1
|
Muchová L, Šranková M, Balasubramani S, Mehta P, Vlachopoulou D, Kapoor A, Ramundo A, Jézéquel YA, Bożek I, Hurtová M, Klán P, Křen V, Vítek L. Carbon Monoxide-Releasing Activity of Plant Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1308-1318. [PMID: 39740217 PMCID: PMC11741109 DOI: 10.1021/acs.jafc.4c09069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Flavonoids are naturally occurring compounds found in fruits, vegetables, and other plant-based foods, and they are known for their health benefits, such as UV protection, antioxidant, anti-inflammatory, and antiproliferative properties. This study investigates whether flavonoids, such as quercetin and 2,3-dehydrosilybin, can act as photoactivatable carbon monoxide (CO)-releasing molecules under physiological conditions. CO has been recently recognized as an important signaling molecule. Here, we show that upon direct irradiation, CO was released from both flavonoids in PBS with chemical yields of up to 0.23 equiv, which increased to almost unity by sensitized photooxygenation involving singlet oxygen. Photoreleased CO reduced cellular toxicity caused by high flavonol concentrations, partially restored mitochondrial respiration, reduced superoxide production induced by rotenone and high flavonol levels, and influenced the G0/G1 and G2/M phases of the cell cycle, showing antiproliferative effects. The findings highlight the potential of quercetin and 2,3-dehydrosilybin as CO-photoreleasing molecules with chemopreventive and therapeutic implications in human pathology and suggest their possible roles in plant biology.
Collapse
Affiliation(s)
- Lucie Muchová
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Mária Šranková
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Sriram Balasubramani
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Panshul Mehta
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Dafni Vlachopoulou
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Akshat Kapoor
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Andrea Ramundo
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Yann Anton Jézéquel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Igor Bożek
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Martina Hurtová
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ 14200, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Vladimír Křen
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ 14200, Czech Republic
| | - Libor Vítek
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| |
Collapse
|
2
|
Feily A, Hosseinpour M, Samipour L, Parvar SY, Hadibarhaghtalab M, Goodarzian MR. Silymarin in combination with hair follicle transplantation as a potential treatment for refractory vitiligo: A double-blind randomized controlled trial. J Cosmet Dermatol 2024; 23:4167-4172. [PMID: 39161267 PMCID: PMC11626362 DOI: 10.1111/jocd.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/02/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND There is still no certain effective treatment for vitiligo as a common chronic skin disorder characterized by depigmented patches and loss of skin melanocytes. OBJECTIVES This study evaluates the efficacy of oral silymarin combined with hair follicle transplantation compared to follicle transplantation alone in the treatment of refractory vitiligo. MATERIALS AND METHODS Twenty refractory vitiligo patients were enrolled in this randomized controlled clinical trial, following up for 3 months. One group underwent hair transplantation plus oral silymarin, while the other group underwent follicle transplantation alone. We assessed the progress with Vitiligo Extent Tensity Index (VETI) in both groups and the peri-follicular pigmentation diameter was estimated monthly. The Friedman test for comparing two groups at the end and the Mann-Whitney test for comparing two groups during each month was used. RESULTS The mean age was 30.22 (18-59) years, with the male to female ratio of 1:1. The decrease in the VETI and increase in the perifollicular pigmentation was statistically significant between silymarin and another group in monthly follow-up (p-value: 0.019, 0.019, and 0.035, respectively). Finally, the re-pigmentation was notable in silymarin group (p-value <0.001 vs. 0.029, respectively). In addition, both genders had a significant increase in peri-follicular re-pigmentation in the last follow-up (p-value: 0.012 and 0.044, respectively); although the improvement was not statistically significant between genders in each month. CONCLUSION According to our study, silymarin in combination with hair transplantation could be a potential medical treatment for vitiligo; however, further trials are needed to establish the efficacy of combination therapies.
Collapse
Affiliation(s)
- Amir Feily
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Masoome Hosseinpour
- Department of OtorhinolaryngologyMashhad University of Medical SciencesMashhadIran
| | - Leila Samipour
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Seyedeh Yasamin Parvar
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Molecular Dermatology Research Center, Dermatology DepartmentShiraz University of Medical SciencesShirazIran
| | - Maryam Hadibarhaghtalab
- Molecular Dermatology Research Center, Dermatology DepartmentShiraz University of Medical SciencesShirazIran
| | - MReza Goodarzian
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| |
Collapse
|
3
|
Butanda-Nuñez A, Rodríguez-Cortés O, Ramos-Martínez E, Cerbón MA, Escobedo G, Chavarría A. Silybin restores glucose uptake after tumour necrosis factor-alpha and lipopolysaccharide stimulation in 3T3-L1 adipocytes. Adipocyte 2024; 13:2374062. [PMID: 38953241 PMCID: PMC11221471 DOI: 10.1080/21623945.2024.2374062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity is associated with a low-grade chronic inflammatory process characterized by higher circulating TNFα levels, thus contributing to insulin resistance. This study evaluated the effect of silybin, the main bioactive component of silymarin, which has anti-inflammatory properties, on TNFα levels and its impact on glucose uptake in the adipocyte cell line 3T3-L1 challenged with two different inflammatory stimuli, TNFα or lipopolysaccharide (LPS). Silybin's pre-treatment effect was evaluated in adipocytes pre-incubated with silybin (30 or 80 µM) before challenging with the inflammatory stimuli (TNFα or LPS). For the post-treatment effect, the adipocytes were first challenged with the inflammatory stimuli and then post-treated with silybin. After treatments, TNFα production, glucose uptake, and GLUT4 protein expression were determined. Both inflammatory stimuli increased TNFα secretion, diminished GLUT4 expression, and significantly decreased glucose uptake. Silybin 30 µM only reduced TNFα secretion after the LPS challenge. Silybin 80 µM as post-treatment or pre-treatment decreased TNFα levels, improving glucose uptake. However, glucose uptake enhancement induced by silybin did not depend on GLUT4 protein expression. These results show that silybin importantly reduced TNFα levels and upregulates glucose uptake, independently of GLUT4 protein expression.
Collapse
Affiliation(s)
- Alejandra Butanda-Nuñez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Octavio Rodríguez-Cortés
- Laboratorio 103, SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Espiridión Ramos-Martínez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marco Antonio Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Galileo Escobedo
- Laboratorio de Proteómica y Metabolómica, Hospital General de México “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Bai Y, Zhang J, Li J, Liao M, Zhang Y, Xia Y, Wei Z, Dai Y. Silibinin, a commonly used therapeutic agent for non-alcohol fatty liver disease, functions through upregulating intestinal expression of fibroblast growth factor 15/19. Br J Pharmacol 2024; 181:3663-3684. [PMID: 38839561 DOI: 10.1111/bph.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Silibinin is used to treat non-alcohol fatty liver disease (NAFLD) despite having rapid liver metabolism. Therefore, we investigated the role of the intestine in silibinin mechanism of action. EXPERIMENTAL APPROACH NAFLD mice model was established by feeding them with a high-fat diet (HFD). Liver pathological were examined using H&E and oil red O staining. Tissue distribution of silibinin was detected by LC-MS/MS. SiRNA was employed for gene silencing and plasmid was used for gene overexpression. ChIP-qPCR assay was performed to detect the levels of histone acetylation. Recombinant adeno-associated virus 9-short hairpin-fibroblast growth factor (FGF)-15 and -farnesoid X receptor (FXR; NR1H4) were used to knockdown expression of FGF-15 and FXR. KEY RESULTS Oral silibinin significantly reversed NAFLD in mice, although liver concentration was insufficient for reduction of lipid accumulation in hepatocytes. Among endogenous factors capable of reversing NAFLD, the expression of Fgf-15 was selectively up-regulated by silibinin in ileum and colon of mice. When intestinal expression of Fgf-15 was knocked down, protection of silibinin against lipid accumulation and injury of livers nearly disappeared. Silibinin could reduce activity of histone deacetylase 2 (HDAC2), enhance histone acetylation in the promoter region of FXR and consequently increase intestinal expression of FGF-15/19. CONCLUSION AND IMPLICATIONS Oral silibinin selectively promotes expression of FGF-15/19 in ileum by enhancing transcription of FXR via reduction of HDAC2 activity, and FGF-15/19 enters into circulation to exert anti-NAFLD action. As the site of action is the intestine this would explain the discrepancy between pharmacodynamics and pharmacokinetics of silibinin.
Collapse
Affiliation(s)
- Yujie Bai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jialin Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Liao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
7
|
Muchiri RN, van Breemen RB. Chemical Standardization of Milk Thistle ( Silybum marianum L.) Extract Using UHPLC-MS/MS and the Method of Standard Addition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1726-1732. [PMID: 38953246 PMCID: PMC11311221 DOI: 10.1021/jasms.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Extracts prepared from the seeds of the medicinal plant milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)] are widely used as dietary supplements due to anti-inflammatory, antitumor, and hepatoprotective effects. Called silymarin, the main components of lipophilic extracts of milk thistle seeds are flavonoids and flavonolignans including silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, taxifolin, and 2,3-dehydrosilybins. The aim of this study was to develop a method based on UHPLC-MS/MS for the chemical authentication and standardization of milk thistle silymarin. Validation included the method of standard addition to account for the lack of a blank matrix. Potential matrix effects were investigated by analyzing silymarin standards dissolved only in the initial UHPLC mobile phase. Measurements of six flavonolignans and taxifolin in the milk thistle extract using UHPLC-MS/MS with standard addition or external standard calibration produced similar results for all analytes except silydianin and 2,3-dehydrosilybin B, which showed significant peak enhancement during negative ion electrospray due to botanical matrix effects. The UHPLC-MS/MS-based method of standard addition requires <10 min per injection and is suitable for the standardization of silymarin from milk thistle in support of preclinical and clinical studies of safety and efficacy.
