1
|
Meena BL, Narayan S J A, Sarin SK. Hepatic encephalopathy in non-cirrhotic portal hypertension. Metab Brain Dis 2025; 40:103. [PMID: 39821852 DOI: 10.1007/s11011-024-01522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025]
Abstract
Hepatic encephalopathy (HE) is traditionally associated with hepatic parenchymal diseases, such as acute liver failure and cirrhosis. Its prevalence in non-cirrhotic portal hypertension (NCPH) patients, extrahepatic portal vein obstruction (EHPVO), and non-cirrhotic portal fibrosis (NCPF) is less well described. HE in NCPH allows one to study the effect of portosystemic shunting and ammonia without significant hepatic parenchymal injury. The current review narrates the spectrum and management of hepatic encephalopathy in NCPH patients. We synthesized data from various studies on the occurrence and management of HE in NCPH, mainly EHPVO, idiopathic non-cirrhotic portal hypertension (INCPH), and porto-sinusoidal vascular disease (PSVD). The prevalence of minimal hepatic encephalopathy (MHE) in NCPH is reported from 12 to 60%, depending on the condition and diagnostic criteria. MHE was reported in nearly a third of EHPVO patients. Studies show that venous ammonia levels are significantly elevated in patients with MHE and spontaneous shunts (82.4 ± 20.3 vs. 47.1 ± 16.7 µmol/L, P = 0.001). Large portosystemic shunts substantially increase the risk of HE, with 46-71% of patients with persistent or recurrent HE having identifiable shunts. Management of HE in NCPH primarily focuses on reducing ammonia levels through lactulose, which has shown improvement in 53% of patients with MHE after three months (P = 0.001). Shunt occlusion in patients with large portosystemic shunts is helpful in selected cases. HE in NCPH, particularly in EHPVO, is associated with elevated ammonia levels and spontaneous shunts. Despite the high prevalence of HE in NCPH, this is still a neglected aspect in the care of NCPH. A high index of suspicion and the application of appropriate screening tools are crucial for timely diagnosis and management. HE screening tools that are well-studied in cirrhosis, are also valid in NCPH. Effective management strategies include lactulose, rifaximin, dietary modifications, and shunt embolisation in some cases. Future research should focus on the long-term natural history and efficacy of treatment strategies in this population.
Collapse
Affiliation(s)
- Babu Lal Meena
- Institute of Liver and Biliary Sciences, New Delhi, India
| | | | | |
Collapse
|
2
|
Cognitive Impairement in Non-Cirrhotic Portal Hypertension: Highlights on Physiopathology, Diagnosis and Management. J Clin Med 2021; 11:jcm11010101. [PMID: 35011842 PMCID: PMC8745274 DOI: 10.3390/jcm11010101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Hepatic encephalopathy (HE) is one of the most frequent complications of cirrhosis. Several studies and case reports have shown that cognitive impairment may also be a tangible complication of portal hypertension secondary to chronic portal vein thrombosis and to porto-sinusoidal vascular disease (PSVD). In these conditions, representing the main causes of non-cirrhotic portal hypertension (NCPH) in the Western world, both overt and minimal/covert HE occurs in a non-neglectable proportion of patients, even lower than in cirrhosis, and it is mainly sustained by the presence of large porto-systemic shunt. In these patients, the liver function is usually preserved or only mildly altered, and the development of porto-systemic shunt is either spontaneous or iatrogenically frequent; HE is an example of type-B HE. To date, in the absence of strong evidence and large cooperative studies, for the diagnosis and the management of HE in NCPH, the same approach used for HE occurring in cirrhosis is applied. The aim of this paper is to provide an overview of type B hepatic encephalopathy, focusing on its pathophysiology, diagnostic tools and management in patients affected by porto-sinusoidal vascular disease and chronic portal vein thrombosis.
Collapse
|
3
|
Yang L, Bian X, Wu W, Lv L, Li Y, Ye J, Jiang X, Wang Q, Shi D, Fang D, Wu J, Wang K, Wang Q, Xia J, Xie J, Lu Y, Li L. Protective effect of Lactobacillus salivarius Li01 on thioacetamide-induced acute liver injury and hyperammonaemia. Microb Biotechnol 2020; 13:1860-1876. [PMID: 32652882 PMCID: PMC7533332 DOI: 10.1111/1751-7915.13629] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays pivotal roles in liver disease onset and progression. The protective effects of Lactobacillus salivarius Li01 on liver diseases have been reported. In this study, we aimed to detect the protective effect of L. salivarius Li01 on thioacetamide (TAA)-induced acute liver injury and hyperammonaemia. C57BL/6 mice were separated into three groups and given a gavage of L. salivarius Li01 or phosphate-buffered saline for 7 days. Acute liver injury and hyperammonaemia were induced with an intraperitoneal TAA injection. L. salivarius Li01 decreased mortality and serum transaminase levels and improved histological liver damage caused by TAA. Serum inflammatory cytokine and chemokine and lipopolysaccharide-binding protein (LBP) concentrations, nuclear factor κB (NFκB) pathway activation and macrophage and neutrophil infiltration into the liver were significantly alleviated by L. salivarius Li01. L. salivarius Li01 also reinforced gut barrier and reshaped the perturbed gut microbiota by upregulating Bacteroidetes and Akkermansia richness and downregulating Proteobacteria, Ruminococcaceae_UCG_014 and Helicobacter richness. Plasma and faecal ammonia levels declined noticeably in the Li01 group, accompanied by improvements in cognitive function, neuro-inflammation and relative brain-derived neurotrophic factor (BDNF) gene expression. Our results indicated that L. salivarius Li01 could be considered a potential probiotic in acute liver injury and hepatic encephalopathy (HE).
Collapse
Affiliation(s)
- Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jianzhong Ye
- The First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| |
Collapse
|
4
|
Cai Z, Zhu X, Zhang G, Wu F, Lin H, Tan M. Ammonia induces calpain-dependent cleavage of CRMP-2 during neurite degeneration in primary cultured neurons. Aging (Albany NY) 2020; 11:4354-4366. [PMID: 31278888 PMCID: PMC6660054 DOI: 10.18632/aging.102053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Hyperammonemia in the CNS induces irreversible damages to neurons due to ultimate cell loss. Neurite degeneration, a primary event that leads to neuronal cell death, remains less elucidated especially in hyperammonemia circumstances. Here, we found that the administration of ammonia induced neurite degeneration in cultured cerebellar granule neurons. The resulting altered neuronal morphology, rupture of neurites, and disassembly of the cytoskeleton led to cell death. Calcein and Fluo-4 staining revealed that ammonia induced intracellular calcium dysregulation. Subsequently activated calpain cleaved CRMP-2, a microtubule assembly protein. Pharmacologically inhibition of calpain, but not caspases or GSK-3, suppressed the cleavage of CRMP-2 and reversed neurite degeneration under ammonia treatment. Exposure to ammonia decreased whereas inhibition of calpain restored the amplitude and frequency of miniature excitatory postsynaptic currents. These data suggest a mechanism by which elevated ammonia level may induce neuronal dysfunction via abnormal calcium influx and calpain-dependent CRMP-2 cleavage, leading to abnormal synaptic transmission, cytoskeletal collapse, and neurite degeneration.
