where levels fell to 40 % control. This decrease may result in decreased CYP2C19 activity that could be problematic for prescription of drugs activated or metabolized by CYP2C19 as MASLD advances. More limited decreases for other P450s suggest fewer issues with non-CYP2C19 drug substrates. Negative correlations at RNA level between CYP2C19 and several cytokine genes provided initial insights into the mechanism underlying decreased expression.
Collapse
Affiliation(s)
- Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Simon J Cockell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Michalina Zatorska
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kristy Wonders
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Pathology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrew M Frey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Pawel Palmowksi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ruth Walker
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Porter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Matthias Trost
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Liang N, Yuan X, Zhang L, Shen X, Zhong S, Li L, Li R, Xu X, Chen X, Yin C, Guo S, Ge J, Zhu M, Tao Y, Chen S, Qian Y, Dalbeth N, Merriman TR, Terkeltaub R, Li C, Xia Q, Yin H. Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH. LIFE METABOLISM 2024; 3:loae018. [PMID: 39872146 PMCID: PMC11749550 DOI: 10.1093/lifemeta/loae018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 01/29/2025]
Abstract
Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout groups compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope-labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5'-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from the blood to the liver and activation of urate biosynthesis. Our findings were further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors. Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.
Collapse
Affiliation(s)
- Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Medicine, Tung Biomedical Science Center, State Key Laboratory of Marine Pollution (SKLMP), The Shenzhen Research Institute and Futian Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Xuan Yuan
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266003, China
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Medicine, Tung Biomedical Science Center, State Key Laboratory of Marine Pollution (SKLMP), The Shenzhen Research Institute and Futian Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhao Yin
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuyuan Guo
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Ge
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert Terkeltaub
- VA San Diego Healthcare System, San Diego, La Jolla, CA 92037, United States
- School of Medicine, University of California San Diego, La Jolla, CA 92037, United States
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266003, China
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Medicine, Tung Biomedical Science Center, State Key Laboratory of Marine Pollution (SKLMP), The Shenzhen Research Institute and Futian Research Institute, City University of Hong Kong, Hong Kong 999077, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Sánchez-Terrón G, Martínez R, Delgado J, Molina J, Estévez M. Hepatoprotective mechanisms of pomegranate bioactives on a murine models affected by NAFLD as analysed by MS-based proteomics: The mitochondria in the eye of the storm. Food Res Int 2024; 192:114769. [PMID: 39147495 DOI: 10.1016/j.foodres.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the mechanisms underlying the direct association between fructose consumption and the onset and progression of non-alcoholic fatty liver disease (NAFLD), as well as the high prevalence of metabolic syndrome (MetS), is of great importance for adopting potential nutritional strategies. Thus, an evaluation of the impact of sustained high fructose consumption on the liver physiology of Wistar rats was made. Moreover, the effectiveness of a dietary pomegranate-derived supplement (P) at counteracting fructose-induced liver injury was also assessed. For unveiling the underlying mechanisms, an untargeted proteomic analysis of the livers from nineteen Wistar rats fed on a basal commercial feed and supplemented with either drinking water (C) (n = 6), 30 % (w/v) fructose in drinking water (F) (n = 7) or 30 % (w/v) fructose solution plus 0.2 % (w/v) P (F+P) (n = 6) was assessed. Fructose intake severely increased the abundance of several energy-production related-proteins, such as fructose-bisphosphate aldolase or fatty acid synthase, among others, as well as diminished the amount of another ones, such as carnitine O-palmitoyl transferase or different subunits of acyl-coenzyme A oxidase. These changes could facilitate mitochondrial disturbances and oxidative stress. Regarding the hepatic proteome of F, P extract restored mitochondrial homeostasis and strengthened endogenous antioxidant mechanisms diminishing the amount of proteins involved in process that could increase the oxidative status, as well as increasing both the quantity of several proteins involved in proteasome functionality, as expressing changes in the amount of certain RNA-splicing related-proteins, regarding F proteome.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain
| | - Remigio Martínez
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad de Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, 14014, Spain
| | - Josué Delgado
- HISEALI Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Caceres 10003, Spain
| | - Javier Molina
- Gastroenterology and Hepatology, Hospital Universitario de Cáceres (HUC), Servicio Extremeño de Salud (SES), Junta de Extremadura, Caceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain.
| |
Collapse
|
11
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
12
|
von Morze C, Shaw A, Blazey T. Hyperpolarized 15N caffeine, a potential probe of liver function and perfusion. Magn Reson Med 2024; 92:459-468. [PMID: 38469685 DOI: 10.1002/mrm.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To demonstrate hyperpolarization of 15N-caffeine and report exploratory findings as a potential probe of liver function and perfusion. METHODS An amorphous formulation of [1,3-15N2]caffeine was developed for hyperpolarization via dissolution dynamic nuclear polarization. Polarizer hardware was augmented to support monitoring of solid-state 15N MR signals during the buildup of hyperpolarization. Liquid state hyperpolarized 15N MR signals were obtained in a preclinical 3T magnet by interfacing an external spectrometer console with home-built RF surface coils. 15N signal decay constants were estimated in H2O and in vivo in liver and brain regions of rats at 3 T. Decays were also measured at 9.4 T to assess the effect of B0, and in the presence of albumin to assess the impact of protein binding. RESULTS Polarization levels of 3.5% and aqueous T1 relaxation times of nearly 200 s were attained for both N1 and N3 positions at 3 T. Shorter apparent decay constants were observed in vivo, ranging from 25 s to 43 s, with modest extensions possible by exploiting competitive binding of iophenoxate with plasma albumin. Downstream products of caffeine could not be detected on in vivo 15N-MR spectra of the liver region, even with metabolic stimulation byβ $$ \beta $$ -naphthoflavone treatment. Considering the high perfusion rate of brain, persistence of caffeine signal in this region is consistent with potential value as a perfusion imaging agent. CONCLUSION These results establish the feasibility of hyperpolarization of hyperpolarized 15N-caffeine, but further work is necessary to establish the role of this new agent to probe liver metabolism and perfusion.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Ghoshal K, Luther JM, Pakala SB, Chetyrkin S, Falck JR, Zent R, Wasserman DH, Pozzi A. Epoxygenase Cyp2c44 Regulates Hepatic Lipid Metabolism and Insulin Signaling by Controlling FATP2 Localization and Activation of the DAG/PKCδ Axis. Diabetes 2024; 73:1229-1243. [PMID: 38743615 PMCID: PMC11262046 DOI: 10.2337/db23-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Cytochrome P450 epoxygenase Cyp2c44, a murine epoxyeicosatrienoic acid (EET)-producing enzyme, promotes insulin sensitivity, and Cyp2c44-/- mice show hepatic insulin resistance. Because insulin resistance leads to hepatic lipid accumulation and hyperlipidemia, we hypothesized that Cyp2c44 regulates hepatic lipid metabolism. Standard chow diet (SCD)-fed male Cyp2c44-/- mice had significantly decreased EET levels and increased hepatic and plasma lipid levels compared with wild-type mice. We showed increased hepatic plasma membrane localization of the FA transporter 2 (FATP2) and total unsaturated fatty acids and diacylglycerol (DAG) levels. Cyp2c44-/- mice had impaired glucose tolerance and increased hepatic plasma membrane-associated PKCδ and phosphorylated IRS-1, two negative regulators of insulin signaling. Surprisingly, SCD and high-fat diet (HFD)-fed Cyp2c44-/- mice had similar glucose tolerance and hepatic plasma membrane PKCδ levels, suggesting that SCD-fed Cyp2c44-/- mice have reached their maximal glucose intolerance. Inhibition of PKCδ resulted in decreased IRS-1 serine phosphorylation and improved insulin-mediated signaling in Cyp2c44-/- hepatocytes. Finally, Cyp2c44-/- HFD-fed mice treated with the analog EET-A showed decreased hepatic plasma membrane FATP2 and PCKδ levels with improved glucose tolerance and insulin signaling. In conclusion, loss of Cyp2c44 with concomitant decreased EET levels leads to increased hepatic FATP2 plasma membrane localization, DAG accumulation, and PKCδ-mediated attenuation of insulin signaling. Thus, Cyp2c44 acts as a regulator of lipid metabolism by linking it to insulin signaling. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Kakali Ghoshal
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Suman B Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Sergei Chetyrkin
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Veterans Affairs, Nashville, Nashville, TN
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Veterans Affairs, Nashville, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
14
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
15
|
ElShereef CE, Zaki HF, Badary OA, Kamal S, Nagy M, Makhlouf D, Kamal M, Elnady I, A.Abdelshafi S, Abou El Naga S, Saber MM. Correlation of Genetic Polymorphism of CYP3A5 to Cyclophosphamide Efficacy and Toxicity in Rhabdomyosarcoma Pediatric Egyptian Cancer Patients. Asian Pac J Cancer Prev 2024; 25:2445-2455. [PMID: 39068579 PMCID: PMC11480601 DOI: 10.31557/apjcp.2024.25.7.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES Rhabdomyosarcoma (RMS) accounts for 50% of soft tissue sarcomas and 7% of pediatric malignancies. Cyclophosphamide (CPA) is the cornerstone of therapy and is a prodrug that is activated by the highly polymorphic drug-metabolizing enzyme CYP3A5. We aim to examine the possible CYP3A5 polymorphism association with CPA efficacy, survival outcomes, and toxicity in Egyptian pediatric RMS patients. METHODS The three non-functional SNPs, CYP3A5*3 rs776746 (C_26201809_30), CYP3A5*6 rs10264272 (C_30203950_10), and CYP3A5*7 rs41303343 (C_32287188_10) were genotyped by real-time PCR. We conducted a cohort retrospective study of 150 pediatric RMS patients treated with CPA-based first-line treatment to analyze the association between these genotypes and CPA efficacy/toxicities in RMS patients. KEY FINDINGS The frequency of having normal, intermediate, and poor metabolizers was 4.7%, 34%, and 61.3%, respectively. There was an association between these different phenotypes, genotypes, and CPA efficacy/toxicity. Hemorrhagic cystitis and pancytopenia were present in all patients, while nephrotoxicity incidence was 87.3%. There was a notable difference in the occurrence of hemorrhagic cystitis among CYP3A5 intermediate metabolizers *1/*3, *1/*6, and poor metabolizers *3/*3, *3/*6 with a significance level of p<0.05. Neither CYP3A5*7 polymorphism nor *6/*6 genotype was identified in our study. CONCLUSION Our results demonstrate that CYP3A5*3 (rs776746) and CYP3A5*6 (rs10264272) have a great association with CPA efficacy and toxicity in RMS patients.
