1
|
Alterations in Hepatocellular Carcinoma-Specific Immune Responses Following Hepatitis C Virus Elimination by Direct-Acting Antivirals. Int J Mol Sci 2022; 23:ijms231911623. [PMID: 36232928 PMCID: PMC9570039 DOI: 10.3390/ijms231911623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Direct-acting antivirals (DAAs) have recently revolutionized the eradication of chronic hepatitis C virus (HCV) infection. However, the effects of DAAs on the development of hepatocellular carcinoma (HCC) remain unknown. Therefore, the present study aimed to investigate immune responses to HCC influenced by DAAs in HCV-infected patients and elucidate the underlying mechanisms. We compared immune responses to 19 different HCC-related tumor-associated antigen (TAA)-derived peptides and host immune cell profiles before and 24 weeks after a treatment with DAAs in 47 HLA-A24-positive patients. The relationships between the different immune responses and phenotypic changes in immune cells were also examined. The treatment with DAAs induced four types of immune responses to TAAs and markedly altered host immune cell profiles. Prominently, reductions in the frequencies of PD-1+CD4+ and PD-1+CD8+ T cells by DAAs were associated with enhanced immune responses to TAAs. The HCV F protein was identified as contributing to the increased frequency of PD-1+ T cells, which may be decreased after eradication by DAAs. DAAs altered the immune responses of patients to HCC by decreasing the frequency of PD-1-expressing CD4+ and CD8+ T cells.
Collapse
|
2
|
Vrazas V, Moustafa S, Makridakis M, Karakasiliotis I, Vlahou A, Mavromara P, Katsani KR. A Proteomic Approach to Study the Biological Role of Hepatitis C Virus Protein Core+1/ARFP. Viruses 2022; 14:v14081694. [PMID: 36016316 PMCID: PMC9518822 DOI: 10.3390/v14081694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus is the major cause of chronic liver diseases and the only cytoplasmic RNA virus known to be oncogenic in humans. The viral genome gives rise to ten mature proteins and to additional proteins, which are the products of alternative translation initiation mechanisms. A protein-known as ARFP (alternative reading frame protein) or Core+1 protein-is synthesized by an open reading frame overlapping the HCV Core coding region in the (+1) frame of genotype 1a. Almost 20 years after its discovery, we still know little of the biological role of the ARFP/Core+1 protein. Here, our differential proteomic analysis of stable hepatoma cell lines expressing the Core+1/Long isoform of HCV-1a relates the expression of the Core+1/Long isoform with the progression of the pathology of HCV liver disease to cancer.
Collapse
Affiliation(s)
- Vasileios Vrazas
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
| | - Savvina Moustafa
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Hippokration General Hospital of Athens, 11527 Athens, Greece;
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.V.); (M.M.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.V.); (M.M.)
| | - Penelope Mavromara
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
- Correspondence:
| |
Collapse
|
3
|
Elsheikh MEA, McClure CP, Tarr AW, Irving WL. Sero-reactivity to three distinct regions within the hepatitis C virus alternative reading frame protein (ARFP/core+1) in patients with chronic HCV genotype-3 infection. J Gen Virol 2022; 103:001727. [PMID: 35230930 PMCID: PMC9176264 DOI: 10.1099/jgv.0.001727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects more than 71 million people worldwide. The disease slowly progresses to chronic, long-term liver injury which leads to hepatocellular carcinoma (HCC) in 5 % of infections. The alternative reading frame protein (ARFP/core+1) is encoded by a sequence overlapping the HCV core gene in the +1 reading frame. Its role in hepatitis C pathogenesis and the viral life cycle is unclear, although some observers have related its production to disease progression and the development of HCC. The aim of this study was to determine whether ARFP is immunogenic in patients with chronic HCV genotype 3 infection and to assess whether sero-reactivity is associated with disease progression, particularly to HCC. Immunogenic epitopes within the protein were predicted by a bioinformatics tool, and three -20 aa length-peptides (ARFP-P1, ARFP-P2 and ARFP-P3) were synthesized and used in an avidin-biotin ARFP/core+1 peptide ELISA. Serum samples from 50 patients with chronic HCV genotype 3 infection, 50 genotype-1 patients, 50 HBV patients and 110 healthy controls were tested. Sero-reactivity to the ARFP peptides was also tested and compared in 114 chronic HCV genotype-3 patients subdivided on the basis of disease severity into non-cirrhotic, cirrhotic and HCC groups. Chronic HCV genotype-3 patients showed noticeable rates of reactivity to ARFP and core peptides. Seropositivity rates were 58% for ARFP-P1, 47 % for ARFP-P2, 5.9 % for ARFP-P3 and 100 % for C22 peptides. There was no significant difference between these seroreactivities between HCV genotype-3 patients with HCC, and HCV genotype-3 patients with and without liver cirrhosis. Patients with chronic HCV genotype-3 infection frequently produce antibodies against ARFP/core+1 protein. ARFP peptide reactivity was not associated with disease severity in patients with HCV genotype-3. These results support the conclusion that ARFP/core+1 is produced during HCV infection, but they do not confirm that antibodies to ARFP can indicate HCV disease progression.