Collapse
Affiliation(s)
- Zhenbin Cai
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaonan Zhu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fengming Wu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minghui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Liotta EM, Kimberly WT. Cerebral edema and liver disease: Classic perspectives and contemporary hypotheses on mechanism. Neurosci Lett 2020; 721:134818. [PMID: 32035166 DOI: 10.1016/j.neulet.2020.134818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Liver disease is a growing public health concern. Hepatic encephalopathy, the syndrome of brain dysfunction secondary to liver disease, is a frequent complication of both acute and chronic liver disease and cerebral edema (CE) is a key feature. While altered ammonia metabolism is a key contributor to hepatic encephalopathy and CE in liver disease, there is a growing appreciation that additional mechanisms contribute to CE. In this review we will begin by presenting three classic perspectives that form a foundation for a discussion of CE in liver disease: 1) CE is unique to acute liver failure, 2) CE in liver disease is only cytotoxic, and 3) CE in liver disease is primarily an osmotically mediated consequence of ammonia and glutamine metabolism. We will present each classic perspective along with more recent observations that call in to question that classic perspective. After highlighting these areas of debate, we will explore the leading contemporary mechanisms hypothesized to contribute to CE during liver disease.
Collapse
Affiliation(s)
- Eric M Liotta
- Northwestern University-Feinberg School of Medicine, Department of Neurology, United States; Northwestern University-Feinberg School of Medicine, Department of Surgery, Division of Organ Transplantation, United States; Northwestern University Transplant Outcomes Research Collaboration, United States.
| | | |
Collapse
|
6
|
Guazzelli PA, Cittolin-Santos GF, Meira-Martins LA, Grings M, Nonose Y, Lazzarotto GS, Nogara D, da Silva JS, Fontella FU, Wajner M, Leipnitz G, Souza DO, de Assis AM. Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Front Mol Neurosci 2020; 12:327. [PMID: 31998076 PMCID: PMC6968792 DOI: 10.3389/fnmol.2019.00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Acute liver failure (ALF) implies a severe and rapid liver dysfunction that leads to impaired liver metabolism and hepatic encephalopathy (HE). Recent studies have suggested that several brain alterations such as astrocytic dysfunction and energy metabolism impairment may synergistically interact, playing a role in the development of HE. The purpose of the present study is to investigate early alterations in redox status, energy metabolism and astrocytic reactivity of rats submitted to ALF. Adult male Wistar rats were submitted either to subtotal hepatectomy (92% of liver mass) or sham operation to induce ALF. Twenty-four hours after the surgery, animals with ALF presented higher plasmatic levels of ammonia, lactate, ALT and AST and lower levels of glucose than the animals in the sham group. Animals with ALF presented several astrocytic morphological alterations indicating astrocytic reactivity. The ALF group also presented higher mitochondrial oxygen consumption, higher enzymatic activity and higher ATP levels in the brain (frontoparietal cortex). Moreover, ALF induced an increase in glutamate oxidation concomitant with a decrease in glucose and lactate oxidation. The increase in brain energy metabolism caused by astrocytic reactivity resulted in augmented levels of reactive oxygen species (ROS) and Poly [ADP-ribose] polymerase 1 (PARP1) and a decreased activity of the enzymes superoxide dismutase and glutathione peroxidase (GSH-Px). These findings suggest that in the early stages of ALF the brain presents a hypermetabolic state, oxidative stress and astrocytic reactivity, which could be in part sustained by an increase in mitochondrial oxidation of glutamate.
Collapse
Affiliation(s)
- Pedro Arend Guazzelli
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Giordano Fabricio Cittolin-Santos
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Leo Anderson Meira-Martins
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Mateus Grings
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yasmine Nonose
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Gabriel S Lazzarotto
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Daniela Nogara
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Jussemara S da Silva
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Fernanda U Fontella
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Moacir Wajner
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Diogo O Souza
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Adriano Martimbianco de Assis
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas-UCPel, Pelotas, Brazil
| |
Collapse
|
7
|
Fasullo M, Rau P, Liu DQ, Holzwanger E, Mathew JP, Guilarte-Walker Y, Szabo G. Proton pump inhibitors increase the severity of hepatic encephalopathy in cirrhotic patients. World J Hepatol 2019; 11:522-530. [PMID: 31293720 PMCID: PMC6603505 DOI: 10.4254/wjh.v11.i6.522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cirrhosis is the late stage of hepatic fibrosis and is characterized by portal hypertension that can clinically lead to decompensation in the form of ascites, esophageal/gastric varices or encephalopathy. The most common sequelae associated with liver cirrhosis are neurologic and neuropsychiatric impairments labeled as hepatic encephalopathy (HE). Well established triggers for HE include infection, gastrointestinal bleeding, constipation, and medications. Alterations to the gut microbiome is one of the leading ammonia producers in the body, and therefore may make patients more susceptible to HE.
AIM To investigate the relationship between the use of proton pump inhibitors (PPIs) and HE in patients with cirrhosis.
METHODS This is a single center, retrospective analysis. Patients were included in the study with an admitting diagnosis of HE. The degree of HE was determined from subjective and objective portions of hospital admission notes using the West Haven Criteria. The primary outcome of the study was to evaluate the grade of HE in PPI users versus non-users at admission to the hospital and throughout their hospital course. Secondary outcomes included rate of infection, gastrointestinal bleeding within the last 12 mo, mean ammonia level, and model for end-stage liver disease scores at admission.
RESULTS The HE grade at admission using the West Haven Criteria was 2.3 in the PPI group compared to 1.7 in the PPI nonuser group (P = 0.001). The average length of hospital stay in PPI group was 8.3 d compared to 6.5 d in PPI nonusers (P = 0.046). Twenty-seven (31.8%) patients in the PPI user group required an Intensive Care Unit admission during their hospital course compared to 6 in the PPI nonuser group (16.7%) (P = 0.138). Finally, 10 (11.8%) patients in the PPI group expired during their hospital stay compared to 1 in the PPI nonuser group (2.8%) (P = 0.220).
CONCLUSION Chronic PPI use in cirrhotic patients is associated with significantly higher average West Haven Criteria for HE compared to patients that do not use PPIs.
