1
|
Guo X, Su Y, Liu J, Lei H, Li F, Li Y. Multi-Plug Filtration Purification Combined With Gas Chromatography-Tandem Mass Spectrometry for the Detection of 107 Pesticides in Livestock and Poultry Meat. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10062. [PMID: 40344597 DOI: 10.1002/rcm.10062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
RATIONALE With the global rise in foodborne diseases, excessive pesticide residues in livestock and poultry meat have emerged as a critical food safety issue. China is a large consumer of livestock and poultry meat, and the traditional national method standard can only detect a few or one type of pesticide in these meats. Establishing a method for the simultaneous detection of multiple types of pesticides in these meats can effectively protect people's health and safety. METHODS The extraction process was done using acetonitrile direct extraction, followed by clean-up through multi-plug filtration. Separation was achieved using gas chromatography on an HP-5MS capillary column with a programmed temperature gradient, and detection was performed via mass spectrometry in multiple reaction monitoring modes. RESULTS The linear ranges of 107 analytes exhibited strong correlation coefficients, all exceeding 0.9901, with limits of quantification spanning from 1.0 to 15.2 μg/kg. The average recoveries, inter-day relative standard deviations (inter-day RSDs), and intra-day relative standard deviations (intra-day RSDs) of the 94 analytes ranged from 70.2% to 120.0%, 4.0% to 16.0%, and 4.5% to 16.8%, respectively, at the three different spiked levels. CONCLUSION A multi-plug filtration purification combined with gas chromatography-tandem mass spectrometry method was successfully applied to the detection of 107 pesticide residues in livestock and poultry meat, which is simple, reliable, and reproducible. It provides a comprehensive solution for the detection of pesticide residues in livestock and poultry meat.
Collapse
Affiliation(s)
- Xuwei Guo
- Beijing Changping District Centre for Disease Control and Prevention, Beijing, China
| | - Youzhi Su
- Yining Customs Technology Center, Yining, China
| | - Jun Liu
- Chengdu Customs Technology Center, Chengdu, China
| | - Hongqin Lei
- Yining Customs Technology Center, Yining, China
| | - Fang Li
- Yining Customs Technology Center, Yining, China
| | - Yanmei Li
- Yining Customs Technology Center, Yining, China
| |
Collapse
|
2
|
Ji J, Gong X, Liu G, Yin S, Ling F, Wang G. Antiparasitic effect of (+)-catechin derived from Pseudolarix amabilis against Dactylogyrus intermedius in goldfish. Vet Parasitol 2025; 334:110399. [PMID: 39827727 DOI: 10.1016/j.vetpar.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Medicinal plants are considered promising candidates for controlling parasitic pathogen in aquaculture. Our previous study demonstrated that the crude extracts of Pseudolarix amabilis exhibit promising anti-Dactylogyrus intermedius activity. However, the specific compounds responsible for the antiparasitic effects of these crude extracts remain elusive. In this study, the bioactive compounds from the ethyl acetate extract of P. amabilis were isolated by the multi-column chromatography and in vivo bioassay-guided methods. Two crystalline compounds were identified as (+)-catechin through the nuclear magnetic resonance spectroscopy and specific rotation analysis. (+)-Catechin showed 98.1 % antiparasitic activity at 20 mg/L with the median effective concentration (EC50) of 4.3 mg/L. The 96 h median lethal concentration (LC50) of (+)-catechin for zebrafish larvae and goldfish was determined to be 32.9 and 152.8 mg/L, respectively. The therapeutic index (TI) of (+)-catechin was 6.8 and 35.5, indicating a potential for safe application in aquaculture. These findings suggest that (+)-catechin could be further developed as a viable therapeutic agent against D. intermedius.
Collapse
Affiliation(s)
- Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China.
| | - Xiang Gong
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China
| | - Guanglu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Temiz Ö, Dayangaç A. Toxic Effects of Imidacloprid, Copper Sulfate, and Their Combinations on Biomolecular and Oxidative/Antioxidant Biomarkers in the Tissues of Oreochromis niloticus. Biol Trace Elem Res 2025; 203:454-466. [PMID: 39361120 DOI: 10.1007/s12011-024-04404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 01/07/2025]
Abstract
The wide-ranging use of heavy metals and pesticides worldwide and their irreversible accumulation in aquatic ecosystems is a major concern. As the range of household and agricultural chemicals increases, water pollution is trending from the toxic effects of a single agent to complex agent pollution that threatens aquatic ecosystems. The aim of this study was to investigate the effects of pesticides (imidacloprid, IMI) and metals (copper sulfate, CuSO4) on oxidative stress biomarkers, antioxidant enzymes, and biomolecular parameters. The present study on the individual and combined effects of Oreochromis niloticus copper sulfate (CuSO4; 1 ppm), imidacloprid (IMI; 10 and 50 ppm), and IMI + CuSO4 (IMI10 + CuSO4, IMI50 + CuSO4) groups for 14 days. In this context, oxidative stress/antioxidant markers (SOD, CAT, GST, and GSH) and biomolecular markers including HSP70, 8-OHdG, PC, and TBARS levels were examined in fish liver and kidney tissues, which are detoxification organs. The results indicated that IMI and CuSO4 toxicity alone and in combination altered oxidative stress/antioxidant markers and biomolecular parameters; moreover, 14 days of exposure to the combination of CuSO4 and imidacloprid in particular exhibited a synergistic effect and caused oxidative toxicity. These findings highlighted the importance of evaluating mixtures of pesticides and metals and that the results show a remarkably synergistic effect. It can be concluded that these biomarkers are important indicators of physiological changes in living organisms.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, Osmaniye, Turkey.
| | - Alpaslan Dayangaç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| |
Collapse
|
4
|
Gültekin VK, Atamanalp M, Ucar A, Alak G, Parlak V. Testing the detoxification power of black cumin oil ( Nigella sativa) over cypermethrin insecticide effects in rainbow trout ( Oncorhynchus mykiss) at multiple scales. Drug Chem Toxicol 2024; 47:909-922. [PMID: 38326995 DOI: 10.1080/01480545.2024.2311279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
This study investigated the curative effect of black cumin oil (Nigella sativa, NS), which is a phytotherapeutic agent against to cypermethrin (CYP), which is known to have adverse effects on rainbow trout (Oncorhynchus mykiss)'s behavioral changes, oxidative stress-mediated neurotoxicity, hematotoxicity and hepatotoxicity parameters.At the end of the trial period; (i) evaluation of critical swimming speed (Ucrit) (ii) hematology indices [white blood cell (WBC), red blood cell (RBC), hemoglobin (Hgb), hematocrit (Hct), mean cell volume (MCV), mean cell hemoglobin) (MCH), mean cell hemoglobin concentration (MCHC)] (iii) Elucidation of the mechanism of functional damage in brain tissue of O. mykiss by neurological parameter [acetylcholinesterase (AChE)] (iv) Evaluation of oxidative damage in oxidative stress-mediated neurotoxicity and hepatotoxicity in liver, gill and brain tissue of O. mykiss with antioxidant enzymes [(Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Glutathione (GSH)] and [(detection by means of malondialdehyde (MDA)] (v) Obtaining applicable data in the toxicological field using a multi-biomarker approach to investigate the modulation of NS administration via target markers in the physiological pathway of O. mykiss were aimed.As a result of CYP application, it was determined that the Ucrit value of O. mykiss decreased significantly. It was determined that the changes in the values of RBC, Hgb and Hct, which are among the hematology parameters examined in the blood tissue, were statistically significant (p < 0.05). It was determined that WBC value was inhibited by CYP application and NS tried to make a positive contribution to WBC. It was determined that the AChE activity of O. mykiss in the brain tissue had a statistically significant inhibition in the CYP-treated group (p < 0.05). SOD, CAT, GPx, enzyme activities were found to be inhibited by CYP application and were statistically significant (p < 0.05). Acute toxicity of CYP was determined by antioxidant enzyme biomarkers in gill tissue. In the results obtained; While inhibitions were determined in SOD, CAT, GPx activities compared to the control group, an induction occurred in MDA value.NS administration was noted to be an important modulator of the SOD-CAT system against CYP exposure at both concentrations. Thus, it can be said that it indirectly functions as an effective antioxidant through the NS receptor protein and structurally stimulates the synthesis and activity of antioxidative enzymes under oxidative stress.