Collapse
Affiliation(s)
- Cherine E. ElShereef
- Clinical Pharmacy Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
| | - Hala F. Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Osama A. Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt.
| | | | - Mohamed Nagy
- Pharmaceutical Services Department and Personalized Medication Management Unit, Children’s Cancer Hospital Egypt (57357), Cairo, Egypt.
| | - Dalia Makhlouf
- Pharmaceutical Services Department and Personalized Medication Management Unit, Children’s Cancer Hospital Egypt (57357), Cairo, Egypt.
| | - Mohamed Kamal
- Research Department, Children’s Cancer Hospital Egypt (57357), Cairo, Egypt.
| | - Inas Elnady
- Pediatric Medical Oncology, Beni Suef University and Children’s Cancer Hospital Egypt (57357), Cairo, Egypt.
| | - Sameh A.Abdelshafi
- Research Department, Children’s Cancer Hospital Egypt (57357), Cairo, Egypt.
| | - Sherif Abou El Naga
- Pediatric Oncology Department, National Cancer Institute, Cairo University and Children’s Cancer Hospital Egypt 57357, Cairo, Egypt.
| | - Mona M. Saber
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
16
|
Saha A, Das S, De S, Dutta T, Roy S, Biswas A, Sengupta M. An Effort to Identify Genetic Determinants in Siblings With Wilson Disease Manifesting Striking Clinical Heterogeneity: An Exome Profiling Study of Two Indian Families. Pediatr Neurol 2024; 155:1-7. [PMID: 38552405 DOI: 10.1016/j.pediatrneurol.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Wilson disease (WD) is a rare autosomal recessive disorder of copper metabolism caused due to mutations in the copper transporter ATP7B. There is often a striking variability of clinical manifestations among patients with ATP7B mutations, including in siblings. This phenomenon may be caused by individual differences in copper accumulation in hepatocytes and intolerance to copper toxicity as governed by genetic variations in copper metabolism genes acting as modifier loci to the disease. OBJECTIVE To elucidate the genetic basis of striking clinical heterogeneity among two siblings of two families with WD. METHODS The disease diagnosis and subsequent clinical examinations were performed by expert clinicians. The younger siblings in both families presented with early neurological manifestations at a younger age than their older siblings. Interestingly, only the younger siblings were reported to have had hepatic manifestations. Exome sequencing of all the four individuals was performed to understand their heterogeneous phenotypic outcomes. RESULTS Genetic screening revealed no difference in the ATP7B variant spectrum between the siblings of each family. However, the siblings of both the families were found to harbor mutually exclusive pathogenic variants in suspected modifier genes implicated in copper metabolism and/or other neurological and hepatic disorders having overlapping symptoms with WD, viz., CFTR, PPARG, ABCB11, ATP7A, CYP2D6, mTOR, TOR1A, and CP, which can potentially explain their differential clinical phenotypes. CONCLUSION Clinical heterogeneity between siblings with WD with the same ATP7B mutation profile may be attributed to the presence of different pathogenic variants in potential modifier genes.
Collapse
Affiliation(s)
- Arpan Saha
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Shristi Das
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Samragni De
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Tithi Dutta
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Shubhrajit Roy
- The Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Atanu Biswas
- Department of Neurology, Bangur Institute of Neurosciences, Kolkata, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India.
| |
Collapse
|
17
|
Zhang J, Chen F. Integrated transcriptome and metabolome study reveal the therapeutic effects of nicotinamide riboside and nicotinamide mononucleotide on nonalcoholic fatty liver disease. Biomed Pharmacother 2024; 175:116701. [PMID: 38729053 DOI: 10.1016/j.biopha.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have received considerable attention as anti-aging and anti-metabolic disease nutraceuticals. However, few studies have focused on their role in ameliorating hepatic metabolic disturbances. In the present study, the effects of NMN and NR on the liver of mice with nonalcoholic fatty liver disease (NAFLD) were investigated via transcriptome and metabolome analyses. NMN and NR reduced body weight gain, improved glucose homeostasis, regulated plasma lipid levels, and ameliorated liver injury, oxidative stress, and lipid accumulation in mice with HFD-induced NAFLD. Integrated transcriptome and metabolome analyses indicated that NMN and NR altered the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and linoleic acid metabolism pathways, increased saturated fatty acid (palmitic acid, stearate, and arachidic acid) content, and increased polyunsaturated fatty acid (linoleic acid and eicosapentaenoic acid) content. Quantitative reverse transcription PCR (qRT-PCR) showed that NMN and NR primarily promoted arachidonic acid and linoleic acid catabolism via cytochrome P450 (CYP450) enzymes. This study established a theoretical foundation for the potential use of NMN and NR in future clinical settings.
Collapse
Affiliation(s)
- Jingting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; College of Management, Liaoning Economy Vocational and Technical College, Shenyang, Liaoning 110122, China.
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
18
|
Shen Y, Liu J, Yao B, Zhang Y, Huang S, Liang C, Huang J, Tang Y, Wang X. Non-alcoholic fatty liver disease changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats. Toxicol Lett 2024; 396:36-47. [PMID: 38663832 DOI: 10.1016/j.toxlet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRβ, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.
Collapse
Affiliation(s)
- Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
19
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Bechtold BJ, Lynch KD, Oyanna VO, Call MR, White LA, Graf TN, Oberlies NH, Clarke JD. Pharmacokinetic Effects of Different Models of Nonalcoholic Fatty Liver Disease in Transgenic Humanized OATP1B Mice. Drug Metab Dispos 2024; 52:355-367. [PMID: 38485280 PMCID: PMC11023818 DOI: 10.1124/dmd.123.001607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2023] [Indexed: 03/21/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 (collectively, OATP1B) transporters encoded by the solute carrier organic anion transporter (SLCO) genes mediate uptake of multiple pharmaceutical compounds. Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease (NAFLD), decreases OATP1B abundance. This research characterized the pathologic and pharmacokinetics effects of three diet- and one chemical-induced NAFLD model in male and female humanized OATP1B mice, which comprises knock-out of rodent Oatp orthologs and insertion of human SLCO1B1 and SLCO1B3. Histopathology scoring demonstrated elevated steatosis and inflammation scores for all NAFLD-treatment groups. Female mice had minor changes in SLCO1B1 expression in two of the four NAFLD treatment groups, and pitavastatin (PIT) area under the concentration-time curve (AUC) increased in female mice in only one of the diet-induced models. OATP1B3 expression decreased in male and female mice in the chemical-induced NAFLD model, with a coinciding increase in PIT AUC, indicating the chemical-induced model may better replicate changes in OATP1B3 expression and OATP substrate disposition observed in NASH patients. This research also tested a reported multifactorial pharmacokinetic interaction between NAFLD and silymarin, an extract from milk thistle seeds with notable OATP-inhibitory effects. Males showed no change in PIT AUC, whereas female PIT AUC increased 1.55-fold from the diet alone and the 1.88-fold from the combination of diet with silymarin, suggesting that female mice are more sensitive to pharmacokinetic changes than male mice. Overall, the humanized OATP1B model should be used with caution for modeling NAFLD and multifactorial pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Advanced stages of NAFLD cause decreased hepatic OATP1B abundance and increase systemic exposure to OATP substrates in human patients. The humanized OATP1B mouse strain may provide a clinically relevant model to recapitulate these observations and predict pharmacokinetic interactions in NAFLD. This research characterized three diet-induced and one drug-induced NAFLD model in a humanized OATP1B mouse model. Additionally, a multifactorial pharmacokinetic interaction was observed between silymarin and NAFLD.