Collapse
Affiliation(s)
- Matthew Fasullo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Prashanth Rau
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Dong-Qi Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Erik Holzwanger
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Jomol P Mathew
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Yurima Guilarte-Walker
- Department of Data Sciences and Technology, Information Technology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| |
Collapse
|
8
|
Kwon KW, Nam Y, Choi WS, Kim TW, Kim GM, Sohn UD. Hepatoprotective effect of sodium hydrosulfide on hepatic encephalopathy in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:263-270. [PMID: 31297010 PMCID: PMC6609266 DOI: 10.4196/kjpp.2019.23.4.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide is well-known to exhibit anti-inflammatory and cytoprotective activities, and also has protective effects in the liver. This study aimed to examine the protective effect of hydrogen sulfide in rats with hepatic encephalopathy, which was induced by mild bile duct ligation. In this rat model, bile ducts were mildly ligated for 26 days. Rats were treated for the final 5 days with sodium hydrosulfide (NaHS). NaHS (25 µmol/kg), 0.5% sodium carboxymethyl cellulose, or silymarin (100 mg/kg) was administered intraperitoneally once per day for 5 consecutive days. Mild bile duct ligation caused hepatotoxicity and inflammation in rats. Intraperitoneal NaHS administration reduced levels of aspartate aminotransferase and alanine aminotransferase, which are indicators of liver disease, compared to levels in the control mild bile duct ligation group. Levels of ammonia, a major causative factor of hepatic encephalopathy, were also significantly decreased. Malondialdehyde, myeloperoxidase, catalase, and tumor necrosis factor-α levels were measured to confirm antioxidative and anti-inflammatory effects. N-Methyl-D-aspartic acid (NMDA) receptors with neurotoxic activity were assessed for subunit NMDA receptor subtype 2B. Based on these data, NaHS is suggested to exhibit hepatoprotective effects and guard against neurotoxicity through antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Kyoung Wan Kwon
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won Seok Choi
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Tae Wook Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Geon Min Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
9
|
Jayakumar A, Norenberg MD. Hyperammonemia in Hepatic Encephalopathy. J Clin Exp Hepatol 2018; 8:272-280. [PMID: 30302044 PMCID: PMC6175739 DOI: 10.1016/j.jceh.2018.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
The precise mechanism underlying the neurotoxicity of Hepatic Encephalopathy (HE) is remains unclear. The dominant view has been that gut-derived nitrogenous toxins are not extracted by the diseased liver and thereby enter the brain. Among the various toxins proposed, the case for ammonia is most compelling. Events that lead to increased levels of blood or brain ammonia have been shown to worsen HE, whereas reducing blood ammonia levels alleviates HE. Clinical, pathological, and biochemical changes observed in HE can be reproduced by increasing blood or brain ammonia levels in experimental animals, while exposure of cultured astrocytes to ammonium salts reproduces the morphological and biochemical findings observed in HE. However, factors other than ammonia have recently been proposed to be involved in the development of HE, including cytokines and other blood and brain immune factors. Moreover, recent studies have questioned the critical role of ammonia in the pathogenesis of HE since blood ammonia levels do not always correlate with the level/severity of encephalopathy. This review summarizes the vital role of ammonia in the pathogenesis of HE in humans, as well as in experimental models of acute and chronic liver failure. It further emphasizes recent advances in the molecular mechanisms involved in the progression of neurological complications that occur in acute and chronic liver failure.
Collapse
Key Words
- AHE, Acute Hepatic Encephalopathy
- ALF, Acute Liver Failure
- CHE, Chronic Hepatic Encephalopathy
- CNS, Central Nervous System
- CSF, Cerebrospinal Fluid
- ECs, Endothelial Cells
- HE, Hepatic Encephalopathy
- IL, Interleukin
- LPS, Lipopolysaccharide
- MAPKs, Mitogen-Activated Protein Kinases
- NCX, Sodium-Calcium Exchanger
- NF-κB, Nuclear Factor-kappaB
- NHE, Sodium/Hydrogen Exchanger-1 or SLC9A1 (SoLute Carrier Family 9A1)
- SUR1, The Sulfonylurea Receptor 1
- TDP-43 and tau proteinopathies
- TDP-43, TAR DNA-Binding Protein, 43 kDa
- TLR, Toll-like Receptor
- TNF-α, Tumor Necrosis Factor-Alpha
- TSP-1, Thrombospondin-1
- ammonia
- hepatic encephalopathy
- inflammation
- matricellular proteins
Collapse
Affiliation(s)
- A.R. Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, United States
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, United States
| | - Michael D. Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL 33125, United States
- Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL 33125, United States
- Department of Neurology and Neurological Surgery, University of Miami School of Medicine, Miami, FL 33125, United States
| |
Collapse
|
10
|
Dhanda S, Sunkaria A, Halder A, Sandhir R. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy. Metab Brain Dis 2018; 33:209-223. [PMID: 29138968 DOI: 10.1007/s11011-017-0136-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Perturbations in the cerebral energy metabolism are anticipated to be an important factor by which ammonia may exert its toxic effects on the central nervous system. The present study was designed to investigate the role of impaired mitochondrial functions and cerebral energy metabolism in the development hepatic encephalopathy (HE) induced by of bile duct ligation (BDL). After four weeks of BDL, a significant increase in hepatic hydroxyproline and collagen content was observed which confirmed biliary fibrosis. Brain regions viz. cortex, hippocampus, striatum and cerebellum of BDL rats had impaired activity of mitochondrial respiratory chain enzymes. This was accompanied by increase in mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl levels in the brain. Mitochondrial redox ratio was significantly reduced in the brain of BDL rats. In addition, mitochondria from brain of BDL rats were depolarized and swollen compared to the sham controls. Ultrastructure analysis of mitochondria from cortex and hippocampus of BDL animals revealed aberrant cristae, ruptured membranes and non-dense matrix. Further, a significant decrease was observed in creatine kinase activity, glucose uptake and CO2 production in the brain regions of BDL rats. ATP/ADP ratio, a critical parameter of cellular energy status, was also significantly reduced in brain regions of rats with HE. Overall, the findings clearly demonstrate that BDL induced HE involves mitochondrial respiratory chain dysfunctions, mitochondrial depolarization and swelling that accentuates oxidative stress which in turn leads to compromise in cerebral energy metabolism thereby contributing to the pathophysiology of chronic HE.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Aditya Sunkaria
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Avishek Halder
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Pantham G, Post A, Venkat D, Einstadter D, Mullen KD. A New Look at Precipitants of Overt Hepatic Encephalopathy in Cirrhosis. Dig Dis Sci 2017; 62:2166-2173. [PMID: 28560484 DOI: 10.1007/s10620-017-4630-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Overt hepatic encephalopathy (HE) is a major cause of significant morbidity and mortality in patients with liver cirrhosis. We examined the frequency and profile of the precipitating factors resulting in hospitalizations for overt HE. METHODS We conducted both retrospective and prospective studies to identify clinical precipitants of overt HE in patients with cirrhosis. The retrospective study patients were hospitalized at a large urban safety-net hospital, and the prospective study included the patients admitted at a liver transplant center. RESULTS There were a total of 149 patients with cirrhosis and overt HE (91 males, mean age 55.3 ± 8.6 years) in the retrospective group and 45 patients (27 males, mean age 58.3 ± 8.2 years) in the prospective group of the study. The average MELD score was 16 ± 6.8 in the retrospective group and 22.7 ± 7.2 in the prospective group. Dehydration (46-76%), acute kidney injury (32-76%), lactulose nonadherence (about 50%), constipation (about 40%), and infections (20-42%) were the most frequently identified precipitants for hospitalization in retrospective and prospective groups. Multiple precipitants were identified in 60 (40.3%) patients in the retrospective group and 34 (76%) patients in the prospective group. CONCLUSIONS Multiple concurrent precipitating factors were identified in the majority of patients with overt HE requiring hospitalization. Dehydration due to various causes was the most common precipitant of overt HE, followed by acute kidney injury (AKI), constipation, and infections. Prevention of dehydration, AKI, and constipation by close outpatient monitoring may be an effective measure to prevent hospitalization for overt HE in patients with cirrhosis.