Collapse
Affiliation(s)
| | | | - Arzu Ucar
- Department of Aquaculture, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Banaee M, Zeidi A, Haghi BN, Beitsayah A. The toxicity effects of imidacloprid and chlorpyrifos on oxidative stress and blood biochemistry in Cyprinus carpio. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109979. [PMID: 39033793 DOI: 10.1016/j.cbpc.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to assess the toxicity effects of chlorpyrifos and imidacloprid, alone and in combination, on oxidative biomarkers and blood biochemistry of Cyprinus carpio. A total of 324 common carp (Cyprinus carpio) were distributed among 27 tanks and exposed to concentrations of 0.0, 100, and 200 μg L-1 of chlorpyrifos and 0.0, 10.0, and 20.0 μg L-1 of imidacloprid for 28 days. Changes in enzyme activities in the plasma of fish exposed to chlorpyrifos depended on the dose. In contrast, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), gamma-glutamyl transferase (GGT) activities were significantly increased in fish exposed to imidacloprid, alone and in combination with chlorpyrifos. However, the activity of butyrylcholinesterase (BChE) was significantly decreased. Exposure to imidacloprid and chlorpyrifos, alone and in combination, increased glucose, urea, cholesterol, triglycerides, and creatinine levels, whereas total protein and albumin levels were significantly decreased. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) was significantly increased, while glutathione reductase (GR) was significantly decreased. Additionally, although the total antioxidant capacity (TAN) was significantly decreased, malondialdehyde (MDA) levels increased after exposure to imidacloprid and chlorpyrifos, alone and in combination. In conclusion, exposure to imidacloprid and chlorpyrifos, alone and in combination, induced oxidative stress and altered blood biochemistry in carp fish. Moreover, imidacloprid and chlorpyrifos had synergistic effects on some oxidative and biochemical biomarkers.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Amal Beitsayah
- Aquaculture Department, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
6
|
Naiel MA, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A. Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
7
|
Naiel MAE, Abd El-Hameed SAA, Ahmed AI, Ismaiel NEM. The effect of dietary administration of Saussurea lappa root on performance, blood biochemical indices, redox status, innate immune response, intestinal microbial population and resistance against A. hydrophila infections of Tilapia Fingerlings. J Anim Physiol Anim Nutr (Berl) 2024; 108:1537-1553. [PMID: 38851860 DOI: 10.1111/jpn.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
This experiment was performed to identify the influence of dietary Saussurea lappa root (SLR) on the performance and general health status of Nile Tilapia fingerlings (O. niloticus). Four formulated diets with different SLR levels of 0.0, 2.5, 5 and 10 g/kg, respectively, were afforded to fingerling fish (15.42 ± 0.05 g) for 8 weeks. The feed efficiency ratio (FER), feed intake (FI) and feed conversion ratio varied with dietary SLR level in a linear model and a high feed efficiency rate was recorded at the 10 g/kg group, while FI and FCR exhibited an opposite trend (P < 0.001). Dietary SLR level influenced serum protein constituents, liver and renal function enzymes, triglycerides, cholesterol and glucose (P < 0.001). Serum Catalase (CAT), total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) remarkedly increased with dietary SLR level and attained a level at 10 g/kg. Furthermore, serum lysozyme, complement C3 (C3), IgA and IgD were stimulated by 10 g/kg SLR. Intestinal digestive enzymes (lipase and amylase) increased with SLR level up to 10 g/kg. As the dietary SLR level raised, the cumulative survival percentage aginst A. hydrophila challenge increased and then reached a maximum at 10 g/kg SLR group. Moreover, gene expression of pro-inflammation cytokines (TNF-2a, IL-1β, and IL-10) in liver and kidney transcriptomes demonstrated effective immunostimulant capabilities of greater SLR inclusion levels in fish diet. Meanwhile, intestinal microbial investigation, revealed that high levels of SLR in tilapia fish feed significantly suppressed total bacterial count, and pathogenic bacterial count (such as, E. coli, Coliform, Aeromonas spp, Pseudomonas spp.), and stimulated lactic acid bacteria development. Finally, it is recommended to include a high level of SLR (5 or 10 g/kg) in the diet of O. niloticus fingerlings to enhance feed efficiency, antioxidant characteristics, and immunological response against bacterial infections.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Samah A A Abd El-Hameed
- Fish health and diseases Department, Central laboratory for Aquaculture Research, Abbassa, Abu Hammad, Agriculture Research center, Giza, Egypt
| | - Amany I Ahmed
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nahla E M Ismaiel
- Fish Biology and Ecology Department, Central laboratory for Aquaculture Research, Abbassa, Abu Hammad, Agriculture Research center, Giza, Egypt
| |
Collapse
|
8
|
Liu S, Lazarcik J, Wei H. Emerging investigator series: quantitative insights into the relationship between the concentrations and SERS intensities of neonicotinoids in water. ENVIRONMENTAL SCIENCE. NANO 2024; 11:3294-3300. [PMID: 40201314 PMCID: PMC11977776 DOI: 10.1039/d4en00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
This study explores the theoretical foundation behind the application of surface-enhanced Raman spectroscopy (SERS) for neonicotinoid quantification. Our findings demonstrate that SERS intensities are determined by the thermodynamic adsorption behaviors of neonicotinoid molecules transitioning from aqueous phases to gold nanoparticle (AuNP) surfaces. The dynamic ranges and limits of detection can be accurately predicted by classic adsorption isotherms.
Collapse
Affiliation(s)
- Shengdong Liu
- Environmental Chemistry and Technology Program, University of Wisconsin–Madison, Madison, WI 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - James Lazarcik
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin–Madison, Madison, WI 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI 53706, United States
| |
Collapse
|
9
|
Eissa ESH, Khattab MS, Elbahnaswy S, Elshopakey GE, Alamoudi MO, Aljàrari RM, Munir MB, Kari ZA, Naiel MAE. The effects of dietary Spirulina platensis or curcumin nanoparticles on performance, body chemical composition, blood biochemical, digestive enzyme, antioxidant and immune activities of Oreochromis niloticus fingerlings. BMC Vet Res 2024; 20:215. [PMID: 38773537 PMCID: PMC11106962 DOI: 10.1186/s12917-024-04058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
CONTEXT Recently, prioritize has been given to using natural phytogenic or nano compounds as growth promoters and immunostimulants in fish diets as an alternative to antibiotics. AIMS The main propose of this trial was to determine the impact of supplementing diets with spirulina or curcumin nanoparticles on the performance and health indicators of Nile tilapia fingerlings. METHODS In a 56-day feeding trial, 180 tilapia fingerlings were assigned into three main groups, as follows: 1st, control group, 2nd, Spirulina platensis (SP; 5 g kg-1 diet) and 3rd, curcumin nanoparticles (CUR-NPs; 30 mg kg-1 diet). KEY RESULTS Incorporating tilapia diets with SP or CUR-NPs significantly improved performance, body chemical analysis, blood biochemical and hematological indices, digestive enzyme activities, and antioxidant and immunostimulant features compared to the control. CONCLUSION Fortified tilapia diets with CUR-NPs or SP efficiently boost the productivity and health of Nile tilapia fingerlings. IMPLICATIONS The research introduces new practical solutions for applying safe feed additives as alternatives to antibiotics in tilapia farming.
Collapse
Affiliation(s)
- El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, El-Arish, 45511, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Muna Omer Alamoudi
- Biology Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il, 2440, Saudi Arabia
| | - Rabab Mohamed Aljàrari
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Mohammad B Munir
- Faculty of Agriculture, Universiti Islam Sultan Sharif Ali, Sinaut Campus, Tutong, TB1741, Negara Brunei Darussalam
| | - Zulhisyam A Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia
| | - Mohammed A E Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
10
|
Temiz Ö, Kargın D. Physiological responses of oxidative damage, genotoxicity and hematological parameters of the toxic effect of neonicotinoid-thiamethoxam in Oreochromis niloticus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104377. [PMID: 38272153 DOI: 10.1016/j.etap.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The purpose of investigation assessed the impacts of neonicotinoid thiamethoxam (TMX) at sublethal concentrations in hematological profile and renal function of Oreochromis niloticus. In the experiment, fish were exposed to TMX in four groups (0, 50, 100 and 150 ppm) for 7 days. At the end of the experiment, biochemical analysis of blood samples showed that the parameters indicating renal function showed a significant increase in serum enzymes ALT, AST, ALP and metabolites (BUN, urea, uric acid, creatinine and cortisol) concentrations, while albumin concentration decreased in a dose-dependent manner compared to the control group. In parallel with the decrease in Na+, K+ and Ca+2 in blood ion levels, there was a significant decrease in the activity of Na+/K+ ATPase, Ca+2 ATPase and AChE enzyme, levels of GSH and HSP70 in kidney tissue in TMX groups compared to the control group. It was determined that the toxic effect of TMX caused a significant increase in TBARS, PC, 8-OHdG levels, respectively. In conclusion, our study shows that TMX causes dose-dependent toxic effects, with knock-on effects on physiological processes regarding the hematological profile and renal function of O. niloticus.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey.
