1
|
Xu L, Cao X, Deng Y, Zhang B, Li X, Liu W, Ren W, Tang X, Kong X, Zhang D. Cuproptosis-related genes and agents: implications in tumor drug resistance and future perspectives. Front Pharmacol 2025; 16:1559236. [PMID: 40406488 PMCID: PMC12095339 DOI: 10.3389/fphar.2025.1559236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
In the field of tumor treatment, drug resistance remains a significant challenge requiring urgent intervention. Recent developments in cell death research have highlighted cuproptosis, a mechanism of cell death induced by copper, as a promising avenue for understanding tumor biology and addressing drug resistance. Cuproptosis is initiated by the dysregulation of copper homeostasis, which in turn triggers mitochondrial metabolic disruptions and induces proteotoxic stress. This process specifically entails the accumulation of lipoylated proteins and the depletion of iron-sulfur cluster proteins within the context of the tricarboxylic acid cycle. Simultaneously, it is accompanied by the activation of distinct signaling pathways that collectively lead to cell death. Emerging evidence highlights the critical role of cuproptosis in addressing tumor drug resistance. However, the core molecular mechanisms of cuproptosis, regulation of the tumor microenvironment, and clinical translation pathways still require further exploration. This review examines the intersection of cuproptosis and tumor drug resistance, detailing the essential roles of cuproptosis-related genes and exploring the therapeutic potential of copper ionophores, chelators, and nanodelivery systems. These mechanisms offer promise for overcoming resistance and advancing tumor precision medicine. By elucidating the molecular mechanisms underlying cuproptosis, this study aims to identify novel therapeutic strategies and targets, thereby paving the way for the development of innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Lingwen Xu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiaolan Cao
- Department of Radiotherapy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuxiao Deng
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Bin Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xinzhi Li
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wentao Liu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wenjie Ren
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xuan Tang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiangyu Kong
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Daizhou Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
2
|
Sun Z, Xu H, Lu G, Yang C, Gao X, Zhang J, Liu X, Chen Y, Wang K, Guo J, Li J. AKT1 Phosphorylates FDX1 to Promote Cuproptosis Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408106. [PMID: 39976173 PMCID: PMC12061301 DOI: 10.1002/advs.202408106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
Cuproptosis, a recently defined copper-dependent cell death pathway, remains largely unexplored in tumor therapies, particularly in breast cancer. This study demonstrates that triple-negative breast cancer (TNBC) bears a relatively elevated copper levels and exhibits resistance to cuproptosis. Mechanistically, copper activates the AKT signaling pathway, which inhibits ferredoxin-1 (FDX1), a key regulator of cuproptosis. AKT1-mediated FDX1 phosphorylation not only abrogates FDX1-induced cuproptosis and aerobic respiration but also promotes glycolysis. Consequently, the combination of AKT1 inhibitors and the copper ionophores synergistically alleviate TNBC tumorigenesis both in vitro and in vivo. In summary, the findings reveal a crucial mechanism underlying TNBC resistance to cuproptosis and suggest a potential therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Zicheng Sun
- Department of Breast and Thyroid SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Huazhen Xu
- Department of Breast and Thyroid SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Guanming Lu
- Department of Breast and Thyroid SurgeryAffiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of GuangxiGuangxi533000China
| | - Ciqiu Yang
- Department of Breast CancerGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510000China
| | - Xinya Gao
- Department of Breast and Thyroid SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Jing Zhang
- Department of Breast and Thyroid SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Xin Liu
- Department of Breast and Thyroid SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Yongcheng Chen
- Department of Breast and Thyroid SurgeryAffiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of GuangxiGuangxi533000China
| | - Kun Wang
- Department of Breast CancerGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510000China
| | - Jianping Guo
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000China
| | - Jie Li
- Department of Breast and Thyroid SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510000China
| |
Collapse
|
3
|
Sadhu N, Dalan R, Jain PR, Lee CJM, Pakkiri LS, Tay KY, Mina TH, Low D, Min Y, Ackers-Johnson M, Thi TT, Kota VG, Shi Y, Liu Y, Yu H, Lai V, Yang Y, Tay D, Ng HK, Wang X, Wong KE, Lam M, Guan XL, Bertin N, Wong E, Best J, Sarangarajan R, Elliott P, Riboli E, Lee J, Lee ES, Ngeow J, Tan P, Cheung C, Drum CL, Foo RS, Michelotti GA, Yu H, Sheridan PA, Loh M, Chambers JC. Metabolome-wide association identifies ferredoxin-1 (FDX1) as a determinant of cholesterol metabolism and cardiovascular risk in Asian populations. NATURE CARDIOVASCULAR RESEARCH 2025; 4:567-583. [PMID: 40360795 DOI: 10.1038/s44161-025-00638-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025]
Abstract
The burden of cardiovascular disease is rising in the Asia-Pacific region, in contrast to falling cardiovascular disease mortality rates in Europe and North America. Here we perform quantification of 883 metabolites by untargeted mass spectroscopy in 8,124 Asian adults and investigate their relationships with carotid intima media thickness, a marker of atherosclerosis. Plasma concentrations of 3beta-hydroxy-5-cholestenoate (3BH5C), a cholesterol metabolite, were inversely associated with carotid intima media thickness, and Mendelian randomization studies supported a causal relationship between 3BH5C and coronary artery disease. The observed effect size was 5- to 6-fold higher in Asians than Europeans. Colocalization analyses indicated the presence of a shared causal variant between 3BH5C plasma levels and messenger RNA and protein expression of ferredoxin-1 (FDX1), a protein that is essential for sterol and bile acid synthesis. We validated FDX1 as a regulator of 3BH5C synthesis in hepatocytes and macrophages and demonstrated its role in cholesterol efflux in macrophages and aortic smooth muscle cells, using knockout and overexpression models.
Collapse
Affiliation(s)
- Nilanjana Sadhu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Pritesh R Jain
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chang Jie Mick Lee
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Theresia H Mina
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dorrain Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yilin Min
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thi Tun Thi
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vishnu Goutham Kota
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Shi
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yan Liu
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vicky Lai
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yang Yang
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darwin Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaoyan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Max Lam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- North Region, Institute of Mental Health, Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nicolas Bertin
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eleanor Wong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - James Best
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Paul Elliott
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Elio Riboli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- North Region, Institute of Mental Health, Singapore, Singapore
| | - Eng Sing Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Clinical Research Unit, National Healthcare Group Polyclinic, Singapore, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Precision Health Research, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Sy Foo
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Haojie Yu
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- National Skin Centre, Singapore, Singapore
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- Precision Health Research, Singapore, Singapore.
| |
Collapse
|
4
|
Querci L, Burgassi L, Ciofi-Baffoni S, Schiavina M, Piccioli M. Optimized 13C Relaxation-Filtered Nuclear Magnetic Resonance: Harnessing Optimal Control Pulses and Ultra-High Magnetic Fields for Metalloprotein Structural Elucidation. Int J Mol Sci 2025; 26:3870. [PMID: 40332551 PMCID: PMC12027794 DOI: 10.3390/ijms26083870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Ultra-high magnetic fields and high-sensitivity cryoprobes permit the achievement of a high S/N ratio in 13C detection experiments, thus making a 13C superWEFT (Super water eliminated Fourier transform) experiment feasible. 13C signals that are not visible using 1H observed heteronuclear experiments, nor with established 2D 13C direct detection experiments, become easily observable when a 13C relaxation-based filter is used. Within this frame, optimal control pulses (OC pulses) have been, for the first time, applied to paramagnetic systems. Although the duration of OC pulses competes with relaxation, their application to paramagnetic signals has been successfully tested. OC pulses are much more efficient with respect to the phase- and amplitude-modulated ones routinely used at lower fields while providing bandwidth excitation profiles that are sufficient to meet the need to cover up to an 80 ppm spectral region. On the other hand, when paramagnetic relaxation is shorter than the duration of OC pulses, the use of hard, rectangular pulses is, at the present state of the art, the best approach to minimize the loss of signal intensity.