Collapse
Affiliation(s)
- Ganesh Pantham
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Anthony Post
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Deepak Venkat
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Douglas Einstadter
- Departments of Medicine, Epidemiology and Biostatistics, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Kevin D Mullen
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Cleveland, OH, USA
| |
Collapse
|
12
|
Ashkani-Esfahani S, Bagheri F, Azarpira N, Esmaeilzadeh E, Emami Y, Hassanabadi N, Keshtkar M. Protective effects of quercetin on thioacetamide-induced acute liver damage and its related biochemical and pathological alterations. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2017. [DOI: 10.4103/1110-7782.200965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
13
|
Jang SY, Chang JY. Pathophysiology and Treatment of Cerebral Edema in Acute Liver Failure. JOURNAL OF NEUROCRITICAL CARE 2016. [DOI: 10.18700/jnc.160088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
15
|
Malaguarnera G, Vacante M, Drago F, Bertino G, Motta M, Giordano M, Malaguarnera M. Endozepine-4 levels are increased in hepatic coma. World J Gastroenterol 2015; 21:9103-10. [PMID: 26290636 PMCID: PMC4533041 DOI: 10.3748/wjg.v21.i30.9103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/11/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the serum levels of endozepine-4, their relation with ammonia serum levels, the grading of coma and the severity of cirrhosis, in patients with hepatic coma. METHODS In this study we included 20 subjects with Hepatic coma, 20 subjects with minimal hepatic encephalopathy (MHE) and 20 subjects control. All subjects underwent blood analysis, Child Pugh and Model for End - stage liver disease (MELD) assessment, endozepine-4 analysis. RESULTS Subjects with hepatic coma showed significant difference in endozepine-4 (P < 0.001) and NH3 levels (P < 0.001) compared both to MHE and controls patients. Between NH3 and endozepine-4 we observed a significant correlation (P = 0.009; Pearson correlation 0.570). There was a significant correlation between endozepine-4 and MELD (P = 0.017; Pearson correlation = 0.529). In our study blood ammonia concentration was noted to be raised in patients with hepatic coma, with the highest ammonia levels being found in those who were comatose. We also found a high correlation between endozepine-4 and ammonia (P < 0.001). In patients with grade IV hepatic coma, endozepine levels were significantly higher compared to other groups. CONCLUSION This study suggests that an increased level of endozepine in subjects with higher levels of MELD was observed. In conclusion, data concerning involvement of the GABA-ergic system in HE coma could be explained by stage-specific alterations.
Collapse
|
16
|
Nguyen DL, Morgan T. Protein restriction in hepatic encephalopathy is appropriate for selected patients: a point of view. Hepatol Int 2015; 8:447-51. [PMID: 25525477 DOI: 10.1007/s12072-013-9497-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the late nineteenth century, protein restriction has been shown to improve hepatic encephalopathy. However, malnutrition has been described in up to 60 % of cirrhotic patients and is associated with increased mortality. Furthermore, emerging clinical evidence has revealed that a large proportion of cirrhotic patients may tolerate normal protein intake. However, approximately one third of cirrhotic patients with hepatic encephalopathy may need a short course of protein restriction, in addition to maximum medical therapy, to ameliorate the clinical course of their hepatic encephalopathy. For patients with chronic hepatic encephalopathy who are protein-sensitive, modifying their sources of nitrogen by using more vegetable protein, less animal protein, and branched-chain amino acids may improve their encephalopathy without further loss of lean body mass. In conclusion, among cirrhotics with hepatic encephalopathy, modulation of normal protein intake must take into account the patient's hepatic reserve, severity of hepatic encephalopathy, and current nutritional status.
Collapse
Affiliation(s)
- Douglas L Nguyen
- Gastroenterology Service, VA Long Beach Healthcare System, 11, 5901 E. Seventh Street, Long Beach, CA 90822, USA, Gastroenterology Division, University of California, Irvine, CA, USA
| | - Timothy Morgan
- Gastroenterology Service, VA Long Beach Healthcare System, 11, 5901 E. Seventh Street, Long Beach, CA 90822, USA, Gastroenterology Division, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Lin WC, Hsu TW, Chen CL, Lu CH, Chen HL, Cheng YF. Resting State-fMRI with ReHo Analysis as a Non-Invasive Modality for the Prognosis of Cirrhotic Patients with Overt Hepatic Encephalopathy. PLoS One 2015; 10:e0126834. [PMID: 25973853 PMCID: PMC4431841 DOI: 10.1371/journal.pone.0126834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/08/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To investigate the relationships among regional activity abnormalities, clinical disease severity, and prognosis in cirrhotic patients with overt hepatic encephalopathy (OHE) using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS Regional homogeneity (ReHo) values of 12 cirrhotic patients with OHE and 12 age- and sex-matched healthy volunteers were calculated from rs-fMRI. Two-sample t-test was performed on individual ReHo maps between the two groups. The relationships between ReHo variation, disease severity, and prognosis were analyzed. RESULTS Cirrhotic patients with OHE had significantly low ReHo values in the left middle cingulum, bilateral superior temporal, left inferior orbito-frontal, right calcarine, left inferior frontal gyrus, left post-central, left inferior temporal, and left lingual areas, and high ReHo in the right superior frontal, right inferior temporal, right caudate, and cerebellum. There was significant group difference in the right superior temporal lobe (p=0.016) and crus1 of the left cerebellum (p=0.015) between survivors and non-survivors in the OHE group. Worse Glasgow Coma Scale was associated with increased local connectivity in the left cerebellar crus I (r=-0.868, p=0.001). CONCLUSIONS Information on the functional activity of cirrhotic patients with OHE suggests the use of rs-fMRI with ReHo analysis as a non-invasive prognosticating modality.
Collapse
Affiliation(s)
- Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| | - Tun-Wei Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Long Chen
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fan Cheng
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Abstract
The essential trace element zinc (Zn) has a large number of physiologic roles, in particular being required for growth and functioning of the immune system. Adaptive mechanisms enable the body to maintain normal total body Zn status over a wide range of intakes, but deficiency can occur because of reduced absorption or increased gastrointestinal losses. Deficiency impairs physiologic processes, leading to clinical consequences that include failure to thrive, skin rash, and impaired wound healing. Mild deficiency that is not clinically overt may still cause nonspecific consequences, such as susceptibility to infection and poor growth. The plasma Zn concentration has poor sensitivity and specificity as a test of deficiency. Consequently, diagnosis of deficiency requires a combination of clinical assessment and biochemical tests. Patients receiving parenteral nutrition (PN) are susceptible to Zn deficiency and its consequences. Nutrition support teams should have a strategy for assessing Zn status and optimizing this by appropriate supplementation. Nutrition guidelines recommend generous Zn provision from the start of PN. This review covers the physiology of Zn, the consequences of its deficiency, and the assessment of its status, before discussing its role in PN.