Collapse
Affiliation(s)
- Mosaab E A Elsheikh
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - William L Irving
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Mohamadi M, Azarbayjani K, Mozhgani SH, Bamdad T, Alamdary A, Nikoo HR, Hashempour T, Hedayat Yaghoobi M, Ajorloo M. Hepatitis C virus alternative reading frame protein (ARFP): Production, features, and pathogenesis. J Med Virol 2020; 92:2930-2937. [PMID: 32470157 DOI: 10.1002/jmv.26091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
Earlier observation suggests that hepatitis C virus (HCV) is a single-stranded RNA virus which encodes at least 10 viral proteins. F protein is a novel protein which has been discovered recently. These studies suggest three mechanisms for the production of this protein concerning ribosomal frameshift at codon 10, initial translation at codons 26 and 85 or 87. In this study, the association between protein F and chronicity of hepatocellular carcinoma (HCC) has been reviewed. Evidence suggests that humoral immune system can recognize this protein and produce antibodies against it. By detecting antibodies in infected people, investigators found that F protein might have a role in HCV infection causing chronic cirrhosis and HCC as higher prevalence was found in patients with mentioned complications. The increment of CD4+, CD25+, and FoxP3+ T cells, along with CD8+ T cells with low expression of granzyme B, also leads to weaker responses of the immune system which helps the infection to become chronic. Moreover, it contributes to the survival of the virus in the body through affecting the production of interferon. F protein also might play roles in the disease development, resulting in HCC. The existence of F protein affects cellular pathways through upregulating p53, c-myc, cyclin D1, and phosphorylating Rb. This review will summarize these effects on immune system and related mechanisms in cellular pathways.
Collapse
Affiliation(s)
- Mahdi Mohamadi
- Student Research Committee, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kimia Azarbayjani
- Student Research Committee, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Alamdary
- Department of Biology, Science, and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Hedayat Yaghoobi
- Department of Infectious Disease, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Ajorloo
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
Vassilaki N, Frakolaki E, Kalliampakou KI, Sakellariou P, Kotta-Loizou I, Bartenschlager R, Mavromara P. A Novel Cis-Acting RNA Structural Element Embedded in the Core Coding Region of the Hepatitis C Virus Genome Directs Internal Translation Initiation of the Overlapping Core+1 ORF. Int J Mol Sci 2020; 21:ijms21186974. [PMID: 32972019 PMCID: PMC7554737 DOI: 10.3390/ijms21186974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5'-untranslated region (5'UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597-599 and 603-605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344-596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome-HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5'UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Correspondence: (N.V.); (P.M.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Katerina I. Kalliampakou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Panagiotis Sakellariou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ioly Kotta-Loizou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Thrace, Greece
- Correspondence: (N.V.); (P.M.)