Collapse
Affiliation(s)
- Baron J Bechtold
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Victoria O Oyanna
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - M Ridge Call
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Laura A White
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Tyler N Graf
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - John D Clarke
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| |
Collapse
|
21
|
Sierra T, Achour B. In Vitro to In Vivo Scalars for Drug Clearance in Nonalcoholic Fatty Liver and Steatohepatitis. Drug Metab Dispos 2024; 52:390-398. [PMID: 38423789 DOI: 10.1124/dmd.123.001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
In vitro-in vivo extrapolation (IVIVE) allows prediction of clinical outcomes across populations from in vitro data using specific scalars tailored to the biologic characteristics of each population. This study experimentally determined scalars for patients with varying degrees of nonalcoholic fatty liver disease (NAFLD), ranging from fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis. Microsomal, S9, and cytosol fractions were extracted from 36 histologically normal and 66 NAFLD livers (27 nonalcoholic fatty liver [NAFL], 13 NASH, and 26 NASH with cirrhosis). Corrected microsomal protein per gram liver (MPPGL) progressively decreased with disease severity (26.8, 27.4, and 24.3 mg/g in NAFL, NASH, and NASH/cirrhosis, respectively, compared with 35.6 mg/g in normal livers; ANOVA, P < 0.001). Homogenate, S9, and cytosolic protein showed a consistent trend of decline in NASH/cirrhosis relative to normal control (post-hoc t test, P < 0.05). No differences across the groups were observed in homogenate, S9, cytosolic, and microsomal protein content in matched kidney samples. MPPGL-based scalars that combine protein content with liver size revealed that the reduction in MPPGL in NAFL and NASH was compensated by the reported increase in liver size (relative scalar ratios of 0.96 and 0.99, respectively), which was not the case with NASH/cirrhosis (ratio of 0.63), compared with healthy control. Physiologically based pharmacokinetics-informed global sensitivity analysis of the relative contribution of IVIVE scalars (hepatic CYP3A4 abundance, MPPGL, and liver size) to variability in exposure (area under the curve) to three CYP3A substrates (alprazolam, midazolam, and ibrutinib) revealed enzyme abundance as the most significant parameter, followed by MPPGL, whereas liver volume was the least impactful factor. SIGNIFICANCE STATEMENT: Nonalcoholic fatty liver disease-specific scalars necessary for extrapolation from in vitro systems to liver tissue are lacking. These are required in clearance prediction and dose selection in nonalcoholic fatty liver and steatohepatitis populations. Previously reported disease-driven changes have focused on cirrhosis, with no data on the initial stages of liver disease. The authors obtained experimental values for microsomal, cytosolic, and S9 fractions and assessed the relative impact of microsomal scalars on predicted exposure to substrate drugs using physiologically based pharmacokinetics.
Collapse
Affiliation(s)
- Teresa Sierra
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
22
|
Frati F, Torello G, Di Cara G. Cytochrome p450 and innovative nutraceutical products. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2024. [DOI: 10.4081/jbr.2024.11721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dietary supplements are products that are ingested in addition to the regular diet to provide additional health-promoting nutrients. Dietary supplements are defined and regulated differently in the European Union (EU) and the United States (US). A fundamental aspect, besides the one related to the composition of the various products on the market, is linked to their quality, both from a nutritional and a pharmacological point of view. Concerning the knowledge of the metabolic aspects, the analysis of the interference, as an inductive or an inhibitory effect, of the p450 enzyme on individual preparations of supplements, is crucial. In this study, we present the results of the interference analysis of a new nutraceutical product based on 38% Bergamot Polyphenolic Fraction BPF® (Citrus bergamia Risso et Poit.), Pomegranate (Punica granatum) and Citrus fruits (Citrus aurantium var. dulcis, Citrus maxima Burm. Merr, Citrus paradisi Macfad) extract with cytochrome p450, showing that the product has limited activity on the cytochromes involved in most of human drug metabolism. This nutraceutical product is to be considered safe and potentially useful in the context of multiple treatments, not interfering with the traditional chronic therapies of patients. These findings open the door to modern "pharma-grade" nutraceuticals, expanding the safety and quality profiles of these new products.
Collapse
|
23
|
Yu-Taeger L, El-Ayoubi A, Qi P, Danielyan L, Nguyen HHP. Intravenous MSC-Treatment Improves Impaired Brain Functions in the R6/2 Mouse Model of Huntington's Disease via Recovered Hepatic Pathological Changes. Cells 2024; 13:469. [PMID: 38534313 PMCID: PMC10969189 DOI: 10.3390/cells13060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Huntington's disease (HD), a congenital neurodegenerative disorder, extends its pathological damages beyond the nervous system. The systematic manifestation of HD has been extensively described in numerous studies, including dysfunction in peripheral organs and peripheral inflammation. Gut dysbiosis and the gut-liver-brain axis have garnered greater emphasis in neurodegenerative research, and increased plasma levels of pro-inflammatory cytokines have been identified in HD patients and various in vivo models, correlating with disease progression. In the present study, we investigated hepatic pathological markers in the liver of R6/2 mice which convey exon 1 of the human mutant huntingtin gene. Furthermore, we evaluated the impact of intravenously administered Mesenchymal Stromal Cells (MSCs) on the liver enzymes, changes in hepatic inflammatory markers, as well as brain pathology and behavioral deficits in R6/2 mice. Our results revealed altered enzyme expression and increased levels of inflammatory mediators in the liver of R6/2 mice, which were significantly attenuated in the MSC-treated R6/2 mice. Remarkably, neuronal pathology and altered motor activities in the MSC-treated R6/2 mice were significantly ameliorated, despite the absence of MSCs in the postmortem brain. Our data highlight the importance of hepatic pathological changes in HD, providing a potential therapeutic approach. Moreover, the data open new perspectives for the search in blood biomarkers correlating with liver pathology in HD.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Ali El-Ayoubi
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Pengfei Qi
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany
- Departments of Biochemistry and Clinical Pharmacology, and Neuroscience Laboratory, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Hoa Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Department of Medical Chemistry, Yerevan State Medical University, Yerevan 0025, Armenia
| |
Collapse
|
24
|
Ning D, Jin J, Fang Y, Du P, Yuan C, Chen J, Huang Q, Cheng K, Mo J, Xu L, Guo H, Yang MJ, Chen X, Liang H, Zhang B, Zhang W. DEAD-Box Helicase 17 exacerbates non-alcoholic steatohepatitis via transcriptional repression of cyp2c29, inducing hepatic lipid metabolism disorder and eliciting the activation of M1 macrophages. Clin Transl Med 2024; 14:e1529. [PMID: 38303609 PMCID: PMC10835191 DOI: 10.1002/ctm2.1529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE Our study was to elucidate the role of RNA helicase DEAD-Box Helicase 17 (DDX17) in NAFLD and to explore its underlying mechanisms. METHODS We created hepatocyte-specific Ddx17-deficient mice aim to investigate the impact of Ddx17 on NAFLD induced by a high-fat diet (HFD) as well as methionine and choline-deficient l-amino acid diet (MCD) in adult male mice. RNA-seq and lipidomic analyses were conducted to depict the metabolic landscape, and CUT&Tag combined with chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted. RESULTS In this work, we observed a notable increase in DDX17 expression in the livers of patients with NASH and in murine models of NASH induced by HFD or MCD. After introducing lentiviruses into hepatocyte L02 for DDX17 knockdown or overexpression, we found that lipid accumulation induced by palmitic acid/oleic acid (PAOA) in L02 cells was noticeably weakened by DDX17 knockdown but augmented by DDX17 overexpression. Furthermore, hepatocyte-specific DDX17 knockout significantly alleviated hepatic steatosis, inflammatory response and fibrosis in mice after the administration of MCD and HFD. Mechanistically, our analysis of RNA-seq and CUT&Tag results combined with ChIP and luciferase reporter assays indicated that DDX17 transcriptionally represses Cyp2c29 gene expression by cooperating with CCCTC binding factor (CTCF) and DEAD-Box Helicase 5 (DDX5). Using absolute quantitative lipidomics analysis, we identified a hepatocyte-specific DDX17 deficiency that decreased lipid accumulation and altered lipid composition in the livers of mice after MCD administration. Based on the RNA-seq analysis, our findings suggest that DDX17 could potentially have an impact on the modulation of lipid metabolism and the activation of M1 macrophages in murine NASH models. CONCLUSION These results imply that DDX17 is involved in NASH development by promoting lipid accumulation in hepatocytes, inducing the activation of M1 macrophages, subsequent inflammatory responses and fibrosis through the transcriptional repression of Cyp2c29 in mice. Therefore, DDX17 holds promise as a potential drug target for the treatment of NASH.