| | - Dicle Kargın
- Faculty of Health Sciences, Marmara University, 34865 Istanbul, Turkey
| |
Collapse
|
11
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
12
|
Rasool F, Nizamani ZA, Ahmad KS, Parveen F, Khan SA, Sabir N. An appraisal of traditional knowledge of plant poisoning of livestock and its validation through acute toxicity assay in rats. Front Pharmacol 2024; 15:1328133. [PMID: 38420196 PMCID: PMC10900104 DOI: 10.3389/fphar.2024.1328133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Kashmir Himalaya hosts the most diverse and rich flora in the world, which serves as grazing land for millions of small ruminants in the area. While most plant species are beneficial, some can be poisonous, causing economic losses and animal health issues for livestock. Consequently, this study is the first comprehensive report on the traditional phyto-toxicological knowledge in District Muzaffarabad and the assessment of its authenticity through experimental studies in rats. Methods: The data regarding traditional knowledge was gathered from 70 key respondents through semi-structured interviews, which was quantitatively analyzed and authenticated through plant extract testing on Wistar female rats and comparison with published resources. Results: A total of 46 poisonous plant species belonging to 23 families and 38 genera were reported to be poisonous in the study area. Results revealed that leaves were the most toxic plant parts (24 species, 52.1%), followed by the whole plant (18 species, 39.1%), stem (17 species, 36.9%), and seeds (10 species, 21.7%). At the organ level, liver as most susceptible affected by 13 species (28.2%), followed by the gastrointestinal tract (15 species, 32.6%), nervous system (13 species, 8.2%), dermis (8 species, 17.3%), renal (7 species, 15.2%), respiratory (4 species, 8.7%), cardiovascular system (3 species, 6.5%), and reproductive system (2 species, 4.3%). The poisonous plant species with high Relative frequency citation (RFC) and fidelity level (FL) were Nerium oleander (RFC, 0.6; FL, 100), Lantana camara (RFC, 0.6; FL, 100), and Ricinus communis (RFC, 0.6; FL, 100). Experimental assessment of acute toxicity assay in rats revealed that Nerium oleander was the most toxic plant with LD50 of (4,000 mg/kg), trailed by Ricinus communis (4,200 mg/kg), L. camara (4,500 mg/kg), and Datura stramonium (4,700 mg/kg); however, other plants showed moderate to mild toxicity. The major clinical observations were anorexia, piloerection, dyspnea, salivation, tachypnea, constipation, diarrhea, tremor, itchiness, and dullness. Conclusion: This study showed that numerous poisonous plants pose a significant risk to the livestock industry within Himalayan territory, leading to substantial economic losses. Consequently, it is of utmost importance to conduct further comprehensive studies on the phytotoxicity of plants.
Collapse
Affiliation(s)
- Faisal Rasool
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Zaheer Ahmed Nizamani
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | | | - Fahmida Parveen
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Shahzad Akbar Khan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Naveed Sabir
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| |
Collapse
|
13
|
Jimoh OA, Oyeyemi BF, Oyeyemi WA, Ayodele SO, Okin-Aminu HO, Ayodele AD, Faniyi TO, Nwachukwu CU. Herbal inclusions ameliorate effect of heat stress on haematology, proinflammatory cytokines, adipokines and oxidative stress of weaned rabbit does in humid tropics. J Anim Physiol Anim Nutr (Berl) 2024; 108:55-63. [PMID: 37526207 DOI: 10.1111/jpn.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
A study was designed to evaluate the effect of Moringa oleifera, Phyllanthus amarus and Viscum album leaf meal as herbal inclusions to alleviate the detrimental outcomes of heat stress in weaned female rabbits. Forty (40) weaned rabbit does (527.99 ± 10.35 g; 28 days old) were randomly allotted to four dietary groups consisting of Diet 1(control diet; without leaf meal), Diets 2 (supplemented with 10% V. album); 3 (supplemented with 10% M. oleifera) and 4 (supplemented with 10% P. amarus) in an 84 days trial at the peak of heat stress in Southwest Nigeria. At the end of the trial, blood samples were collected to assess physiological responses and oxidative status of the rabbit does. The results obtained revealed that rabbit does were exposed to heat stress; rabbit does fed control diet had higher leucocyte and neutrophil/lymphocyte ratio compared to rabbit does fed on herbal inclusions. The herbal inclusions enhanced oxidative stability of rabbit does by lowering lipid peroxidation and enhancing antioxidant activities during heat stress conditions. Rabbit does fed control-based diet had significantly higher heat shock protein 70, leptin and adiponectin compared to rabbit does on M. oleifera, P. amarus and V. album supplemented diets. The herbal inclusions tend to suppress proinflammatory cytokines in rabbit does during heat stress condition. In conclusion, the herbal inclusions suppress inflammation, adipokines and promotes oxidative stability of rabbit does exposed to heat stress conditions.
Collapse
Affiliation(s)
- Olatunji A Jimoh
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Bolaji F Oyeyemi
- Department of Science Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Wahab A Oyeyemi
- Department of Physiology, Osun State University Oshogbo, Osogbo, Osun State, Nigeria
| | - Simeon O Ayodele
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Hafsat O Okin-Aminu
- Animal Science Department, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ayoola D Ayodele
- Department of Agricultural and Industrial Technology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Tolulope O Faniyi
- Department of Crop and Animal Science, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Chinwe Uchechi Nwachukwu
- Department of Agricultural Science Education, School of Vocational and Technical Education, Alvan Ikoku Federal College of Education, Owerri, Imo State, Nigeria
| |
Collapse
|
14
|
Eleiwa NZ, El-Shabrawi AA, Ibrahim D, Abdelwarith AA, Younis EM, Davies SJ, Metwally MMM, Abu-Zeid EH. Dietary Curcumin Modulating Effect on Performance, Antioxidant Status, and Immune-Related Response of Broiler Chickens Exposed to Imidacloprid Insecticide. Animals (Basel) 2023; 13:3650. [PMID: 38067001 PMCID: PMC10705146 DOI: 10.3390/ani13233650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Birds appear to be especially vulnerable to adverse impacts from insecticides. This is especially true for imidacloprid (IMI), which is considered the most toxic to avian species. Recently, prospective studies aimed at including natural alternative products to alleviate the toxic impact that comes from insecticides have been increased. Focusing on herbal growth promoters and antioxidative medicament for the poultry industry, this ongoing experiment was conducted to examine the curcumin role (CUR) in mitigating IMI-prompted detrimental effects on broilers' performance, immunity, and antioxidant status. A total number of one hundred and fifty commercial meat-type Ross 308 broilers chicks (one-day-old) were randomly allocated into equal five groups (30 chicks/group and 10 birds/replicate). The first group (C) was the control; the second group (CUR) was fed a diet containing CUR at the level of 450 mg/kg; the third group (IMI) was fed control diet for 14 days and then was fed a diet containing IMI at the level of 50 mg/kg; the fourth group (CUR+IMI co-treated) was fed a diet containing CUR+IMI; and the fifth group (CUR+IMI pro/co-treated) was fed a diet containing CUR for 14 days as protective and then a diet containing CUR+IMI for the rest of the trial. CUR supplementation either in the (CUR pro/co-treated) or (CUR co-treated) groups significantly (p < 0.05) improved final body weight and total body weight gain while decreasing the total feed intake and feed conversion ratio when compared to the IMI-exposed and non-treated birds. CUR induced a significant (p < 0.05) enhancement in hematological indices, phagocytosis %, phagocytic index, intracellular killing capacity, total proteins, globulin, liver function enzymes, lysozyme activity, and immunoglobulin-G levels compared to IMI-exposed and non-treated birds. In addition, dietary supplementation of CUR significantly (p < 0.05) modulated oxidative stress-related biomarkers in splenic tissues (total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase) and decreased malondialdehyde levels (p < 0.05) when compared to IMI-exposed and non-treated birds. CUR significantly down-regulated mRNA levels expression of IL-1β, TNF-α, and TLR4 and up-regulated IL-10 mRNA expression levels in spleens of birds when compared to those exposed to IMI-and non-treated. Finally, our results provided new insight into IMI-induced immuno-toxicity in broiler chickens. Furthermore, for the first time, our study informed that CUR can cause an in vivo protective effect against IMI toxicity, principally as a protective and/or as concurrent supplementation during the exposure to IMI toxicity.