Collapse
Affiliation(s)
- Callum Livingstone
- Clinical Biochemistry Department, Royal Surrey County Hospital NHS Trust, Guildford, Surrey, UK Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
19
|
Ding S, Yang J, Liu L, Ye Y, Wang X, Hu J, Chen B, Zhuge Q. Elevated dopamine induces minimal hepatic encephalopathy by activation of astrocytic NADPH oxidase and astrocytic protein tyrosine nitration. Int J Biochem Cell Biol 2014; 55:252-63. [DOI: 10.1016/j.biocel.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/14/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
|
20
|
Hepatic Encephalopathy: From the Pathogenesis to the New Treatments. ISRN HEPATOLOGY 2014; 2014:236268. [PMID: 27335836 PMCID: PMC4890879 DOI: 10.1155/2014/236268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy is a frequent and serious complication of liver cirrhosis; the pathophysiology of this complication is not fully understood although great efforts have been made during the last years. There are few prospective studies on the epidemiology of this complication; however, it is known that it confers with high short-term mortality. Hepatic encephalopathy has been classified into different groups depending on the degree of hepatic dysfunction, the presence of portal-systemic shunts, and the number of episodes. Due to the large clinical spectra of overt EH and the complexity of cirrhotic patients, it is very difficult to perform quality clinical trials for assessing the efficacy of the treatments proposed. The physiopathology, clinical manifestation, and the treatment of HE is a challenge because of the multiple factors that converge and coexist in an episode of overt HE.
Collapse
|
21
|
Protective Effects of Cannabidiol Against Hippocampal Cell Death and Cognitive Impairment Induced by Bilateral Common Carotid Artery Occlusion in Mice. Neurotox Res 2014; 26:307-16. [DOI: 10.1007/s12640-014-9457-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/13/2014] [Accepted: 02/02/2014] [Indexed: 11/25/2022]
|
22
|
Görg B, Schliess F, Häussinger D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch Biochem Biophys 2013; 536:158-63. [PMID: 23567841 DOI: 10.1016/j.abb.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute or chronic liver failure. Currently, HE in cirrhotic patients is seen as a clinical manifestation of a low grade cerebral edema which exacerbates in response to a variety of precipitating factors after an ammonia-induced exhaustion of the volume-regulatory capacity of the astrocyte. Astrocyte swelling triggers a complex signaling cascade which relies on NMDA receptor activation, elevation of intracellular Ca(2+) concentration and prostanoid-driven glutamate exocytosis, which result in increased formation of reactive nitrogen and oxygen species (RNOS) through activation of NADPH oxidase and nitric oxide synthase. Since RNOS in turn promote astrocyte swelling, a self-amplifying signaling loop between osmotic- and oxidative stress ensues, which triggers a variety of downstream consequences. These include protein tyrosine nitration (PTN), oxidation of RNA, mobilization of zinc, alterations in intra- and intercellular signaling and multiple effects on gene transcription. Whereas PTN can affect the function of a variety of proteins, such as glutamine synthetase, oxidized RNA may affect local protein synthesis at synapses, thereby potentially interfering with protein synthesis-dependent memory formation. PTN and RNA oxidation are also found in post mortem human cerebral cortex of cirrhotic patients with HE but not in those without HE, thereby confirming a role for oxidative stress in the pathophysiology of HE. Evidence derived from animal experiments and human post mortem brain tissue also indicates an up-regulation of microglia activation markers in the absence of increased synthesis of pro-inflammatory cytokines. However, the role of activated microglia in the pathophysiology of HE needs to be worked out in more detail. Most recent observations made in whole genome micro-array analyses of post mortem human brain tissue point to a hitherto unrecognized activation of multiple anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Boris Görg
- Heinrich-Heine-University Düsseldorf, Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Germany
| | | | | |
Collapse
|
23
|
Abstract
Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray matter nuclei or white matter. This manuscript reviews the neuro-imaging patterns of neural injury in selected disorders of metabolism involving small molecule and macromolecular disorders (ie, Phenylketonuria, urea cycle disorders, and maple syrup urine disease) and discusses the contribution of diet and nutrition to the prevention or exacerbation of injury in selected inborn metabolic disorders. Where known, a review of the roles of individual differences in blood-brain permeability and transport mechanisms in the etiology of these disorders will be discussed.
Collapse
Affiliation(s)
- Andrea L. Gropman
- Departments of Pediatrics and Neurology, Children’s National Medical Center and the George Washington University of the Health Sciences, Washington, DC
| |
Collapse
|
24
|
Skowrońska M, Albrecht J. Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 2012; 62:731-7. [PMID: 23142151 DOI: 10.1016/j.neuint.2012.10.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/16/2022]
Abstract
Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.
Collapse
Affiliation(s)
- Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Center, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| | | |
Collapse
|
25
|
Chavez-Tapia NC, Cesar-Arce A, Barrientos-Gutiérrez T, Villegas-López FA, Méndez-Sanchez N, Uribe M. Systematic review with meta-analysis of the epidemiological evidence relating FEV1 decline to lung cancer risk. BMC Cancer 2012; 12:498. [PMID: 23101666 PMCID: PMC3689058 DOI: 10.1186/1475-2891-12-74] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/25/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reduced FEV1 is known to predict increased lung cancer risk, but previous reviews are limited. To quantify this relationship more precisely, and study heterogeneity, we derived estimates of β for the relationship RR(diff) = exp(βdiff), where diff is the reduction in FEV1 expressed as a percentage of predicted (FEV1%P) and RR(diff) the associated relative risk. We used results reported directly as β, and as grouped levels of RR in terms of FEV1%P and of associated measures (e.g. FEV1/FVC). METHODS Papers describing cohort studies involving at least three years follow-up which recorded FEV1 at baseline and presented results relating lung cancer to FEV1 or associated measures were sought from Medline and other sources. Data were recorded on study design and quality and, for each data block identified, on details of the results, including population characteristics, adjustment factors, lung function measure, and analysis type. Regression estimates were converted to β estimates where appropriate. For results reported by grouped levels, we used the NHANES III dataset to estimate mean FEV1%P values for each level, regardless of the measure used, then derived β using regression analysis which accounted for non-independence of the RR estimates. Goodness-of-fit was tested by comparing observed and predicted lung cancer cases for each level. Inverse-variance weighted meta-analysis allowed derivation of overall β estimates and testing for heterogeneity by factors including sex, age, location, timing, duration, study quality, smoking adjustment, measure of FEV1 reported, and inverse-variance weight of β. RESULTS Thirty-three publications satisfying the inclusion/exclusion criteria were identified, seven being rejected as not allowing estimation of β. The remaining 26 described 22 distinct studies, from which 32 independent β estimates were derived. Goodness-of-fit was satisfactory, and exp(β), the RR increase per one unit FEV1%P decrease, was estimated as 1.019 (95%CI 1.016-1.021). The estimates were quite consistent (I2 =29.6%). Mean age was the only independent source of heterogeneity, exp(β) being higher for age <50 years (1.024, 1.020-1.028). CONCLUSIONS Although the source papers present results in various ways, complicating meta-analysis, they are very consistent. A decrease in FEV1%P of 10% is associated with a 20% (95%CI 17%-23%) increase in lung cancer risk.