Collapse
Affiliation(s)
- Deng Ning
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Jin
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Yuanyuan Fang
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Pengcheng Du
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Chaoyi Yuan
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Jin Chen
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Qibo Huang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Kun Cheng
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Jie Mo
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Lei Xu
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Hui Guo
- Institute of Organ TransplantationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Mia Jiming Yang
- Institute for Management in Medicine and Health SciencesUniversity of BayreuthBayreuthGermany
| | - Xiaoping Chen
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| | - Huifang Liang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| | - Bixiang Zhang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| | - Wanguang Zhang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| |
Collapse
|
25
|
Chen C, Cai H, Shen J, Zhang X, Peng W, Li C, Lv H, Wen T. Exploration of a hypoxia-immune-related microenvironment gene signature and prediction model for hepatitis C-induced early-stage fibrosis. J Transl Med 2024; 22:116. [PMID: 38287425 PMCID: PMC10826039 DOI: 10.1186/s12967-024-04912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Liver fibrosis contributes to significant morbidity and mortality in Western nations, primarily attributed to chronic hepatitis C virus (HCV) infection. Hypoxia and immune status have been reported to be significantly correlated with the progression of liver fibrosis. The current research aimed to investigate the gene signature related to the hypoxia-immune-related microenvironment and identify potential targets for liver fibrosis. METHOD Sequencing data obtained from GEO were employed to assess the hypoxia and immune status of the discovery set utilizing UMAP and ESTIMATE methods. The prognostic genes were screened utilizing the LASSO model. The infiltration level of 22 types of immune cells was quantified utilizing CIBERSORT, and a prognosis-predictive model was established based on the selected genes. The model was also verified using qRT-PCR with surgical resection samples and liver failure samples RNA-sequencing data. RESULTS Elevated hypoxia and immune status were linked to an unfavorable prognosis in HCV-induced early-stage liver fibrosis. Increased plasma and resting NK cell infiltration were identified as a risk factor for liver fibrosis progression. Additionally, CYP1A2, CBS, GSTZ1, FOXA1, WDR72 and UHMK1 were determined as hypoxia-immune-related protective genes. The combined model effectively predicted patient prognosis. Furthermore, the preliminary validation of clinical samples supported most of the conclusions drawn from this study. CONCLUSION The prognosis-predictive model developed using six hypoxia-immune-related genes effectively predicts the prognosis and progression of liver fibrosis. The current study opens new avenues for the future prediction and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chuwen Chen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Haozheng Cai
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Junyi Shen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Xiaoyun Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Wei Peng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Chuan Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Haopeng Lv
- Department of General Surgery, ChengDu Shi Xinjin Qu Renmin Yiyuan: People's Hospital of Xinjin District, Chengdu, China
| | - Tianfu Wen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Armani S, Geier A, Forst T, Merle U, Alpers DH, Lunnon MW. Effect of changes in metabolic enzymes and transporters on drug metabolism in the context of liver disease: Impact on pharmacokinetics and drug-drug interactions. Br J Clin Pharmacol 2023. [PMID: 38148609 DOI: 10.1111/bcp.15990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023] Open
Abstract
Changes in the pharmacokinetic and resulting pharmacodynamic properties of drugs are common in many chronic liver diseases, leading to adverse effects, drug interactions and increased risk of over- or underdosing of medications. Structural and functional hepatic impairment can have major effects on drug metabolism and transport. This review summarizes research on the functional changes in phase I and II metabolic enzymes and in transport proteins in patients with metabolic diseases such as type 2 diabetes, metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis and cirrhosis, providing a clinical perspective on how these changes affect drug uptake and metabolism. Generally, a decrease in expression and/or activity of many enzymes of the cytochrome P450 family (e.g. CYP2E1 and CYP3A4), and of influx and efflux transporters (e.g. organic anion-transporting polypeptide [OATP]1B1, OATP2B1, OAT2 and bile salt export pump), has been recently documented in patients with liver disease. Decreased enzyme levels often correlate with increased severity of chronic liver disease. In subjects with hepatic impairment, there is potential for strong alterations of drug pharmacokinetics due to reduced absorption, increased volume of distribution, metabolism and extraction. Due to the altered pharmacokinetics, specific drug-drug interactions are also a potential issue to consider in patients with liver disease. Given the huge burden of liver disease in western societies, there is a need to improve awareness among all healthcare professionals and patients with liver disease to ensure appropriate drug prescriptions.
Collapse
Affiliation(s)
- Sara Armani
- CRS Clinical Research Services, Mannheim, Germany
| | - Andreas Geier
- Department of Internal Medicine and Hepatology, University Hospital, Würzburg, Germany
| | - Thomas Forst
- CRS Clinical Research Services, Mannheim, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital, Heidelberg, Germany
| | - David H Alpers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
27
|
Fathi MA, Dan S, Abdelsalam AM, Chunmei L. Involvement of glyphosate in disruption of biotransformation P450 enzymes and hepatic lipid metabolism in chicken. Anim Biotechnol 2023; 34:4957-4967. [PMID: 37210632 DOI: 10.1080/10495398.2023.2214601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The current study investigated the potentially harmful consequences of pure glyphosate or Roundup® on CYP family members and lipid metabolism in newly hatched chicks. On the sixth day, 225 fertilized eggs were randomly divided into three treatments: (1) the control group injected with deionized water, (2) the glyphosate group injected with 10 mg pure glyphosate/Kg egg mass and (3) the Roundup group injected 10 mg the active ingredient glyphosate in Roundup®/Kg egg. The results of the study revealed a reduction in hatchability in chicks treated with Roundup®. Moreover, change of Lipid concentration in serum and the liver-treated groups. Additionally, increased liver function enzymes and increased oxidative stress in the glyphosate and Roundup® groups. Furthermore, liver tissues showed histological changes and several lipid deposits in glyphosate-treated groups. Hepatic CYP1A2 and CYP1A4 expressions were significantly increased (p < .05) after glyphosate exposure, and suppression of CYP1C1 mRNA expression was significant (p < .05) after Roundup® exposure. The pro-inflammatory cytokines genes IFN-γ and IL-1β expression were significantly increased (p < .05) after Roundup® exposure. In addition, there were significant differences in the levels of expression genes which are related to lipid synthesis or catabolism in the liver. In conclusion, in ovo glyphosate exposure caused disruption of biotransformation, pro-inflammatory and lipid metabolism in chicks.
Collapse
Affiliation(s)
- Mohamed Ahmed Fathi
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
- Agricultural Research Centre, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Shen Dan
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | | | - Li Chunmei
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
28
|
Golla K, Benesic A, Mannell H, Dreischulte T, Grill E, Strobach D. Hepatic Impairment as a Risk Factor for Drug Safety: Suitability and Comparison of Four Liver Scores as Screening Tools. J Clin Med 2023; 12:6814. [PMID: 37959279 PMCID: PMC10649763 DOI: 10.3390/jcm12216814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Hepatic impairment (HI) influences the pharmacokinetics and pharmacodynamics of drugs and represents an important risk factor for drug safety. A reliable screening tool for HI identification at hospital admission by pharmacists would be desirable but is currently lacking. Therefore, we tested four liver scores as potential screening instruments. We retrospectively recorded liver/bile diagnoses, symptoms and abnormalities (summarized as hepatic findings) of 200 surgical patients followed by an assessment of the relevance of these findings for drug therapy (rating). The agreement between the Model of Endstage Liver Disease (MELD), Non-alcoholic fatty liver disease fibrosis score (NFS), Fibrosis 4 index (FIB-4), and aspartate-aminotransferase to platelet ratio index (APRI) and the rating was quantified by Cohen's Kappa. The performance of the scores in this setting was further evaluated by their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Of 200 patients, 18 (9%) had hepatic findings relevant for drug therapy. Fair agreement was found for FIB-4 and MELD and slight agreement for APRI and NFS compared to the rating. The highest values for sensitivity, specificity, PPV, and NPV were 41.2% (MELD), 99.3% (APRI), 66.7% (APRI), and 93.6% (MELD), respectively. Due to low performance, none of the scores can be recommended for clinical use as a single screening tool for HI at hospital admission.
Collapse
Affiliation(s)
- Kathrin Golla
- Doctoral Program Clinical Pharmacy, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Hospital Pharmacy, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Andreas Benesic
- Department of Internal Medicine—Gastroenterology, Krankenhaus GmbH Weilheim-Schongau, Marie-Eberth Str. 6, 86956 Schongau, Germany
| | - Hanna Mannell
- Doctoral Program Clinical Pharmacy, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Tobias Dreischulte
- Institute of General Practice and Family Medicine, University Hospital, LMU Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
| | - Eva Grill
- Institute for Medical Information Processing, Biometrics and Epidemiology, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Dorothea Strobach
- Doctoral Program Clinical Pharmacy, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Hospital Pharmacy, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
29
|
Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals subgroups of primary human hepatocytes with heterogeneous responses to drug challenge. Genome Biol 2023; 24:234. [PMID: 37848949 PMCID: PMC10583437 DOI: 10.1186/s13059-023-03075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Xenobiotics are primarily metabolized by hepatocytes in the liver, and primary human hepatocytes are the gold standard model for the assessment of drug efficacy, safety, and toxicity in the early phases of drug development. Recent advances in single-cell genomics demonstrate liver zonation and ploidy as main drivers of cellular heterogeneity. However, little is known about the impact of hepatocyte specialization on liver function upon metabolic challenge, including hepatic metabolism, detoxification, and protein synthesis. RESULTS Here, we investigate the metabolic capacity of individual human hepatocytes in vitro. We assess how chronic accumulation of lipids enhances cellular heterogeneity and impairs the metabolisms of drugs. Using a phenotyping five-probe cocktail, we identify four functional subgroups of hepatocytes responding differently to drug challenge and fatty acid accumulation. These four subgroups display differential gene expression profiles upon cocktail treatment and xenobiotic metabolism-related specialization. Notably, intracellular fat accumulation leads to increased transcriptional variability and diminishes the drug-related metabolic capacity of hepatocytes. CONCLUSIONS Our results demonstrate that, upon a metabolic challenge such as exposure to drugs or intracellular fat accumulation, hepatocyte subgroups display different and heterogeneous transcriptional responses.