Collapse
Affiliation(s)
- Naglaa Z. Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (N.Z.E.); (A.A.E.-S.)
| | - Ahmed A. El-Shabrawi
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (N.Z.E.); (A.A.E.-S.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland;
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt;
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ehsan H. Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
15
|
Kakakhel MA, Narwal N, Kataria N, Johari SA, Zaheer Ud Din S, Jiang Z, Khoo KS, Xiaotao S. Deciphering the dysbiosis caused in the fish microbiota by emerging contaminants and its mitigation strategies-A review. ENVIRONMENTAL RESEARCH 2023; 237:117002. [PMID: 37648194 DOI: 10.1016/j.envres.2023.117002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The primary barrier to nutrient absorption in fish is the intestinal epithelium, followed by a community of microorganisms known as the gut microbiota, which can be thought of as a hidden organ. The gastrointestinal microbiota of fish plays a key role in the upholding of overall health by maintaining the homeostasis and disease resistance of the host. However, emerging contaminants as the result of anthropogenic activities have significantly led to disruptions and intestinal dysbiosis in fish. Which probably results in fish mortalities and disrupts the balance of an ecosystem. Therefore, we comprehensively seek to compile the effects and consequences of emerging contaminations on fish intestinal microbiota. Additionally, the mitigation strategies including prebiotics, probiotics, plant-based diet, and Biofloc technology are being outlined. Biofloc technology (BFT) can treat toxic materials, i.e., nitrogen components, and convert them into a useful product such as proteins and demonstrated promising elevating technique for the fish intestinal bacterial composition. However, it remains unclear whether the bacterial isolate is primarily responsible for the BFT's removal of nitrate and ammonia and the corresponding removal mechanism. To answer this, real time polymerase chain reaction (RT-PCR) with metagenomics, transcriptomics, and proteomics techniques probably provides a possible solution.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zewen Jiang
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Shi Xiaotao
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
16
|
Naiel MAE, Negm SS, Ghazanfar S, Farid A, Shukry M. Acrylamide toxicity in aquatic animals and its mitigation approaches: an updated overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113297-113312. [PMID: 37867167 PMCID: PMC10721689 DOI: 10.1007/s11356-023-30437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Acrylamide (ACR) is widely applied in various industrial activities, as well as in the water purification process. Furthermore, ACR is synthesized naturally in some starchy grains exposed to high temperatures for an extended time during the cooking process. Because of its widespread industrial usage, ACR might be released into water stream sources. Also, ACR poses a high risk of contaminated surface and ground-water resources due to its high solubility and mobility in water. Furthermore, animal studies have indicated that ACR exposure may cause cancer (in many organs such as lung, prostate, uterus, and pancreas), genetic damage (in both somatic and germ cells), and severe effects on reproduction and development. Recently, numerous studies have shown that ACR has a mild acute cytotoxic impact on aquatic species, particularly during early life stages. Besides, wide-spectrum usage of ACR in many industrial activities presented higher environmental risks as well as major hazards to consumer health. This literature was designed to include all potential and accessible reports on ACR toxicity related with aquatic species. The Preferred Reporting Items for Systematic Reviews were applied to evaluate the risk effects of ACR on aquatic organisms, the ACR sub-lethal concentration in the ecosystem, and the possible protective benefits of various feed additives against ACR toxicity in fish. The major findings are summarized in Tables 2 and 3. The primary aim of this literature was to specify the hazards of ACR toxicity related with fish welfare and possible suggested strategies to reduce its risks.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Samar S Negm
- Fish Biology and Ecology Department, Central Laboratory for Aquaculture Research (CLAR), Abbassa 44661, Agriculture Research Center, Giza, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
17
|
Eid YZ, Omara Y, Ragab A, Ismail A, Zommara M, Dawood MAO. Mitigation of Imidacloprid Toxicity in Poultry Chicken by Selenium Nanoparticles: Growth Performance, Lipid Peroxidation, and Blood Traits. Biol Trace Elem Res 2023; 201:5379-5388. [PMID: 36790585 PMCID: PMC10509070 DOI: 10.1007/s12011-023-03592-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Imidacloprid is an insecticide that protects against insects in the agriculture, animal, and poultry production sectors. Since the accumulation of imidacloprid induces adverse impacts on general health status and quality of the food chain, this study tested the impacts on broilers. Besides, selenium nanoparticles were fed to birds to relieve the negative impacts on growth performance and health status. Birds (1-day age, initial weight 46.05 ± 1.0 g) divided into four groups (triplicates) where 15 chicks of each replicate (45 for each group). The first group (control) was fed the basal diet without either selenium or imidacloprid toxicity. The second group was fed selenium nano form at 3 mg/kg. The third group was fed selenium and exposed to imidacloprid at 1/10 LT50 (3 mg/kg body weight). The fourth group was fed selenium nano form (3 mg/kg) and exposed to imidacloprid at 1/10 LT50 (3 mg/kg body weight). All groups were kept under the same conditions for 35 days. The final weight and weight gain of birds fed selenium nano form showed marked improvement compared to the imidacloprid-exposed group, while the feed intake and feed conversion ratio markedly reduced. The red blood cells showed higher values in birds fed selenium nano than the control and those exposed to imidacloprid. Interestingly, the hemoglobulin and hematocrit increased in birds fed selenium nano form with or without imidacloprid exposure. Furthermore, the white blood cells increased in birds fed selenium nano form with or without imidacloprid exposure. The total protein, albumin, and globulin were higher in birds fed selenium nanoparticles than those exposed to imidacloprid with or without selenium feeding. Birds in the control and imidacloprid groups had higher aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde levels than the remaining groups. Accordingly, dietary selenium nanoparticles are suggested in broiler feed to cope with the adverse effects of imidacloprid toxicity.
Collapse
Affiliation(s)
- Yahya Z Eid
- Department of Poultry Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Yassin Omara
- Department of Poultry Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Asmaa Ragab
- Department of Pesticides, Chemistry and Toxicology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed Ismail
- Department of Pesticides, Chemistry and Toxicology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohsen Zommara
- Department of Dairy Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
18
|
Abdelmagid AD, Said AM, Abd El-Gawad EA, Shalaby SA, Dawood MAO. Glyphosate-induced liver and kidney dysfunction, oxidative stress, immunosuppression in Nile tilapia, but ginger showed a protection role. Vet Res Commun 2023; 47:445-455. [PMID: 35773603 PMCID: PMC10209248 DOI: 10.1007/s11259-022-09961-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The water-borne herbicides are involved in the toxicity of aquatic animals resulting in impaired health status and low productivity. Dietary medicinal herbs present a practical solution to relieve the impacts of herbicides toxicity on the performances of aquatic animals. Herein, we investigated the toxicity of commercial glyphosate-induced oxidative stress, immunosuppression, liver and kidney dysfunction, and the protective role of ginger or ginger nanoparticles in Nile tilapia. Fish were allocated into four groups: the first group presented the control without glyphosate toxicity and ginger feeding, the second group intoxicated with glyphosate at 0.6 mg/L and fed ginger free diet, the third group intoxicated with glyphosate and fed ginger at 2.5 g/kg, and the fourth group intoxicated with glyphosate and fed ginger nanoparticles at 2.5 g/kg. Fish were kept under the experimental conditions for four weeks, and the samples of blood and tissues were collected after 2 and 4 weeks. Markedly, fish exposed to glyphosate showed the highest ALT and AST activities, glucose and cortisol levels, and malondialdehyde levels (MDA) in gills and tissues. While fish in the control and fish intoxicated with glyphosate and fed ginger nanoparticles had the lowest ALT and AST activities, glucose and cortisol levels, and MDA levels after 2 and 4 weeks (P < 0.05). Fish fed dietary ginger had lower ALT and AST activities, glucose and cortisol levels, and MDA levels than the glyphosate intoxicated group after 2 and 4 weeks (P < 0.05). Interestingly, fish-fed ginger nanoparticles showed lower urea and creatinine levels and higher total protein, albumin, and globulin than the glyphosate intoxicated group (P < 0.05) and similar to the control (P > 0.05). Further, fish intoxicated with glyphosate and fed ginger nanoparticles had the highest GSH, lysozyme activity, and immunoglobulin levels after 2 and 4 weeks (P < 0.05). In conclusion, ginger nanoparticles are superior to the standard ginger form in enhancing the antioxidative and immune responses of Nile tilapia exposed to glyphosate.
Collapse
Affiliation(s)
- Afaf D Abdelmagid
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Alshaimaa M Said
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Eman A Abd El-Gawad
- Aquatic Animal Diseases and Management Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Sara A Shalaby
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh, Egypt.