Collapse
Affiliation(s)
- Leonardo Querci
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Liza Burgassi
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Schiavina
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Mario Piccioli
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Gheller JM, Silva WALD, Souza-Cáceres MB, Silva AFD, Ribeiro Ferreira MGC, Santana TDS, Dos Santos AC, Pereira-Junior SA, Nogueira É, Alencar SAD, Macedo GG, Seneda MM, Chiaratti MR, Melo-Sterza FDA. Transcriptomic analysis of heifers according to antral follicle count. Theriogenology 2025; 237:178-187. [PMID: 40024020 DOI: 10.1016/j.theriogenology.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
While antral follicle count (AFC) has been associated with higher pregnancy rates, at present, our understanding of it as a reproductive parameter remains incomplete. This study aimed to characterize gene expression profile of oocytes from crossbred Bos taurus x Bos indicus heifers with high and low AFCs. Crossbred Nelore-Angus heifers (n = 50) with a mean (SD) age of 9.6 ± 0.55 months, a weight of 295.4 ± 32.6 kg, and a BCS of 3.44 ± 0.41 were studied in a feedlot system. The heifers received a hormonal protocol based on injectable progesterone and estradiol cypionate administered 12 days apart, and ovarian ultrasonography (US) was performed 12 days after to assess the AFC. Based on AFC, heifers were divided into low (≤14 follicles) and high (≥31 follicles) AFC, groups.Forty-five days after US, 14 heifers were slaughtered, and their ovaries were collected for morphological analysis and follicle aspiration. Cumulus-oocyte complexes (COCs) from the high and low AFC groups were graded according to their quality. Only best-quality COCs were stored for RNA-seq analysis. No differences were found in the presence or diameter of the dominant follicle and corpus luteum in the US, nor in the volume of the dominant follicle postmortem. The quantity of COCs recovered from high-AFC heifers was higher than that from low-AFC heifers (P < 0.05), and a tendency (P = 0.07) toward a higher amount of grade II COCs was observed. Thirty-two genes were differentially expressed between the groups, of which 30 were up-regulated and two down-regulated in the low AFC group. Among these, 22 % (7/32) were associated with fertility (CAB39, SLC2A6, CITED2, FDX1, HSD11B2, CD81, and PLA2G12B). Moreover, 9 and 2 exclusive genes were identified in the high and low AFC groups, respectively. Enrichment analyses showed that genes exclusive to oocytes from low-AFC heifers were associated with fundamental cellular processes, such as biosynthesis/biogenesis of ribosomes, peptides, amides, and nucleotides, and also with autophagy, mitophagy and mTOR signalling pathways.On the other hand, only one pathway was enriched in the high AFC group, but this cannot be related to the events studied No differences were observed in the ovarian structures after pre-synchronization of the estrus cycle of young Crossbred Nelore-Angus heifers. However, a tendency of a higher amount of grade II COCs was observed in heifers with high AFC than in those with low AFC. RNA sequencing results indicated that the main differences between high and low AFC heifers were not reflected in the genes directly related to fertility.
Collapse
Affiliation(s)
- Janaina Menegazzo Gheller
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Wilian Aparecido Leite da Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Mirela Brochado Souza-Cáceres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Aldair Félix da Silva
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Mariane Gabriela Cesar Ribeiro Ferreira
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Taynara Dos Santos Santana
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Angélica Camargo Dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Sérgio Antonio Pereira-Junior
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Ériklis Nogueira
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Corte, Av. Rádio Maia, 830 - Vila Popular, Campo Grande, MS, Brazil
| | - Sérgio Amorim de Alencar
- Universidade Católica de Brasília, QS 07, Lote 01, Taguatinga Sul - Taguatinga, Brasília, DF, Brazil
| | - Gustavo Guerino Macedo
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Marcelo Marcondes Seneda
- Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380, Londrina, PR, Brazil
| | - Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Fabiana de Andrade Melo-Sterza
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil.
| |
Collapse
|
6
|
Querci L, Fiorucci L, Grifagni D, Costantini P, Ravera E, Ciofi-Baffoni S, Piccioli M. Shedding Light on the Electron Delocalization Pathway at the [Fe 2S 2] 2+ Cluster of FDX2. Inorg Chem 2025; 64:6698-6712. [PMID: 40121555 PMCID: PMC11979892 DOI: 10.1021/acs.inorgchem.5c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/25/2025]
Abstract
In this paper, we investigate the electronic structure of the [Fe2S2]2+ cluster of human ferredoxin 2 by designing NMR experiments tailored to observe hyperfine-shifted and fast relaxing resonances in the immediate proximity of the cluster and adding a quantitative layer of interpretation through quantum chemical calculations. The combination of paramagnetic NMR and density functional theory data provides evidence of the way unpaired electron density map is at the origin of the inequivalence of the two iron(III) ferredoxin centers. An electron spin density transfer is observed between cluster inorganic sulfide ions and aliphatic carbon atoms, occurring via a C-H---S-Fe3+ interaction, suggesting that inorganic cluster sulfide ions have a significant role in the distribution of electron spin density around the prosthetic group. The extended assignment of 1H, 13C, and 15N nuclei allows the identification of all residues of the binding loop and provides an estimate of the magnetic exchange coupling constant between the two Fe3+ ions of the [Fe2S2]2+ cluster of 386 cm-1. The approach developed here can be extended to other iron-sulfur proteins, providing a crucial tool to uncover subtle differences in electronic structures that modulate the functions of this protein family.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Letizia Fiorucci
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Deborah Grifagni
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Paola Costantini
- Department
of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- Florence
Data Science, University of Florence, Florence 50134, Italy
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| |
Collapse
|
7
|
Wang L, ChenLiu Z, Wang D, Tang D. Cross-talks of GSH, mitochondria, RNA m6A modification, NRF2, and p53 between ferroptosis and cuproptosis in HCC: A review. Int J Biol Macromol 2025; 302:140523. [PMID: 39894098 DOI: 10.1016/j.ijbiomac.2025.140523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high morbidity and mortality, as well as poor prognosis. Therefore, it is imperative to explore alternative therapeutic targets for HCC treatment. Ferroptosis and cuproptosis have recently been identified as metal-dependent cell death mechanisms that play significant roles in HCC treatment. This study identified potential cross-talk between ferroptosis and cuproptosis, including the common hub glutathione, common site of occurrence, mitochondria, shared epigenetic modification mode, RNA N6 methyladenosine modification, mutual inhibitor, nuclear factor erythroid 2-related factor 2, and dual regulator, p53. These findings provide a theoretical foundation for the joint induction of HCC cell death and effective inhibition of HCC progression. However, some immune cells are susceptible to ferroptosis or cuproptosis, which may impair or enhance anti-cancer immune function. We propose strategies to target specific targets molecules such as tripartite motif containing 25, ferroptosis suppressor protein 1, and peroxisome proliferator-activated receptor gamma or exploit the unique acidic environment surrounding cancer cells to precisely induce ferroptosis in cancer cells. This approach aims to advance the development of precision medicine for HCC treatment.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China.
| |
Collapse
|
8
|
Zhang J, Zhang Y, Mohibi S, Perng V, Bustamante M, Shi Y, Nakajima K, Chen M, Chen X. Ferredoxin 2 Is Critical for Tumor Suppression and Lipid Homeostasis but Dispensable for Embryonic Development. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:705-716. [PMID: 39732391 DOI: 10.1016/j.ajpath.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster-containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of corticosteroids, hemes, iron-sulfur cluster, and lipoylated proteins. Fdx1 is essential for embryonic development and lipid homeostasis. Herein, Fdx2-deficient mice were generated to explore the physiological role of FDX2. Interestingly, unlike Fdx1-null embryos, which were dead at embryonic day 10.5 to 13.5, Fdx2-null mice were viable. Both Fdx2-null and Fdx2-heterozygous mice had a short lifespan and were susceptible to spontaneous tumors and steatohepatitis. Moreover, FDX2 deficiency increased, whereas overexpression of FDX2 decreased cytoplasmic accumulation of lipid droplets. Consistently, FDX2 deficiency led to accumulation of cholesterol and triglycerides. Mechanistically, FDX2 deficiency suppressed expression of cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) and activated master lipid transcription regulators sterol regulatory element-binding proteins 1/2, thus leading to altered lipid metabolism. Untargeted lipidomic analysis showed that FDX2 deficiency led to altered biosynthesis of various lipid classes, including cardiolipins, cholesterol, ceramides, triglycerides, and fatty acids. In summary, these findings underline an indispensable role of FDX2 in tumor suppression and lipid homeostasis at both cellular and organismal levels without being a prerequisite for embryonic development.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California.
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Vivian Perng
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Miranda Bustamante
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Yang Shi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Kenichi Nakajima
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California.
| |
Collapse
|
9
|
Yang W, Wu C, Jiang C, Jing T, Lu M, Xia D, Peng D. FDX1 overexpression inhibits the growth and metastasis of clear cell renal cell carcinoma by upregulating FMR1 expression. Cell Death Discov 2025; 11:115. [PMID: 40118855 PMCID: PMC11928736 DOI: 10.1038/s41420-025-02380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Kidney cancer has caused more than 150,000 deaths in 185 countries around the world and is a serious threat to human life. Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. FDX1, a crucial gene for regulating copper death, plays an important role in tumors. However, its specific role in ccRCC remains unclear. In this study, by analysing data from the TCGA-KIRC and GEO databases and validation in clinical samples from our center, the expression characteristics of FDX1 and its relationship with tumor clinicopathological features and patient prognosis were clarified; the effects of FDX1 overexpression on ccRCC cell proliferation, apoptosis, migration, and invasion were determined via cell phenotype experiments and mouse orthotopic renal tumor growth models; and the downstream regulatory mechanism of FDX1 was determined via TMT proteomic sequencing, Co-IP assays, and RNA-sequencing detection. Our results confirmed that FDX1 was significantly underexpressed in ccRCC and that reduced FDX1 expression was associated with adverse clinicopathologic features and poor prognosis. FDX1 overexpression markedly inhibited the proliferation, migration, and invasion of ccRCC cells and promoted cell apoptosis in vitro. Mechanistically, FDX1 bound to the FMR1 protein and upregulated its expression, subsequently restraining Bcl-2 and N-cadherin expression and enhancing ALCAM, Cleaved Caspase-3, and E-cadherin expression. In mouse models, FDX1 overexpression significantly suppressed the growth and metastasis of renal tumors, but this inhibitory effect was markedly reversed after FMR1 expression was knocked down. Thus, our results confirmed that FDX1 expression is significantly reduced in ccRCC and serves as a prognostic marker for ccRCC patients and that its overexpression suppresses the growth and metastasis ability of ccRCC by promoting the expression of FRM1.