Collapse
Affiliation(s)
- Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Lucia Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany.
| | - Celia Pilar Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich (TUM), 80333, Munich, Germany.
| |
Collapse
|
30
|
Faccioli LAP, Cetin Z, Kocas-Kilicarslan ZN, Ortiz K, Sun Y, Hu Z, Kurihara T, Tafaleng EN, Florentino RM, Wang Z, Xia M, Miedel MT, Taylor DL, Behari J, Ostrowska A, Constantine R, Li A, Soto-Gutierrez A. Evaluation of Human Hepatocyte Drug Metabolism Carrying High-Risk or Protection-Associated Liver Disease Genetic Variants. Int J Mol Sci 2023; 24:13406. [PMID: 37686209 PMCID: PMC10487897 DOI: 10.3390/ijms241713406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD), which affects 30 million people in the US and is anticipated to reach over 100 million by 2030, places a significant financial strain on the healthcare system. There is presently no FDA-approved treatment for MASLD despite its public health significance and financial burden. Understanding the connection between point mutations, liver enzymes, and MASLD is important for comprehending drug toxicity in healthy or diseased individuals. Multiple genetic variations have been linked to MASLD susceptibility through genome-wide association studies (GWAS), either increasing MASLD risk or protecting against it, such as PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438. As the impact of genetic variants on the levels of drug-metabolizing cytochrome P450 (CYP) enzymes in human hepatocytes has not been thoroughly investigated, this study aims to describe the analysis of metabolic functions for selected phase I and phase II liver enzymes in human hepatocytes. For this purpose, fresh isolated primary hepatocytes were obtained from healthy liver donors (n = 126), and liquid chromatography-mass spectrometry (LC-MS) was performed. For the cohorts, participants were classified into minor homozygotes and nonminor homozygotes (major homozygotes + heterozygotes) for five gene polymorphisms. For phase I liver enzymes, we found a significant difference in the activity of CYP1A2 in human hepatocytes carrying MBOAT7 (p = 0.011) and of CYP2C8 in human hepatocytes carrying PNPLA3 (p = 0.004). It was also observed that the activity of CYP2C9 was significantly lower in human hepatocytes carrying HSD17B13 (p = 0.001) minor homozygous compared to nonminor homozygous. No significant difference in activity of CYP2E1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, ECOD, FMO, MAO, AO, and CES2 and in any of the phase II liver enzymes between human hepatocytes carrying genetic variants for PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438 were observed. These findings offer a preliminary assessment of the influence of genetic variations on drug-metabolizing cytochrome P450 (CYP) enzymes in healthy human hepatocytes, which may be useful for future drug discovery investigations.
Collapse
Affiliation(s)
- Lanuza A. P. Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zehra N. Kocas-Kilicarslan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Kimberly Ortiz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Edgar N. Tafaleng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
| | - Zi Wang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mengying Xia
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D. Lansing Taylor
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
| | - Jaideep Behari
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
| | | | - Albert Li
- Discovery Life Sciences, Huntsville, AL 35806, USA; (R.C.); (A.L.)
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
31
|
Ferrandino G, De Palo G, Murgia A, Birch O, Tawfike A, Smith R, Debiram-Beecham I, Gandelman O, Kibble G, Lydon AM, Groves A, Smolinska A, Allsworth M, Boyle B, van der Schee MP, Allison M, Fitzgerald RC, Hoare M, Snowdon VK. Breath Biopsy ® to Identify Exhaled Volatile Organic Compounds Biomarkers for Liver Cirrhosis Detection. J Clin Transl Hepatol 2023; 11:638-648. [PMID: 36969895 PMCID: PMC10037526 DOI: 10.14218/jcth.2022.00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 03/29/2023] Open
Abstract
Background and Aims The prevalence of chronic liver disease in adults exceeds 30% in some countries and there is significant interest in developing tests and treatments to help control disease progression and reduce healthcare burden. Breath is a rich sampling matrix that offers non-invasive solutions suitable for early-stage detection and disease monitoring. Having previously investigated targeted analysis of a single biomarker, here we investigated a multiparametric approach to breath testing that would provide more robust and reliable results for clinical use. Methods To identify candidate biomarkers we compared 46 breath samples from cirrhosis patients and 42 from controls. Collection and analysis used Breath Biopsy OMNI™, maximizing signal and contrast to background to provide high confidence biomarker detection based upon gas chromatography mass spectrometry (GC-MS). Blank samples were also analyzed to provide detailed information on background volatile organic compounds (VOCs) levels. Results A set of 29 breath VOCs differed significantly between cirrhosis and controls. A classification model based on these VOCs had an area under the curve (AUC) of 0.95±0.04 in cross-validated test sets. The seven best performing VOCs were sufficient to maximize classification performance. A subset of 11 VOCs was correlated with blood metrics of liver function (bilirubin, albumin, prothrombin time) and separated patients by cirrhosis severity using principal component analysis. Conclusions A set of seven VOCs consisting of previously reported and novel candidates show promise as a panel for liver disease detection and monitoring, showing correlation to disease severity and serum biomarkers at late stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Debiram-Beecham
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | - Graham Kibble
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Anne Marie Lydon
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Alice Groves
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Agnieszka Smolinska
- Owlstone Medical, Cambridge, UK
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | | | | | | | - Michael Allison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
| | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Matthew Hoare
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
- CRUK Cambridge Institute, Cambridge, UK
| | - Victoria K. Snowdon
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
32
|
Koponen M, Rysä J, Ruotsalainen AK, Kärkkäinen O, Juvonen RO. Western Diet Decreases Hepatic Drug Metabolism in Male LDLr−/−ApoB100/100 Mice. J Nutr Metab 2023; 2023:5599789. [PMID: 37034183 PMCID: PMC10081903 DOI: 10.1155/2023/5599789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 04/03/2023] Open
Abstract
Consumption of a Western diet is an important risk factor for several chronic diseases including nonalcoholic fatty liver disease (NAFLD), but its effect on the xenobiotic metabolizing enzyme activities in the liver has been studied incompletely. In this study, male LDLr−/−ApoB100/100 mice were fed with Western diet (WD) or a standard diet for five months to reveal the effects on drug metabolism such as cytochrome P450 (CYP) oxidation and conjugation activities in the liver. Hepatic steatosis, lobular inflammation, and early fibrosis were observed in WD fed mice, but not in chow diet control mice. When compared to the controls, the WD-fed mice had significantly decreased protein-normalized CYP probe activities of 7-ethoxyresorufinO-deethylation (52%), coumarin 7-hydroxylation (26%), 7-hydroxylation of 3-(3-fluoro-4-hydroxyphenyl)-6-methoxycoumarin (70%), 7-hydroxylation of 3-(4-trifluoromethoxyphenyl)-6-methoxycoumarin (78%), 7-hydroxylation of 3-(3-methoxyphenyl)coumarin (81%), and pentoxyresorufin O-depentylation (66%). Increased activity was seen significantly in sulfonation of 3-(4-methylphenyl)-7-hydroxycoumarin (289%) and cytosol catechol O-methyltranferase (COMT, 148%) in the WD group when compared to the controls. In conclusion, the WD-induced steatosis in male LDLr−/−ApoB100/100 mice was associated with decreased CYP oxidation reactions but had no clear effects on conjugation reactions of glucuronidation, sulfonation, and cytosolic catechol O-methylation. Consequently, the WD may decrease the metabolic elimination of drugs compared to healthier low-fat diets.
Collapse
|
33
|
Anderson BJ, Cortinez LI. Perioperative Acetaminophen Dosing in Obese Children. CHILDREN 2023; 10:children10040625. [PMID: 37189874 DOI: 10.3390/children10040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Acetaminophen is a commonly used perioperative analgesic drug in children. The use of a preoperative loading dose achieves a target concentration of 10 mg/L associated with a target analgesic effect that is 2.6 pain units (visual analogue scale 1–10). Postoperative maintenance dosing is used to keep this effect at a steady-state concentration. The loading dose in children is commonly prescribed per kilogram. That dose is consistent with the linear relationship between the volume of distribution and total body weight. Total body weight is made up of both fat and fat-free mass. The fat mass has little influence on the volume of distribution of acetaminophen but fat mass should be considered for maintenance dosing that is determined by clearance. The relationship between the pharmacokinetic parameter, clearance, and size is not linear. A number of size metrics (e.g., fat-free and normal fat mass, ideal body weight and lean body weight) have been proposed to scale clearance and all consequent dosing schedules recognize curvilinear relationships between clearance and size. This relationship can be described using allometric theory. Fat mass also has an indirect influence on clearance that is independent of its effects due to increased body mass. Normal fat mass, used in conjunction with allometry, has proven a useful size metric for acetaminophen; it is calculated using fat-free mass and a fraction (Ffat) of the additional mass contributing to total body weight. However, the Ffat for acetaminophen is large (Ffat = 0.82), pharmacokinetic and pharmacodynamic parameter variability high, and the concentration–response slope gentle at the target concentration. Consequently, total body weight with allometry is acceptable for the calculation of maintenance dose. The dose of acetaminophen is tempered by concerns about adverse effects, notably hepatotoxicity associated with use after 2–3 days at doses greater than 90 mg/kg/day.