Collapse
Affiliation(s)
- Ruth N. Muchiri
- Linus Pauling Institute, Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, Oregon 97331, United States
| | - Richard B. van Breemen
- Linus Pauling Institute, Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, Oregon 97331, United States
| |
Collapse
|
8
|
Bechtold BJ, Lynch KD, Oyanna VO, Call MR, Graf TN, Oberlies NH, Clarke JD. Rifampin- and Silymarin-Mediated Pharmacokinetic Interactions of Exogenous and Endogenous Substrates in a Transgenic OATP1B Mouse Model. Mol Pharm 2024; 21:2284-2297. [PMID: 38529622 PMCID: PMC11073900 DOI: 10.1021/acs.molpharmaceut.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3, encoded by the SLCO gene family of the solute carrier superfamily, are involved in the disposition of many exogenous and endogenous compounds. Preclinical rodent models help assess risks of pharmacokinetic interactions, but interspecies differences in transporter orthologs and expression limit direct clinical translation. An OATP1B transgenic mouse model comprising a rodent Slco1a/1b gene cluster knockout and human SLCO1B1 and SLCO1B3 gene insertions provides a potential physiologically relevant preclinical tool to predict pharmacokinetic interactions. Pharmacokinetics of exogenous probe substrates, pitavastatin and pravastatin, and endogenous OATP1B biomarkers, coproporphyrin-I and coproporphyrin-III, were determined in the presence and absence of known OATP/Oatp inhibitors, rifampin or silymarin (an extract of milk thistle [Silybum marianum]), in wild-type FVB mice and humanized OATP1B mice. Rifampin increased exposure of pitavastatin (4.6- and 2.8-fold), pravastatin (3.6- and 2.2-fold), and coproporphyrin-III (1.6- and 2.1-fold) in FVB and OATP1B mice, respectively, but increased coproporphyrin-I AUC0-24h only (1.8-fold) in the OATP1B mice. Silymarin did not significantly affect substrate AUC, likely because the silymarin flavonolignan concentrations were at or below their reported IC50 values for the relevant OATPs/Oatps. Silymarin increased the Cmax of pitavastatin 2.7-fold and pravastatin 1.9-fold in the OATP1B mice. The data of the OATP1B mice were similar to those of the pitavastatin and pravastatin clinical data; however, the FVB mice data more closely recapitulated pitavastatin clinical data than the data of the OATP1B mice, suggesting that the OATP1B mice are a reasonable, though costly, preclinical strain for predicting pharmacokinetic interactions when doses are optimized to achieve clinically relevant plasma concentrations.
Collapse
Affiliation(s)
- Baron J. Bechtold
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Victoria O. Oyanna
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - M. Ridge Call
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina, 27412, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina, 27412, United States
| | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| |
Collapse
|
9
|
Anupama Sekar J, Velayudhan S, Senthilkumar M, Anil Kumar PR. Silymarin enriched gelatin methacrylamide bioink imparts hepatoprotectivity to 3D bioprinted liver construct against carbon tetrachloride induced toxicity. Eur J Pharm Biopharm 2024; 198:114272. [PMID: 38537909 DOI: 10.1016/j.ejpb.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Three-dimensional liver bioprinting is an emerging technology in the field of regenerative medicine that aids in the creation of functional tissue constructs that can be used as transplantable organ substitutes. During transplantation, the bioprinted donor liver must be protected from the oxidative stress environment created by various factors during the transplantation procedure, as well as from drug-induced damage from medications taken as part of the post-surgery medication regimen following the procedure. In this study, Silymarin, a flavonoid with the hepatoprotective properties were introduced into the GelMA bioink formulation to protect the bioprinted liver against hepatotoxicity. The concentration of silymarin to be added in GelMA was optimised, bioink properties were evaluated, and HepG2 cells were used to bioprint liver tissue. Carbon tetrachloride (CCl4) was used to induce hepatotoxicity in bioprinted liver, and the effect of this chemical on the metabolic activities of HepG2 cells was studied. The results showed that Silymarin helps with albumin synthesis and shields liver tissue from the damaging effects of CCl4. According to gene expression analysis, CCl4 treatment increased TNF-α and the antioxidant enzyme SOD expression in HepG2 cells while the presence of silymarin protected the bioprinted construct from CCl4-induced damage. Thus, the outcomes demonstrate that the addition of silymarin in GelMA formulation protects liver function in toxic environments.
Collapse
Affiliation(s)
- J Anupama Sekar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India
| | - Shiny Velayudhan
- Division of Dental Products, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India
| | - M Senthilkumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India
| | - P R Anil Kumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India.
| |
Collapse
|
10
|
Mohammadi S, Ashtary-Larky D, Asbaghi O, Farrokhi V, Jadidi Y, Mofidi F, Mohammadian M, Afrisham R. Effects of silymarin supplementation on liver and kidney functions: A systematic review and dose-response meta-analysis. Phytother Res 2024; 38:2572-2593. [PMID: 38475999 DOI: 10.1002/ptr.8173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
It is suggested that supplementation with silymarin (SIL) has beneficial impacts on kidney and liver functions. This systematic review and dose-response meta-analysis assessed the impact of SIL administration on certain hepatic, renal, and oxidative stress markers. A systematic search was conducted in various databases to identify relevant trials published until January 2023. Randomized controlled trials (RCTs) that evaluated the effects of SIL on kidney and liver markers were included. A random-effects model was used for the analysis and 41 RCTs were included. The pooled results indicated that SIL supplementation led to a significant reduction in serum levels of alkaline phosphatase, alanine transaminase, creatinine, and aspartate aminotransferase, along with a substantial elevation in serum glutathione in the SIL-treated group compared to their untreated counterparts. In addition, there was a nonsignificant decrease in serum levels of gamma-glutamyl transferase, malondialdehyde (MDA), total bilirubin, albumin (Alb), total antioxidant capacity, and blood urea nitrogen. Sub-group analyses revealed a considerable decline in MDA and Alb serum values among SIL-treated participants with liver disease in trials with a longer duration (≥12 weeks). These findings suggest that SIL may ameliorate certain liver markers with potential hepatoprotective effects, specifically with long-term and high-dose supplementation. However, its nephroprotective effects and impact on oxidative stress markers were not observed. Additional high-quality RCTs with longer durations are required to determine the clinical efficacy of SIL supplementation on renal and oxidative stress markers.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mohammadian
- Department of Exercise Physiology, Islamic Azad University of Ahvaz, Ahvaz, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Kim KD, Shim J, Hwang JH, Kim D, El Baidouri M, Park S, Song J, Yu Y, Lee K, Ahn BO, Hong SY, Chin JH. Chromosome-level genome assembly of milk thistle (Silybum marianum (L.) Gaertn.). Sci Data 2024; 11:342. [PMID: 38580686 PMCID: PMC10997770 DOI: 10.1038/s41597-024-03178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/22/2024] [Indexed: 04/07/2024] Open
Abstract
Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.
Collapse
Affiliation(s)
- Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea.
| | | | - Ji-Hun Hwang
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Daegwan Kim
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Moaine El Baidouri
- Laboratoire Génome et Développement des Plantes, Center National de la Recherche Scientifique (CNRS), Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, Perpignan, France
| | - Soyeon Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Jiyong Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Yeisoo Yu
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Keunpyo Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju, 54875, Korea
| | - Byoung-Ohg Ahn
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Korea
| | - Su Young Hong
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Korea.
| | - Joong Hyoun Chin
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, Korea.
- Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
12
|
Bahari H, Shahraki Jazinaki M, Rashidmayvan M, Taheri S, Amini MR, Malekahmadi M. The effects of silymarin consumption on inflammation and oxidative stress in adults: a systematic review and meta-analysis. Inflammopharmacology 2024; 32:949-963. [PMID: 38372848 DOI: 10.1007/s10787-023-01423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/24/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Owing to the rich phytochemical content of Silymarin, it may effectively manage inflammation and oxidative stress. We, therefore, aimed to examine the existing evidence on the effect of Silymarin consumption on inflammation and oxidative stress factors by conducting a systematic review and meta-analysis of randomized controlled trials. METHODS A systematic literature search up to September 2023 was completed in PubMed/Medline, Scopus, and Web of Science, to identify eligible RCTs. Heterogeneity tests of the selected trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as weighted mean differences with a 95% confidence interval. RESULTS Fifteen RCTs were included in this meta-analysis. Our findings showed that Silymarin consumption significantly decreased CRP (WMD, - 0.50 mg/L; 95% CI, (- 0.95 to - 0.04); p = 0.03), MDA (WMD, - 1.19 nmol/mL; 95% CI, (- 1.99 to - 0.38); p = 0.004), and IL-6 (WMD, - 0.44 pg/ml; 95% CI, (- 0.75 to - 0.12); p = 0.006). Silymarin consumption had no significant effects on IL-10, TAC, and GSH. A significant non-linear relationship was observed between the duration of the intervention and MDA changes. CONCLUSIONS Silymarin can help reduce inflammation in patients with diabetes and thalassemia by reducing MDA as an oxidative stress marker and CRP and IL-6 as inflammatory markers.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Shahraki Jazinaki
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Shaghayegh Taheri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Mohammadi S, Asbaghi O, Afrisham R, Farrokhi V, Jadidi Y, Mofidi F, Ashtary-Larky D. Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose-Response Meta-Analysis. Antioxidants (Basel) 2024; 13:390. [PMID: 38671838 PMCID: PMC11047742 DOI: 10.3390/antiox13040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
It has been suggested that silymarin (SIL) supplementation has positive effects on cardiovascular health and reduces the risk of cardiometabolic syndrome (CMS). This systematic review and dose-response meta-analysis assessed the impacts of SIL administration on cardiovascular risk factors. A systematic search of multiple databases was performed to identify eligible controlled trials published up to January 2023. The analysis used a random-effects model and included 33 trials with 1943 participants. It was revealed that SIL supplementation led to a notable reduction in serum levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -21.68 mg/dL, 95% CI: -31.37, -11.99; p < 0.001), diastolic blood pressure (DBP) (WMD: -1.25 mmHg; 95% CI: -2.25, -0.26; p = 0.013), total cholesterol (TC) (WMD: -13.97 mg/dL, 95% CI: -23.09, -4.85; p = 0.003), triglycerides (TG) (WMD: -26.22 mg/dL, 95% CI: -40.32, -12.12; p < 0.001), fasting insulin (WMD: -3.76 mU/mL, 95% CI: -4.80, -2.72; p < 0.001), low-density lipoprotein (LDL) (WMD: -17.13 mg/dL, 95% CI: -25.63, -8.63; p < 0.001), and hemoglobin A1C (HbA1c) (WMD: -0.85%, 95% CI: -1.27, -0.43; p < 0.001) in the SIL-treated groups compared to their untreated counterparts. In addition, there were no substantial differences in body mass index (BMI), systolic blood pressure (SBP), C-reactive protein (CRP), body weight, and high-density lipoprotein (HDL) between the two groups. These outcomes suggest that SIL consumption reduces certain CMS risk factors and has favorable impacts on lipid and glycemic profiles with potential hypotensive effects. These findings should be supported by additional trials with larger sample sizes and longer durations.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| |
Collapse
|
14
|
Huang CH, Wu VCC, Wang CL, Wu CL, Huang YT, Chang SH. Silymarin Synergizes with Antiviral Therapy in Hepatitis B Virus-Related Liver Cirrhosis: A Propensity Score Matching Multi-Institutional Study. Int J Mol Sci 2024; 25:3088. [PMID: 38542062 PMCID: PMC10970014 DOI: 10.3390/ijms25063088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 01/04/2025] Open
Abstract
Hepatitis B virus (HBV)-related liver cirrhosis (HBV-LC) presents a substantial mortality and hepatocellular carcinoma (HCC) risk. While antiviral therapy (AVT) is the standard, complete HBV clearance remains elusive and may not reduce the risk of death in patients with decompensated cirrhosis. Silymarin, a centuries-old herbal remedy, has shown promise against HBV infection and as an antifibrosis therapy. This study explores the potential of silymarin combined with AVT to reduce mortality and HCC incidence in patients with HBV-LC. This research, spanning from 2001 to 2019, entailed a multi-institutional retrospective cohort study which included 8447 HBV-LC patients all undergoing AVT. After applying inclusion and exclusion criteria, the study comprised two cohorts: a case cohort receiving silymarin alongside AVT for at least 30 days, and a control cohort on AVT alone. Propensity score matching, based on baseline parameters including HBV-DNA levels, comorbidity, and an important LC medication, namely, non-selective β-blockers, was employed to ensure balanced groups, resulting in 319 patients in each cohort for subsequent analyses. Overall mortality was the primary outcome, with HCC occurrence as a secondary outcome. Among 319 patients in both cohorts, the case cohort exhibited significant improvements in the international normalized ratio (INR), model for end-stage liver disease (MELD) score and the Charlson comorbidity index (CCI) one year after the index date. A competing risk survival analysis demonstrated superior one-year and two-year mortality outcomes in the case cohort. However, no significant impact on one-year and two-year HCC occurrence was observed in either cohort. The combination of silymarin and AVT in HBV-LC patients demonstrated a synergistic effect, leading to decreased overall mortality and an improved comorbidity index. While the incidence of HCC remained unchanged, our results suggested promising potential for further clinical trials investigating the synergistic role of silymarin in the treatment of HBV-LC.
Collapse
Affiliation(s)
- Chien-Hao Huang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33305, Taiwan (C.-L.W.)
| | - Victor Chien-Chia Wu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33305, Taiwan (C.-L.W.)
- Department of Cardiology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan
| | - Chun-Li Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33305, Taiwan (C.-L.W.)
- Department of Cardiology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan
| | - Chia-Ling Wu
- Center for Big Data Analytics and Statistics, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan; (C.-L.W.)
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan; (C.-L.W.)
| | - Shang-Hung Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33305, Taiwan (C.-L.W.)
- Department of Cardiology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan
- Center for Big Data Analytics and Statistics, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan; (C.-L.W.)
| |
Collapse
|
15
|
Eghbali A, Sadeghian M, Ghasemi A, Afzal RR, Eghbali A, Ghaffari K. Effect of oral silymarin on liver function in pediatric acute lymphoblastic leukemia in the maintenance phase: a double-blind randomized clinical trial. Front Pharmacol 2024; 15:1295816. [PMID: 38283627 PMCID: PMC10811082 DOI: 10.3389/fphar.2024.1295816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction: Liver dysfunction is one of the most common disorders in patients with acute lymphoblastic leukemia (ALL). In recent studies, silymarin has been observed to have hepatic protective effects. Therefore, in this study, the effect of oral silymarin on the hepatic functions of patients with ALL was investigated. Methods: In the present double-blind clinical trial study, 121 patients with ALL over 5 years of age were divided into two groups after obtaining informed consent. The subjects were randomly divided into a silymarin-treatment group and a placebo group. In the silymarin-treatment group, patients received 70 mg oral capsules of silymarin twice daily or syrup of silymarin three times a day (each 5 ml of syrup contains 50 mg of silymarin). Patients were examined once a month for 9 months to receive capsules and measure the levels of alanine aminotransferase (ALT), aspartate transferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), bilirubin, albumin, and cholesterol. Results: Comparison of changes before and after treatment in the two groups showed that receiving oral silymarin resulted in a slight significant decrease in the levels of ALT, AST, GGT, and bilirubin (p < 0.05), but had no effect on ALP, albumin, and cholesterol (p > 0.05). Discussion: The results of the present study showed that in pediatric patients with ALL, silymarin intake improves liver function. The very strong antioxidant effect of silymarin may explain its protective effect on the liver. Clinical Trial Registration: IRCT20150119020715N10.
Collapse
Affiliation(s)
- Aziz Eghbali
- Clinical Research Development Center of Aliasghar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghian
- Department of Pediatrics, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ghasemi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Roghayeh Rahimi Afzal
- Department of Pediatrics, Amir Kabir Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Aygin Eghbali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Ghaffari
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
- Department of Basic and Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
16
|
Nawaz A, Manzoor A, Ahmed S, Ahmed N, Abbas W, Mir MA, Bilal M, Sheikh A, Ahmad S, Jeelani I, Nakagawa T. Therapeutic approaches for chronic hepatitis C: a concise review. Front Pharmacol 2024; 14:1334160. [PMID: 38283838 PMCID: PMC10811011 DOI: 10.3389/fphar.2023.1334160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Hepatitis C virus (HCV) infection is a significant global health concern, prompting the need for effective treatment strategies. This in-depth review critically assesses the landscape of HCV treatment, drawing parallels between traditional interferon/ribavirin therapy historically pivotal in HCV management and herbal approaches rooted in traditional and complementary medicine. Advancements in therapeutic development and enhanced clinical outcomes axis on a comprehensive understanding of the diverse HCV genome, its natural variations, pathogenesis, and the impact of dietary, social, environmental, and economic factors. A thorough analysis was conducted through reputable sources such as Science Direct, PubMed, Scopus, Web of Science, books, and dissertations. This review primarily focuses on the intricate nature of HCV genomes and explores the potential of botanical drugs in both preventing and treating HCV infections.
Collapse
Affiliation(s)
- Allah Nawaz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Azhar Manzoor
- Department of Surgery, Bahawal Victoria Hospital, Bahawalpur, Pakistan
| | - Saeed Ahmed
- Department of Medicine, and Surgery, Rawalpindi Medical University, Rawalpindi, Punjab, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir (AJ&K), Pakistan
| | - Waseem Abbas
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mushtaq Ahmad Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Alisha Sheikh
- Jammu Institute of Ayurveda and Research, University of Jammu, Jammu, India
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ishtiaq Jeelani
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
17
|
Inai M, Sagara H, Ueno Y, Ouchi H, Yoshimura F, Asakawa T, Hamashima Y, Kan T. Total Synthesis of (+)-Silybin A. Chem Pharm Bull (Tokyo) 2024; 72:570-573. [PMID: 38910121 DOI: 10.1248/cpb.c24-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
We report the first total synthesis of silybin A (1). Key synthetic steps include the construction of the 1,4-benzodioxane neolignan skeleton, a modified Julia-Kocienski olefination reaction between m-nitrophenyltetrazole sulfone (m-NPT sulfone) 10 and aldehyde 21, the formation of the flavanol lignan skeleton 28 via a quinomethide intermediate under acidic conditions, and stepwise oxidation of the benzylic position of flavanol 29.
Collapse
Affiliation(s)
- Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiroto Sagara
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Yoshinori Ueno
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
18
|
Bjørklund G, Lysiuk R, Semenova Y, Lenchyk L, Dub N, Doşa MD, Hangan T. Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines. Curr Med Chem 2024; 31:393-409. [PMID: 36698239 DOI: 10.2174/0929867330666230125121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023]
Abstract
Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University , Astana, Kazakhstan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | | | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
19
|
Fokina NN, Sukhovskaya IV, Kantserova NP, Lysenko LA. Tissue Lipid Profiles of Rainbow Trout, Oncorhynchus mykiss, Cultivated under Environmental Variables on a Diet Supplemented with Dihydroquercetin and Arabinogalactan. Animals (Basel) 2023; 14:94. [PMID: 38200824 PMCID: PMC10778423 DOI: 10.3390/ani14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Reared rainbow trout are vulnerable to environmental stressors, in particular seasonal water warming, which affects fish welfare and growth and induces a temperature response, which involves modifications in tissue lipid profiles. Dietary supplements of plant origin, including the studied mix of a flavonoid, dihydroquercetin and a polysaccharide, arabinogalactan (25 and 50 mg per 1 kg of feed, respectively), extracted from larch wood waste, were shown to facilitate stress tolerance in fish and also to be beneficial for the safety of natural ecosystems and the sustainability of aquaculture production. This four-month feeding trial aimed to determine the effects of the supplement on liver and muscle lipid accumulation and the composition in rainbow trout reared under environmental variables. During periods of environmental optimum for trout, a consistent increase in energy lipid stores, particularly triacylglycerols (2.18 vs. 1.49-fold over a growing season), and an overall increase in lipid saturation due to lower levels of PUFAs, such as eicosapentaenoic (20:5n-3), docosahexaenoic (22:6n-3) and arachidonic (20:4n-6) acids, were observed in both control and supplement-fed fish, respectively. However, in fish stressed by an increase in ambient temperature, dietary supplementation with dihydroquercetin and arabinogalactan reduced mortality (3.65 in control vs. 2.88% in supplement-fed fish, p < 0.05) and alleviated the high-temperature-induced inhibition of lipid accumulation. It also stabilised the membrane phospholipid ratio and moderated the fatty acid composition of fish muscle and liver, resulting in higher levels of n-3 PUFAs and their precursors. Thus, the natural compounds tested are beneficial in accelerating fish tolerance to environmental stressors, reducing mortality and thermal response, and moderately improving fillet quality attributes by increasing the protein/lipid ratio and the abundance of fatty acids essential for human nutrition.