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
19
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
20
|
Liu M, Ren D, Wan X, Shen X, Zhao C, Xingan, Wang Y, Bu F, Liu W, Zhang Z, Gao Y, Si X, Bai D, Yuan S, Zheng F, Wan X, Fu H, Wu X, Zheng A, Liu Q, Zhang Z. Synergistic effects of EP-1 and ivermectin mixture (iEP-1) to control rodents and their ectoparasites. PEST MANAGEMENT SCIENCE 2023; 79:607-615. [PMID: 36214760 DOI: 10.1002/ps.7226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ectoparasites of rodents play significant roles in disease transmission to humans. Conventional poisoning potentially reduces the population densities of rodents, however, they may increase the ectoparasite loads on the surviving hosts. EP-1 has been shown to have anti-fertility effects on many rodent species, while ivermectin is effective in controlling ectoparasites. In this study, we examined the combined effects of EP-1 and ivermectin mixture (iEP-1) baits on rodents and their corresponding flea/tick loads. RESULTS In males, the weight of testis, epididymis, and seminiferous vesicle were reduced to less than 33%, 25%, and 17%, respectively, compared to the control group following administration of iEP-1 for 7 days. The weight of the uterus increased by approximately 75%. After 5 days of iEP-1 intake, all ticks were killed, whereas 94% of fleas on mice died after 3 days of bait intake. In the field test near Beijing, the flea index was reduced by more than 90% after 7 days of iEP-1 bait delivery. In a field test in Inner Mongolia, the weights of testis, epididymis, and seminiferous vesicle were significantly reduced by 27%, 32%, and 57%, respectively, 2 weeks after iEP-1 bait delivery. Approximately 36% rodents exhibited obvious uterine oedema accompanied by a weight increase of about 150%. The flea index was reduced by over 90%. CONCLUSION Our results indicated that iEP-1 is a promising treatment for reducing the abundance of both small rodents and their ectoparasites; this will be effective for managing rodent damage and transmission of rodent-borne diseases associated with fleas and ticks. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinrong Wan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaona Shen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chaoyue Zhao
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xingan
- Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, China
| | - Yujie Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Bu
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Wei Liu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongbing Zhang
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yulong Gao
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xiaoyan Si
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Defeng Bai
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Ordos Municipal Center for Disease Control and Prevention, Ordos, China
| | - Shuai Yuan
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Feng Zheng
- International Society of Zoological Sciences, Beijing, China
| | - Xinru Wan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heping Fu
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Xiaodong Wu
- Center of Disease Control & Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Ordos Municipal Center for Disease Control and Prevention, Ordos, China
| |
Collapse
|
21
|
Ibrahim D, Shahin SE, Alqahtani LS, Hassan Z, Althobaiti F, Albogami S, Soliman MM, El-Malt RMS, Al-Harthi HF, Alqadri N, Elabbasy MT, El-Hamid MIA. Exploring the Interactive Effects of Thymol and Thymoquinone: Moving towards an Enhanced Performance, Gross Margin, Immunity and Aeromonas sobria Resistance of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2022; 12:3034. [PMID: 36359158 PMCID: PMC9658592 DOI: 10.3390/ani12213034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance of Nile tilapia was investigated. Four fish groups were fed a control diet and three basal diets supplemented with 200 mg/kg diet of Thy or ThQ and a blend of both Thy and ThQ at a level of 200 mg/kg diet each. At the end of the feeding trial (12 weeks), the tilapias were challenged intraperitoneally with virulent A. sobria (2.5 × 108 CFU/mL) harboring aerolysin (aero) and hemolysin (hly) genes. The results revealed that tilapias fed diets fortified with a combination of Thy and ThQ displayed significantly enhanced growth rate and feed conversion ratio. Notably, the expression of the genes encoding digestive enzymes (pepsinogen, chymotrypsinogen, α-amylase and lipase) and muscle and intestinal antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) was significantly upregulated in Thy/ThQ-fed fish. An excessive inflammatory response was subsided more prominently in the group administrated Thy/ThQ as supported by the downregulation of il-β, il-6 and il-8 genes and in contrast, the upregulation of the anti-inflammatory il-10 gene. Remarkably, dietary inclusion of Thy/ThQ augmented the expression of autophagy-related genes, whilst it downregulated that of mtor gene improving the autophagy process. Furthermore, Thy/ThQ protective effect against A. sobria was evidenced via downregulating the expression of its aero and hly virulence genes with higher fish survival rates. Overall, the current study encouraged the inclusion of Thy/ThQ in fish diets to boost their growth rates, promote digestive and antioxidant genes expression, improve their immune responses and provide defense against A. sorbia infections with great economic benefits.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sara E. Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Rania M. S. El-Malt
- Department of Bacteriology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nada Alqadri
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mohamed Tharwat Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT), Ha’il University, Ha’il 2440, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
22
|
Mugo SM, Lu W, Robertson SV. Molecularly Imprinted Polymer-Modified Microneedle Sensor for the Detection of Imidacloprid Pesticides in Food Samples. SENSORS (BASEL, SWITZERLAND) 2022; 22:8492. [PMID: 36366189 PMCID: PMC9655949 DOI: 10.3390/s22218492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A portable, molecularly imprinted polymer (MIP)-based microneedle (MN) sensor for the electrochemical detection of imidacloprid (IDP) has been demonstrated. The MN sensor was fabricated via layer-by-layer (LbL) in-tube coating using a carbon nanotube (CNT)/cellulose nanocrystal (CNC) composite, and an IDP-imprinted polyaniline layer co-polymerized with imidazole-functionalized CNCs (PANI-co-CNC-Im) as the biomimetic receptor film. The sensor, termed MIP@CNT/CNC MN, was analyzed using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and showed excellent electrochemical performance for the detection of IDP. The CV detection range for IDP was 2.0-99 µM, with limits of detection (LOD) of 0.35 µM, while the DPV detection range was 0.20-92 µM with an LOD of 0.06 µM. Additionally, the MIP@CNT/CNC MN sensor showed excellent reusability and could be used up to nine times with a 1.4 % relative standard deviation (% RSD) between uses. Lastly, the MIP@CNT/CNC MN sensor successfully demonstrated the quantification of IDP in a honey sample.
Collapse
|
23
|
Abd El-Hack ME, El-Saadony MT, Nader MM, Salem HM, El-Tahan AM, Soliman SM, Khafaga AF. Effect of environmental factors on growth performance of Nile tilapia (Oreochromis niloticus). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2183-2194. [PMID: 36044083 PMCID: PMC9640449 DOI: 10.1007/s00484-022-02347-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/25/2022] [Accepted: 08/04/2022] [Indexed: 05/13/2023]
Abstract
Aquaculture is the practice of developing aquatic animals and plants under artificial environmental conditions, either in a controlled or semi-controlled environment. Due to high animal protein demand, it is one of the world's growing food production industries. It plays a vital role in contributing to food security and lowering the unemployment rate of the world's growing population. This review article aims to scope sight on the environmental factors that affect the growth and economic production process of Nile tilapia. Many of these factors are listed and analyzed in this review, such as stocking densities; various feed frequencies and feeding rates; water quality; water temperature; dissolved oxygen concentration; water pH degree; ammonia (NH3), nitrite (NO2), and nitrate (NO3) concentration; feeding regimes; feed cost; and tank culturing system of Nile tilapia. These factors can significantly alter body weight, composition, survival, behavior, feed intake, feed conversion ratio, feeding efficiency, and the health and reproduction of Oreochromis niloticus. Furthermore, feeding, growth, disease risks, and survival rates are all affected by water quality parameters. In general, higher growth performance of O. niloticus in aquaculture can be obtained by keeping the optimum quantity of feed with proper feeding rate and frequency, maintaining a good proportion of stocking density, and regularly evaluating water quality. This review article highlights-in details-the impact of various environmental factors on growth performance criteria of Nile tilapia (Oreochromis niloticus).
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Maha M Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| |
Collapse
|
24
|
Shehata AM, Abdel-Moneim AME, Gewida AGA, Abd El-Hack ME, Alagawany M, Naiel MAE. Phytogenic Substances: A Promising Approach Towards Sustainable Aquaculture Industry. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:160-193. [DOI: 10.2174/9789815049015122010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The aquaculture industry has shown rapid growth over the last three
decades, especially with improving the farming systems. However, the rapid expansion
and intensification practices in the aquaculture sector have been marred by increased
stress levels and disease outbreaks, and subsequently, high fish mortality. Excessive
use of veterinary drugs and antibiotics in aquaculture poses a great threat to human and
aquatic animals' health, as well as to the biosystem. Furthermore, exposure to various
pollutants such as industrial effluents and agricultural pesticides may cause devastating
toxicological aspects of fish and adversely affect their health and growth. Besides, with
a growing world population, there is a growing interest in intensifying aquaculture
production to meet the global demand for nutritional security needs. Uncontrolled
intensification of aquaculture production makes aquatic animals both vulnerable to, and
potential sources of a wide range of hazards include pathogen transmission, disease
outbreak, immunosuppression, impaired growth performance, malnutrition, foodborne
illness, and high mortality. Plant-derived compounds are generally recognized as safe
for fish, humans, and the environment and possess great potential as functional
ingredients to be applied in aquaculture for several purposes. Phytogenic additives
comprise a wide variety of medicinal plants and their bioactive compounds with
multiple biological functions. The use of phytogenic compounds can open a promising
approach towards enhancing the health status of aquatic animals. However, further in-vivo trials are necessary under favorable conditions with controlled amounts of identified bioactive compounds along with toxicity testing for fish safety towards a realistic
evaluation of the tested substance efficacy.