Collapse
Affiliation(s)
| | - Asunción Cesar-Arce
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Tonatiuh Barrientos-Gutiérrez
- National Institute of Public Health, Mexico City, Mexico
- Center for Integrative Approaches to Health Disparities, University of Michigan, Ann Arbor, USA
| | | | - Nahum Méndez-Sanchez
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
26
|
Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Gröters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, Sills R. Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 2012; 40:87S-157S. [PMID: 22637737 DOI: 10.1177/0192623312439125] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Harmonization of diagnostic nomenclature used in the pathology analysis of tissues from rodent toxicity studies will enhance the comparability and consistency of data sets from different laboratories worldwide. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of four major societies of toxicologic pathology to develop a globally recognized nomenclature for proliferative and nonproliferative lesions in rodents. This article recommends standardized terms for classifying changes observed in tissues of the mouse and rat central (CNS) and peripheral (PNS) nervous systems. Sources of material include academic, government, and industrial histopathology databases from around the world. Covered lesions include frequent, spontaneous, and aging-related changes as well as principal toxicant-induced findings. Common artifacts that might be confused with genuine lesions are also illustrated. The neural nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).
Collapse
|
27
|
Kruczek C, Görg B, Keitel V, Bidmon HJ, Schliess F, Häussinger D. Ammonia increases nitric oxide, free Zn(2+), and metallothionein mRNA expression in cultured rat astrocytes. Biol Chem 2012; 392:1155-65. [PMID: 22050230 DOI: 10.1515/bc.2011.199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ammonia is a major player in the pathogenesis of hepatic encephalopathy (HE) and affects astrocyte function by triggering a self-amplifying cycle between osmotic and oxidative stress. We recently demonstrated that hypoosmotic astrocyte swelling rapidly stimulates nitric oxide (NO) production and increases intracellular free Zn(2+) concentration ([Zn(2+)](i)). Here we report effects of ammonia on [Zn(2+)](i) homeostasis and NO synthesis. In cultured rat astrocytes, NH(4)Cl (5 mm) increased within 6 h both cytosolic and mitochondrial [Zn(2+)]. The [Zn(2+)](i) increase was transient and was mimicked by the nonmetabolizable CH(3)NH(3)Cl, and it was dependent on NO formation, as evidenced by the sensitivity toward the nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine. The NH(4)Cl-induced NO formation was sensitive to the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester and increases in both NO and [Zn(2+)](i) were blocked by the N-methyl-d-aspartate receptor antagonist MK-801. The NH(4)Cl-triggered increase in [Zn(2+)](i) was followed by a Zn(2+)-dependent nuclear appearance of the metal response element-binding transcription factor and metallothionein messenger RNA (mRNA) induction. Metallothionein mRNA was also increased in vivo in rat cerebral cortex 6 h after an NH(4)Ac challenge. NH(4)Cl increased peripheral-type benzodiazepine receptor (PBR) protein expression, whereas PBR mRNA levels were decreased in a Zn(2+)-independent manner. The Zn(2+)-dependent upregulation of metallothionein following ammonia intoxication may reflect a cytoprotective response, whereas the increase in PBR expression may augment HE development.
Collapse
Affiliation(s)
- Carolin Kruczek
- University Clinic of Düsseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Dubost C, Motuel J, Geeraerts T. [Non-invasive evaluation of intracranial pressure: how and for whom?]. ACTA ACUST UNITED AC 2012; 31:e125-32. [PMID: 22683401 DOI: 10.1016/j.annfar.2012.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The invasive monitoring of intracranial pressure is useful in circumstances associated with high-risk of raised intracranial pressure. However the placement of intracranial probe is not always possible and non-invasive assessment of intracranial pressure may be useful, particularly in case of emergencies. Transcranial Doppler measurements allow the estimation of perfusion pressure with the pulsatility index. Recently, new ultrasonographic methods of cerebral monitoring have been developed: the diameter of the optic nerve sheath diameter, a surrogate marker of raised intracranial pressure and the estimation of median shift line deviation.
Collapse
Affiliation(s)
- C Dubost
- Département d'anesthésie-réanimation, HIA Val-de-Grâce, 74, boulevard de Port-Royal, 75230 Paris 05, France
| | | | | |
Collapse
|
29
|
Abstract
The earliest hypothesis of the pathogenesis of HE implicated ammonia, although effects of appreciable concentrations of this neurotoxin did not resemble HE. Altered eurotransmission in the brain was suggested by similarities between increased GABA-mediated inhibitory neurotransmission and HE, specifically decreased consciousness and impaired motor function. Evidence of increased GABAergic tone in models of HE has accumulated; potential mechanisms include increased synaptic availability of GABA and accumulation of natural benzodiazepine receptor ligands with agonist properties. Pathophysiological concentrations of ammonia associated with HE, have the potential of enhancing GABAergic tone by mechanisms that involve its interactions with the GABAa receptor complex.
Collapse
Affiliation(s)
- E Anthony Jones
- Division of Gastroenterology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | | |
Collapse
|
30
|
Kruczek C, Görg B, Keitel V, Bidmon HJ, Schliess F, Häussinger D. Ammonia increases nitric oxide, free Zn(2+), and metallothionein mRNA expression in cultured rat astrocytes. Biol Chem 2011. [PMID: 22050230 DOI: 10.1515/bc-2011-199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ammonia is a major player in the pathogenesis of hepatic encephalopathy (HE) and affects astrocyte function by triggering a self-amplifying cycle between osmotic and oxidative stress. We recently demonstrated that hypoosmotic astrocyte swelling rapidly stimulates nitric oxide (NO) production and increases intracellular free Zn(2+) concentration ([Zn(2+)](i)). Here we report effects of ammonia on [Zn(2+)](i) homeostasis and NO synthesis. In cultured rat astrocytes, NH(4)Cl (5 mm) increased within 6 h both cytosolic and mitochondrial [Zn(2+)]. The [Zn(2+)](i) increase was transient and was mimicked by the nonmetabolizable CH(3)NH(3)Cl, and it was dependent on NO formation, as evidenced by the sensitivity toward the nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine. The NH(4)Cl-induced NO formation was sensitive to the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester and increases in both NO and [Zn(2+)](i) were blocked by the N-methyl-d-aspartate receptor antagonist MK-801. The NH(4)Cl-triggered increase in [Zn(2+)](i) was followed by a Zn(2+)-dependent nuclear appearance of the metal response element-binding transcription factor and metallothionein messenger RNA (mRNA) induction. Metallothionein mRNA was also increased in vivo in rat cerebral cortex 6 h after an NH(4)Ac challenge. NH(4)Cl increased peripheral-type benzodiazepine receptor (PBR) protein expression, whereas PBR mRNA levels were decreased in a Zn(2+)-independent manner. The Zn(2+)-dependent upregulation of metallothionein following ammonia intoxication may reflect a cytoprotective response, whereas the increase in PBR expression may augment HE development.