Collapse
Affiliation(s)
| | | | - Nadezhda P. Kantserova
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia; (N.N.F.); (I.V.S.); (L.A.L.)
| | | |
Collapse
|
20
|
Ramírez-Carreto RJ, Zaldívar-Machorro VJ, Pérez-Ramírez DJ, Rodríguez-López BE, Meza C, García E, Santamaría A, Chavarría A. Oral Administration of Silybin Protects Against MPTP-Induced Neurotoxicity by Reducing Pro-inflammatory Cytokines and Preserving BDNF Levels in Mice. Mol Neurobiol 2023; 60:6774-6788. [PMID: 37480498 PMCID: PMC10657796 DOI: 10.1007/s12035-023-03485-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease associated with motor dysfunction secondary to the loss of dopaminergic neurons in the nigrostriatal axis. Actual therapy consists mainly of levodopa; however, its long-term use promotes secondary effects. Consequently, finding new therapeutic alternatives, such as neuroprotective molecules, is necessary. Among these alternatives is silybin (Sb), the major bioactive flavonolignan in silymarin. Both exert neuroprotective effects, preserving dopamine levels and dopaminergic neurons when administered in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model, being probably Sb the potential therapeutic molecule behind this effect. To elucidate the role of Sb in the PD model, we determined the dose-dependent conservation of striatal dopamine content following Sb oral administration. Then, we evaluated motor deficit tests using the best dopamine conservative dose of Sb and determined a cytokine-dependent inflammatory profile status, malondialdehyde as an oxidative stress product, and neurotrophic factors content in the MPTP-induced mouse PD model. Our results show that oral Sb at 100 mg/kg dose conserved about 60% dopamine levels. Also, Sb improved motor deficits, preserved neurotrophic factors content and mitochondrial function, reduced lipid peroxidation, diminished proinflammatory cytokines to basal levels, enhanced fractalkine production in the striatum and substantia nigra, and increased IL-10 and IL-4 levels in the substantia nigra in the MPTP mice. Thus, oral Sb may be a potential pharmacological PD treatment alternative.
Collapse
Affiliation(s)
- Ricardo J Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
- Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Víctor J Zaldívar-Machorro
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
- Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Dafne J Pérez-Ramírez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
| | - Blanca E Rodríguez-López
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
| | - Claudia Meza
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
| | - Esperanza García
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S, Ciudad de México, 14269, México
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, S.S, Ciudad de México, 04510, México
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México.
| |
Collapse
|
21
|
Mandal A, Hazra B. Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother Res 2023; 37:4353-4374. [PMID: 37439007 DOI: 10.1002/ptr.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis C virus (HCV), a global malady, causes acute and chronic hepatitis leading to permanent liver damage, hepatocellular carcinoma, and death. Modern anti-HCV therapies are efficient, but mostly inaccessible for residents of underdeveloped regions. To innovate more effective treatments at affordable cost, medicinal plant-based products need to be explored. The aim of this article is to review plant constituents in the light of putative anti-HCV mechanisms of action, and discuss existing problems, challenges, and future directions for their potential application in therapeutic settings. One hundred sixty literatures were collected by using appropriate search strings via scientific search engines: Google Scholar, PubMed, ScienceDirect, and Scopus. Bibliography was prepared using Mendeley desktop software. We found a substantial number of plants that were reported to inhibit different stages of HCV life cycle. Traditional medicinal plants such as Phyllanthus amarus Schumach. and Thonn., Eclipta alba (L.) Hassk., and Acacia nilotica (L.) Delile exhibited strong anti-HCV activities. Again, several phytochemicals such as epigallocatechin-3-gallate, honokilol, punicalagin, and quercetin have shown broad-spectrum anti-HCV effect. We have presented promising phytochemicals like silymarin, curcumin, glycyrrhizin, and camptothecin for nanoparticle-based hepatocyte-targeted drug delivery. Nevertheless, only a few animal studies have been performed to validate the anti-HCV effect of these plant products. Again, insufficient clinical evaluation of the safety and effectiveness of herbal medications remain a problem. Selected plants products could be developed as novel therapeutics for HCV patients only after scrupulous evaluation of their safety and efficacy in a clinical set-up.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Birati, Kolkata, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
22
|
Georgiev T, Nikolova G, Dyakova V, Karamalakova Y, Georgieva E, Ananiev J, Ivanov V, Hadzhibozheva P. Vitamin E and Silymarin Reduce Oxidative Tissue Damage during Gentamycin-Induced Nephrotoxicity. Pharmaceuticals (Basel) 2023; 16:1365. [PMID: 37895836 PMCID: PMC10610356 DOI: 10.3390/ph16101365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoglycoside antibiotics and gentamicin (GN), in particular, are still widely used in clinical practice. It is a well-known fact that GN causes nephrotoxicity, and redox disturbances are discussed as a factor in its side effects. Recently, a new type of cell oxidative death, named ferroptosis, was discovered; it is associated with iron accumulation in the cell, glutathione (GSH) depletion and inactivation of glutathione peroxidase-4 (GPX4), reactive oxygen species (ROS) increment with concomitant lipid peroxidation. In this regard, a possible connection between GN-induced renal damage, ferroptosis and the overall antioxidant status of the organism could be investigated. Moreover, due to its beneficial effects, GN is still one of the main choices as a therapeutic agent for several diseases, and the possible reduction of its side effects with the application of certain antioxidants will be of important clinical significance. The study was conducted with adult male white mice divided into several groups (n = 6). GN nephrotoxicity was induced by the administration of GN 100-200 mg/kg i.p. for 10 days. The control group received only saline. The other groups received either Vitamin E (400 mg/kg p.o.) or Silymarin (200 mg/kg p.o.) applied alone or together with GN for the same period. After the end of the study, the animals were sacrificed, and blood and tissue samples were taken for the assessment of biochemical parameters and antioxidant status, as well as routine and specific for GPX4 histochemistry examination. The experimental results indicate that GN-induced nephrotoxicity negatively modulates GPX4 activity and is associated with increased production of ROS and lipid peroxidation. The groups treated with antioxidants demonstrated preserved antioxidant status and better GPX4 activity. In conclusion, the inhibition of ROS production and especially the suppression of ferroptosis, could be of clinical potential and can be applied as a means of reducing the toxic effects of GN application.
Collapse
Affiliation(s)
- Tsvetelin Georgiev
- Department of Physiology, Pathophysiology and Pharmacology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (T.G.); (V.D.); (P.H.)
| | - Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Viktoriya Dyakova
- Department of Physiology, Pathophysiology and Pharmacology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (T.G.); (V.D.); (P.H.)
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Ekaterina Georgieva
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Julian Ananiev
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Veselin Ivanov
- Department of Neurology, Psychiatry and Disaster Medicine, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Petya Hadzhibozheva
- Department of Physiology, Pathophysiology and Pharmacology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (T.G.); (V.D.); (P.H.)
| |
Collapse
|
23
|
Gür FM, Bilgiç S. Silymarin, an antioxidant flavonoid, protects the liver from the toxicity of the anticancer drug paclitaxel. Tissue Cell 2023; 83:102158. [PMID: 37459721 DOI: 10.1016/j.tice.2023.102158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
One of the biggest factors that negatively affect the cancer treatment plan is the toxic effects of chemotherapeutics on non-target cells and tissues. This information prompted us to investigate the protective effects of silymarin (SL), a hepatoprotective agent, against the hepatotoxic effects of the anticancer drug paclitaxel (PAC). Four groups were formed from 28 rats as control, PAC (2 mg/kg), SL (100 mg/kg) and PAC + SL (combination of PAC with SL). After completing the experimental procedures, the tissues collected after anesthesia were analyzed by Western blot, qRT-PCR, biochemical, stereological, immunohistochemical, and histopathological techniques. Administration of PAC significantly increased the expression of tumor necrosis factor-alpha (TNF-α), Bax, cytochrome-c (cyt-c), and active caspase-3, as well as malondialdehyde (MDA) levels in liver tissue and decreased glutathione (GSH) levels compared with the control group. PAC also resulted in a significant increase in serum triglyceride (TG), cholesterol (CH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the control group. Pathological changes such as microvesicular steatosis, the formation of Councilman bodies, an increase in total sinusoidal volume, and a decrease in the total number of hepatocytes were observed in the liver tissue of the PAC group. Almost all analysis results in the PAC + SL group were similar to those in the control group, and no significant pathological alterations were observed in this group. The data obtained show that SL protects the liver from the harmful effects of PAC, especially thanks to its TNF-α suppressor, anti-inflammatory, anti-apoptotic and antioxidant effects. Based on this result, in cases where PAC is used in cancer treatment, it can be recommended to be used together with SL to prevent harmful effects on healthy liver tissue and to continue treatment uninterruptedly and effectively.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
24
|
Liu Y, Shi X, Tian Y, Zhai S, Liu Y, Xiong Z, Chu S. An insight into novel therapeutic potentials of taxifolin. Front Pharmacol 2023; 14:1173855. [PMID: 37261284 PMCID: PMC10227600 DOI: 10.3389/fphar.2023.1173855] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Taxifolin is a flavonoid compound, originally isolated from the bark of Douglas fir trees, which is often found in foods such as onions and olive oil, and is also used in commercial preparations, and has attracted the interest of nutritionists and medicinal chemists due to its broad range of health-promoting effects. It is a powerful antioxidant with excellent antioxidant, anti-inflammatory, anti-microbial and other pharmacological activities. This review focuses on the breakthroughs in taxifolin for the treatment of diseases from 2019 to 2022 according to various systems of the human body, such as the nervous system, immune system, and digestive system, and on the basis of this review, we summarize the problems of current research and try to suggest solutions and future research directions.