| |
Collapse
|
6
|
Genotypic Regulation of Type I Interferon Induction Pathways by Frameshift (F) Proteins of Hepatitis C Virus. J Virol 2020; 94:JVI.00312-20. [PMID: 32434887 DOI: 10.1128/jvi.00312-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) has evolved mechanisms to evade innate immunity that are leading to chronic infections. The immunological function of the HCV frameshift (F) protein, which is a frameshift product of core coding sequences, has not been well characterized. The HCV F protein is produced during natural HCV infections and is found most commonly in genotype 1 HCV. In this study, we investigated whether the F protein plays a role in type I interferon (IFN) induction pathways. We engineered F expression constructs from core coding sequences of 4 genotypes (1a, 2a, 3a, and 4a) of HCV as well as the sequences which would only be able to produce core proteins. The peptide lengths and amino acids sequences of F proteins are highly variable. We hypothesized that F proteins from different genotypes might control the type I IFN production and response differently. We found that both IFN-beta (IFN-β) promoter activities are significantly higher in genotype 1a F protein (F1a)-expressing cells. Conversely, the IFN-β promoter activities are lower in genotype 2a F (F2a) protein-expressing cells. We also used real-time PCR to confirm IFN-β mRNA expression levels. By generating chimera F proteins, we discovered that the effects of F proteins were determined by the amino acid sequence 40 to 57 of genotype 1a. The regulation of type I IFN induction pathway is related but not limited to the activity of F1a to interact with proteasome subunits and to disturb the proteasome activity. Further molecular mechanisms of how F proteins from different genotypes of HCV control these pathways differently remain to be investigated.IMPORTANCE Although naturally present in HCV infection patient serum, the virological or immunological functions of the HCV F protein, which is a frameshift product of core coding sequences, remain unclear. Here, we report the effects of the HCV F protein between genotypes and discuss a potential explanation for the differential responses to type I IFN-based therapy among patients infected with different genotypes of HCV. Our study provides one step forward to understanding the host response during HCV infection and new insights for the prediction of the outcome of IFN-based therapy in HCV patients.
Collapse
|
7
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
8
|
Musavi Z, Hashempour T, Moayedi J, Dehghani B, Ghassabi F, Hallaji M, Hosseini SY, Yaghoubi R, Gholami S, Dehyadegari MA, Merat S. Antibody Development to HCV Alternate Reading Frame Protein in Liver Transplant Candidate and its Computational Analysis. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164617666190822103329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background::
HCV Alternate Reading Frame Protein (ARFP) is a frameshift product of
HCV-core encoding. Here, we characterized specific anti-ARFP antibodies in Liver Transplant Candidate
(LTC) and chronic HCV-infected patients.
Methods::
The ARFP gene was cloned and the recombinant protein was purified using Nickel chromatography
and confirmed by western blotting. ELISA was developed using recombinant core-1a, core-
1b, ARFP-1a protein, and 99-residue synthetic ARFP 1b peptide. By several Bioinformatics tools,
general properties, immunogenic epitopes, and structures of these proteins were obtained.
Results::
The seroprevalence of anti-core and anti-ARFP antibodies was 100% in LTC patients, but only
75.2% and 94.3% of chronic patients had evidence of anti-ARFP and anti-core antibodies, respectively.
In-silico results demonstrated physicochemical features, antigen properties and potential interactors
that could describe progression toward advanced liver disease.
Conclusion::
As the first report, the prevalence of anti-ARFP antibodies in LTC patients is of the order
of 100% and titer of anti-ARFP antibody was significantly higher in LTC patients compared to chronic
individuals, suggesting the possible role of ARFP in the progression toward advanced liver disease. In
addition, docking analysis determined several interactor proteins such as prefoldin 2, cathepsin B, vitronectin,
and angiotensinogen that have an important role in progression to chronic infection and liver
disease development.
Collapse
Affiliation(s)
- Zahra Musavi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Hashempour
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ghassabi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hallaji
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghoubi
- Shiraz Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Gholami
- Shiraz Organ Transplant Unit, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ali Dehyadegari
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Mylopoulou T, Papadopoulos V, Kassela K, Karakasiliotis I, Souvalidou F, Mimidis P, Veletza S, Mavromara P, Mimidis K. Relationship between antibodies to hepatitis C virus core+1 protein and treatment outcome. Ann Gastroenterol 2018; 31:593-597. [PMID: 30174396 PMCID: PMC6102464 DOI: 10.20524/aog.2018.0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND It has been suggested that hepatitis C virus (HCV) core+1 protein plays a crucial role in the viral life cycle, potentially affecting liver cirrhosis and the development of hepatocellular carcinoma. METHODS To investigate its relationship with the outcome of HCV standard combination therapy with peginterferon-α plus ribavirin, we screened 139 consecutive HCV patients (119 with chronic HCV infection and 20 who spontaneously cleared HCV) for the presence of anti-core+1 antibodies (Abs). In addition, liver fibrosis was determined by FibroScan in all but one patients. RESULTS Twenty-nine patients were cirrhotic (stiffness >12.5 kPa, F4 METAVIR), all of them with mild liver cirrhosis (Child-Pugh score A). Eighty-six of 139 patients were treatment-experienced with standard combination therapy. Fifty of them had achieved a sustained virological response, while 36 were non-responders. The prevalence of anti-core+1 Abs in patients with chronic HCV infection was 22.69% (27/119 patients): 18% (9/50 patients) in responders and 36.11% (13/36 patients) in non-responders (P=0.050). Five (17.24%) of the 29 cirrhotic patients and 22 (24.72%) of the 89 non-cirrhotic patients were positive for anti-core+1 Abs (P=0.405). Furthermore, the presence of anti-core+1 Abs correlated with the poor response interleukin (IL) 28B genotype TT (P=0.040). No correlation between spontaneous clearance and anti-core+1 Abs was observed (P=0.088). CONCLUSION The presence of anti-core+1 Abs might be correlated with the poor response IL28B TT genotype and may negatively affect the outcome of standard combination treatments in HCV patients, suggesting that core+1 may play a biological role in the course of HCV infection.