Collapse
Affiliation(s)
- Wuping Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Cunjin Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Chaochao Jiang
- Department of Urology, Changxing Hospital of Traditional Chinese Medicine, Changxing, PR China
| | - Taile Jing
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Minghao Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dan Xia
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ding Peng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| |
Collapse
|
10
|
Khalid SS, Alswat K. Genetic susceptibility of Saudi Population to Hepatitis B Virus (HBV) infection and the predicted functional consequences.. [DOI: 10.1101/2025.03.16.25323998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
AbstractChronic Hepatitis B virus (HBV) infection poses a global public health challenge, for which an effective cure remains elusive. A substantial amount of data has shown that single nucleotide polymorphisms (SNPs) within host genes can affect the regulation and expression of proteins, thereby influencing the susceptibility to HBV infection as well as disease progression and response to treatment. HBV-related SNPs have been identified in the population of Saudi Arabia, however, there is a lack of in-depth characterization of the translational and functional impact of these SNPs. This article aims to analyze the SNPs significantly associated with HBV-associated complications in the Saudi population, predict their functional impact using bioinformatic tools and propose future projections for HBV research in Saudi Arabia. The findings of these genetic studies are likely to pave the way for developing more effective preventive and therapeutic interventions by personalizing the management of HBV infection.
Collapse
|
11
|
Wang J, Zhao R, Ma J, Qin J, Zhang H, Guo J, Chang X, Zhang W. Biallelic FDXR mutations induce ferroptosis in a rare mitochondrial disease with ataxia. Free Radic Biol Med 2025; 230:248-262. [PMID: 39954867 DOI: 10.1016/j.freeradbiomed.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Biallelic mutations in the FDXR are known to cause rare mitochondrial diseases. However, the underlying pathogenic mechanisms remain elusive. This study investigated a patient affected by optic atrophy, ataxia, and peripheral neuropathy resulting from compound heterozygous mutations in FDXR. Structural abnormalities in mitochondria were observed in muscle and nerve tissues. Lymphoblastic cell lines (LCLs) and muscle samples from the patient exhibited signs of mitochondrial dysfunction, iron overload, oxidative stress, and lipid peroxidation. Dysregulation of the glutathione peroxidase-4 was noted in the LCLs. Furthermore, treatment with deferoxamine, N-acetyl-cysteine, and ferrostatin-1 effectively alleviated oxidative stress and cell death. Cortical neurons demonstrate that FDXR deficiency impacts the morphogenesis of neurites. Collectively, these findings suggest that ferroptosis plays a significant role in the pathogenesis of FDXR-associated diseases. Additionally, idebenone appeared to have protective effects against various cellular injuries induced by FDXR mutations, providing novel insights and therapeutic approaches for the treatment of FDXR-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rongjuan Zhao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Ma
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiangbo Qin
- Department of Radiology, First Hospital of Shanxi Medical University, China
| | - Huiqiu Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueli Chang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Wei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
12
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
13
|
Markouli M, Skouras P, Piperi C. Impact of cuproptosis in gliomas pathogenesis with targeting options. Chem Biol Interact 2025; 408:111394. [PMID: 39848557 DOI: 10.1016/j.cbi.2025.111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions. Although the precise molecular mechanisms of cuproptosis are not fully elucidated, there is evidence that copper ions can target mitochondrial lipoylated proteins, disrupting the tricarboxylic acid cycle and electron transport chain, thus leading to deregulated mitochondrial metabolism, protein aggregation and cell death. Of importance, altered expression of copper transporters and abnormally high intracellular copper levels have been observed in several cancer types, including gliomas, contributing to tumor growth and metastasis. Furthermore, a range of prognostic models incorporating cuproptosis-related genes and lncRNAs have been proposed and are currently under clinical validation. Drugs modulating cuproptosis or interfering with copper-binding proteins are under development, causing metabolic failure and cell death, thus offering potential new avenues for glioma diagnosis and therapy. In this article, we explore the role of copper metabolism in gliomas and the potential synergistic effects of cuproptosis-based treatments with current therapies, in effective targeting of tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
14
|
Miller WL, Pandey AV, Flück CE. Disordered Electron Transfer: New Forms of Defective Steroidogenesis and Mitochondriopathy. J Clin Endocrinol Metab 2025; 110:e574-e582. [PMID: 39574227 PMCID: PMC11834722 DOI: 10.1210/clinem/dgae815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Indexed: 02/19/2025]
Abstract
Most disorders of steroidogenesis, such as forms of congenital adrenal hyperplasia (CAH) are caused by mutations in genes encoding the steroidogenic enzymes and are often recognized clinically by cortisol deficiency, hyper- or hypo-androgenism, and/or altered mineralocorticoid function. Most steroidogenic enzymes are forms of cytochrome P450. Most P450s, including several steroidogenic enzymes, are microsomal, requiring electron donation by P450 oxidoreductase (POR); however, several steroidogenic enzymes are mitochondrial P450s, requiring electron donation via ferredoxin reductase (FDXR) and ferredoxin (FDX). POR deficiency is a rare but well-described form of CAH characterized by impaired activity of 21-hydroxylase (P450c21, CYP21A2) and 17-hydroxylase/17,20-lyase (P450c17, CYP17A1); more severely affected individuals also have the Antley-Bixler skeletal malformation syndrome and disordered genital development in both sexes, and hence is easily recognized. The 17,20-lyase activity of P450c17 requires both POR and cytochrome b5 (b5), which promote electron transfer. Mutations of POR, b5, or P450c17 can cause selective 17,20-lyase deficiency. In addition to providing electrons to mitochondrial P450s, FDX, and FDXR are required for the synthesis of iron-sulfur clusters, which are used by many enzymes. Recent work has identified FDXR mutations in patients with visual impairment, optic atrophy, neuropathic hearing loss, and developmental delay, resembling the global neurologic disorders seen with mitochondrial diseases. Many of these patients have had life-threatening events or deadly infections, often without an apparent triggering event. Adrenal insufficiency has been predicted in such individuals but has only been documented recently. Neurologists, neonatologists, and geneticists should seek endocrine assistance in evaluating and treating patients with mutations in FDXR.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department of BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department of BioMedical Research, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
15
|
Wang D, Guan H. Cuproptosis: A new mechanism for anti-tumour therapy. Pathol Res Pract 2025; 266:155790. [PMID: 39729956 DOI: 10.1016/j.prp.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc. The therapeutic role of Cuproptosis as a hotspot of research in cancer has also attracted much attention. Therefore, this paper comprehensively searches the literature to review the roles and mechanisms of Cuproptosis in the treatment of malignant tumours, aiming to provide new insights into the role and mechanism of Cuproptosis in anti-malignant tumour therapy and present novel ideas and methods.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haoran Guan
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
16
|
Wang C, Guo J, Zhang Y, Zhou S, Jiang B. Cuproptosis-Related Gene FDX1 Suppresses the Growth and Progression of Colorectal Cancer by Retarding EMT Progress. Biochem Genet 2025; 63:775-788. [PMID: 38520567 PMCID: PMC11832605 DOI: 10.1007/s10528-024-10784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/28/2024] [Indexed: 03/25/2024]
Abstract
Colorectal cancer (CRC) is a usual cancer and a kind of lethiferous cancer. Cuproptosis-related gene ferredoxin 1 (FDX1) has been discovered to act as a suppressor, thereby suppressing some cancers' progression. But, the regulatory functions of FDX1 in CRC progression keep vague. In this work, at first, through TCGA database, it was revealed that FDX1 exhibited lower expression in COAD (colon adenocarcinoma) tissues, and CRC patients with lower FDX1 expression had worse prognosis. Furthermore, FDX1 expression was verified to be down-regulated in CRC tissues (n = 30) and cells. It was further uncovered that FDX1 expression was positively correlated with CDH1 and TJP1 (epithelial marker), and negatively correlated with CDH2, TWIST1, and FN1 (stromal marker), suggesting that FDX1 was closely associated with the epithelial-mesenchymal transition (EMT) progress. Next, it was demonstrated that overexpression of FDX1 suppressed cell viability, invasion, and migration in CRC. Furthermore, it was verified that FDX1 retarded the EMT progress in CRC. Lastly, through rescue assays, the inhibited CRC progression mediated by FDX1 overexpression was rescued by EGF (EMT inducer) treatment. At last, it was uncovered that the tumor growth and metastasis were relieved after FDX1 overexpression, but these changes were reversed after EGF treatment. In conclusion, FDX1 inhibited the growth and progression of CRC by inhibiting EMT progress. This discovery hinted that FDX1 may act as an effective candidate for CRC treatment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China.
| | - Jingjing Guo
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China
| | - Yun Zhang
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China
| | - Shusheng Zhou
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China
| | - Bing Jiang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| |
Collapse
|
17
|
Boß L, Stehling O, Elsässer HP, Lill R. Crucial role and conservation of the three [2Fe-2S] clusters in the human mitochondrial ribosome. J Biol Chem 2025; 301:108087. [PMID: 39675708 PMCID: PMC11791143 DOI: 10.1016/j.jbc.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits. Each of these clusters is coordinated in a bridging fashion by cysteine residues from two different mitoribosomal proteins. Here, we investigated the cell biological and biochemical roles of all three iron-sulfur clusters in mitochondrial function and assembly. First, we found a requirement of both early and late factors of the mitochondrial iron-sulfur cluster assembly machinery for protein translation indicating that not only the mitoribosome [2Fe-2S] clusters but also the [4Fe-4S] cluster of the mitoribosome assembly factor METTL17 are required for mitochondrial translation. Second, siRNA-mediated depletion of the cluster-coordinating ribosomal proteins bS18m, mS25, or mL66 and complementation with either the respective WT or cysteine-exchange proteins unveiled the importance of the clusters for assembly, stability, and function of the human mitoribosome. As a consequence, the lack of cluster binding to mitoribosomes impaired the activity of the mitochondrial respiratory chain complexes and led to altered mitochondrial morphology with a loss of cristae membranes. Finally, in silico investigation of the phylogenetic distribution of the cluster-coordinating cysteine motifs indicated their presence in most metazoan mitoribosomes, with exception of ray-finned fish. Collectively, our study highlights the functional need of mitochondrial iron-sulfur protein biogenesis for both protein translation and respiratory energy supply in most metazoan mitochondria.