Collapse
Affiliation(s)
- Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
25
|
Sukhovskaya IV, Lysenko LA, Fokina NN, Kantserova NP, Borvinskaya EV. Survival, Growth Performance, and Hepatic Antioxidant and Lipid Profiles in Infected Rainbow Trout ( Oncorhynchus mykiss) Fed a Diet Supplemented with Dihydroquercetin and Arabinogalactan. Animals (Basel) 2023; 13:ani13081345. [PMID: 37106908 PMCID: PMC10135201 DOI: 10.3390/ani13081345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Natural feed supplements have been shown to improve fish viability, health, and growth, and the ability to withstand multiple stressors related to intensive cultivation. We assumed that a dietary mix of plant-origin substances, such as dihydroquercetin, a flavonoid with antioxidative, anti-inflammatory, and antimicrobial properties, and arabinogalactan, a polysaccharide with immunomodulating activity, would promote fish stress resistance and expected it to have a protective effect against infectious diseases. Farmed rainbow trout fish, Oncorhynchus mykiss, received either a standard diet or a diet supplemented with 25 mg/kg of dihydroquercetin and 50 mg/kg of arabinogalactan during a feeding season, from June to November. The fish in the control and experimental groups were sampled twice a month (eight samplings in total) for growth variable estimations and tissue sampling. The hepatic antioxidant status was assessed via the quantification of molecular antioxidants, such as reduced glutathione and alpha-tocopherol rates, as well as the enzyme activity rates of peroxidase, catalase, and glutathione-S-transferase. The lipid and fatty acid compositions of the feed and fish liver were analyzed using thin-layer and high-performance liquid chromatography. The viability, size, and biochemical indices of the fish responded to the growth physiology, environmental variables such as the dissolved oxygen content and water temperature, and sporadic factors. Due to an outbreak of a natural bacterial infection in the fish stock followed by antibiotic treatment, a higher mortality rate was observed in the fish that received a standard diet compared to those fed supplemented feed. In the postinfection period, reduced dietary 18:2n-6 and 18:3n-3 fatty acid assimilation contents were detected in the fish that received the standard diet in contrast to the supplemented diet. By the end of the feeding season, an impaired antioxidant response, including reduced glutathione S-transferase activity and glutathione content, and a shift in the composition of membrane lipids, such as sterols, 18:1n-7 fatty acid, and phospholipids, were also revealed in fish fed the standard diet. Dietary supplementation with plant-origin substances, such as dihydroquercetin and arabinogalactan, decreases lethality in fish stocks, presumably though the stimulation of natural resistance in farmed fish, thereby increasing the economic efficacy during fish production. From the sustainable aquaculture perspective, natural additives also diminish the anthropogenic transformation of aquaculture-bearing water bodies and their ecosystems.
Collapse
Affiliation(s)
- Irina V Sukhovskaya
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Liudmila A Lysenko
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Natalia N Fokina
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Nadezhda P Kantserova
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | | |
Collapse
|
26
|
Pandey B, Baral R, Kaundinnyayana A, Panta S. Promising hepatoprotective agents from the natural sources: a study of scientific evidence. EGYPTIAN LIVER JOURNAL 2023. [DOI: 10.1186/s43066-023-00248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Natural bioactive components derived from plant secondary metabolites have been pronounced as valuable alternatives for anticipating and subsiding hepatotoxic effects and its chronic complications based on experimental verification. The focus of this review is to elucidate the commonly used modern medicine for the treatment of liver disease and how major phytoconstituents have been tested for hepatoprotective activity, mechanism of action of some promising agents from natural sources, and clinical trial data for treating in patients with different liver diseases by the aid of natural phytoconstituents.
Main text
The review shows fifteen major isolated phytoconstituents, their biological sources, chemical structures, utilized plant parts, type of extracts used, hepatoprotective assay method, and their possible mechanism of action on the hepatoprotection. Nine promising hepatoprotective leads from natural sources with their chemistry and hepatoprotective mechanism are mentioned briefly. The review further includes the recent clinical trial studies of some hepatoprotective leads and their clinical outcome with different liver disease patients. Scientific studies revealed that antioxidant properties are the central mechanism for the phytoconstituents to subside different disease pathways by upsurging antioxidant defense system of cells, scavenging free radicals, down surging lipid peroxidation, improving anti-inflammatory potential, and further protecting the hepatic cell injury. In this review, we summarize recent development of natural product-based hepatoprotective leads and their curative potential for various sort of liver diseases. Furthermore, the usefulness of hit and lead molecules from natural sources for significant clinical benefit to discover new drug molecule and downsizing the problems of medication and chemical-induced hepatotoxic effects is extrapolated.
Conclusion
Further research are encouraged to elucidate the pharmacological principle of these natural-based chemical agents which will stimulate future pharmaceutical development of therapeutically beneficial hepatoprotective regimens.
Collapse
|
27
|
Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front Pharmacol 2023; 14:1122632. [PMID: 37050900 PMCID: PMC10083499 DOI: 10.3389/fphar.2023.1122632] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic over-the-counter medicine worldwide. Hepatotoxicity caused by APAP overdose is one of the leading causes of acute liver failure (ALF) in the US and in some parts of Europe, limiting its clinical application. Excessive APAP metabolism depletes glutathione and increases N-acetyl-p-benzoquinoneimide (NAPQI) levels, leading to oxidative stress, DNA damage, and cell necrosis in the liver, which in turn leads to liver damage. Studies have shown that natural products such as polyphenols, terpenes, anthraquinones, and sulforaphane can activate the hepatocyte antioxidant defense system with Nrf2 as the core player, reduce oxidative stress damage, and protect the liver. As the key enzyme metabolizing APAP into NAPQI, cytochrome P450 enzymes are also considered to be intriguing target for the treatment of APAP-induced liver injury. Here, we systematically review the hepatoprotective activity and molecular mechanisms of the natural products that are found to counteract the hepatotoxicity caused by APAP, providing reference information for future preclinical and clinical trials of such natural products.
Collapse
Affiliation(s)
- Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| |
Collapse
|
28
|
Mahgoub YA, Shawky E, Ghareeb DA, Darwish FA, El Sebakhy NA, El-Hawiet AM. UPLC-MS/MS multivariate data analysis reveals phenological growth stages affect silymarin bioactive components of the different organs of two Silybum marianum genotypes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Enhanced bioavailability and hepatoprotective effect of silymarin by preparing silymarin-loaded solid dispersion formulation using freeze-drying method. Arch Pharm Res 2022; 45:743-760. [PMID: 36178580 DOI: 10.1007/s12272-022-01407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to develop a solid dispersion formulation of silymarin (Silymarin-SD) using freeze-drying method to enhance its oral bioavailability (BA) by inhibiting the intestinal first-pass effect and increasing its solubility and permeability. Silymarin-SD formulation (i.e., silymarin:tween 80:hydroxypropyl cellulose (HPC) = 1:1:3 (w/w/w) significantly increased silymarin permeability in the duodenum, jejunum, and ileum by decreasing the efflux ratio of silymarin and by inhibiting silymarin-glucuronidation activity, in which tween 80 played a crucial role. As a result, orally administered Silymarin-SD formulation increased plasma silymarin concentrations and decreased silymarin-glucuronide in rats compared with silymarin alone and silymmarin:D-α-tocopherol polyethylene glycol 1000 succinate (1:1, w/w) formulation. In addition to modulating intestinal first-pass effect, Silymarin-SD formulation showed a significantly higher cumulative dissolution for 120 min compared with that of silymarin from the physical mixture (PM) of the same composition as Silymarin-SD and silymarin alone; the relative BA of silymarin-SD increased to 215% and 589% compared with silymarin-PM and silymarin alone, respectively. This could be attributed to the amorphous status of the Silymarin-SD formulation without chemical interaction with excipients, such as tween 80 and HPC. Moreover, the hepatoprotective effect of Silymarin-SD in acetaminophen-induced acute hepatotoxicity, as estimated from the alanine aminotransferase and aspartate aminotransferase values, was superior to that of silymarin. In conclusion, the increase in the dissolution rate and intestinal permeability of silymarin, and the inhibition of silymarin-glucuronidation by the Silymarin-SD formulation, prepared using tween 80 and HPC, increased its plasma concentration and resulted in a superior hepatoprotective effect compared to silymarin.
Collapse
|
30
|
Abderrezag N, Montenegro ZJS, Louaer O, Meniai AH, Cifuentes A, Ibáñez E, Mendiola JA. One-step sustainable extraction of Silymarin compounds of wild Algerian milk thistle (Silybum marianum) seeds using Gas Expanded Liquids. J Chromatogr A 2022; 1675:463147. [PMID: 35640448 DOI: 10.1016/j.chroma.2022.463147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
This work reports the application of Gas Expanded Liquid (GXL) extraction to concentrate the flavonolignan fraction (silymarin) and taxifolin from Silybum marianum seeds, which have proven to be highly valuable health-promoting compounds. GXL using green solvents was used to isolate silymarin with the objective of replacing conventional methods. In one hand, the effect of different compositions of solvents, aqueous ethanol (20%, 50% or 80% (v/v)) at different CO2/liquid (25, 50 and 75%) ratios, on the GXL extraction was investigated. The obtained extracts have been chemically and functionally characterized by means of UHPLC-ESI-MS/MS (triple quadrupole) and in-vitro assays such as anti-inflammatory, anti-cholinergic and antioxidant. Results revealed that the operating conditions influenced the extraction yield, the total phenolic content and the presence of the target compounds. The best obtained yield was 55.97% using a ternary mixture of solvents composed of CO2:EtOH:H2O (25:60:15) at 40 °C and 9 MPa in 160 min. Furthermore, the results showed that obtained extracts had significant antioxidant and anti-inflammatory activities (with best IC50 value of 8.80 µg/mL and 28.52 µg/mL, respectively) but a moderate anti-cholinesterase activity (with best IC50 value of 125.09 µg/mL). Otherwise, the concentration of silymarin compounds in extract can go up to 59.6% using the present one-step extraction method without further purification, being silybinA+B the predominant identified compound, achieving value of 545.73 (mg silymarin/g of extract). The obtained results demonstrate the exceptional potential of GXL to extract high-added values molecules under sustainable conditions from different matrices.