Collapse
|
34
|
Powell NR, Liang T, Ipe J, Cao S, Skaar TC, Desta Z, Qian HR, Ebert PJ, Chen Y, Thomas MK, Chalasani N. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat Commun 2023; 14:1474. [PMID: 36927865 PMCID: PMC10020163 DOI: 10.1038/s41467-023-37209-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Polypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD severity associations including CYP2C19 downregulation. We chose to validate CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 independent studies demonstrate that CYP2C19 is significantly downregulated to 46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data demonstrate the downregulation of CYP2C19 in NAFLD which supports developing personalized medicine approaches for drugs sensitive to metabolism by the CYP2C19 enzyme.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Sha Cao
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | | | - Yu Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Naga Chalasani
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA.
| |
Collapse
|
35
|
Abstract
The epidemic of obesity, type 2 diabetes and nonalcoholic liver disease (NAFLD) favors drug consumption, which augments the risk of adverse events including liver injury. For more than 30 years, a series of experimental and clinical investigations reported or suggested that the common pain reliever acetaminophen (APAP) could be more hepatotoxic in obesity and related metabolic diseases, at least after an overdose. Nonetheless, several investigations did not reproduce these data. This discrepancy might come from the extent of obesity and steatosis, accumulation of specific lipid species, mitochondrial dysfunction and diabetes-related parameters such as ketonemia and hyperglycemia. Among these factors, some of them seem pivotal for the induction of cytochrome P450 2E1 (CYP2E1), which favors the conversion of APAP to the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). In contrast, other factors might explain why obesity and NAFLD are not always associated with more frequent or more severe APAP-induced acute hepatotoxicity, such as increased volume of distribution in the body, higher hepatic glucuronidation and reduced CYP3A4 activity. Accordingly, the occurrence and outcome of APAP-induced liver injury in an obese individual with NAFLD would depend on a delicate balance between metabolic factors that augment the generation of NAPQI and others that can mitigate hepatotoxicity.
Collapse
|
36
|
Identification of Gut Microbial Lysine and Histidine Degradation and CYP-Dependent Metabolites as Biomarkers of Fatty Liver Disease. mBio 2023; 14:e0266322. [PMID: 36715540 PMCID: PMC9973343 DOI: 10.1128/mbio.02663-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have described specific metabolites as biomarkers of severe liver diseases, but very few have measured gut microbiota (GM)-produced metabolites in fatty liver disease. We aimed at finding GM signatures and metabolite markers in plasma and feces related to high liver fat content. Based on imaging, we divided study participants into low (<5%, LF, n = 25) and high (>5%, HF, n = 39) liver fat groups. Fecal (LF n = 14, HF n = 25) and plasma (LF n = 11, HF n = 7) metabolomes of subsets of participants were studied using liquid chromatography/high resolution mass spectrometry. The GM were analyzed using 16S rRNA gene sequencing. Additionally, blood clinical variables and diet were studied. Dyslipidemia, higher liver enzymes and insulin resistance characterized the HF group. No major differences in diet were found between the groups. In the GM, the HF group had lower abundance of Bacteroides and Prevotellaceae NK3B31 group than the LF group after adjusting for metformin use or obesity. In feces, the HF group had higher levels of lysine and histidine degradation products, while 6-hydroxybetatestosterone (metabolized by CYP3A4) was low. Higher plasma levels of caffeine and its metabolites in the HF group indicate that the activity of hepatic CYP1A2 was lower than in the LF group. Our results suggest, that low fecal Prevotellaceae NK3B31 and Bacteroides abundance, and increased lysine and histidine degradation may serve as GM biomarkers of high liver fat. Altered plasma caffeine metabolites and lowered testosterone metabolism may specify decreased CYP activities, and their potential utility, as biomarkers of fatty liver disease. IMPORTANCE Because the high prevalence of nonalcoholic fatty liver disease sets diagnostic challenges to health care, identification of new biomarkers of the disease that in the future could have potential utility as diagnostic biomarkers of high liver fat content is important. Our results show that increased amino acid degradation products in the feces may be such biomarkers. In the blood, molecules that indicate defective hepatic metabolic enzyme activities were identified in individuals with high liver fat content.
Collapse
|
37
|
Murphy WA, Adiwidjaja J, Sjöstedt N, Yang K, Beaudoin JJ, Spires J, Siler SQ, Neuhoff S, Brouwer KLR. Considerations for Physiologically Based Modeling in Liver Disease: From Nonalcoholic Fatty Liver (NAFL) to Nonalcoholic Steatohepatitis (NASH). Clin Pharmacol Ther 2023; 113:275-297. [PMID: 35429164 PMCID: PMC10083989 DOI: 10.1002/cpt.2614] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), representing a clinical spectrum ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), is rapidly evolving into a global pandemic. Patients with NAFLD are burdened with high rates of metabolic syndrome-related comorbidities resulting in polypharmacy. Therefore, it is crucial to gain a better understanding of NAFLD-mediated changes in drug disposition and efficacy/toxicity. Despite extensive clinical pharmacokinetic data in cirrhosis, current knowledge concerning pharmacokinetic alterations in NAFLD, particularly at different stages of disease progression, is relatively limited. In vitro-to-in vivo extrapolation coupled with physiologically based pharmacokinetic and pharmacodynamic (IVIVE-PBPK/PD) modeling offers a promising approach for optimizing pharmacologic predictions while refining and reducing clinical studies in this population. Use of IVIVE-PBPK to predict intra-organ drug concentrations at pharmacologically relevant sites of action is particularly advantageous when it can be linked to pharmacodynamic effects. Quantitative systems pharmacology/toxicology (QSP/QST) modeling can be used to translate pharmacokinetic and pharmacodynamic data from PBPK/PD models into clinically relevant predictions of drug response and toxicity. In this review, a detailed summary of NAFLD-mediated alterations in human physiology relevant to drug absorption, distribution, metabolism, and excretion (ADME) is provided. The application of literature-derived physiologic parameters and ADME-associated protein abundance data to inform virtual NAFLD population development and facilitate PBPK/PD, QSP, and QST predictions is discussed along with current limitations of these methodologies and knowledge gaps. The proposed methodologic framework offers great potential for meaningful prediction of pharmacological outcomes in patients with NAFLD and can inform both drug development and clinical practice for this population.
Collapse
Affiliation(s)
- William A Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffry Adiwidjaja
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Simulations Plus, Inc., Lancaster, California, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | - James J Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Scott Q Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
38
|
Di Ciaula A, Shanmugam H, Ribeiro R, Pina A, Andrade R, Bonfrate L, Raposo JF, Macedo MP, Portincasa P. Liver fat accumulation more than fibrosis causes early liver dynamic dysfunction in patients with non-alcoholic fatty liver disease. Eur J Intern Med 2023; 107:52-59. [PMID: 36344354 DOI: 10.1016/j.ejim.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In Non-Alcoholic Fatty Liver Disease (NAFLD), events driving early hepatic dysfunction with respect to specific metabolic pathways are still poorly known. METHODS We enrolled 84 subjects with obesity and/or type 2 diabetes (T2D). FibroScan® served to assess NAFLD by controlled attenuation parameter (CAP), and fibrosis by liver stiffness (LS). Patients with LS above 7 kPa were excluded. APRI and FIB-4 were used as additional serum biomarkers of fibrosis. The stable-isotope dynamic breath test was used to assess the hepatic efficiency of portal extraction (as DOB15) and microsomal metabolization (as cPDR30) of orally-administered (13C)-methacetin. RESULTS NAFLD occurred in 45%, 65.9%, and 91.3% of normal weight, overweight, and obese subjects, respectively. Biomarkers of liver fibrosis were comparable across subgroups, and LS was higher in obese, than in normal weight subjects. DOB15 was 23.2 ± 1.5‰ in normal weight subjects, tended to decrease in overweight (19.9 ± 1.0‰) and decreased significantly in obese subjects (16.9 ± 1.3, P = 0.008 vs. normal weight). Subjects with NAFLD had lower DOB15 (18.7 ± 0.9 vs. 22.1 ± 1.2, P = 0.03) but higher LS (4.7 ± 0.1 vs. 4.0 ± 0.2 kPa, P = 0.0003) than subjects without NAFLD, irrespective of fibrosis. DOB15 (but not cPDR30) decreased with increasing degree of NAFLD (R = -0.26; P = 0.01) and LS (R = -0.23, P = 0.03). Patients with T2D showed increased rate of NAFLD than those without T2D but similar LS, DOB15 and cPDR30. CONCLUSIONS Overweight, obesity and liver fat accumulation manifest with deranged portal extraction efficiency of methacetin into the steatotic hepatocyte. This functional alteration occurs early, and irrespective of significant fibrosis and presence of T2D.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Piazza Giulio Cesare 11, Bari 70124, Italy
| | - Harshitha Shanmugam
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Piazza Giulio Cesare 11, Bari 70124, Italy
| | - Rogério Ribeiro
- Portuguese Diabetes Association-Education and Research Center (APDP-ERC), Lisbon 1150-082, Portugal
| | - Ana Pina
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Rita Andrade
- Portuguese Diabetes Association-Education and Research Center (APDP-ERC), Lisbon 1150-082, Portugal
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Piazza Giulio Cesare 11, Bari 70124, Italy.