Collapse
Affiliation(s)
- Linda Boß
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Hans-Peter Elsässer
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
18
|
Cao Y, Zhang X, Lan L, Li D, Li J, Xie L, Xiong F, Yu L, Wu X, Wang H, Wang Q. Identification of genetic mechanisms of non-isolated auditory neuropathy with various phenotypes in Chinese families. Orphanet J Rare Dis 2025; 20:11. [PMID: 39780253 PMCID: PMC11715445 DOI: 10.1186/s13023-025-03540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Non-isolated auditory neuropathy (AN), or syndromic AN, is marked by AN along with additional systemic manifestations. The diagnostic process is challenging due to its varied symptoms and overlap with other syndromes. This study focuses on two mitochondrial function-related genes which result in non-isolated AN, FDXR and TWNK, providing a summary and enrichment analysis of genes associated with non-isolated AN to elucidate the genotype-phenotype correlation and underlying mechanisms. METHODS Seven independent Chinese Han patients with mutations in FDXR and TWNK underwent comprehensive clinical evaluations, genetic testing, and bioinformatics analyses. Diagnostic assessments included auditory brainstem response and distortion product otoacoustic emissions, supplemented by other examinations. Whole exome sequencing and Sanger sequencing validated genetic findings. Pathogenicity was assessed following American College of Medical Genetics and Genomics guidelines. Genes associated with non-isolated AN were summarized from prior reports, and functional enrichment analysis was conducted using Gene Ontology databases. RESULTS A total of 11 variants linked to non-isolated AN were identified in this study, eight of which were novel. Patients' age of hearing loss onset ranged from 2 to 25 years, averaging 11 years. Hearing loss varied from mild to profound, with 57.1%(4/7) of patients having risk factors and 71.4%(5/7) exhibiting additional systemic symptoms such as muscle weakness, ataxia, and high arches. Functional enrichment analysis revealed that genes associated with non-isolated AN predominantly involve mitochondrial processes, affecting the central and peripheral nervous, musculoskeletal, and visual systems. CONCLUSION This study identifies novel mutations in FDXR and TWNK that contribute to non-isolated AN through mitochondrial dysfunction. The findings highlight the role of mitochondrial processes in non-isolated AN, suggesting potential relevance as biomarkers for neurodegenerative diseases. Further research is required to explore these mechanisms and potential therapies.
Collapse
Affiliation(s)
- Yang Cao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Xiaolong Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Lan Lan
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Danyang Li
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Jin Li
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Linyi Xie
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Fen Xiong
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Lan Yu
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Xiaonan Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Hongyang Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
| | - Qiuju Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
| |
Collapse
|
19
|
Steinhilper R, Boß L, Freibert SA, Schulz V, Krapoth N, Kaltwasser S, Lill R, Murphy BJ. Two-stage binding of mitochondrial ferredoxin-2 to the core iron-sulfur cluster assembly complex. Nat Commun 2024; 15:10559. [PMID: 39632806 PMCID: PMC11618653 DOI: 10.1038/s41467-024-54585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Iron-sulfur (FeS) protein biogenesis in eukaryotes begins with the de novo assembly of [2Fe-2S] clusters by the mitochondrial core iron-sulfur cluster assembly (ISC) complex. This complex comprises the scaffold protein ISCU2, the cysteine desulfurase subcomplex NFS1-ISD11-ACP1, the allosteric activator frataxin (FXN) and the electron donor ferredoxin-2 (FDX2). The structural interaction of FDX2 with the complex remains unclear. Here, we present cryo-EM structures of the human FDX2-bound core ISC complex showing that FDX2 and FXN compete for overlapping binding sites. FDX2 binds in either a 'distal' conformation, where its helix F interacts electrostatically with an arginine patch of NFS1, or a 'proximal' conformation, where this interaction tightens and the FDX2-specific C terminus binds to NFS1, facilitating the movement of the [2Fe-2S] cluster of FDX2 closer to the ISCU2 FeS cluster assembly site for rapid electron transfer. Structure-based mutational studies verify the contact areas of FDX2 within the core ISC complex.
Collapse
Affiliation(s)
- Ralf Steinhilper
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Linda Boß
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Nils Krapoth
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Zhang L, Deng R, Liu L, Du H, Tang D. Novel insights into cuproptosis inducers and inhibitors. Front Mol Biosci 2024; 11:1477971. [PMID: 39659361 PMCID: PMC11628392 DOI: 10.3389/fmolb.2024.1477971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Cuproptosis is a new pattern of Cu-dependent cell death distinct from classic cell death pathways and characterized by aberrant lipoylated protein aggregation in TCA cycle, Fe-S cluster protein loss, HSP70 elevation, proteotoxic and oxidative stress aggravation. Previous studies on Cu homeostasis and Cu-induced cell death provide a great basis for the discovery of cuproptosis. It has gradually gathered enormous research interests and large progress has been achieved in revealing the metabolic pathways and key targets of cuproptosis, due to its role in mediating some genetic, neurodegenerative, cardiovascular and tumoral diseases. In terms of the key targets in cuproptosis metabolic pathways, they can be categorized into three types: oxidative stress, mitochondrial respiration, ubiquitin-proteasome system. And strategies for developing cuproptosis inducers and inhibitors involved in these targets have been continuously improved. Briefly, based on the essential cuproptosis targets and metabolic pathways, this paper classifies some relevant inducers and inhibitors including small molecule compounds, transcription factors and ncRNAs with the overview of principle, scientific and medical application, in order to provide reference for the cuproptosis study and target therapy in the future.
Collapse
Affiliation(s)
- Ligang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruiting Deng
- Beijing Mercer United International Education Consulting Co., Ltd., Guangzhou, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Tang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
21
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
22
|
Tan W, Zhang J, Chen L, Wang Y, Chen R, Zhang H, Liang F. Copper homeostasis and cuproptosis-related genes: Therapeutic perspectives in non-alcoholic fatty liver disease. Diabetes Obes Metab 2024; 26:4830-4845. [PMID: 39233500 DOI: 10.1111/dom.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a metabolic-associated fatty liver disease, has become the most common chronic liver disease worldwide. Recently, the discovery of cuproptosis, a newly identified mode of cell death, further highlighted the importance of copper in maintaining metabolic homeostasis. An increasing number of studies have confirmed that liver copper metabolism is closely related to the pathogenesis of NAFLD. However, the relationship between NAFLD and copper metabolism, especially cuproptosis, remains unclear. In this review, we aim to summarize the current understanding of copper metabolism and its dysregulation, particularly the role of copper metabolism dysregulation in the pathogenesis of NAFLD. More importantly, this review emphasizes potential gene-targeted therapeutic strategies, challenges and the future of cuproptosis-related genes in the treatment of NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Wangjing Tan
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Junli Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yayuan Wang
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Acupuncture and Moxibustion Department, Affiliated Hospital of Hubei University of Chinese Medicine(Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| |
Collapse
|
23
|
Ghai S, Shrestha R, Hegazi A, Boualoy V, Liu SH, Su KH. The Role of Heat Shock Factor 1 in Preserving Proteomic Integrity During Copper-Induced Cellular Toxicity. Int J Mol Sci 2024; 25:11657. [PMID: 39519208 PMCID: PMC11546224 DOI: 10.3390/ijms252111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Copper is crucial for many physiological processes across mammalian cells, including energy metabolism, neurotransmitter synthesis, and antioxidant defense mechanisms. However, excessive copper levels can lead to cellular toxicity and "cuproptosis", a form of programmed cell death characterized by the accumulation of copper within mitochondria. Tumor cells are less sensitive to this toxicity than normal cells, the mechanism for which remains unclear. We address this important issue by exploring the role of heat shock factor 1 (HSF1), a transcription factor that is highly expressed across several types of cancer and has a crucial role in tumor survival, in protecting against copper-mediated cytotoxicity. Using pancreatic ductal adenocarcinoma cells, we show that excessive copper triggers a proteotoxic stress response (PSR), activating HSF1 and that overexpressing HSF1 diminishes intracellular copper accumulation and prevents excessive copper-induced cell death and amyloid fibrils formation, highlighting HSF1's role in preserving proteasomal integrity. Copper treatment decreases the lipoylation of dihydrolipoamide S-acetyltransferase (DLAT), an enzyme necessary for cuproptosis, induces DLAT oligomerization, and induces insoluble DLAT formation, which is suppressed by overexpressing HSF1, in addition to enhancing the interaction between HSF1 and DLAT. Our findings uncover how HSF1 protects against copper-induced damage in cancer cells and thus represents a novel therapeutic target for enhancing copper-mediated cancer cell death.