Collapse
|
25
|
Rasool F, Nizamani ZA, Ahmad KS, Parveen F, Khan SA, Sabir N. Phytotoxicological study of selected poisonous plants from Azad Jammu & Kashmir. PLoS One 2022; 17:e0263605. [PMID: 35544538 PMCID: PMC9094571 DOI: 10.1371/journal.pone.0263605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
Poisonous plants cause tremendous economic losses to the livestock industry. These economic losses are deterioration in their health, decreased productivity, deformed offspring, and reduced longevity. The current study is the first comprehensive report on poisonous plants of Azad Jammu and Kashmir which systematically documents the phytotoxicological effect and mode of action in livestock. The information was gathered from 271 informants including 167 men and 104 women through semi-structured interviews and literature search through available databases. The data collected through interviews was analyzed with quantitative tools viz. the factor informant consensus and fidelity level. A total of 38 species of flowering plants belonging to 23 families and 38 genera were reported. Family Asteraceae (5 spp) was the most dominant, followed by Solanaceae (4 spp), Fabaceae (4 spp), Euphorbiaceae (4 spp) and Convolvulaceae (3 spp). Among all the species collected, herbs were the dominant life form (22 spp, 57.89%), trailed by shrubs (11 spp, 28.95%), and trees (5 spp, 13.16%). Whole plant toxicity was reported to be the highest (15 spp, 39.47%), followed by leaf toxicity (12 spp, 31.58%), seed toxicity (4 spp, 7.89%), fruit toxicity (3 spp, 10.53%), latex toxicity (2 spp, 5.26%), flowers toxicity (1 spp, 2.63%), and berries toxicity (1 spp, 2.63%). The most toxic route of administration was found oral (39 spp, 40.63%), followed by intraperitoneal (24 spp, 25%), and intravenous (21 spp, 21.88%). The most commonly affected organ was found liver (20.41%), followed by gastrointestinal tract (20.341%), CNS (16.33%), skin (14.29%), kidneys (12.24%), lungs (4.04%), reproductive organs (2.04%), spleen (1.75%), blood (1.75%), heart (1.75%), urinary tract (1.75%), and pancreas (1.75%). The maximum Fic value was found for dermatological disorders (0.91), followed by the endocrine system (0.90), gastrointestinal (0.82), neurology (0.77), nephrology (0.67), cardiovascular (0.67), urinary (0.67), respiratory (0.60), sexual (0.60) disorders. Senecio vulgaris, and Ageratum conyzoides were the most important plants with fidelity level (0.95) and (0.87). Nerium oleander, Lantana camara, Leucaena leucocephala, and Ricinus communis were the important poisonous plant with maximum fidelity level (100%). Ricinus communis with reported lowest LD50 (<20 mg/kg) was the top-ranked poisonous plant followed by Lantana camara and Justicia adhatoda (25-50 mg/kg), Nerium Oleander (157.37 mg/kg), and Datura innoxia (400 mg/kg). We found that knowledge about poisonous plants is less prevailing in the rural areas of Azad Kashmir compared to the knowledge about medicinal plants and poisonous nature of reported plants is due to production of toxic substances and presence of essential oils.
Collapse
Affiliation(s)
- Faisal Rasool
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Zaheer Ahmed Nizamani
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Fahmida Parveen
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Shahzad Akbar Khan
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Naveed Sabir
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| |
Collapse
|
26
|
Neamatallah WA, Sadek KM, El-Sayed YS, Saleh EA, Khafaga AF. 2, 3-Dimethylsuccinic acid and fulvic acid attenuate lead-induced oxidative misbalance in brain tissues of Nile tilapia Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21998-22011. [PMID: 34775563 DOI: 10.1007/s11356-021-16359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lead has long been known as neurotoxic and immunotoxic heavy metal in human and animals including fish, whereas, 2, 3-dimethylsuccinic acid (DMSA) and fulvic acid (FA) are well-known biological chelators. The present investigation was carried out to assess the potential chelating and antioxidant effects of dietary supplementation with DMSA and FA against lead acetate (Pb)-induced oxidative stress in Nile tilapia, O. niloticus. One-hundred and eighty apparently healthy O. niloticus fish (30 ± 2.5 g) were allocated into six equal groups. The first group was fed on basal diet and served as control, while the second group was fed on DMSA-supplemented basal diets at levels of 30 mg/kg diet; the third group was fed on FA-supplemented basal diet at level of 0.3 mg/kg diet; the forth, fifths, and sixth groups were exposed to 14.4 mg Pb /L water (1/10 LC50) and feed on basal diet only, basal diet supplemented with DMSA (0.3 mg/kg diet), or basal diet supplemented with FA (0.3 mg/kg diet), respectively. Antioxidant and lipid peroxidative status, activity of glucose 6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH) as well as the histopathologic findings were evaluated in brain tissues, while the Pb residues were evaluated in liver, muscles, and brain tissues. The results of the present study showed that DMSA and FA decreased malondialdehyde (MDA) and Pb residue in tissues of Pb-exposed fish and improved the histologic picture and brain contents of glutathione (GSH), glutathione-s-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), G6PD, LDH, and total antioxidant capacity (TAC). It could be concluded that DMSA and FA supplementation exhibited potential neuroprotective effect against Pb-induced oxidative brain damages in O. niloticus through improvement of antioxidant status of the brain tissue.
Collapse
Affiliation(s)
- Wesam A Neamatallah
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ebeed A Saleh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Damanhour University, Damahour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| |
Collapse
|
27
|
Abdel-Moneim AME, El-Saadony MT, Shehata AM, Saad AM, Aldhumri SA, Ouda SM, Mesalam NM. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J Biol Sci 2022; 29:1197-1209. [PMID: 35197787 PMCID: PMC8848030 DOI: 10.1016/j.sjbs.2021.09.046] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
This study investigated the antimicrobial and antioxidant activity of three Spirulina extracts (methanol, acetone, and hexane) and the biological selenium nanoparticles (SeNPs) fabricated by Bacillus subtilis AL43. The results showed that Spirulina extracts exhibited antimicrobial activity against tested pathogens. Besides, Spirulina extracts significantly scavenged ABTS and DPPH radicals in a dose-dependent manner. The methanolic extract had higher total phenolic content, antimicrobial activity, and antioxidant activity than other extracts. The selenium nanoparticles were synthesized by Bacillus subtilis AL43 under aerobic conditions and were characterized as spherical, crystalline with a size of 65.23 nm and a net negative charge of −22.7. We evidenced that SeNPs possess considerable antimicrobial activity against three gram-positive, three gram-negative bacteria, and three strains from both Candida sp. and Aspergillus sp. Moreover, SeNPs were able to scavenge ABTS and DPPH radicals in a dose-dependent manner. An association was found between the total phenolic content of Spirulina and SeNPs and their biological activities. Our results indicate that Spirulina and SeNPs with significant antimicrobial and antioxidant activities seem to be successful candidates for safe and reliable medical applications.
Collapse
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
- Corresponding author.
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sami Ali Aldhumri
- Department of Biology, Khurmah University College, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Sahar M Ouda
- Department of Biology, Khurmah University College, Taif University, 11099, Taif 21944, Saudi Arabia
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
| | - Noura M. Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
| |
Collapse
|
28
|
Shehata AM, Paswan VK, Attia YA, Abdel-Moneim AME, Abougabal MS, Sharaf M, Elmazoudy R, Alghafari WT, Osman MA, Farag MR, Alagawany M. Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. Animals (Basel) 2021; 11:3491. [PMID: 34944266 PMCID: PMC8698130 DOI: 10.3390/ani11123491] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36-72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Vinod K. Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdel-Moneim Eid Abdel-Moneim
- Nuclear Research Center, Biological Applications Department, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt;
| | - Mohammed Sh. Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Wejdan T. Alghafari
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed A. Osman
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
29
|
Abdel-Tawwab M, El-Saadawy HA, El-Belbasi HI, Abd El-Hameed SAA, Attia AA. Dietary spirulina (Arthrospira platenesis) mitigated the adverse effects of imidacloprid insecticide on the growth performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109067. [PMID: 33915278 DOI: 10.1016/j.cbpc.2021.109067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
The present study was performed to evaluate the toxic effects of imidacloprid (IMI) insecticide on the growth performance, oxidative status, and immune response of Nile tilapia, Oreochromis niloticus (L.), and the protective role of dietary supplementation of spirulina, Arthrospira platensis, (SP). Fish (20.2 ± 0.5 g) were assigned to bifactorial design (2 IMI levels x 3 SP levels) to represent 6 treatments in triplicates. Spirulina was incorporated in diets at levels of 0.0 (control), 20, and 40 g/kg diet. Under each SP level, fish were exposed to 0.0 or 0.05 μg IMI/L. Fish in each treatment were fed on the corresponding diets up to apparent satiation thrice a day for 8 weeks. Two-way ANOVA revealed a significant decline in growth indices, hepatic superoxide dismutase, catalase, and glutathione peroxidase activities in the IMI-exposed fish. Contrariwise, serum alanine and aspartate aminotransferases, alkaline phosphatase, urea, creatinine, and malondialdehyde levels were markedly higher along with significant reductions of the reduced glutathione, nitric oxide as well as lysozyme values in the IMI-exposed fish group. The dietary supplementation of SP showed stimulating effects on the growth performance, haemato-biochemical, oxidants/antioxidants, and immune biomarkers of Nile tilapia with optimum level of 20 g SP/kg diet. Interestingly, the dietary supplementation of SP to Nile tilapia attenuated the above-mentioned variables with improving the growth performance, haemato-biochemical, oxidative stress, and immunity biomarkers. Therefore, the dietary supplementation of 20 g SP /kg diet could be a valuable candidate as a natural antioxidant for ameliorating the IMI toxicity in Nile tilapia.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt.