| | - João F Raposo
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal; Portuguese Diabetes Association-Education and Research Center (APDP-ERC), Lisbon 1150-082, Portugal
| | - M Paula Macedo
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal; Portuguese Diabetes Association-Education and Research Center (APDP-ERC), Lisbon 1150-082, Portugal
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Piazza Giulio Cesare 11, Bari 70124, Italy.
| |
Collapse
|
39
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
40
|
Abdallah YEH, Chahal S, Jamali F, Mahmoud SH. Drug-disease interaction: Clinical consequences of inflammation on drugs action and disposition. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11137. [PMID: 36942294 PMCID: PMC9990632 DOI: 10.3389/jpps.2023.11137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Inflammation is a culprit in many conditions affecting millions of people worldwide. A plethora of studies has revealed that inflammation and inflammatory mediators such as cytokines and chemokines are associated with altered expression and activity of various proteins such as those involved in drug metabolism, specifically cytochrome P450 enzymes (CYPs). Emphasis of most available reports is on the inflammation-induced downregulation of CYPs, subsequently an increase in their substrate concentrations, and the link between the condition and the inflammatory mediators such as interleukin-6 and tumor necrosis factor alpha. However, reports also suggest that inflammation influences expression and/or activity of other proteins such as those involved in the drug-receptor interaction. These multifaced involvements render the clinical consequence of the inflammation unexpected. Such changes are shown in many inflammatory conditions including rheumatoid arthritis, Crohn's disease, acute respiratory illnesses as well as natural processes such as aging, among others. For example, some commonly used cardiovascular drugs lose their efficacy when patients get afflicted with inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Interestingly, this is despite increased concentration subsequent to reduced clearance. The observation is attributed to a simultaneous reduction in the expression of target receptor proteins such as the calcium and potassium channel and β-adrenergic receptor as well as the metabolic enzymes. This narrative review summarizes the current understanding and clinical implications of the inflammatory effects on both CYPs and drug-receptor target proteins.
Collapse
|
41
|
Albadry M, Höpfl S, Ehteshamzad N, König M, Böttcher M, Neumann J, Lupp A, Dirsch O, Radde N, Christ B, Christ M, Schwen LO, Laue H, Klopfleisch R, Dahmen U. Periportal steatosis in mice affects distinct parameters of pericentral drug metabolism. Sci Rep 2022; 12:21825. [PMID: 36528753 PMCID: PMC9759570 DOI: 10.1038/s41598-022-26483-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Little is known about the impact of morphological disorders in distinct zones on metabolic zonation. It was described recently that periportal fibrosis did affect the expression of CYP proteins, a set of pericentrally located drug-metabolizing enzymes. Here, we investigated whether periportal steatosis might have a similar effect. Periportal steatosis was induced in C57BL6/J mice by feeding a high-fat diet with low methionine/choline content for either two or four weeks. Steatosis severity was quantified using image analysis. Triglycerides and CYP activity were quantified in photometric or fluorometric assay. The distribution of CYP3A4, CYP1A2, CYP2D6, and CYP2E1 was visualized by immunohistochemistry. Pharmacokinetic parameters of test drugs were determined after injecting a drug cocktail (caffeine, codeine, and midazolam). The dietary model resulted in moderate to severe mixed steatosis confined to periportal and midzonal areas. Periportal steatosis did not affect the zonal distribution of CYP expression but the activity of selected CYPs was associated with steatosis severity. Caffeine elimination was accelerated by microvesicular steatosis, whereas midazolam elimination was delayed in macrovesicular steatosis. In summary, periportal steatosis affected parameters of pericentrally located drug metabolism. This observation calls for further investigations of the highly complex interrelationship between steatosis and drug metabolism and underlying signaling mechanisms.
Collapse
Affiliation(s)
- Mohamed Albadry
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany ,grid.411775.10000 0004 0621 4712Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Sebastian Höpfl
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Nadia Ehteshamzad
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Matthias König
- grid.7468.d0000 0001 2248 7639Institute for Theoretical Biology, Institute of Biology, Humboldt-University, Berlin, Germany
| | - Michael Böttcher
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Jasna Neumann
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Amelie Lupp
- grid.275559.90000 0000 8517 6224Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Olaf Dirsch
- grid.459629.50000 0004 0389 4214Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Nicole Radde
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Bruno Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Madlen Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Lars Ole Schwen
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Hendrik Laue
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Robert Klopfleisch
- grid.14095.390000 0000 9116 4836Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Uta Dahmen
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| |
Collapse
|
42
|
Changes in Disposition of Ezetimibe and Its Active Metabolites Induced by Impaired Hepatic Function: The Influence of Enzyme and Transporter Activities. Pharmaceutics 2022; 14:pharmaceutics14122743. [PMID: 36559237 PMCID: PMC9785202 DOI: 10.3390/pharmaceutics14122743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Ezetimibe (EZE) is a selective cholesterol absorption inhibitor. Hepatic impairment significantly increases the systemic exposure of EZE and its main active phenolic glucuronide, EZE-Ph. Although changes in efflux transporter activity partly explain the changes in EZE-Ph pharmacokinetics, the causes of the changes to EZE and the effects of the administration route on EZE-Ph remain unclear. A carbon tetrachloride (CCl4)-induced hepatic failure rat model was combined with in vitro experiments to explore altered EZE and EZE-Ph disposition caused by hepatic impairment. The plasma exposure of EZE and EZE-Ph increased by 11.1- and 4.4-fold in CCl4-induced rats following an oral administration of 10 mg/kg EZE, and by 2.1- and 16.4-fold after an intravenous injection. The conversion of EZE to EZE-Ph decreased concentration-dependently in CCl4-induced rat liver S9 fractions, but no change was observed in the intestinal metabolism. EZE-Ph was a substrate for multiple efflux and uptake transporters, unlike EZE. In contrast to efflux transporters, no difference was seen in the hepatic uptake of EZE-Ph between control and CCl4-induced rats. However, bile acids that accumulated due to liver injury inhibited the uptake of EZE-Ph by organic anion transporting polypeptides (OATPs) (glycochenodeoxycholic acid and taurochenodeoxycholic acid had IC50 values of 15.1 and 7.94 μM in OATP1B3-overexpressed cells). In conclusion, the increased plasma exposure of the parent drug EZE during hepatic dysfunction was attributed to decreased hepatic glucuronide conjugation, whereas the increased exposure of the metabolite EZE-Ph was mainly related to transporter activity, particularly the inhibitory effects of bile acids on OATPs after oral administration.
Collapse
|
43
|
Sun F, Piao M, Zhang X, Zhang S, Wei Z, Liu L, Bu Y, Xu S, Zhao X, Meng X, Yue M. Multi-Omics Analysis of Transcriptomic and Metabolomics Profiles Reveal the Molecular Regulatory Network of Marbling in Early Castrated Holstein Steers. Animals (Basel) 2022; 12:3398. [PMID: 36496924 PMCID: PMC9736081 DOI: 10.3390/ani12233398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The intramuscular fat (IMF), or so-called marbling, is known as potential determinant of the high quality beef in China, Korea, and Japan. Of the methods that affect IMF content in cattle, castration is markedly regarded as an effective and economical way to improve the deposition of IMF but with little attention to its multi-omics in early-castrated cattle. The aim of this study was to investigate the liver transcriptome and metabolome of early-castrated Holstein cattle and conduct a comprehensive analysis of two omics associated with the IMF deposition using transcriptomics and untargeted metabolomics under different treatments: non−castrated and slaughtered at 16 months of age (GL16), castrated at birth and slaughtered at 16 months of age (YL16), and castrated at birth and slaughtered at 26 months of age (YL26). The untargeted metabolome was analyzed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The transcriptome of the hepatic genes was analyzed to identify marbling-related genes. Using untargeted metabolomics, the main altered metabolic pathways in the liver of cattle, including those for lipid and amino acid metabolism, were detected in the YL16 group relative to the GL16 and YL26 groups. Significant increases in the presence of betaine, alanine, and glycerol 3-phosphate were observed in the YL16 group (p < 0.05), which might have contributed to the improved beef-marbling production. Compared to the GL16 and YL26 groups, significant increases in the presence of glutathione, acetylcarnitine, and riboflavin but decreases in diethanolamine and 2-hydroxyglutarate were identified in YL16 group (p < 0.05), which might have been beneficial to the beef’s enhanced functional quality. The gene expressions of GLI1 and NUF2 were downregulated and that of CYP3A4 was upregulated in the YL16 group; these results were strongly correlated with the alanine, betaine, and leucine, respectively, in the liver of the cattle. In conclusion, implementation of early castration modified the hepatic metabolites and the related biological pathways by regulating the relevant gene expressions, which could represent a better rearing method for production of high marbled and healthier beef products.