Collapse
Affiliation(s)
| | | | | | | | | | - Kuo-Hui Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (S.G.); (R.S.); (A.H.); (V.B.); (S.-H.L.)
| |
Collapse
|
24
|
Li W, Wang H, Liu Y, Li B, Wang F, Ye P, Xu Y, Lai Y, Yang T. "Trinity" Comprehensively Regulates the Tumor Microenvironment of Lipid-Coated CaCO 3@CuO 2 Nanoparticles Induces "Cuproptosis" in HCC. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58203-58216. [PMID: 39422641 DOI: 10.1021/acsami.4c10336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tumor cell death induced by "cuproptosis" is a novel form of tumor death that differs from apoptosis induced by chemotherapy. It is expected to emerge as a new approach for cancer treatment. In this study, our focus was on exploiting the characteristic of "cuproptosis" which necessitates increased aerobic respiration to induce tumor cell death. To achieve this, we developed a novel drug delivery system using a CaCO3@CuO2 lipid coating (CaCO3@CuO2@L). This system aimed to comprehensively modulate the tumor microenvironment and trigger "cuproptosis" in hepatocellular carcinoma (HCC) through the interaction between copper ions and peroxides. Experimental results revealed that the CaCO3@CuO2@L exhibited a distinct watermelon shape, with CuO2 evenly distributed within the CaCO3 nanoparticles. The nanoparticles had an average size of approximately 191 nm. In vitro studies demonstrated that the nanoparticles released CuO2 in a slightly acidic environment while simultaneously elevating pH levels, reducing glutathione (GSH), and increasing oxygen production. Within liver cancer cells, the CaCO3@CuO2@L effectively regulated the acidity, GSH levels, and oxygen-depleted microenvironment through the "trinity" mechanism, ultimately inducing "cuproptosis" in HCC. Furthermore, in mouse models with transplanted tumors and orthotopic liver cancer tumors, the CaCO3@CuO2@L significantly suppressed tumor growth. By triggering "cuproptosis" in HCC, this study offers valuable insights for developing a comprehensive treatment approach for HCC. Ultimately, this research may pave the way for the clinical implementation of the drug delivery system based on "cuproptosis" in liver cancer treatment.
Collapse
Affiliation(s)
- Weijie Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430030, China
| | - Yong Xu
- Orthopedics Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongji Lai
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Wu Y, Su K, Zhang Y, Liang L, Wang F, Chen S, Gao L, Zheng Q, Li C, Su Y, Mao Y, Zhu S, Chai C, Lan Q, Zhai M, Jin X, Zhang J, Xu X, Zhang Y, Gao Y, Huang H. A spatiotemporal transcriptomic atlas of mouse placentation. Cell Discov 2024; 10:110. [PMID: 39438452 PMCID: PMC11496649 DOI: 10.1038/s41421-024-00740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases. We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand-receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis. We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance. Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology.
Collapse
Affiliation(s)
- Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Kaizhen Su
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- BGI Research, Shenzhen, Guangdong, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Langchao Liang
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- BGI Research, Shenzhen, Guangdong, China
| | - Siyue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiutong Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunfei Su
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Simeng Zhu
- Department of Cardiology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochao Chai
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Lan
- BGI Research, Shenzhen, Guangdong, China
| | - Man Zhai
- BGI Research, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI Research, Shenzhen, Guangdong, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ya Gao
- BGI Research, Shenzhen, Guangdong, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, Guangdong, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
27
|
Duncan RS, Keightley A, Lopez AA, Hall CW, Koulen P. Proteomics Analysis on the Effects of Oxidative Stress and Antioxidants on Proteins Involved in Sterol Transport and Metabolism in Human Telomerase Transcriptase-Overexpressing-Retinal Pigment Epithelium Cells. Int J Mol Sci 2024; 25:10893. [PMID: 39456672 PMCID: PMC11507349 DOI: 10.3390/ijms252010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent ocular disease in the elderly, resulting in blindness. Oxidative stress plays a role in retinal pigment epithelium (RPE) pathology observed in AMD. Tocopherols are potent antioxidants that prevent cellular oxidative damage and have been shown to upregulate the expression of cellular antioxidant proteins. Here, we determined whether oxidative stress and tocopherols, using either normal cellular conditions or conditions of sublethal cellular oxidative stress, alter the expression of proteins mediating sterol uptake, transport, and metabolism. Human telomerase transcriptase-overexpressing RPE cells (hTERT-RPE) were used to identify differential expression of proteins resulting from treatments. We utilized a proteomics strategy to identify protein expression changes in treated cells. After the identification and organization of data, we divided the identified proteins into groups related to biological function: cellular sterol uptake, sterol transport and sterol metabolism. Exposure of cells to conditions of oxidative stress and exposure to tocopherols led to similar protein expression changes within these three groups, suggesting that α-tocopherol (αT) and γ-tocopherol (γT) can regulate the expression of sterol uptake, transport and metabolic proteins in RPE cells. These data suggest that proteins involved in sterol transport and metabolism may be important for RPE adaptation to oxidative stress, and these proteins represent potential therapeutic targets.
Collapse
Affiliation(s)
- R. Scott Duncan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Andrew Keightley
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Adam A. Lopez
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Conner W. Hall
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
- Department of Biomedical Sciences, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| |
Collapse
|
28
|
Chen B, Wang J, Huang M, Gui Y, Wei Q, Wang L, Tan BC. C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis. PLoS Genet 2024; 20:e1011419. [PMID: 39356718 PMCID: PMC11446459 DOI: 10.1371/journal.pgen.1011419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:β subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/β sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the β, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/β sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai’an, China
| | - Junjun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Manna Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuanye Gui
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Qingqing Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
29
|
Oney-Hawthorne SD, Barondeau DP. Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119784. [PMID: 38908802 DOI: 10.1016/j.bbamcr.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
Collapse
Affiliation(s)
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
30
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
31
|
Bargagna B, Staderini T, Lang SH, Banci L, Camponeschi F. Defects in the Maturation of Mitochondrial Iron-Sulfur Proteins: Biophysical Investigation of the MMDS3 Causing Gly104Cys Variant of IBA57. Int J Mol Sci 2024; 25:10466. [PMID: 39408793 PMCID: PMC11476781 DOI: 10.3390/ijms251910466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple mitochondrial dysfunctions syndrome type 3 (MMDS3) is a rare autosomal recessive mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in the IBA57 gene. The gene protein product, IBA57, has an unknown role in iron-sulfur (Fe-S) cluster biogenesis but is required for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of IBA57 in MMDS3, we have investigated the impact of the pathogenic p.Gly104Cys (c.310G > T) variant on the structural and functional properties of IBA57. The Gly104Cys variant has been associated with a severe MMDS3 phenotype in both compound heterozygous and homozygous states, and defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes have been demonstrated in the affected patients. Size exclusion chromatography, also coupled to multiple angle light scattering, NMR, circular dichroism, and fluorescence spectroscopy characterization has shown that the Gly104Cys variant does not impair the conversion of the homo-dimeric [2Fe-2S]-ISCA22 complex into the hetero-dimeric IBA57-[2Fe-2S]-ISCA2 but significantly affects the stability of IBA57, in both its isolated form and in complex with ISCA2, thus providing a rationale for the severe MMDS3 phenotype associated with this variant.
Collapse
Affiliation(s)
- Beatrice Bargagna
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Tommaso Staderini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Steven H. Lang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lucia Banci
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Francesca Camponeschi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
32
|
Qin L, Cao X, Huang T, Liu Y, Li S. Identification of potential biomarkers of cuproptosis in cerebral ischemia. Front Nutr 2024; 11:1410431. [PMID: 39360273 PMCID: PMC11445069 DOI: 10.3389/fnut.2024.1410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Cerebral ischemia can cause mild damage to local brain nerves due to hypoxia and even lead to irreversible damage due to neuronal cell death. However, the underlying pathogenesis of this phenomenon remains unclear. This study utilized bioinformatics to explore the role of cuproptosis in cerebral ischemic disease and its associated biomarkers. Method R software identified the overlap of cerebral ischemia and cuproptosis genes, analyzed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and explored hub genes. Expressions and localizations of hub genes in brain tissue, cells, and immune cells were analyzed, along with predictions of protein structures, miRNAs, and transcription factors. A network was constructed depicting hub gene co-expression with miRNAs and interactions with transcription factors. Ferredoxin 1 (FDX1) expression was determined using qRT-PCR. Results Ten cuproptosis-related genes in cerebral ischemia were identified, with GO analysis revealing involvement in acetyl-CoA synthesis, metabolism, mitochondrial function, and iron-sulfur cluster binding. KEGG highlighted processes like the tricarboxylic acid cycle, pyruvate metabolism, and glycolysis/gluconeogenesis. Using the Human Protein Atlas, eight hub genes associated with cuproptosis were verified in brain tissues, hippocampus, and AF22 cells. Lipoyl(octanoyl) transferase 1 (LIPT1), was undetected, while others were found in mitochondria or both nucleus and mitochondria. These genes were differentially expressed in immune cells. FDX1, lipoic acid synthetase (LIAS), dihydrolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 component subunit alpha 1 (PDHA1), PDHB, and glutaminase (GLS) were predicted to target 111 miRNAs. PDHA1, FDX1, LIPT1, PDHB, LIAS, DLAT, GLS, and dihydrolipoamide dehydrogenase (DLD) were predicted to interact with 11, 10, 10, 9, 8, 7, 5, and 4 transcription factors, respectively. Finally, FDX1 expression was significantly upregulated in the hippocampus of ovariectomized rats with ischemia. Conclusion This study revealed an association between cerebral ischemic disease and cuproptosis, identifying eight potential target genes. These findings offer new insights into potential biomarkers for the diagnosis, treatment, and prognosis of cerebral ischemia, and provide avenues for the exploration of new medical intervention targets.