Collapse
Affiliation(s)
- Norelhouda Abderrezag
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria; Profesora Facultad de Ingeniería Agroindustrial, Universidad de Nariño (UdeNar), Pasto, Colombia
| | | | - Ouahida Louaer
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria
| | - Abdeslam-Hassen Meniai
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria
| | - Alejandro Cifuentes
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jose A Mendiola
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
31
|
Inai M, Ueno Y, Sagara H, Ouchi H, Yoshimura F, Kan T. Total Synthesis of Isosilybin B. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Makoto Inai
- University of Shizuoka School of Pharmaceutical Sciences 52-1 Yada, Suruga-ku 422-8526 Shizuoka JAPAN
| | - Yoshinori Ueno
- Shizuoka Kenritsu Daigaku Department School of Pharmaceutical Sciences JAPAN
| | - Hiroto Sagara
- Shizuoka Kenritsu Daigaku Department School of Pharmaceutical Sciences JAPAN
| | - Hitoshi Ouchi
- Shizuoka Kenritsu Daigaku Department School of Pharmaceutical Sciences JAPAN
| | - Fumihiko Yoshimura
- Shizuoka Kenritsu Daigaku Department School of Pharmaceutical Sciences JAPAN
| | - Toshiyuki Kan
- Shizuoka Kenritsu Daigaku Department School of Pharmaceutical Sciences JAPAN
| |
Collapse
|
32
|
Kim S, You Y, Kim OK, Lee J, Chung JW, Shim S, Kim K, Park J, Jun W. Silymarin Prevents High-Fat Diet-Induced Muscle Atrophy by Regulating Protein Degradation and Synthesis in Mice. J Med Food 2022; 25:793-796. [PMID: 35723637 DOI: 10.1089/jmf.2021.k.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silymarin is found in Silybum marianum. We investigated the effect of silymarin on muscle atrophy in obese mice. The experimental mice were divided into three groups: CON, normal diet; HFD, 60% high-fat diet (HF); and SILY: 50 mg silymarin +60% HF. It was confirmed that increases in body weight and fat mass in the SILY group were significantly inhibited. Moreover, the muscle mass in SILY mice was significantly higher than that in the HFD group. The grip strength in HFD group was significantly reduced, whereas in the SILY group it was higher than that in HFD group. In HFD mice, the mRNA levels of protein degradation factors (muscle ring-finger protein 1 [MuRF-1] and Atrogin-1) were increased and protein synthesis factors (phosphoinositide 3-kinase [PI3K] and Akt) were decreased. However, silymarin was found to elevate the degradation factors as compared with HFD group, whereas it reduced the synthesis factors. The results suggest that silymarin could prevent not only obesity but also muscle atrophy.
Collapse
Affiliation(s)
- Shintae Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Yanghee You
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Sangin Shim
- Division of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Kyungmi Kim
- Department of Biofood Analysis, Bio Campus of Korea Polytechnic, Ganggyung, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
33
|
Wen L, Ma X, Yang J, Jiang M, Peng C, Ma Z, Yu H, Li Y. A New Ratiometric Design Strategy Based on Modulation of π-Conjugation Unit for Developing Fluorescent Probe and Imaging of Cellular Peroxynitrite. Anal Chem 2022; 94:4763-4769. [PMID: 35271267 DOI: 10.1021/acs.analchem.1c05447] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ratiometric fluorescent probes could effectively offset the changes of the autofluorescence and compartmental localization. FRET, ICT, etc. are the common strategies to design probes for biosensing, but these strategies have some deficiencies. Here, we proposed a new design strategy based on π-conjugation modulation, giving two different emission bands in the absence and presence of the target. The new fluorescence probe named Rhod-DCM-B was rationally designed and synthesized, which displayed a fluorescence emission peak at 670 nm because the electron cloud focuses on the conjugated DCM unit. With the addition of ONOO-, the fluorescence emission at 570 nm increased, accompanied by the decrease of fluorescence emission at 670 nm, showing a ratiometric signal change attributed to the opened spirane structure making the electron cloud concentrated on the xanthene core. The mechanism is well confirmed by MS and DFT calculations. Rhod-DCM-B exhibited outstanding sensitivity and excellent selectivity toward ONOO-. Moreover, Rhod-DCM-B was effectively employed to determine endogenous and exogenous ONOO- in living cells. As a marker for inflammation and drug-induced liver injury (DILI) process, ONOO- in vivo was successfully monitored by Rhod-DCM-B and presented a dramatic ratiometric response.
Collapse
Affiliation(s)
- Lei Wen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xinyu Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jing Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Minmin Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Chao Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhongyun Ma
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huan Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
34
|
Xu Y, Li J, He B, Feng T, Liang L, Huang X. In vitro Dissolution Testing and Pharmacokinetic Studies of Silymarin Solid Dispersion After Oral Administration to Healthy Pigs. Front Vet Sci 2022; 9:815198. [PMID: 35300217 PMCID: PMC8921073 DOI: 10.3389/fvets.2022.815198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
We evaluated the pharmacokinetics of silymarin solid dispersion in pigs to determine whether silybin bioavailability would be increased over that of a silymarin premix. In vitro dissolution testing was conducted using dissolution apparatus 1 (baskets) at 100 rpm at 37 ± 0.5°C in pH 1.2 HCl, pH 6.8 phosphate, and pH 4.3 acetate buffers containing 0.5% Tween-80. In vivo pharmacokinetics were studied using 16 healthy pigs (Yorkshire × Landrace) that were randomly assigned to two groups. Silymarin as solid dispersion and premix dosage forms were administered directly by stomach tubes at 50 mg kg−1 silybin. In vitro dissolution of silybin for the premix was 35.02, 35.90, and 38.70% in these buffers, respectively. In contrast, silybin dissolution in solid dispersions was increased to 82.92, 87.48, and 99.70%, respectively. Silymarin solid dispersion administered at a single dose resulted in a peak concentration (Cmax) of 1,190.02 ± 246.97 ng ml−1 with the area under the curve (AUC0−∞) at 1,299.19 ± 67.61 ng ml−1 h. These parameters for the premix groups were 411.35 ± 84.92 ng ml−1 and 586.82 ± 180.99 ng ml−1 h, respectively. The Cmax and AUC0−∞ values for the solid dispersion were about twice that of the premix and were consistent with the in vitro dissolution data.
Collapse
|
35
|
Paudel S, Raina K, Tiku VR, Maurya A, Orlicky DJ, You Z, Rigby CM, Deep G, Kant R, Raina B, Agarwal C, Agarwal R. Chemopreventive efficacy of silibinin against basal cell carcinoma growth and progression in UVB-irradiated Ptch+/- mice. Carcinogenesis 2022; 43:557-570. [PMID: 35184170 PMCID: PMC9234765 DOI: 10.1093/carcin/bgac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.
Collapse
Affiliation(s)
- Sandeep Paudel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Vasundhara R Tiku
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Akhilendra Maurya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Zhiying You
- Department of Medicine, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Cindy M Rigby
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Cancer Biology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Bupinder Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- To whom correspondence should be addressed. Tel: +1 303 724 4055; Fax +1 303 724 7266;
| |
Collapse
|
36
|
Effect of silymarin on blood coagulation profile and osmotic fragility in carbon tetrachloride induced hepatotoxicity in male Wistar rats. Toxicol Rep 2022; 9:1325-1330. [DOI: 10.1016/j.toxrep.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
|
37
|
Taghipour A, Ghaffarifar F, Horton J, Dalimi A, Sharifi Z. Silybum marianum ethanolic extract: in vitro effects on protoscolices of Echinococcus granulosus G1 strain with emphasis on other Iranian medicinal plants. Trop Med Health 2021; 49:71. [PMID: 34496975 PMCID: PMC8424884 DOI: 10.1186/s41182-021-00363-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE), is a parasitic zoonosis caused by Echinococcus granulosus (E. granulosus) larvae in liver and lungs of both humans and animals. Surgical intervention is the mainstay for CE treatment, using scolicidal agents that inactivate live protoscolices. This study evaluated the scolicidal effects of Silybum marianum ethanolic extract and its combination with albendazole in vitro for the first time. Moreover, in a literature review, we investigated the effects of a wide range of Iranian medicinal plants on protoscolices of E. granulosus. METHODS S. marianum ethanolic extract was prepared and high-performance liquid chromatography (HPLC) analysis was used to establish the proportions of its component compounds in the extract. Cytotoxicity was evaluated in mouse macrophage cells (J774A.1 cell line) using MTT method. Next, the scolicidal activity of the extract alone and combined with albendazole was tested as triplicate at various concentrations incubated for 5, 10, 20, 30, and 60 min. Finally, protoscolex viability was determined using 0.1% eosin as a vital stain. PCR-RFLP and DNA sequencing techniques were used to characterize the genotype of E. granulosus. RESULTS HPLC analysis showed that S. marianum ethanolic extract contained mostly silydianin (14.41%), isosilybin A (10.50%), and silychristin (10.46%). The greatest scolicidal effects were obtained with the combination of S. marianum with albendazole (79%), S. marianum ethanolic extract alone (77%) and albendazole (69%), at a concentration of 500 μg/ml for 60 min, respectively (P < 0.05). Molecular analysis showed that all the cysts used were G1 genotype. CONCLUSION The data suggest that S. marianum ethanolic extract is a potential scolicide in vitro; however, further investigations are required to determine its efficacy in vivo.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
38
|
Exploring Taxifolin Polymorphs: Insights on Hydrate and Anhydrous Forms. Pharmaceutics 2021; 13:pharmaceutics13091328. [PMID: 34575404 PMCID: PMC8469002 DOI: 10.3390/pharmaceutics13091328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Taxifolin, also known as dihydroquercetin, possesses several interesting biological properties. The purpose of the study was to identify polymorphs of taxifolin prepared using crystallization in different solvents. Data from X-ray powder diffraction, differential scanning calorimetry, and thermogravimetry enabled us to detect six different crystalline phases for taxifolin. Besides the already known fully hydrated phase, one partially hydrated phase, one monohydrated phase, two anhydrous polymorphs, and one probably solvated phase were obtained. The unit cell parameters were defined for three of them, while one anhydrous polymorph was fully structurally characterized by X-ray powder diffraction data. Scanning electron microscopy and hot stage microscopy were also employed to characterize the crystallized taxifolin powders. The hydrate and anhydrous forms showed remarkable stability in drastic storage conditions, and their solubility was deeply evaluated. The anhydrous form converted into the hydrate form during the equilibrium solubility study and taxifolin equilibrium solubility was about 1.2 mg/mL. The hydrate taxifolin intrinsic dissolution rate was 56.4 μg cm-2 min-1. Using Wood's apparatus, it was not possible to determine the intrinsic dissolution rate of anhydrous taxifolin that is expected to solubilize more rapidly than the hydrate form. In view of its high stability, its use can be hypothesized.