| | - Hamad A El-Saadawy
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Hussein I El-Belbasi
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Samah A A Abd El-Hameed
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Asmaa A Attia
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
30
|
Farag MR, Alagawany M, Bilal RM, Gewida AGA, Dhama K, Abdel-Latif HMR, Amer MS, Rivero-Perez N, Zaragoza-Bastida A, Binnaser YS, Batiha GES, Naiel MAE. An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals (Basel) 2021; 11:ani11071880. [PMID: 34201914 PMCID: PMC8300353 DOI: 10.3390/ani11071880] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Pyrethroid insecticides are extensively used in controlling agricultural insects and treatment of ectoparasitic infestation in farm animals. However, the unhygienic disposable and seepage of pyrethroids from the agricultural runoff will lead to contamination of the aquatic ecosystems, which will, in turn, induce harmful toxic effects in the exposed living aquatic organisms, including fish. Cypermethrin (CYP) is a commonly and widely used type II pyrethroid insecticide with known dangerous toxic effects on the exposed organisms. Serious hazardous effects of these toxicants have been reported in several fish species leading to high mortalities and economic losses of the exposed fish. Abstract Pesticides are chemicals used to control pests, such as aquatic weeds, insects, aquatic snails, and plant diseases. They are extensively used in forestry, agriculture, veterinary practices, and of great public health importance. Pesticides can be categorized according to their use into three major types (namely insecticides, herbicides, and fungicides). Water contamination by pesticides is known to induce harmful impacts on the production, reproduction, and survivability of living aquatic organisms, such as algae, aquatic plants, and fish (shellfish and finfish species). The literature and information present in this review article facilitate evaluating the toxic effects from exposure to various fish species to different concentrations of pesticides. Moreover, a brief overview of sources, classification, mechanisms of action, and toxicity signs of pyrethroid insecticides in several fish species will be illustrated with special emphasis on Cypermethrin toxicity.
Collapse
Affiliation(s)
- Mayada R. Farag
- Department of Forensic Medicine and Toxicology, Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Rana M. Bilal
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, Baghdad ul Jadeed Campus, IUB, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ahmed G. A. Gewida
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Mahmoud S. Amer
- Laser Application in Biotechnology Department, National Institute of Laser-Enhanced Science, Cairo University, Giza 12613, Egypt;
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico;
- Correspondence: (N.R.-P.); (M.A.E.N.)
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico;
| | - Yaser S. Binnaser
- Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (N.R.-P.); (M.A.E.N.)
| |
Collapse
|
31
|
Ismael NEM, Abd El-Hameed SAA, Salama AM, Naiel MAE, Abdel-Latif HMR. The effects of dietary clinoptilolite and chitosan nanoparticles on growth, body composition, haemato-biochemical parameters, immune responses, and antioxidative status of Nile tilapia exposed to imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29535-29550. [PMID: 33560509 DOI: 10.1007/s11356-021-12693-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
This study aimed at the evaluation of the mitigating effects of dietary zeolites (ZEO) and/or chitosan nanoparticle (ChNP) on imidacloprid (IMID)-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish (18.03 ± 0.01 g) were allocated into six groups; one fed on a basal diet (control) (CTR), and the other groups were fed diets supplemented with ChNPs (5 g kg-1) and/or ZEO (20 and 40 g kg-1) (ZEO20 and ZEO40) for 60 days. In the last 14 days of the experiment, all groups were exposed to a sub-lethal dose of IMID (½ of 96 h LC50 = 0.0545 μg L-1). Dietary ZEO20 significantly improved all growth parameters (P ˂ 0.05), while ChNPs had no significant effects. The crude protein of the fish body was significantly increased in all groups compared to the CTR (P ˂ 0.05). No significant impacts of ChNPs, ZEO, and their interaction (P > 0.05) were noticed on the moisture, dry matter, and ash percentages. Compared to the CTR, hematocrit values were significantly decreased (P ˂ 0.05) in ChNP and ZEO20 groups; meanwhile, their levels were significantly increased (P ˂ 0.05) in the ZEO40 group and all combined treatments. Fish fed diets with ChNPs and/or ZEO had significant increments in the MCV values (P ˂ 0.05). Moreover, fish fed diets supplemented with ChNPs or their combination with ZEO had the lowest glucose and alkaline phosphatase levels compared with the CTR. Serum aspartate transferase levels were significantly decreased in all treated groups (P ˂ 0.05) compared to the CTR. ChNPs alone or combined with ZEO significantly exhibited the highest lysozyme and nitro blue tetrazolium values (P ˂ 0.05). On the other hand, fish in the CTR group had the highest malondialdehyde and lowest nitric oxide levels compared to the other groups. Interestingly, the lowest IMID residues in fish flesh were found in fish groups fed diet with a combination of ZEO and ChNPs. Partial or complete protection of the hepatic and splenic tissues were observed in fish group with combined treatment with ChNPs and ZEO. In conclusion, the application of ZEO and/or ChNPs in Nile tilapia diets looks to be a leading approach to mitigate the toxic impacts of IMID.
Collapse
Affiliation(s)
- Nahla E M Ismael
- Fish Biology and Ecology Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abu-Hammad, Sharkia, Egypt
| | - Samah A A Abd El-Hameed
- Fish Health and Management Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abu-Hammad, Sharkia, Egypt
| | - Amany M Salama
- The Toxicology Unit, Biochemistry Department, Animal Health Research Institute, Cairo, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
32
|
Abd El-Hamid MI, Ibrahim SM, Eldemery F, El-Mandrawy SAM, Metwally AS, Khalifa E, Elnahriry SS, Ibrahim D. Dietary cinnamaldehyde nanoemulsion boosts growth and transcriptomes of antioxidant and immune related genes to fight Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 113:96-105. [PMID: 33826939 DOI: 10.1016/j.fsi.2021.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
The present study was conducted to investigate the effects of dietary cinnamaldehyde nanoemulsion (CNE) on growth, digestive activities, antioxidant and immune responses and resistance against Streptococcus agalactiae (S. agalactiae) in Nile tilapia. Four experimental diets were formulated containing CNE at levels of 0, 100, 200 and 300 mg/kg diet for 12 weeks. At the end of the experiment, all fish were challenged by S. agalactiae. The results showed that the final body weight was increased in fish groups fed 200 and 300 mg CNE/kg diet by 18.4 and 17.2% with respect to the control group. Moreover, feed conversion ratio and digestive enzymes' activities were improved in groups fed 200 and 300 then 100 mg of dietary CNE/kg diet. Groups fed CNE exhibited a significant increase in serum immune-related parameters when compared with control group. Additionally, the hypocholesterolemic effects was achieved after CNE feeding unlike the control group in a dose dependent manner. With increasing dietary CNE levels, genes expression of cytokines and antioxidant enzymes were upregulated. Less severe adverse clinical symptoms and respectable cumulative mortalities associated with S. agalactiae infection were observed in fish fed CNE. To our knowledge, this study was the first offering a protective effect of CNE against S. agalactiae infection in Nile tilapia with a maximum down-regulation of cylE and hylB virulence genes expression noticed in group fed 300 mg of CNE/kg diet (up to 0.10 and 0.19- fold, respectively). Therefore, the present study recommended that an incorporation of CNE at level of 300 mg/kg diet for Nile tilapia could promote their growth, enhance their immunity and antioxidant status and provide protection against virulent S. agalactiae.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Seham M Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shefaa A M El-Mandrawy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Aya Sh Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Shimaa S Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menofia, 32897, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
33
|
Abd El-hameed SAA, Negm SS, Ismael NEM, Naiel MAE, Soliman MM, Shukry M, Abdel-Latif HMR. Effects of Activated Charcoal on Growth, Immunity, Oxidative Stress Markers, and Physiological Responses of Nile Tilapia Exposed to Sub-Lethal Imidacloprid Toxicity. Animals (Basel) 2021; 11:ani11051357. [PMID: 34064658 PMCID: PMC8151804 DOI: 10.3390/ani11051357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Finding a suitable feed supplement is important for maintaining fish health and sustainability of the aquaculture industry. From these supplements, research studies have shown that activated charcoal (AC) has been extensively used for veterinary and aquaculture objectives as a “Universal Antidote” against several toxicants and aquatic pollutants. Therefore, the mitigating roles of dietary supplementation with different AC levels on physiological responses of Nile tilapia exposed to sub-lethal imidacloprid (IMID) toxicity were evaluated. The findings of this study revealed that dietary supplementation with 14.30 g AC/kg diet positively modulated the toxic impacts of IMID-intoxicated fish. Abstract The existing study was designed to assess the influences of dietary activated charcoal (AC) on the growth performance, immune responses, antioxidative status, and its mitigating roles against the physiological responses of Nile tilapia exposed a sub-lethal dose of a neonicotinoid agriculture pesticide, namely, as imidacloprid (IMID). Nile tilapia juveniles were fed on diets supplemented with graded AC levels as 0 (control), 5, 10, 15, and 20 g/kg diet for eight weeks. Growth, hemato-biochemical indices, and antioxidant and immune responses of fish in all groups were evaluated at the end of the feeding experiment. Afterward, fish in all experimental groups were subjected to a sub-lethal dose of IMID (0.0109 μg/L) for two weeks. Then, fish mortalities, stress indicators, and IMID residual levels in liver and flesh were examined. Results of the feeding experiment showed that total feed intake, weight gain, final body weights, and feed efficiency ratio were significantly increased in all AC groups compared with the control group. The survival rate was 100% in all experimental groups. No statistical differences were observed in the hematological picture of all experimental groups except the lymphocyte count, which was significantly increased in all AC groups compared to the control group. Total protein, albumin, globulin, nitric oxide levels, lysozyme, and respiratory burst activities were significantly increased in all AC groups. Serum alanine transaminase, aspartate transaminase, alkaline phosphatase activities, and malondialdehyde (MDA) levels were significantly decreased in all AC groups compared with the AC0 group. After exposure to a sub-lethal dose of IMID, survival rates were significantly elevated, and IMID residual levels in liver and flesh were significantly decreased in all AC groups than in the control group. Moreover, second-order polynomial regression showed that dietary supplementation with 14.30 g AC/kg diet resulted in the lowest blood glucose and serum MDA levels. Conclusively, we suggest dietary supplementation with 14.30 g AC/kg diet to modulate physiological responses of Nile tilapia to sub-lethal IMID toxicity.