Collapse
Affiliation(s)
- Lihua Qin
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardiocerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Cao
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tengjia Huang
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yixin Liu
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Sheng Li
- Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardiocerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
33
|
Zhu Z, Zhu K, Zhang J, Zhou Y, Zhang Q. Elucidating the evolving role of cuproptosis in breast cancer progression. Int J Biol Sci 2024; 20:4872-4887. [PMID: 39309446 PMCID: PMC11414396 DOI: 10.7150/ijbs.98806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Breast cancer (BC) persists as a highly prevalent malignancy in females, characterized by diverse molecular signatures and necessitating personalized therapeutic approaches. The equilibrium of copper within the organism is meticulously maintained through regulated absorption, distribution, and elimination, underpinning not only cellular equilibrium but also various essential biological functions. The process of cuproptosis is initiated by copper's interaction with lipoylases within the tricarboxylic acid (TCA) cycle, which triggers the conglomeration of lipoylated proteins and diminishes the integrity of Fe-S clusters, culminating in cell demise through proteotoxic stress. In BC, aberrations in cuproptosis are prominent and represent a crucial molecular incident that contributes to the disease progression. It influences BC cell metabolism and affects critical traits such as proliferation, invasiveness, and resistance to chemotherapy. Therapeutic strategies that target cuproptosis have shown promising antitumor efficacy. Moreover, a plethora of cuproptosis-centric genes, including cuproptosis-related genes (CRGs), CRG-associated non-coding RNAs (ncRNAs), and cuproptosis-associated regulators, have been identified, offering potential for the development of risk assessment models or diagnostic signatures. In this review, we provide a comprehensive exposition of the fundamental principles of cuproptosis, its influence on the malignant phenotypes of BC, the prognostic implications of cuproptosis-based markers, and the substantial prospects of exploiting cuproptosis for BC therapy, thereby laying a theoretical foundation for targeted interventions in this domain.
Collapse
Affiliation(s)
- Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Keyu Zhu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430062, Hubei Province, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, Hubei, China
| |
Collapse
|
34
|
Liu J, Hu D, Wang Y, Zhou X, Jiang L, Wang P, Lai H, Wang Y, Xiao H. Exploration of a Predictive Model for Keloid and Potential Therapeutic Drugs Based on Immune Infiltration and Cuproptosis-Related Genes. J Burn Care Res 2024; 45:1217-1231. [PMID: 38334429 DOI: 10.1093/jbcr/irae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 02/10/2024]
Abstract
The aim of this study was to investigate the correlation between cuproptosis-related genes and immunoinfiltration in keloid, develop a predictive model for keloid occurrence, and explore potential therapeutic drugs. The microarray datasets (GSE7890 and GSE145725) were obtained from Gene Expression Omnibus database to identify the differentially expressed genes (DEGs) between keloid and nonkeloid samples. Key genes were identified through immunoinfiltration analysis and DEGs and then analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, followed by the identification of protein-protein interaction networks, transcription factors, and miRNAs associated with key genes. Additionally, a logistic regression analysis was performed to develop a predictive model for keloid occurrence, and potential candidate drugs for keloid treatment were identified. Three key genes (FDX1, PDHB, and DBT) were identified, showing involvement in acetyl-CoA biosynthesis, mitochondrial matrix, oxidoreductase activity, and the tricarboxylic acid cycle. Immune infiltration analysis suggested the involvement of B cells, Th1 cells, dendritic cells, T helper cells, antigen-presenting cell coinhibition, and T cell coinhibition in keloid. These genes were used to develop a logistic regression-based nomogram for predicting keloid occurrence with an area under the curve of 0.859 and good calibration. We identified 32 potential drug molecules and extracted the top 10 compounds based on their P-values, showing promise in targeting key genes and potentially effective against keloid. Our study identified some genes in keloid pathogenesis and potential therapeutic drugs. The predictive model enhances early diagnosis and management. Further research is needed to validate and explore clinical implications.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Ding Hu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Yaojun Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Xiaoqian Zhou
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Liyuan Jiang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Peng Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Haijing Lai
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Yu Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Houan Xiao
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
35
|
Zhang L, Deng R, Guo R, Jiang Y, Guan Y, Chen C, Zhao W, Huang G, Liu L, Du H, Tang D. Recent progress of methods for cuproptosis detection. Front Mol Biosci 2024; 11:1460987. [PMID: 39297074 PMCID: PMC11408227 DOI: 10.3389/fmolb.2024.1460987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Varying from other identified cell death pathways, cuproptosis is a new type of regulated cell death characterized by excess Cu ions, abnormal aggregation of lipoylated proteins in TCA cycle, loss of Fe-S cluster proteins, upregulation of HSP70, leading to proteotoxic and oxidative stress. Cuproptosis is highly concerned by scientific community and as the field of cuproptosis further develops, remarkable progress has been made in the verification and mechanism of cuproptosis, and methods used to detect cuproptosis have been continuously improved. According to the characteristic changes of cuproptosis, techniques based on cell death verification, Cu content, morphology, molecular biology of protein levels of cuproptosis-related molecules and biochemical pathways of cuproptosis-related enzyme activity and metabolites of oxidative stress, lipoic acid, TCA cycle, Fe-S cluster proteins, oxidative phosphorylation, cell respiration intensity have been subject to cuproptosis verification and research. In order to further deepen the understanding of detecting cuproptosis, the principle and application of common cuproptosis detection methods are reviewed and categorized in cellular phenomena and molecular mechanism in terms of cell death, Cu content, morphology, molecular biology, biochemical pathways with a flow chart. All the indicating results have been displayed in response to the markers of cuproptosis, their advantages and limitations are summaried, and comparison of cuproptosis and ferroptosis detection is performed in this study. Our collection of methods for cuproptosis detection will provide a great basis for cuproptosis verification and research in the future.
Collapse
Affiliation(s)
- Ligang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruiting Deng
- Beijing Mercer United International Education Consulting Co., Ltd., Guangzhou, China
| | - Raoqing Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yawen Jiang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Yichen Guan
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Caiyue Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Wudi Zhao
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Guobin Huang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Tang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
36
|
Miyahara S, Ohuchi M, Nomura M, Hashimoto E, Soga T, Saito R, Hayashi K, Sato T, Saito M, Yamashita Y, Shimada M, Yaegashi N, Yamada H, Tanuma N. FDX2, an iron-sulfur cluster assembly factor, is essential to prevent cellular senescence, apoptosis or ferroptosis of ovarian cancer cells. J Biol Chem 2024; 300:107678. [PMID: 39151727 PMCID: PMC11414659 DOI: 10.1016/j.jbc.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis, or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global downregulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53 deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids. Our results suggest that p53 status and phospholipid homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.
Collapse
Affiliation(s)
- Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Eifumi Hashimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
37
|
Sun B, Ding P, Song Y, Zhou J, Chen X, Peng C, Liu S. FDX1 downregulation activates mitophagy and the PI3K/AKT signaling pathway to promote hepatocellular carcinoma progression by inducing ROS production. Redox Biol 2024; 75:103302. [PMID: 39128228 PMCID: PMC11366913 DOI: 10.1016/j.redox.2024.103302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic reprogramming can lead to the development and progression of hepatocellular carcinoma (HCC). Ferredoxin 1 (FDX1) is a small mitochondrial protein and recent studies have shown that FDX1 plays an important role in tumor cuproptosis, but its role in HCC is still elusive. In this study, we aim to investigate the expression and novel functions of FDX1 in HCC. METHODS FDX1 expression was first analyzed in publicly available datasets and verified by immunohistochemistry, qRT-PCR and Western blot. In vitro and in vivo experiments were applied to explore the functions of FDX1. Non-targeted metabolomics and RNA-sequencing were used to determine molecular mechanism. mRFP-GFP-LC3 lentivirus transfection, Mito-Tracker Red and Lyso-Tracker Green staining, transmission electron microscopy, flow cytometry, JC-1 staining, etc. were used to analyze mitophagy or ROS levels. Hydrodynamic tail vein injection (HTVi) and patient-derived organoid (PDO) models were used to analyze effect of FDX1 overexpression. RESULTS FDX1 expression is significantly downregulated in HCC tissues. FDX1 downregulation promotes HCC cell proliferation, invasion in vitro and growth, metastasis in vivo. In addition, FDX1 affects metabolism of HCC cells and is associated with autophagy. We then confirmed that FDX1 deficiency increases ROS levels, activates mitophagy and the PI3K/AKT signaling pathway in HCC cells. Interestingly, scavenging ROS attenuates the tumor-promoting role and mitophagy of FDX1 downregulation. The results of HTVi and PDO models both find that FDX1 elevation significantly inhibits HCC progression. Moreover, low FDX1 expression is associated with shorter survival and is an independent risk factor for prognosis in HCC patients. CONCLUSIONS Our research had investigated novel functions of FDX1 in HCC. Downregulation of FDX1 contributes to metabolic reprogramming and leads to ROS-mediated activation of mitophagy and the PI3K/AKT signaling pathway. FDX1 is a potential prognostic biomarker and increasing FDX1 expression may be a potential therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China
| | - Peng Ding
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Jia Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China.