Collapse
Affiliation(s)
- Theodora Mylopoulou
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis (Theodora Mylopoulou, Konstantinos Mimidis), Greece
| | | | - Katerina Kassela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens (Katerina Kassela, Penelope Mavromara), Greece
| | - Ioannis Karakasiliotis
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis (Ioannis Karakasiliotis, Stavroula Veletza), Greece
| | - Fani Souvalidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis (Fani Souvalidou, Panagiotis Mimidis, Penelope Mavromara), Greece
| | - Panagiotis Mimidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis (Fani Souvalidou, Panagiotis Mimidis, Penelope Mavromara), Greece
| | - Stavroula Veletza
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis (Ioannis Karakasiliotis, Stavroula Veletza), Greece
| | - Penelope Mavromara
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens (Katerina Kassela, Penelope Mavromara), Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis (Fani Souvalidou, Panagiotis Mimidis, Penelope Mavromara), Greece
| | - Konstantinos Mimidis
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis (Theodora Mylopoulou, Konstantinos Mimidis), Greece
| |
Collapse
|
10
|
Hepatitis C Virus core+1/ARF Protein Modulates the Cyclin D1/pRb Pathway and Promotes Carcinogenesis. J Virol 2018; 92:JVI.02036-17. [PMID: 29444947 DOI: 10.1128/jvi.02036-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Viruses often encompass overlapping reading frames and unconventional translation mechanisms in order to maximize the output from a minimum genome and to orchestrate their timely gene expression. Hepatitis C virus (HCV) possesses such an unconventional open reading frame (ORF) within the core-coding region, encoding an additional protein, initially designated ARFP, F, or core+1. Two predominant isoforms of core+1/ARFP have been reported, core+1/L, initiating from codon 26, and core+1/S, initiating from codons 85/87 of the polyprotein coding region. The biological significance of core+1/ARFP expression remains elusive. The aim of the present study was to gain insight into the functional and pathological properties of core+1/ARFP through its interaction with the host cell, combining in vitro and in vivo approaches. Our data provide strong evidence that the core+1/ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing either core+1/S or core+1/L isoforms and in transgenic liver disease mouse models expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the cell cycle. In addition, core+1/S was found to enhance liver regeneration and oncogenesis in transgenic mice. The induction of the cell cycle together with increased mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/ARFP proteins argue for an oncogenic potential of these proteins and an important role in HCV-associated pathogenesis.IMPORTANCE This study sheds light on the biological importance of a unique HCV protein. We show here that core+1/ARFP of HCV-1a interacts with the host machinery, leading to acceleration of the cell cycle and enhancement of liver carcinogenesis. This pathological mechanism(s) may complement the action of other viral proteins with oncogenic properties, leading to the development of hepatocellular carcinoma. In addition, given that immunological responses to core+1/ARFP have been correlated with liver disease severity in chronic HCV patients, we expect that the present work will assist in clarifying the pathophysiological relevance of this protein as a biomarker of disease progression.