Collapse
Affiliation(s)
- Carolin Kruczek
- University Clinic of Düsseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Sharma P, Sharma BC. Profile of hepatic encephalopathy in children with cirrhosis and response to lactulose. Saudi J Gastroenterol 2011; 17:138-41. [PMID: 21372353 PMCID: PMC3099061 DOI: 10.4103/1319-3767.77246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Hepatic encephalopathy (HE) is associated with a poor prognosis. There is paucity of data on the treatment of HE with lactulose in children with cirrhosis. PATIENTS AND METHODS Retrospective analysis of consecutive cirrhotic patients (<18 years) with HE was done. HE was defined according to West-Haven criteria. Response was defined as complete if patients recovered completely from HE, partial response was defined as improvement of encephalopathy by one or more grades from admission but not complete recovery, and defined as non response if patient did not show any improvement or deteriorated further even after 10 days of lactulose therapy. RESULTS A total of 300 patients were admitted with cirrhosis and HE (278 adults and 22 children). Of 22 patients, 16 (73%) patients had complete response to lactulose and six (27%) patients did not [three (13.5%) patients worsened (non response) and three (13.5%) did not recover fully even after 10 days of treatment (partial response)]. Comparing baseline characteristics of patients who had complete response (n=16) versus partial (n=3) and non response (n=3), there was significant difference in mean arterial pressure (78.1±10.7 vs 62.6±5.0 mmHg, P=0.003), serum sodium (131.3±3.2 vs 126.5±5.2, P=0.01) and serum creatinine (0.78±0.3 vs 1.1±0.3 mg/dl, P=0.02). We did not find any difference in baseline characteristics of these patients regarding CTP score (9.6±1.2 vs 10.6±1.2), MELD score (17.6±2.9 vs 17.1±3.4), severity of HE (2.5±0.6 vs 2.6±0.5) and etiology of precipitating factors (P=0.78). CONCLUSIONS Lactulose therapy causes complete recovery from hepatic encephalopathy in 73% of pediatrics patients with cirrhosis.
Collapse
Affiliation(s)
- Praveen Sharma
- Department of Gastroenterology, G. B. Pant Hospital, New Delhi, India.
| | - Barjesh C. Sharma
- Department of Gastroenterology, G. B. Pant Hospital, New Delhi, India,Address for correspondence: Dr. B. C. Sharma, Department of Gastroenterology, Room 203, Academic Block, G. B. Pant Hospital, New Delhi-110 002, India. E-mail:
| |
Collapse
|
32
|
NF-κB in the mechanism of brain edema in acute liver failure: studies in transgenic mice. Neurobiol Dis 2010; 41:498-507. [PMID: 21087666 DOI: 10.1016/j.nbd.2010.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/12/2010] [Accepted: 10/27/2010] [Indexed: 12/26/2022] Open
Abstract
Astrocyte swelling and brain edema are major complications of the acute form of hepatic encephalopathy (acute liver failure, ALF). While elevated brain ammonia level is a well-known etiological factor in ALF, the mechanism by which ammonia brings about astrocyte swelling is not well understood. We recently found that astrocyte cultures exposed to ammonia activated nuclear factor-κB (NF-κB), and that pharmacological inhibition of such activation led to a reduction in astrocyte swelling. Although these findings suggest the involvement of NF-κB in astrocyte swelling in vitro, it is not known whether NF-κB contributes to the development of brain edema in ALF in vivo. Furthermore, pharmacological agents used to inhibit NF-κB may have non-specific effects. Accordingly, we used transgenic (Tg) mice that have a functional inactivation of astrocytic NF-κB and examined whether these mice are resistant to ALF-associated brain edema. ALF was induced in mice by treatment with the hepatotoxin thioacetamide (TAA). Wild type (WT) mice treated with TAA showed a significant increase in brain water content (1.65%) along with prominent astrocyte swelling and spongiosis of the neuropil, consistent with the presence of cytotoxic edema. These changes were not observed in Tg mice treated with TAA. Additionally, WT mice with ALF showed an increase in inducible nitric oxide synthase (iNOS) immunoreactivity in astrocytes from WT mice treated with TAA (iNOS is known to be activated by NF-κB and to contribute to cell swelling). By contrast, Tg mice treated with TAA did not exhibit brain edema, histological changes nor an increase in iNOS immunoreactivity. We also examined astrocytes cultures derived from Tg mice to determine whether these cells exhibit a lesser degree of swelling and cytopathological changes following exposure to ammonia. Astrocyte cultures derived from Tg mice showed no cell swelling nor morphological abnormalities when exposed to ammonia for 24h. By contrast, ammonia significantly increased cell swelling (31.7%) in cultured astrocytes from WT mice and displayed cytological abnormalities. Moreover, we observed a lesser increment in iNOS and NADPH oxidase activity (the latter is also known to be activated by NF-κB and to contribute to astrocyte swelling) in astrocyte cultures from Tg mice treated with ammonia, as compared to ammonia-treated WT mice astrocytes. These findings strongly suggest that activation of NF-κB is a critical factor in the development of astrocyte swelling/brain edema in ALF.
Collapse
|
33
|
Albrecht J, Zielińska M, Norenberg MD. Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochem Pharmacol 2010; 80:1303-8. [PMID: 20654582 DOI: 10.1016/j.bcp.2010.07.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 01/06/2023]
Abstract
Ammonia is a major neurotoxin implicated in hepatic encephalopathy (HE). Here we discuss evidence that many aspects of ammonia toxicity in HE-affected brain are mediated by glutamine (Gln), synthesized in excess from ammonia and glutamate by glutamine synthetase (GS), an astrocytic enzyme. The degree to which Gln is increased in brains of patients with HE was found to positively correlate with the grade of HE. In animals with HE, a GS inhibitor, methionine sulfoximine (MSO), reversed a spectrum of manifestations of ammonia toxicity, including brain edema and increased intracranial pressure, even though MSO itself increased brain ammonia levels. MSO inhibited, while incubation with Gln reproduced the oxidative stress and cell swelling observed in ammonia-exposed cultured astrocytes. Recent studies have shown that astrocytes swell subsequent to Gln transport into mitochondria and its degradation back to ammonia, which then generates reactive oxygen species and the mitochondrial permeability transition. This sequence of events led to the formulation of the "Trojan Horse" hypothesis. Further verification of the role of Gln in the pathogenesis of HE will have to account for: (1) modification of the effects of Gln by interaction of astrocytes with other CNS cells; and (2) direct effects of Gln on these cells. Recent studies have demonstrated a "Trojan Horse"-like effect of Gln in microglia, as well as an interference by Gln with the activation of the NMDA/NO/cGMP pathway by ammonia as measured in whole brain, a process that likely also involves neurons.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
34
|
Hsu CY, Lee FY, Huo TI, Chan CY, Huang HC, Lin HC, Chang CC, Teng TH, Wang SS, Lee SD. Lack of therapeutic effects of gabexate mesilate on the hepatic encephalopathy in rats with acute and chronic hepatic failure. J Gastroenterol Hepatol 2010; 25:1321-8. [PMID: 20594263 DOI: 10.1111/j.1440-1746.2010.06235.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Inflammation plays a pivotal role in liver injury. Gabexate mesilate (GM, a protease inhibitor) inhibits inflammation by blocking various serine proteases. This study examined the effects of GM on hepatic encephalopathy in rats with acute and chronic liver failure. METHODS Acute and chronic liver failure (cirrhosis) were induced by intraperitoneal TAA administration (350 mg/kg/day for 3 days) and common bile duct ligation, respectively, in male Sprague-Dawley rats. Rats were randomized to receive either GM (50 mg/10 mL/kg) or saline intraperitoneally for 5 days. Severity of encephalopathy was assessed by the Opto-Varimex animal activity meter and hemodynamic parameters, mean arterial pressure and portal pressure, were measured (only in chronic liver failure rats). Plasma levels of liver biochemistry, ammonia, nitrate/nitrite, interleukins (IL) and tumor necrosis factor (TNF)-alpha were determined. RESULTS In rats with acute liver failure, GM treatment significantly decreased the plasma levels of alanine aminotransferase (P = 0.02), but no significant difference of motor activity, plasma levels of ammonia, IL-1beta, IL-6, IL-10 and TNF-alpha or survival was found. In chronic liver failure rats, GM significantly lowered the plasma TNF-alpha levels (P = 0.04). However, there was no significant difference of motor activity, other biochemical tests or survival found. GM-treated chronic liver failure rats had higher portal pressure (P = 0.04) but similar mean arterial pressure in comparison with saline-treated rats. CONCLUSIONS Chronic GM treatment does not have a major effect on hepatic encephalopathy in rats with TAA-induced acute liver failure and rats with chronic liver failure induced by common bile duct ligation.