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China.
| |
Collapse
|
38
|
Zhang S, Yu H, Sun S, Fan X, Bi W, Li S, Wang W, Fang Z, Chen X. Copper Homeostasis Based on Cuproptosis-Related Signature Optimizes Molecular Subtyping and Treatment of Glioma. Mol Neurobiol 2024; 61:4962-4975. [PMID: 38151613 DOI: 10.1007/s12035-023-03893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Copper is essential in living organisms and crucial to various physiological processes. Normal physiological conditions are in a state of copper homeostasis to ensure normal biochemical and metabolic processes. Dysregulation of copper homeostasis has been associated with multiple diseases, especially cancer. Cuproptosis is a copper-dependent cell death mediated by excess copper or homeostasis dysregulation. Elesclomol is a common inducer of cuproptosis, carrying copper into the cell and producing excess copper. Cuproptosis modulates tumor proliferation-related signaling pathways and is closely associated with remodeling the tumor microenvironment. In gliomas, the role of cuproptosis and copper homeostasis needs to be better characterized. This study systematically analyzed cuproptosis-related genes (CRGs) and constructed a cuproptosis signature for gliomas. The signature closely links the subtypes and clinical features of glioma patients. The results showed a greater tendency toward dysregulation of copper homeostasis as the malignant grade of glioma patients increased. In addition, CRGs-signature effectively predicted the sensitivity of glioma cells to elesclomol and verified that elesclomol inhibited glioma mainly through inducing cellular cuproptosis. In summary, we found different copper homeostatic features in gliomas and verified the anticancer mechanism of elesclomol, which provides a theoretical basis for developing novel therapeutic strategies for gliomas.
Collapse
Affiliation(s)
- Siyu Zhang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Huihan Yu
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Suling Sun
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Xiaoqing Fan
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Wenxu Bi
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Shuyang Li
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiyou Fang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.
| | - Xueran Chen
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.
| |
Collapse
|
39
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
40
|
Xu J, Zheng B, Wang W, Zhou S. Ferroptosis: a novel strategy to overcome chemoresistance in gynecological malignancies. Front Cell Dev Biol 2024; 12:1417750. [PMID: 39045454 PMCID: PMC11263176 DOI: 10.3389/fcell.2024.1417750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, distinct from apoptosis, necrosis, and autophagy, and is characterized by altered iron homeostasis, reduced defense against oxidative stress, and increased lipid peroxidation. Extensive research has demonstrated that ferroptosis plays a crucial role in the treatment of gynecological malignancies, offering new strategies for cancer prevention and therapy. However, chemotherapy resistance poses an urgent challenge, significantly hindering therapeutic efficacy. Increasing evidence suggests that inducing ferroptosis can reverse tumor resistance to chemotherapy. This article reviews the mechanisms of ferroptosis and discusses its potential in reversing chemotherapy resistance in gynecological cancers. We summarized three critical pathways in regulating ferroptosis: the regulation of glutathione peroxidase 4 (GPX4), iron metabolism, and lipid peroxidation pathways, considering their prospects and challenges as strategies to reverse chemotherapy resistance. These studies provide a fresh perspective for future cancer treatment modalities.
Collapse
Affiliation(s)
- Jing Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Wang
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Huang XY, Shen JY, Huang K, Wang L, Sethi G, Ma Z. Cuproptosis in cancers: Function and implications from bench to bedside. Biomed Pharmacother 2024; 176:116874. [PMID: 38850661 DOI: 10.1016/j.biopha.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Copper, an indispensable micronutrient, is implicated in numerous vital biological processes and is essential for all physiological activities. Recently, the discovery of a novel type of copper-dependent cell death, known as cuproptosis, has shed light on its role in cancer development. Extensive research is currently underway to unravel the mechanisms underlying cuproptosis and its correlation with various cancer types. In this review, we summarize the findings regarding the roles and mechanisms of cuproptosis in various cancer types, including colorectal cancer, lung cancer, gastric cancer, breast cancer, liver cancer and cutaneous melanoma. Furthermore, the effects of copper-related agents such as copper chelators and copper ionophores on cell proliferation, apoptosis, angiogenesis, tumor immunity, and chemotherapy resistance have been explored in cancer preclinical and clinical trials. These insights provide promising avenues for the development of prospective anticancer drugs aimed at inducing cuproptosis.
Collapse
Affiliation(s)
- Xin-Yi Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Jia-Yang Shen
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Ke Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.
| |
Collapse
|
42
|
Ji S, Yang H, Ji Y, Wu W, Dong Y, Fu H, Tang N, Hou Z, Wang F. Liraglutide Improves PCOS Symptoms in Rats by Targeting FDX1. Reprod Sci 2024; 31:2049-2058. [PMID: 38441776 DOI: 10.1007/s43032-024-01503-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a gynecological endocrine disorder characterized by ovulatory disorders, hyperandrogenemia, and polycystic changes in the ovaries. FDX1 is a ferredoxin-reducing protein on human mitochondria that plays an important role in steroid anabolism. Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has recently emerged as a potential therapeutic agent for PCOS. Recent studies have suggested that FDX1 may be associated with the development of PCOS. This study aims to explore the pivotal role of FDX1 in the amelioration of PCOS through liraglutide intervention. MATERIALS AND METHODS A PCOS rat model was induced via subcutaneous DHEA injections. Following successful model establishment, the rats were treated with liraglutide combined with metformin, or with each drug individually, over a six-week period. After 6 weeks of treatment, we assessed changes in body weight, fasting blood glucose, sex hormone levels, estrous cycle regularity, ovarian morphology, FDX1 expression in ovarian tissue, and ovarian ROS levels. RESULTS PCOS rats exhibited significant increases in body weight and fasting blood glucose levels, disrupted estrous cycles, and polycystic ovarian morphology. FDX1 expression was notably reduced in the ovarian tissues of PCOS rats. Treatment with liraglutide, both alone and in combination with metformin, led to improvements in body weight, fasting blood glucose, sex hormone balance, estrous cycle regularity, ovarian morphology, and ovarian ROS levels. Notably, FDX1 expression was significantly restored in all treatment groups, with the most substantial increase observed in the liraglutide-treated group. CONCLUSION This study suggests that FDX1 could serve as a potential biomarker for elucidating the underlying mechanisms of liraglutide's therapeutic effects in PCOS management.
Collapse
Affiliation(s)
- Shuqing Ji
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Hua Yang
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yuqing Ji
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Weifan Wu
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yaping Dong
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Hongxia Fu
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Na Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, 300134, Tianjin, China
| | - Zhimin Hou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, 300134, Tianjin, China.
| | - Fang Wang
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
43
|
Xie XZ, Zuo L, Huang W, Fan QM, Weng YY, Yao WD, Jiang JL, Jin JQ. FDX1 as a novel biomarker and treatment target for stomach adenocarcinoma. World J Gastrointest Surg 2024; 16:1803-1824. [PMID: 38983344 PMCID: PMC11230022 DOI: 10.4240/wjgs.v16.i6.1803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is one of the main reasons for cancer-related deaths worldwide. This investigation aimed to define the connection between STAD and Cuproptosis-related genes (CRGs). Cuproptosis is a newly identified form of mitochondrial cell death triggered by copper. AIM To explore the identification of potential biomarkers for STAD disease based on cuproptosis. METHODS A predictive model using Gene Ontology (GO), Least Absolute Shrinkage and Selection Operator (LASSO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Variation Analysis (GSVA), and Gene Set Enrichment Analysis analyzed gene interconnections, focusing on 3 copper-related genes and their expression in The Cancer Genome Atlas-STAD. Networks for mRNA-miRNA and mRNA-transcription factor interactions were constructed. The prognostic significance of CRG scores was evaluated using time-receiver operating characteristic, Kaplan-Meier curves, and COX regression analysis. Validation was conducted with datasets GSE26942, GSE54129, and GSE66229. Expression of copper-related differentially expressed genes was also analyzed in various human tissues and gastric cancer subpopulations using the human protein atlas. RESULTS Three significant genes (FDX1, LIAS, MTF1) were identified and selected via LASSO analysis to predict and classify individuals with STAD into high and low CRG score subgroups. These genes were down-regulated in both risk categories. GO and KEGG analyses highlighted their involvement mainly in the electron transport chain. After validating their differential expression, FDX1 emerged as the most accurate diagnostic marker for gastric cancer. Additionally, the RCircos package localized FDX1 on chromosome 11. CONCLUSION Our study revealed that FDX1 could be a potential biomarker and treatment target for gastric malignancy, providing new ideas for further scientific research.