Collapse
|
11
|
A Decline in Anti-Core+1 Antibody Titer Occurs in Successful Treatment of Patients Infected with Hepatitis C Virus. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.58294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Kassela K, Karakasiliotis I, Charpantidis S, Koskinas J, Mylopoulou T, Mimidis K, Sarrazin C, Grammatikos G, Mavromara P. High prevalence of antibodies to core+1/ARF protein in HCV-infected patients with advanced cirrhosis. J Gen Virol 2017; 98:1713-1719. [PMID: 28708052 DOI: 10.1099/jgv.0.000851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) possesses a second open reading frame (ORF) within the core gene encoding an additional protein, known as the alternative reading frame protein (ARFP), F or core+1. The biological significance of the core+1/ARF protein remains elusive. However, several independent studies have shown the presence of core+1/ARFP antibodies in chronically HCV-infected patients. Furthermore, a higher prevalence of core+1/ARFP antibodies was detected in patients with HCV-associated hepatocellular carcinoma (HCC). Here, we investigated the incidence of core+1/ARFPantibodies in chronically HCV-infected patients at different stages of cirrhosis in comparison to chronically HCV-infected patients at earlier stages of disease. Using ELISA, we assessed the prevalence of anti-core+1 antibodies in 30 patients with advanced cirrhosis [model for end-stage liver disease (MELD) ≥15] in comparison with 50 patients with mild cirrhosis (MELD <15) and 164 chronic HCV patients without cirrhosis. 28.7 % of HCV patients with cirrhosis were positive for anti-core+1 antibodies, in contrast with 16.5 % of non-cirrhotic HCV patients. Moreover, there was significantly higher positivity for anti-core+1 antibodies in HCV patients with advanced cirrhosis (36.7 %) compared to those with early cirrhosis (24 %) (P<0.05). These findings, together with the high prevalence of anti-core+1 antibodies in HCV patients with HCC, suggest that core+1 protein may have a role in virus-associated pathogenesis, and provide evidence to suggest that the levels of anti-core+1 antibodies may serve as a marker for disease progression.
Collapse
Affiliation(s)
- Katerina Kassela
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Stefanos Charpantidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - John Koskinas
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital Athens, Greece
| | - Theodora Mylopoulou
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Mimidis
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christoph Sarrazin
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Georgios Grammatikos
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Penelope Mavromara
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
13
|
Pei JP, Jiang LF, Ji XW, Xiao W, Deng XZ, Zhou ZX, Zhu DY, Ding WL, Zhang JH, Wang CJ, Jing K. The relevance of Tim-3 polymorphisms and F protein to the outcomes of HCV infection. Eur J Clin Microbiol Infect Dis 2016; 35:1377-86. [PMID: 27230511 DOI: 10.1007/s10096-016-2676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) is one of the major causes of liver inflammation. The aim of this study was to investigate the associations of T-cell immunoglobulin and mucin domain-3 (Tim-3) polymorphisms and the alternate reading frame protein (F protein) with the outcomes of HCV infection. Three single-nucleotide polymorphisms (SNPs; rs10053538, rs12186731, and rs13170556) of Tim-3 were genotyped in this study, which included 203 healthy controls, 558 hepatitis C anti-F-positive patients, and 163 hepatitis C anti-F-negative patients. The results revealed that the rs12186731 CT and rs13170556 TC and CC genotypes were significantly less frequent in the anti-F-positive patients [odds ratio (OR) = 0.54, 95 % confidence interval (CI) = 0.35-0.83, p = 0.005; OR = 0.26, 95 % CI = 0.18-0.39, p < 0.001; and OR = 0.19, 95 % CI = 0.10-0.35, p < 0.001, respectively), and the rs13170556 TC genotype was more frequent in the chronic HCV (CHC) patients (OR = 1.70, 95 % CI = 1.20-2.40, p = 0.002). The combined analysis of the rs12186731 CT and rs13170556 TC/CC genotypes revealed a locus-dosage protective effect in the anti-F-positive patients (OR = 0.22, 95 % CI = 0.14-0.33, p trend < 0.001). Stratified analyses revealed that the frequencies of the rs12186731 (CT + TT) genotypes were significantly lower in the older (OR = 0.31, 95 % CI = 0.15-0.65, p = 0.002) and female (OR = 0.30, 95 % CI = 0.17-0.52, p < 0.001) subgroups, and rs13170556 (TC + CC) genotypes exhibited the same effect in all subgroups (all p < 0.001) in the anti-F antibody generations. Moreover, the rs13170556 (TC + CC) genotypes were significantly more frequent in the younger (OR = 1.86, 95 % CI = 1.18-2.94, p = 0.007) and female (OR = 2.38, 95 % CI = 1.48-3.83, p < 0.001) subgroups of CHC patients. These findings suggest that the rs12186731 CT and rs13170556 TC/CC genotypes of Tim-3 provide potential protective effects with the F protein in the outcomes of HCV infection and that these effects are related to sex and age.