Collapse
Affiliation(s)
- Samah A. A. Abd El-hameed
- Fish Health and Management Department, Central Laboratory for Aquaculture Research (CLAR), Agriculture Research Center, Abbassa, Abu Hammad, Sharkia 44661, Egypt;
| | - Samar S. Negm
- Fish Biology and Ecology Department, Central Laboratory for Aquaculture Research (CLAR), Agriculture Research Center, Abbassa, Abu Hammad, Sharkia 44661, Egypt; (S.S.N.); (N.E.M.I.)
| | - Nahla E. M. Ismael
- Fish Biology and Ecology Department, Central Laboratory for Aquaculture Research (CLAR), Agriculture Research Center, Abbassa, Abu Hammad, Sharkia 44661, Egypt; (S.S.N.); (N.E.M.I.)
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
- Correspondence:
| |
Collapse
|
34
|
Naiel MA, Alagawany M, Patra AK, El-Kholy AI, Amer MS, Abd El-Hack ME. Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production. AQUACULTURE 2021; 534:736186. [DOI: 10.1016/j.aquaculture.2020.736186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
35
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
36
|
Baldissera MD, Souza CF, Zanella R, Prestes OD, Meinhart AD, Da Silva AS, Baldisserotto B. Behavioral impairment and neurotoxic responses of silver catfish Rhamdia quelen exposed to organophosphate pesticide trichlorfon: Protective effects of diet containing rutin. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108871. [PMID: 32814146 DOI: 10.1016/j.cbpc.2020.108871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Trichlorfon is an organophosphate pesticide used extensively for controlling ectoparasites in aquaculture. Studies have found that trichlorfon caused environmental pollution and severe neurotoxic effects in several freshwater species. Feed additives such as flavonoids may reduce or prevent pesticide-induced toxicity in fish. The aim of the present study was to determine whether acute exposure to trichlorfon impairs behavior and causes oxidative damage in brains of silver catfish (Rhamdia quelen). We also sought to determine whether rutin would be capable of preventing or reducing these effects. Silver catfish were divided into four groups: groups A and C received basal feed, while groups B and D received feed containing 3 mg rutin/kg diet for 21 days. After 21 days, groups C and D were exposed for 48 h to a nominal concentration of 11 mg trichlorfon/L water. Fish exposed to trichlorfon showed significantly longer distances travelled and swimming performances than did unexposed fish. Cerebral levels of reactive oxygen species and lipid peroxidation were significantly higher in fish exposed to trichlorfon than in unexposed fish, while cerebral superoxide dismutase, catalase, glutathione peroxidase, and acetylcholinesterase (AChE) activities were significantly lower. Taken together, our findings suggest that dietary supplementation rutin completely prevented all alterations elicited by trichlorfon, except for cerebral AChE activity; the latter remained significantly lower compared to the unexposed group. In summary, rutin prevents trichlorfon-induced neurotoxicity in silver catfish.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renato Zanella
- Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Osmar D Prestes
- Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriana D Meinhart
- Department of Agroindustrial Science and Technology, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, SC, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
37
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
38
|
Baldissera MD, Souza CF, Parmeggiani B, Vendrusculo RG, Ribeiro LC, Muenchen DK, Zeppenfeld CC, Meinhart AD, Wagner R, Zanella R, Prestes OD, da Silva AS, Leipnitz G, Baldisserotto B. Protective effects of diet containing rutin against trichlorfon-induced muscle bioenergetics disruption and impairment on fatty acid profile of silver catfish Rhamdia quelen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111127. [PMID: 32846293 DOI: 10.1016/j.ecoenv.2020.111127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Trichlorfon is an organophosphate insecticide that is widely used on fish farms to control parasitic infections. It has been detected in freshwater ecosystems as well as in fishery products. There is a growing body of evidence to suggest that certain feed additives may reduce or prevent pesticide-induced toxicity in fish. The aim of the present study was to determine whether acute exposure to trichlorfon would alter bioenergetic homeostasis and alter fatty acid profiles in muscles of silver catfish (Rhamdia quelen). We also sought to determine whether rutin prevents or reduces these effects. Cytosolic and mitochondrial creatine kinase (CK) and activities of complexes II-III and IV in muscle were significantly inhibited by exposure to 11 mg/L trichlorfon for 48 h compared to effects in the unexposed group. Total content of polyunsaturated fatty acids (omega-3 and omega-6) were significantly lower in muscle of silver catfish exposed to 11 mg/L trichlorfon for 48 h than in the unexposed group. Addition of 3 mg rutin/kg feed increased CK activity and prevented inhibition of complex IV activity, as well as preventing all alterations of muscle fatty acid profiles elicited by exposure to trichlorfon. No significant differences were observed between groups with respect to muscle adenylate kinase or pyruvate kinase activities, as well as total content of saturated and monounsaturated fatty acids. Our findings suggest that exposure (48 h) to 11 mg trichlorfon/L water inhibits cytosolic and mitochondrial CK activity in muscle. Trichlorfon also affects activities of complexes II-III and IV in respiratory chain, with important consequences for adenosine triphosphate production. The pesticide alters fatty acid profiles in the fish and endangers human consumers of the product. The most important finding of the present study is that inclusion of rutin improves bioenergetic homeostasis and muscle fatty acid profiles, suggesting that it reduces trichlorfon-induced muscle damage.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Belisa Parmeggiani
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Raquel G Vendrusculo
- Department of Food Science and Technology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Lucila C Ribeiro
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Daniela K Muenchen
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carla C Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriana D Meinhart
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Renato Zanella
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Osmar D Prestes
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
39
|
Khafaga AF, Naiel MAE, Dawood MAO, Abdel-Latif HMR. Dietary Origanum vulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in Common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105624. [PMID: 32947072 DOI: 10.1016/j.aquatox.2020.105624] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The study was designed to evaluate the possible protective roles of dietary Origanum vulgare essential oil (OVEO) against cypermethrin (CP)-induced serum biochemical changes and oxidative stress of common carp (Cyprinus carpio). Moreover, histopathological alterations, apoptosis, cell proliferation, and DNA damage in the gills and hepatic tissues were also assessed. Briefly, fish were allotted into six groups with three triplicates whereas a group fed on basal diet and did not exposed to CP and served as control (CTR), two groups were fed on diets supplemented with two levels of OVEO (0.5 % and 1.0 %), a group exposed to sub-lethal concentration of CP (1/10 of 96 h-LC50 = 0.4134 μg/L), and two other groups exposed to the same concentration of CP and fed on diets supplemented with both levels of OVEO (CP + 0.5 % OVEO, and CP + 1.0 % OVEO), respectively, for 30 days. CP induced significant elevation of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), urea, and creatinine levels indicating hepato-renal toxicity (P < 0.05). Besides, there was a significant decrease in serum catalase (CAT) and superoxide dismutase (SOD) activities (P < 0.05). Moreover, CP induced significant histopathologic alterations in gills, anterior kidneys, and hepatic tissues with activation of apoptosis (Caspase-3) and proliferating cell nuclear antigen (PCNA). Comet assay demonstrated significant DNA damage in gills and liver tissues of the CP-exposed group. Interestingly, a significant attenuation of serum ALT, AST, ALP, urea, creatinine, CAT, and SOD levels (P < 0.05) was noticed in CP-exposed fish and concurrently fed diets supplemented with either 0.5 % or 1.0 % OVEO. Moreover, histopathologic alterations and apoptosis were significantly reduced along with a concomitant significant decrease in DNA damage (P < 0.05) which indicated the mitigation of DNA damage. Conclusively, the study showed that OVEO is an effective counteractive treatment against CP-induced damage in exposed common carp and is recommended during the formulation of fish rations.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt.
| |
Collapse
|