Collapse
Affiliation(s)
- Xian-Ze Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, Zhejiang Province, China
| | - Lei Zuo
- Anhui Province Huainan City Shou County Agricultural Machinery Affairs Management Center, Huainan 232200, Anhui Province, China
| | - Wei Huang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, Zhejiang Province, China
| | - Qiao-Mei Fan
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, Zhejiang Province, China
| | - Ya-Yun Weng
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, Zhejiang Province, China
| | - Wen-Dong Yao
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, Zhejiang Province, China
| | - Jia-Li Jiang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, Zhejiang Province, China
| | - Jia-Qi Jin
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
44
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
45
|
Jiang J, Hiron TK, Agbaedeng TA, Malhotra Y, Drydale E, Bancroft J, Ng E, Reschen ME, Davison LJ, O’Callaghan CA. A Novel Macrophage Subpopulation Conveys Increased Genetic Risk of Coronary Artery Disease. Circ Res 2024; 135:6-25. [PMID: 38747151 PMCID: PMC11191562 DOI: 10.1161/circresaha.123.324172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Coronary artery disease (CAD), the leading cause of death worldwide, is influenced by both environmental and genetic factors. Although over 250 genetic risk loci have been identified through genome-wide association studies, the specific causal variants and their regulatory mechanisms are still largely unknown, particularly in disease-relevant cell types such as macrophages. METHODS We utilized single-cell RNA-seq and single-cell multiomics approaches in primary human monocyte-derived macrophages to explore the transcriptional regulatory network involved in a critical pathogenic event of coronary atherosclerosis-the formation of lipid-laden foam cells. The relative genetic contribution to CAD was assessed by partitioning disease heritability across different macrophage subpopulations. Meta-analysis of single-cell RNA-seq data sets from 38 human atherosclerotic samples was conducted to provide high-resolution cross-referencing to macrophage subpopulations in vivo. RESULTS We identified 18 782 cis-regulatory elements by jointly profiling the gene expression and chromatin accessibility of >5000 macrophages. Integration with CAD genome-wide association study data prioritized 121 CAD-related genetic variants and 56 candidate causal genes. We showed that CAD heritability was not uniformly distributed and was particularly enriched in the gene programs of a novel CD52-hi lipid-handling macrophage subpopulation. These CD52-hi macrophages displayed significantly less lipoprotein accumulation and were also found in human atherosclerotic plaques. We investigated the cis-regulatory effect of a risk variant rs10488763 on FDX1, implicating the recruitment of AP-1 and C/EBP-β in the causal mechanisms at this locus. CONCLUSIONS Our results provide genetic evidence of the divergent roles of macrophage subsets in atherogenesis and highlight lipid-handling macrophages as a key subpopulation through which genetic variants operate to influence disease. These findings provide an unbiased framework for functional fine-mapping of genome-wide association study results using single-cell multiomics and offer new insights into the genotype-environment interactions underlying atherosclerotic disease.
Collapse
Affiliation(s)
- Jiahao Jiang
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Thomas K. Hiron
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Thomas A. Agbaedeng
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Yashaswat Malhotra
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Edward Drydale
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - James Bancroft
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Esther Ng
- Nuffield Department of Orthopaedics, Kennedy Institute of Rheumatology, Rheumatology and Musculoskeletal Sciences (E.N.), University of Oxford, United Kingdom
| | - Michael E. Reschen
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (M.E.R.)
| | - Lucy J. Davison
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom (L.J.D.)
| | - Chris A. O’Callaghan
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| |
Collapse
|
46
|
Li Q, Wang T, Zhou Y, Shi J. Cuproptosis in lung cancer: mechanisms and therapeutic potential. Mol Cell Biochem 2024; 479:1487-1499. [PMID: 37480450 DOI: 10.1007/s11010-023-04815-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Cuproptosis, a recently identified form of cell death that differs from other forms, is induced by the disruption of the binding of copper to mitochondrial respiratory acylation components. Inducing cell cuproptosis and targeting cell copper death pathways are considered potential directions for treating tumor diseases. We have provided a detailed introduction to the metabolic process of copper. In addition, this study attempts to clarify and summarize the relationships between cuproptosis and therapeutic targets and signaling pathways of lung cancer. This review aims to summarize the theoretical achievements for translating the results of lung cancer and cuproptosis experiments into clinical treatment.
Collapse
Affiliation(s)
- Qixuan Li
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
47
|
Xu S, Hao Y, Xu X, Huang L, Liang Y, Liao J, Yang JR, Zhou Y, Huang M, Du KZ, Zhang C, Xu P. Antitumor Activity and Mechanistic Insights of a Mitochondria-Targeting Cu(I) Complex. J Med Chem 2024; 67:7911-7920. [PMID: 38709774 DOI: 10.1021/acs.jmedchem.3c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using copper-ionophores to translocate extracellular copper into mitochondria is a clinically validated anticancer strategy that has been identified as a new type of regulated cell death termed "cuproptosis." This study reports a mitochondria-targeting Cu(I) complex, Cu(I)Br(PPh3)3 (CBP), consisting of a cuprous ion coordinated by three triphenylphosphine moieties and a Br atom. CBP exhibited antitumor and antimetastatic efficacy in vitro and in vivo by specifically targeting mitochondria instigating mitochondrial dysfunction. The cytotoxicity of CBP could only be reversed by a copper chelator rather than inhibitors of the known cell death, indicating copper-dependent cytotoxicity. Furthermore, CBP induced the oligomerization of lipoylated proteins and the loss of Fe-S cluster proteins, consistent with characteristic features of cuproptosis. Additionally, CBP induced remarkable intracellular generation of reactive oxygen species (ROS) through a Fenton-like reaction, indicating a complex antitumor mechanism. This is a proof-of-concept study exploiting the antitumor activity and mechanism of the Cu(I)-based mitochondria-targeting therapy.
Collapse
Affiliation(s)
- Siyu Xu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yashuai Hao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xinyi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Lu Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jia Liao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jie-Ru Yang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yang Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
48
|
Zhen Z, Ren J, Zhu J. The redox requirement and regulation during cell proliferation. Trends Endocrinol Metab 2024; 35:385-399. [PMID: 38262821 DOI: 10.1016/j.tem.2023.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
The intracellular metabolic network comprises a variety of reduction-oxidation (redox) reactions that occur in a temporally and spatially distinct manner. In order to coordinate these redox processes, mammalian cells utilize a collection of electron-carrying molecules common to many redox reactions, including NAD, NADP, coenzyme Q (CoQ), and glutathione (GSH). This review considers the metabolic basis of redox regulation in the context of cell proliferation by analyzing how cells acquire and utilize electron carriers to maintain directional carbon flux, sustain reductive biosynthesis, and support antioxidant defense. Elucidating the redox requirement during cell proliferation can advance the understanding of human diseases such as cancer, and reveal effective therapeutic opportunities in the clinic.
Collapse
Affiliation(s)
- Zhuoran Zhen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiankun Ren
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
49
|
Ai L, Yi N, Qiu C, Huang W, Zhang K, Hou Q, Jia L, Li H, Liu L. Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review). Int J Oncol 2024; 64:46. [PMID: 38456493 PMCID: PMC11000534 DOI: 10.3892/ijo.2024.5634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Breast cancer arises from the malignant transformation of mammary epithelial cells under the influence of various carcinogenic factors, leading to a gradual increase in its prevalence. This disease has become the leading cause of mortality among female malignancies, posing a significant threat to the health of women. The timely identification of breast cancer remains challenging, often resulting in diagnosis at the advanced stages of the disease. Conventional therapeutic approaches, such as surgical excision, chemotherapy and radiotherapy, exhibit limited efficacy in controlling the progression and metastasis of the disease. Regulated cell death (RCD), a process essential for physiological tissue cell renewal, occurs within the body independently of external influences. In the context of cancer, research on RCD primarily focuses on cuproptosis, ferroptosis and pyroptosis. Mounting evidence suggests a marked association between these specific forms of RCD, and the onset and progression of breast cancer. For example, a cuproptosis vector can effectively bind copper ions to induce cuproptosis in breast cancer cells, thereby hindering their proliferation. Additionally, the expression of ferroptosis‑related genes can enhance the sensitivity of breast cancer cells to chemotherapy. Likewise, pyroptosis‑related proteins not only participate in pyroptosis, but also regulate the tumor microenvironment, ultimately leading to the death of breast cancer cells. The present review discusses the unique regulatory mechanisms of cuproptosis, ferroptosis and pyroptosis in breast cancer, and the mechanisms through which they are affected by conventional cancer drugs. Furthermore, it provides a comprehensive overview of the significance of these forms of RCD in modulating the efficacy of chemotherapy and highlights their shared characteristics. This knowledge may provide novel avenues for both clinical interventions and fundamental research in the context of breast cancer.
Collapse
Affiliation(s)
- Leyu Ai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Na Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Chunhan Qiu
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Wanyi Huang
- Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Keke Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Qiulian Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Long Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Ling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| |
Collapse
|
50
|
Schulz V, Steinhilper R, Oltmanns J, Freibert SA, Krapoth N, Linne U, Welsch S, Hoock MH, Schünemann V, Murphy BJ, Lill R. Mechanism and structural dynamics of sulfur transfer during de novo [2Fe-2S] cluster assembly on ISCU2. Nat Commun 2024; 15:3269. [PMID: 38627381 PMCID: PMC11021402 DOI: 10.1038/s41467-024-47310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Ralf Steinhilper
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Jonathan Oltmanns
- Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Steinmühle-Schule & Internat, Steinmühlenweg 21, 35043, Marburg, Germany
| | - Nils Krapoth
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Maren H Hoock
- Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Volker Schünemann
- Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| |
Collapse
|