Collapse
Affiliation(s)
- J P Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - L F Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210002, China
| | - X W Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - W Xiao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - X Z Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China.
| | - Z X Zhou
- Department of Clinical Laboratory, Nanjing Second Hospital, Nanjing, China
| | - D Y Zhu
- Department of Infectious Diseases at Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, China
| | - W L Ding
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, 214200, China
| | - J H Zhang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - C J Wang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - K Jing
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Meicheng Road East, Huai'an, 223003, China
| |
Collapse
|
14
|
Park SB, Seronello S, Mayer W, Ojcius DM. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I. PLoS One 2016; 11:e0158419. [PMID: 27404108 PMCID: PMC4942120 DOI: 10.1371/journal.pone.0158419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) actively evades host interferon (IFN) responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I)-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP) from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP) and poly(IC). The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain) were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.
Collapse
Affiliation(s)
- Seung Bum Park
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Scott Seronello
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Wasima Mayer
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - David M. Ojcius
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Xiao W, Jiang LF, Deng XZ, Zhu DY, Pei JP, Xu ML, Li BJ, Wang CJ, Zhang JH, Zhang Q, Zhou ZX, Ding WL, Xu XD, Yue M. PD-1/PD-L1 signal pathway participates in HCV F protein-induced T cell dysfunction in chronic HCV infection. Immunol Res 2016; 64:412-423. [PMID: 26286967 DOI: 10.1007/s12026-015-8680-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1/programmed cell death-1 ligand 1 (PD-1/PD-L1) inhibitory signal pathway has been verified to be involved in the establishment of persistent viral infections. Blockade of PD-1/PD-L1 engagement to reinvigorate T cell activity is supposed to be a potential therapeutic scheme. Studies have verified the participation of PD-1/PD-L1 in hepatitis C virus (HCV) core protein-regulated immune response. To determine the roles of PD-1/PD-L1 signal pathway in HCV F protein-induced immunoreaction in chronic HCV infection, variations in T cells were examined. The results showed that PD-1 expression on CD8(+) and CD4(+) T cells was increased with HCV F stimulation in both chronic HCV patients and healthy controls, and could be reduced partly by PD-1/PD-L1 blocking. Additionally, by PD-1/PD-L1 blocking, HCV F-induced inhibition of T cell proliferation and promotion of cellular apoptosis were partly or even totally recovered. Furthermore, levels of both Th1 and Th2 cytokines were elevated in the presence of anti-PD-L1 antibody. All these results indicated that PD-1/PD-L1 signal pathway also participates in HCV F protein-induced immunoregulation. PD-1/PD-L1 blocking plays important roles in the restoration of effective functionality of the impaired T cells in chronic HCV patients.
Collapse
Affiliation(s)
- Wen Xiao
- School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Long Feng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210002, China.
| | - Xiao Zhao Deng
- School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, Jiangsu, China.
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China.
| | - Dan Yan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jia Ping Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Mao Lei Xu
- School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Bing Jun Li
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - Chang Jun Wang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - Jing Hai Zhang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - Qi Zhang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - Zhen Xian Zhou
- Department of Clinical Laboratory, Nanjing Second Hospital, Nanjing, China
| | - Wei Liang Ding
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Xiao Dong Xu
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - Ming Yue
- School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
16
|
Abstract
Patients with chronic hepatitis C virus (HCV) infection frequently present with extrahepatic manifestations covering a large spectrum, involving different organ systems leading to the concept of systemic HCV infection. These manifestations include autoimmune phenomena and frank autoimmune and/or rheumatic diseases and may dominate the course of chronic HCV infection. Chronic HCV infection causes liver inflammation affecting the development of hepatic diseases. HCV is also a lymphotropic virus that triggers B cells and promotes favorable conditions for B lymphocyte proliferation, including mixed cryoglobulinemia (MC) and MC vasculitis, which is the most prominent extrahepatic manifestation of chronic HCV infection. HCV may also promote a low-grade chronic systemic inflammation that may affect the development of some extrahepatic manifestations, particularly cardiovascular and cerebral vascular diseases. Recognition of extrahepatic symptoms of HCV infection could facilitate early diagnosis and treatment. The development of direct-acting antiviral agents (DDAs) has revolutionized HCV treatment. DDAs, as well as new B-cell-depleting or B-cell-modulating monoclonal antibodies, will expand the panorama of treatment options for HCV-related extrahepatic manifestations including cryoglobulinemic vasculitis. In this context, a proactive, integrated approach to HCV therapy should maximize the benefits of HCV therapy, even when liver disease is mild.