Collapse
Affiliation(s)
- Fang Sun
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Minyu Piao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siqi Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Wei
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ye Bu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shanshan Xu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaochuan Zhao
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiangren Meng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Mengmeng Yue
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
44
|
Krøyer Rasmussen M, Thøgersen R, Horsbøl Lindholm P, Bertram HC, Pilegaard H. Hepatic PGC-1α has minor regulatory effect on the transcriptome and metabolome during high fat high fructose diet and exercise. Gene 2022; 851:147039. [DOI: 10.1016/j.gene.2022.147039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
45
|
Nguyen HD, Kim MS. Effects of chemical mixtures on liver function biomarkers in the Korean adult population: thresholds and molecular mechanisms for non-alcoholic fatty liver disease involved. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78555-78587. [PMID: 35696061 DOI: 10.1007/s11356-022-21090-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
There is a scarcity of research on the effects of a mixture of chemicals on liver function biomarkers and non-alcoholic fatty liver disease (NAFLD) indices, including FSI, HIS, and FBI-4. Thus, we aimed to explore whether there is an association between chemical mixtures, including 26 chemicals found in blood and urine, liver function biomarkers, and non-alcoholic fatty liver disease (NAFLD) indices in Korean adults. The effects of exposure to chemical mixtures on liver function biomarkers and NAFLD indices were investigated using linear regression models, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) among 3669 adults. In silico toxicogenomic data-mining, we evaluated molecular mechanisms associated with NAFLD, including pathways, diseases, genes, miRNAs, and biological processes. The linear regression models showed blood or urine Hg levels were the most important factors associated with AST, ALT, GGT, FSI, and HSI levels, and significant trends were observed for these chemical quartiles (p < 0.01). The WQS index was significantly associated with ALT, GGT, FSI, and HSI. The qgcomp index also found an association between chemicals and AST, ALT, GGT, and FSI. In the BKMR model, the overall effect of the mixture was significantly related to ALT, GGT, FSI, and HSI. In silico analysis, we found mixed chemicals interacted with the CYP1A2 gene and were associated with NAFLD. Seventy-eight percent of interactions were identified as physical interactions in the CYP1A2 gene related to NAFLD. Transcription factor regulation in adipogenesis and lipid metabolic processes are fundamental molecular mechanisms that could be influenced by NAFLD-related mixed chemicals. Cutoff thresholds for chemical exposure levels associated with liver function indicators and NAFLD indices were also reported. The strongest interactions and expression of miRNAs involved in NAFLD development were also identified.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
46
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
47
|
Zhang T, Krekels EHJ, Smit C, Knibbe CAJ. Drug pharmacokinetics in the obese population: challenging common assumptions on predictors of obesity-related parameter changes. Expert Opin Drug Metab Toxicol 2022; 18:657-674. [PMID: 36217846 DOI: 10.1080/17425255.2022.2132931] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Obesity is associated with many physiological changes. We review available evidence regarding five commonly accepted assumptions to a priori predict the impact of obesity on drug pharmacokinetics (PK). AREAS COVERED The investigated assumptions are: 1) lean body weight is the preferred descriptor of clearance and dose adjustments; 2) volume of distribution increases for lipophilic, but not for hydrophilic drugs; 3) CYP-3A4 activity is suppressed and UGT activity is increased, implying decreased and increased dose requirements for substrates of these enzyme systems, respectively; 4) glomerular filtration rate is enhanced, necessitating higher doses for drugs cleared through glomerular filtration; 5) drug dosing information from obese adults can be extrapolated to obese adolescents. EXPERT OPINION Available literature contradicts, or at least limits the generalizability, of all five assumptions. Clinical studies should focus on quantifying the impact of duration and severity of obesity on drug PK in adults and adolescents, and also include oral bioavailability and pharmacodynamics in these studies. Physiologically-based PK approaches can be used to predict PK changes for individual drugs, but can also be used to define in general terms based on patient characteristics and drug properties, when certain assumptions can or cannot be expected to be systematically accurate.
Collapse
Affiliation(s)
- Tan Zhang
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cornelis Smit
- Department of Clinical Pharmacy, Antonius Hospital Sneek, The Netherlands
| | - Catherijne A J Knibbe
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital Nieuwegein, The Netherlands
| |
Collapse
|
48
|
A Physiologically Based Pharmacokinetic Model to Predict the Impact of Metabolic Changes Associated with Metabolic Associated Fatty Liver Disease on Drug Exposure. Int J Mol Sci 2022; 23:ijms231911751. [PMID: 36233052 PMCID: PMC9570165 DOI: 10.3390/ijms231911751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease, with an estimated prevalence of between 20 and 30% worldwide. Observational data supported by in vitro and pre-clinical animal models of MAFLD suggest meaningful differences in drug disposition in MAFLD patients. This study aimed to build a physiologically based pharmacokinetic (PBPK) model reflecting observed changes in physiological and molecular parameters relevant to drug disposition that are associated with MAFLD. A comprehensive literature review and meta-analysis was conducted to identify all studies describing in vivo physiological changes along with in vitro and pre-clinical model changes in CYP 1A2, 2C9, 2C19, 2D6 and 3A4 protein abundance associated with MAFLD. A MAFLD population profile was constructed in Simcyp (version 19.1) by adapting demographic and physiological covariates from the Sim-Healthy population profile based on a meta-analysis of observed data from the published literature. Simulations demonstrated that single dose and steady state area under the plasma concentration time curve (AUC) for caffeine, clozapine, omeprazole, metoprolol, dextromethorphan and midazolam, but not s-warfarin or rosiglitazone, were increased by >20% in the MAFLD population compared to the healthy control population. These findings indicate that MAFLD patients are likely to be experience meaningfully higher exposure to drugs that are primarily metabolized by CYP 1A2, 2C19, 2D6 and 3A4, but not CYP2C9. Closer monitoring of MAFLD patients using drugs primarily cleared by CYP 1A2, 2C19 and 3A4 is warranted as reduced metabolic activity and increased drug exposure are likely to result in an increased incidence of toxicity in this population.
Collapse
|
49
|
Xiao J, Li X, Zhou Z, Guan S, Zhuo L, Gao B. Development of an in vitro insulin resistance dissociated model of hepatic steatosis by co-culture system. Biosci Trends 2022; 16:257-266. [PMID: 35965099 DOI: 10.5582/bst.2022.01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The evidence shows that there is an associated relationship between hepatosteatosis and insulin resistance. While some existing genetic induction animal and patient models challenge this relationship, indicating that hepatosteatosis is dissociated from insulin resistance. However, the molecular mechanisms of this dissociation remain poorly understood due to a lack of available, reliable, and simplistic setup models. Currently, we used primary rat hepatocytes (rHPCs), co-cultured with rat hepatic stellate cells (HSC-T6) or human foreskin fibroblast cells (HFF-1) in stimulation with high insulin and glucose, to develop a model of steatosis charactered as dissociated lipid accumulation from insulin resistance. Oil-Red staining significantly showed intracellular lipid accumulated in the developed model. Gene expression of sterol regulatory element-binding protein 1c (SREBP1c) and elongase of very-long-chain fatty acids 6 (ELOVL6), key genes responsible for lipogenesis, were detected and obviously increased in this model. Inversely, the insulin resistance related genes expression included phosphoenolpyruvate carboxykinase 1 (PCK1), pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4), and glucose-6-phosphatase (G6pase) were decreased, suggesting a dissociation relationship between steatosis and insulin resistance in the developed model. As well, the drug metabolism of this developed model was investigated and showed up-regulation of cytochrome P450 3A (CYP3A) and down-regulation of cytochrome P450 2E1 (CYP2E1) and cytochrome P450 1A2 (CYP1A2). Taken together, those results demonstrate that the in vitro model of dissociated steatosis from insulin resistance was successfully created by our co-cultured cells in high insulin and glucose medium, which will be a potential model for investigating the mechanism of insulin resistance dissociated steatosis, and discovering a novel drug for its treatment.
Collapse
Affiliation(s)
- Jiangwei Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| | - Xiang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongbao Zhou
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| | - Shuwen Guan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| | - Lingjian Zhuo
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| |
Collapse
|
50
|
Identification of Shared Gene Signatures in Different Stages of Nonalcoholic Fatty Liver Disease Using Integrated Microarray Datasets. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease worldwide. Left untreated, it can be a risk factor for developing cirrhosis or hepatocellular carcinoma (HCC). Although experts have made many efforts to find the underlying mechanisms of NAFLD, they remain a mystery. Objectives: This study aimed to distinguish common gene signatures and pathways in the human liver during NAFLD progression through systems biology. Methods: In this study, the researchers selected three microarray datasets, GSE48452, GSE63067, and GSE89632, from the NCBI GEO database to explore differentially expressed genes (DEGs) among healthy controls, simple steatosis, and nonalcoholic steatohepatitis (NASH) patients. Furthermore, protein-protein interaction (PPI) networks and pathway enrichment analyses were used to detect common genes and biological pathways in different stages of NAFLD. Results: The current study included 45 healthy participants, 36 simple steatosis patients, and 46 NASH patients. Common genes for NAFLD progression were Chi3L1, ICAM1, MT1A, MT1H, ABCB11, ACOT1, CYP2C9, HSP90B1, and CPB2, which are involved in inflammation and oxidative stress pathways. Conclusions: The present study investigated the shared vital genes and pathways between different stages of NAFLD, which may facilitate understanding NAFLD mechanisms and identifying potential therapeutic targets in this disease.
Collapse
|