Collapse
|
39
|
Das A, Baidya R, Chakraborty T, Samanta AK, Roy S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed Pharmacother 2021; 142:112004. [PMID: 34388527 DOI: 10.1016/j.biopha.2021.112004] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
The pharmacological characteristics of phytochemicals have prompted a lot of interest in their application in disease management. Due to the high incidence of cancer related mortality and morbidity throughout the world; experiments have concentrated on identifying the anticancer potential of natural substances. Many phytochemicals such as flavonoids and their derivatives produced from food offer a variety of new anti-cancer agents which prevent the cancer progression. Taxifolin, a unique bioactive flavonoid, is a dietary component that has grabbed the interest of dietitians and medicinal chemists due to its wide range of health benefits. It is a powerful antioxidant with a well-documented effect in the prevention of several malignancies in humans. Taxifolin has shown promising inhibitory activity against inflammation, malignancies, microbial infection, oxidative stress, cardiovascular disease, and liver disease. Anti-cancer activity has been shown to be relatively significant than other activities investigated in vitro and in vivo with a little or no side effects to the normal healthy cells. In summary this review offers the synopsis of recent breakthroughs in the use of taxifolin as a cancer treatment, as well as mechanisms of action. However, to develop a medicine for human usage, more study on pharmacokinetic profile, profound molecular mechanisms, and drug safety criteria should be conducted utilizing well-designed randomized clinical trials.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Ratna Baidya
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Akash Kumar Samanta
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India.
| |
Collapse
|
40
|
Junaid M, Akter Y, Siddika A, Nayeem SMA, Nahrin A, Afrose SS, Ezaj MMA, Alam MS. Nature-derived hit, lead, and drug-like small molecules: Current status and future aspects against key target proteins of Coronaviruses. Mini Rev Med Chem 2021; 22:498-549. [PMID: 34353257 DOI: 10.2174/1389557521666210805113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic, the most unprecedented event of the year 2020, has brought millions of scientists worldwide in a single platform to fight against it. Though several drugs are now in the clinical trial, few vaccines available on the market already but the lack of an effect of those is making the situation worse. AIM OF THE STUDY In this review, we demonstrated comprehensive data of natural antiviral products showing activities against different proteins of Human Coronaviruses (HCoV) that are responsible for its pathogenesis. Furthermore, we categorized the compounds into the hit, lead, and drug based on the IC50/EC50 value, drug-likeness, and lead-likeness test to portray their potentiality to be a drug. We also demonstrated the present status of our screened antiviral compounds with respect to clinical trials and reported the lead compounds that can be promoted to clinical trial against COVID-19. METHODS A systematic search strategy was employed focusing on Natural Products (NPs) with proven activity (in vitro, in vivo, or in silico) against human coronaviruses, in general, and data were gathered from databases like PubMed, Web of Science, Google Scholar, SciVerse, and Scopus. Information regarding clinical trials retrieved from the Clinical Trial database. RESULTS Total "245" natural compounds were identified initially from the literature study. Among them, Glycyrrhizin, Caffeic acid, Curcumin is in phase 3, and Tetrandrine, Cyclosporine, Tacrolimus, Everolimus are in phase 4 clinical trial. Except for Glycyrrhizin, all compounds showed activity against COVID-19. CONCLUSIONS In summary, our demonstrated specific small molecules with lead and drug-like capabilities clarified their position in the drug discovery pipeline and proposed their future research against COVID-19.
Collapse
Affiliation(s)
- Md Junaid
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Yeasmin Akter
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Aysha Siddika
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - S M Abdul Nayeem
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Afsana Nahrin
- Department of Pharmacy, University of Science and Technology Chittagong. Bangladesh
| | - Syeda Samira Afrose
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Md Muzahid Ahmed Ezaj
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | | |
Collapse
|
41
|
Di Santo MC, D' Antoni CL, Domínguez Rubio AP, Alaimo A, Pérez OE. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications - A review. Biomed Pharmacother 2021; 142:111970. [PMID: 34333289 DOI: 10.1016/j.biopha.2021.111970] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Plant-based polyphenols are natural compounds, present in fruits and vegetables. During recent years, polyphenols have gained special attention due to their nutraceutical and pharmacological activities for the prevention and treatment of human diseases. Nevertheless, their photosensitivity and low bioavailability, rapid metabolism and short biological half-life represent the major limitations for their use, which could be overcome by polyphenols encapsulation (flavonoids and non-flavonoids) into chitosan (CS)-tripolyphosphate (TPP) based nanoparticles (NP). In this review, we particularly focused on the ionic gelation method for the NP design. This contribution exhaustively discusses and compares results of scientific reports published in the last decade referring to ionic gelation applied for the protection, controlled and site-directed delivery of polyphenols. As a consequence, CS-TPP NP would constitute true platforms to transport polyphenols, or a combination of them, to be used for the designing of a new generation of drugs or nutraceuticals.
Collapse
Affiliation(s)
- Mariana Carolina Di Santo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Cecilia Luciana D' Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Křen V. Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci 2021; 22:ijms22157885. [PMID: 34360650 PMCID: PMC8346157 DOI: 10.3390/ijms22157885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
43
|
Wei RR, Ma QG. Flavonolignan 2, 3-dehydroderivatives from Oenanthe javanica and their anti inflammatory activities. ACTA ACUST UNITED AC 2021; 76:459-465. [PMID: 34002579 DOI: 10.1515/znc-2021-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/02/2021] [Indexed: 11/15/2022]
Abstract
Flavonolignans, for example, silymarin and silybin, have interesting biological activities. For the first time, three new flavonolignans named oenanthenoid A-C (1-3) and nine known flavonolignan derivatives (4-12) were isolated from Oenanthe javanica. Comprehensive spectroscopic data analysis and references were used to identify all of the compounds. The anti inflammatory activities of these isolates (1-12) on RAW264.7 macrophage cells were investigated. Three new compounds (1-3) demonstrated anti inflammatory activity with IC50 values ranging from 6.5 ± 0.6 to 14.7 ± 1.6 µM. Furthermore, two compounds (11 and 12) demonstrated moderate anti inflammatory activity, with IC50 values ranging from 24.1 ± 1.2 to 62.5 ± 1.9 µM.
Collapse
Affiliation(s)
- Rong-Rui Wei
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang330004, P. R. China
| | - Qin-Ge Ma
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang330004, P. R. China
| |
Collapse
|
44
|
Enzymatic Polymerization of Dihydroquercetin (Taxifolin) in Betaine-Based Deep Eutectic Solvent and Product Characterization. Catalysts 2021. [DOI: 10.3390/catal11050639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Deep eutectic solvents (DESs) are an alternative to conventional organic solvents in various biocatalytic reactions. Meanwhile, there have been few studies reporting on synthetic reactions in DESs or DES-containing mixtures involving oxidoreductases. In this work, we have studied the effects of several DESs based on betaine as the acceptor of hydrogen bonds on the catalytic activity and stability of laccase from the basidial fungus Trametes hirsuta and performed enzymatic polymerization of the flavonoid dihydroquercetin (DHQ, taxifolin) in a DES–buffer mixture containing 60 vol.% of betaine-glycerol DES (molar ratio 1:2). The use of the laccase redox mediator TEMPO enabled an increased yield of DHQ oligomers (oligoDHQ), with a number average molecular weight of 1800 g mol−1 and a polydispersity index of 1.09. The structure of the synthesized product was studied using different physicochemical methods. NMR spectroscopy showed that oligoDHQ had a linear structure with an average chain length of 6 monomers. A scheme for enzymatic polymerization of DHQ in a DES–buffer mixture was also proposed.