Collapse
Affiliation(s)
- E Rosenthal
- Service de Médecine Interne, Hôpital de l'Archet, CHU de Nice, Nice; Université de Nice-Sophia Antipolis, Nice, France COREVIH PACA EST, CHU de Nice, France
| | - P Cacoub
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7211, and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France INSERM, UMR_S 959, Paris, France CNRS, FRE3632, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| |
Collapse
|
17
|
Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection. Viral Immunol 2015; 28:309-24. [DOI: 10.1089/vim.2015.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Li HC, Ma HC, Yang CH, Lo SY. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol 2014; 20:7104-7122. [PMID: 24966583 PMCID: PMC4064058 DOI: 10.3748/wjg.v20.i23.7104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis.
Collapse
|
19
|
Drositis I, Bertsias A, Lionis C, Kouroumalis E. Epidemiology and molecular analysis of hepatitis A, B and C in a semi-urban and rural area of Crete. Eur J Intern Med 2013; 24:839-45. [PMID: 23988264 DOI: 10.1016/j.ejim.2013.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/10/2013] [Accepted: 08/03/2013] [Indexed: 02/08/2023]
Abstract
AIM An observational seroepidemiological study was carried out in a well-defined primary-care district on the island of Crete in order to determine the recent endemicity of viral hepatitis in Cretan-population. SETTING AND PARTICIPANTS The setting consisted of a semi-urban group and a remote & rural group. Serum samples were collected from 876 subjects (437 males, 439 females) aged 15 years or above. Subjects were randomly selected from the permanent population of the area that consisted of 5705 individuals. The aim was to measure the prevalence of selected viral-hepatitis markers. RESULTS Hepatitis B surface-antigen (HBsAg) was found positive in twenty-nine individuals, (3.3%). Antibodies to hepatitis B virus core-antigen (HBcAb) were detected in 287 subjects (32.8%) and antibodies to hepatitis C virus (anti-HCV) were detected in nineteen subjects (2.2%). Seropositivities for the semi-urban group were: 3.4%, 19.1%, 2.1% and 3.2%, 48.8%, 2.2% in remote & rural group respectively. Virtually, all subjects >45 years old were seropositive for antibodies to hepatitis A, whereas approximately 80% of those in the 15-44 age-group were found to be seropositive. CONCLUSION A threefold increase in the HBV exposure and carrier proportion was found in Cretan native-population and in rural-areas compared to older studies carried out in other rural-populations of the island. It is still unknown whether the recent economic crisis or the demographic changes in Cretan-population contributed to these findings. HCV endemicity remains relatively constant, however an alteration of hepatitis C genotypes was observed. Exposure to HAV was found to be higher in remote and rural areas compared to semi-urban areas.
Collapse
Affiliation(s)
- I Drositis
- Arkalochori Health Centre-Venizeleio General Hospital of Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
20
|
Zampino R, Marrone A, Restivo L, Guerrera B, Sellitto A, Rinaldi L, Romano C, Adinolfi LE. Chronic HCV infection and inflammation: Clinical impact on hepatic and extra-hepatic manifestations. World J Hepatol 2013; 5:528-540. [PMID: 24179612 PMCID: PMC3812455 DOI: 10.4254/wjh.v5.i10.528] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/06/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
The liver has a central role in regulating inflammation by its capacity to secrete a number of proteins that control both local and systemic inflammatory responses. Chronic inflammation or an exaggerated inflammatory response can produce detrimental effects on target organs. Chronic hepatitis C virus (HCV) infection causes liver inflammation by complex and not yet well-understood molecular pathways, including direct viral effects and indirect mechanisms involving cytokine pathways, oxidative stress and steatosis induction. An increasing body of evidence recognizes the inflammatory response in chronic hepatitis C as pathogenically linked to the development of both liver-limited injury (fibrosis, cirrhosis and hepatocellular carcinoma) and extrahepatic HCV-related diseases (lymphoproliferative disease, atherosclerosis, cardiovascular and brain disease). Defining the complex mechanisms of HCV-induced inflammation could be crucial to determine the global impact of infection, to estimate progression of the disease, and to explore novel therapeutic approaches to avert HCV-related diseases. This review focuses on HCV-related clinical conditions as a result of chronic liver and systemic inflammatory states.