Collapse
|
45
|
Bomgning CLK, Sinda PVK, Ponou BK, Fotio AL, Tsague MK, Tsafack BT, Kühlborn J, Mbuyo-Nguelefack EP, Teponno RB, Opatz T, Tapondjou LA, Nguelefack TB. Hepatoprotective effects of extracts, fractions and compounds from the stem bark of Pentaclethra macrophylla Benth: Evidence from in vitro and in vivo studies. Biomed Pharmacother 2021; 136:111242. [PMID: 33486213 DOI: 10.1016/j.biopha.2021.111242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
AIM To identify the bioactive hepatoprotective components of the ethanol extract of Pentaclethra macrophylla stem bark using in vitro and in vivo approaches. METHODS The bioguided-fractionation of the ethanol extract was based on the substances' capacity to prevent in vitro, the lipid peroxidation of hepatocytes' membranes induced by hydrogen peroxide. For the in vivo hepatoprotective test, mice were treated orally with the ethyl acetate (EtOAc) fraction of the ethanol extract at doses of 50 and 75 mg/kg/day for one week and subjected to d-galactosamine/lipopolysaccharide (GaIN/LPS)-induced hepatotoxicity. Blood samples were collected for alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), TNF-α and IL-1β assays. The liver was harvested for histological and biochemical (proteins, glutathione (GSH), catalase and superoxide dismutase (SOD)) analysis. RESULTS The ethanol extract and fractions induced concentration-dependent inhibition of lipid peroxidation (IC50: 3.21-48.90 μg/mL) greater than that of silymarin (IC50: 117.4 μg/mL). The purification of the sub-fractions of EtOAc fraction yielded: (7R)-7-hydroxyhexacosanoic acid (1), (7R)-1-(7-hydroxyhexacosanoyl) glycerol (2), bergenin (3), 11-O-galloylbergenin (4), 2-hydroxymethyl-5-(2-hydroxypropan-2-yl)phenol (5), β-sitosterol 3-O-β-d-glucopyranosyl (6) and β-sitosterol (7)), among which 11-O-galloylbergenin (IC50:1.8 μg/mL) was the most effective. The EtOAc fraction significantly reduced the serum level of ALAT, ASAT and TNF-α in vivo. This EtOAc fraction increased the liver protein content and protected the liver against structural damages, but did not boost the endogenous antioxidant parameters. CONCLUSION The stem bark of Pentaclethra macrophylla possesses hepatoprotective effects that may result from its capacity to inhibit lipid peroxidation and could be attributed to its active components 3, 4 and 2.
Collapse
Affiliation(s)
- Cyrille Lionel Kamga Bomgning
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Pierre Valery Kemdoum Sinda
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Beaudelaire Kemvoufo Ponou
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Agathe Lambou Fotio
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Mathias Kenfack Tsague
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Borice Tapondjou Tsafack
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Jonas Kühlborn
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany.
| | - Elvine Pami Mbuyo-Nguelefack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Rémy Bertrand Teponno
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Till Opatz
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany.
| | - Léon Azefack Tapondjou
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Télesphore Benoit Nguelefack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| |
Collapse
|
46
|
Ba Y, Xiao R, Chen QJ, Xie LY, Xu RR, Yu P, Chen XQ, Wu X. Comprehensive quality evaluation of Polygoni Orientalis Fructus and its processed product: chemical fingerprinting and simultaneous determination of seven major components coupled with chemometric analyses. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:141-152. [PMID: 31512326 DOI: 10.1002/pca.2890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Polygoni Orientalis Fructus (POF) is a clinically effective Chinese medicine. Raw POF (RPOF) and POF Tostus (POFT) are used separately in clinics. However, incomplete progress has been made on quality control. OBJECTIVE To establish a comprehensive method for quality assessment of RPOF and POFT and to discriminate these two varieties. METHODOLOGY High-performance liquid chromatography combined with the diode array detector (HPLC-DAD) methods were developed for fingerprinting and quantitative analysis of seven major compounds in RPOF and POFT, and the main components were determined by HPLC-DAD coupled with Fourier-transform ion cyclotron resonance-mass spectrometry. Chemometric approaches were performed to discriminate RPOF and POFT and to screen discriminatory components. RESULTS Fingerprints were established and 12 common peaks were identified, cannabisin G and cannabisin E were firstly identified from POF. In quantitative analysis, all analytes showed good regression (R > 0.9996) within test ranges and the recovery of the method was in the range 96.6-104.3%. Fingerprints in conjunction with similarity analysis and hierarchical clustering analysis (HCA) demonstrated the consistent quality of RPOF and showed a clear discrimination between RPOF and POFT. Principal component analysis, partial least-squares discriminant analysis, and heatmap-HCA on quantitative data not only gave a clear differentiation between RPOF and POFT, but they also suggested that quercetin, 3,5,7-trihydroxychromone, and N-trans-feruloyltyramine acted as the main factors responsible for the sample differences. CONCLUSIONS Chromatographic analysis in combination with chemometric analysis provides a simple and reliable method of comparing and evaluating the qualities of RPOF and POFT.
Collapse
Affiliation(s)
- Yinying Ba
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ran Xiao
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Traditional Chinese Medicine and Rehabilitatio, Beijing Health Vocational College, Beijing, China
| | - Qi-Jun Chen
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Li-Yuan Xie
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Rong-Rong Xu
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Yu
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-Qing Chen
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xia Wu
- Beijing Key Lab of Traditional Chinese Medicine, Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Taxifolin and gastro-adhesive microparticles containing taxifolin promotes gastric healing in vivo, inhibits Helicobacter pylori in vitro and proton pump reversibly in silico. Chem Biol Interact 2021; 339:109445. [PMID: 33741339 DOI: 10.1016/j.cbi.2021.109445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 01/02/2023]
Abstract
Taxifolin (3,5,7,3,4-pentahydroxy flavanone or dihydroquercetin, Tax) was identified as a gastroprotective compound and a gastroadhesive formulation was recently developed to prolong its residence time and release in the stomach. So, the gastric healing effectiveness of Tax and gastro-mucoadhesive microparticles containing Tax (MPTax) against the acetic acid induced-gastric ulcer in rats was investigated in this study. Moreover, the interactions between Tax and H+/K+-ATPase were investigated in silico, and its anti- H. pylori activity was determined in vitro. The oral treatment with MPTax (81.37 mg/kg, containing 12.29% of Tax) twice a day for seven days reduced the ulcer area by 63%, compared to vehicle-treated group (Veh: 91.9 ± 10.3 mm2). Tax (10 mg/kg, p.o) reduced the ulcer by 40% but with a p = 0.07 versus Veh group. Histological analysis confirmed these effects. Tax and MPTax increased the gastric mucin amount, reduced the myeloperoxidase activity, and increased the glutathione reduced content at ulcer site. However, only MPTax decreased the lipoperoxide accumulation at ulcer site. Besides, Tax and MPTax normalize the catalase and glutathione S-transferase activity. Tax showed reversible interaction with H+/K+-ATPase in silico and its anti-H. pylori effects was confirmed (MIC = 625 μg/mL). These results suggest that the antiulcer property of Tax involves the strengthening of the gastric protective factors in parallel to its inhibitory interaction with H+/K+-ATPase and H. pylori. Considering that ulcer healing action displayed by Tax was favored by gastroadhesive microparticles, this approach seems to be promising for its oral delivery to treat acid-peptic diseases.
Collapse
|
48
|
Gad D, El-Shora H, Fraternale D, Maricchiolo E, Pompa A, Dietz KJ. Bioconversion of Callus-Produced Precursors to Silymarin Derivatives in Silybum marianum Leaves for the Production of Bioactive Compounds. Int J Mol Sci 2021; 22:2149. [PMID: 33670070 PMCID: PMC7926748 DOI: 10.3390/ijms22042149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to investigate the enzymatic potential of Silybum marianum leaves to bioconvert phenolic acids produced in S. marianum callus into silymarin derivatives as chemopreventive agent. Here we demonstrate that despite the fact that leaves of S. marianum did not accumulate silymarin themselves, expanding leaves had the full capacity to convert di-caffeoylquinic acid to silymarin complex. This was proven by HPLC separations coupled with electrospray ionization mass spectrometry (ESI-MS) analysis. Soaking the leaf discs with S. marianum callus extract for different times revealed that silymarin derivatives had been formed at high yield after 16 h. Bioconverted products displayed the same retention time and the same mass spectra (MS or MS/MS) as standard silymarin. Bioconversion was achieved only when using leaves of a specific age, as both very young and old leaves failed to produce silymarin from callus extract. Only medium leaves had the metabolic capacity to convert callus components into silymarin. The results revealed higher activities of enzymes of the phenylpropanoid pathway in medium leaves than in young and old leaves. It is concluded that cotyledon-derived callus efficiently produces compounds that can be bio-converted to flavonolignans in leaves tissue of S. marianum.
Collapse
Affiliation(s)
- Dina Gad
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin EL-Koum 32511, Egypt
- Biochemistry and Physiology of Plants, Faculty of Biology W5, Bielefeld University, 33501 Bielefeld, Germany;
| | - Hamed El-Shora
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy; (D.F.); (E.M.)
| | - Elisa Maricchiolo
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy; (D.F.); (E.M.)
| | - Andrea Pompa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy; (D.F.); (E.M.)
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology W5, Bielefeld University, 33501 Bielefeld, Germany;
| |
Collapse
|
49
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
50
|
Wu S, Liu D, Li W, Song B, Chen C, Chen D, Hu H. Enhancing TNBC Chemo-immunotherapy via combination reprogramming tumor immune microenvironment with Immunogenic Cell Death. Int J Pharm 2021; 598:120333. [PMID: 33540008 DOI: 10.1016/j.ijpharm.2021.120333] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Tumor-associated fibroblasts (TAFs) play an important role in tumor progression and therapeutic response, especially in the immunosuppressive tumor microenvironment (TME). To remodel immunosuppressive TME of 4T1 tumor, we developed a nano liposome to deliver silybin (SLN, an anti-liver fibrosis Chinese Traditional Medicine). Liposomal silybin (SLN/LIP) possessed a spherical shape with particle sizes of 75.2 nm, high stability, and good accumulation in the tumor site. After treated with SLN/LIP, α-SMA positive TAFs and the deposition of stroma were decreased significantly. SLN/LIP also changed the tumor immune microenvironment through the increase of IFN-γ and IL-12, as well as reduced of TGF-β, SDF-1, IL6 and TNF-α. Importantly, SLN/LIP enhanced the infiltration of cytotoxic T cells (CTLs) and transformed a "cold" tumor into a "hot" tumor. To achieve the higher antitumor efficacy, an immunogenic cell death (ICD) inducer, liposomal doxorubicin (DOX/LIP) was combined with SLN/LIP. The combination treatment led to trigger immunogenic tumor apoptosis, and enhance antitumor immunity, therefore, improved anti-tumor efficiency, and further prolonged survival duration. The combination of liposomal silybin and liposomal doxorubicin might be a new chemo-immunotherapy approach for triple negative breast cancer (TNBC) tumor treatment.
Collapse
Affiliation(s)
- Shiyang Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Dan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Wenpan Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Baohui Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Chunlin Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|