Collapse
|
21
|
Hepatitis C virus core+1/ARF protein decreases hepcidin transcription through an AP1 binding site. J Gen Virol 2013; 94:1528-1534. [DOI: 10.1099/vir.0.050328-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic viral hepatitis C is characterized by iron accumulation in the liver, and hepcidin regulates iron absorption. Hepatitis C virus (HCV) core+1/ARFP is a novel protein produced by a second functional ORF within the core gene. Here, using reporter assays and HCV bicistronic replicons, we show that, similarly to core, core+1/ARFP decreases hepcidin expression in hepatoma cells. The activator protein 1 (AP1) binding site of the human hepcidin promoter, shown here to be relevant to basal promoter activity and to the repression by core, is essential for the downregulation by core+1/ARFP while the previously described C/EBP (CCAAT/enhancer binding protein) and STAT (signal transducer and activator of transcription) sites are not. Consistently, expression of the AP1 components c-jun and c-fos obliterated the repressive effect of core and core+1/ARFP. In conclusion, we provide evidence that core+1/ARFP downregulates AP1-mediated transcription, providing new insights into the biological role of core+1/ARFP, as well as the transcriptional modulation of hepcidin, the main regulator of iron metabolism.
Collapse
|
22
|
Yue M, Deng X, Zhai X, Xu K, Kong J, Zhang J, Zhou Z, Yu X, Xu X, Liu Y, Zhu D, Zhang Y. Th1 and Th2 cytokine profiles induced by hepatitis C virus F protein in peripheral blood mononuclear cells from chronic hepatitis C patients. Immunol Lett 2013; 152:89-95. [PMID: 23680070 DOI: 10.1016/j.imlet.2013.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/04/2013] [Accepted: 05/05/2013] [Indexed: 12/28/2022]
Abstract
Th1 and Th2 cytokine response has been confirmed to be correlated with the pathogenesis of HCV infection. The aim of the study is to investigate the Th1 and Th2 cytokine profiles induced by HCV alternate reading frame protein (F protein) in chronic hepatitis C patients. We assessed the immune responses specific to HCV F protein in 55 chronic HCV patients. IFN-γ, IL-2, IL-4 and IL-5 secretion by peripheral blood mononuclear cells (PBMC) post F protein stimulation were compared among HCV patients and healthy donors. Finally, the associations between HCV F protein and HLA class II alleles were explored. We found that the seroprevalence of anti-F antibodies in HCV-related hepatocellular carcinoma (HCC) patients was significantly higher than that of patients without HCC, but such a significant difference in humoral immune responses to F protein was not observed in HCV 1b-infected- and non-HCV 1b-infected-patients. Additionally, the PBMC proliferation of HCC patients was significantly lower than that of patients without HCC. Furthermore, F protein stimulation of PBMCs from F-seropositive patients resulted in Th2 biased cytokine responses (significantly decreased IFN-γ and/or IL-2 and significantly increased IL-4 and/or IL-5 levels) that reportedly may contribute to HCC progression and pathogenesis. However, no significant difference in the association between HCV F protein and HLA-DRB1*0201, 0301, 0405, 1001 and HLA-DQB1*0201, 0401, 0502, 0602 was observed in this study. These findings suggest that F protein may contribute to the HCV-associated bias in Th1/Th2 responses of chronic hepatitis C patients including the progress of HCC pathogenesis.
Collapse
Affiliation(s)
- Ming Yue
- School of Life Science and Technology, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu WT, Li HC, Lee SK, Ma HC, Yang CH, Chen HL, Lo SY. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice. Biochem Biophys Res Commun 2013; 435:147-52. [PMID: 23628415 DOI: 10.1016/j.bbrc.2013.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/27/2022]
Abstract
The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wen-Ta Hu
- Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Effect of Hepatitis C F Protein and Core Secondary Structure on Viral Replication and Infection*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|