Collapse
Affiliation(s)
- Chia-Yang Hsu
- Divisions of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Predictors of nonresponse to lactulose in patients with cirrhosis and hepatic encephalopathy. Eur J Gastroenterol Hepatol 2010; 22:526-31. [PMID: 20009938 DOI: 10.1097/meg.0b013e3283341b7d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Lactulose is commonly used in the treatment of hepatic encephalopathy (HE). However, all patients do not respond to lactulose. We evaluated predictors of nonresponse to lactulose in patients with cirrhosis and HE. PATIENTS AND METHODS Consecutive cirrhotic patients with HE were enrolled. HE was diagnosed by West Haven criteria. Patients were treated with lactulose and correction of any associated precipitating factors. Nonresponse was defined if patient remained in HE even after 10 days of treatment or died while in HE. RESULTS Of 300 patients with cirrhosis and HE, 231 (77%) patients met the inclusion criteria. The majority (95%) of the patients had Grade 2 or 3 HE. Of 231 patients, 180 (78%) responded to lactulose. Fifty-one (22%) did not respond to lactulose, 34 (15%) died without any improvement in HE and HE did not improve in 17 (7%) patients after 10 days of therapy. On comparing baseline parameters between nonresponders versus responders there was significant difference between baseline age (42.0+/-11.9 vs. 46.6+/-12.7 year, P=0.02), total leukocyte count (median, 9300 vs. 7300 cells/mm3, P=0.001), serum sodium level (129.9+/-6.2 vs. 133.7+/-7.1 mmol/l, P=0.001), model for end stage liver disease (MELD) score (22.9+/-3.8 vs. 19.9+/-4.2, P=0.001), mean arterial pressure (MAP, 77.9+/-10.0 vs. 86.3+/-8.7 mmHg, P=0.001), serum AST (median, 114 vs. 76 IU/l, P=0.01), serum ALT (median, 84 vs. 48.5 IU/l, P=0.001), spontaneous bacterial peritonitis [18 (35%) vs. 37 (21%), P=0.02] and hepatocellular carcinoma [HCC, 17 (33%) vs. 14 (7%), P=0.001]. On multivariate analysis baseline total leukocyte count, MELD, MAP, and HCC were independent predictors of nonresponse to lactulose (P=0.001). Combination of low MAP, high MELD, and presence of HCC had diagnostic accuracy of 81% in predicting nonresponse to lactulose. CONCLUSION Of 78% patients with chronic liver disease with HE (majority with Grade 2 and 3) responded to lactulose. High baseline MELD, high total leukocyte count, low serum sodium, low MAP, and presence of hepatocellular carcinoma were predictors of nonresponse to lactulose.
Collapse
|
36
|
Abstract
Practice guidelines for hepatic encephalopathy were developed and published in 2001 for overall management in adults. Hepatic encephalopathy is caused by nitrogenous substances from the gastrointestinal tract that adversely affect brain function. Hepatic encephalopathy is a diagnosis of exclusion. The West Haven criteria are recommended for staging the disease. Treatment goals are providing supportive care, identifying and removing precipitating factors, reducing nitrogenous load, and assessing long-term therapy needs. Data from some trials published before 2001 are not included in the guidelines. In addition, since the publication of the guidelines, new data have become available regarding treatment interventions and outcomes. Newer, nonabsorbed agents, such as rifaximin, alone or in conjunction with lactulose, may enhance compliance and adherence with therapy, and provide better treatment outcomes. New updated practice guidelines need to be developed for hepatic encephalopathy, along with treatment algorithms for patients with both minimal hepatic encephalopathy and overt hepatic encephalopathy.
Collapse
Affiliation(s)
- J Richard Thompson
- Department of Pharmacy Practice, Lipscomb University College of Pharmacy, Nashville, Tennessee 37204-3951, USA.
| |
Collapse
|
37
|
Suárez I, Bodega G, Fernández B. Upregulation of alpha-synuclein expression in the rat cerebellum in experimental hepatic encephalopathy. Neuropathol Appl Neurobiol 2010; 36:422-35. [PMID: 20345648 DOI: 10.1111/j.1365-2990.2010.01083.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The overexpression of alpha-synuclein has been associated with neurodegenerative diseases, especially when the protein aggregates to form insoluble structures. The present study examined the effect of chronic hyperammonaemia on alpha-synuclein expression in the rat cerebellum following portacaval anastomosis (PCA). METHODS Immunohistochemical and western blot determinations were performed 1 month and 6 months after the PCA procedure. RESULTS A time-dependent increase in alpha-synuclein expression was seen in the cerebellar grey matter compared with the controls. At 1 month post PCA, alpha-synuclein-immunopositive material was observed in the molecular layer, while the Purkinje cells showed weak alpha-synuclein expression, and alpha-synuclein aggregates were observed throughout the granular layer. At 6 months post PCA, alpha-synuclein expression was significantly increased compared with the controls. alpha-synuclein-immunostained astroglial cells were also found; the Bergmann glial cells showed alpha-synuclein-positive processes in the molecular layer of PCA-exposed rats, and in the granular layer, perivascular astrocytes showed intense alpha-synuclein immunoreactivity, as indicated by colocalization of alpha-synuclein with glial fibrillary acidic protein (GFAP). In addition, ubiquitin-immunoreactive inclusions were present in PCA-exposed rats, although they did not colocalize with alpha-synuclein. Western blotting performed at 6 months post PCA showed a reduction in the level of soluble alpha-synuclein compared with 1 month post PCA and the controls; this reduction was concomitant with an increase in the insoluble form of alpha-synuclein. CONCLUSIONS Although the precise mechanism by which alpha-synuclein aggregates in PCA-treated rats remains unknown, the present data suggest an important role for this protein in the onset and progression of hepatic encephalopathy, probably via its expression in astroglial cells.
Collapse
Affiliation(s)
- I Suárez
- Departamento de Biología Celular y Genética, Universidad de Alcalá, 28871 Madrid, Spain.
| | | | | |
Collapse
|
38
|
Córdoba J, García-Martinez R, Simón-Talero M. Hyponatremic and hepatic encephalopathies: similarities, differences and coexistence. Metab Brain Dis 2010; 25:73-80. [PMID: 20217202 DOI: 10.1007/s11011-010-9172-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/27/2009] [Indexed: 12/11/2022]
Abstract
Hyponatremic and hepatic encephalopathy are common causes of metabolic encephalopathy that may coexist in patients with cirrhosis. The clinical picture is common to any metabolic encephalopathy and is characterized by a confusional syndrome that may evolve into coma. Chronic mild or minimal manifestations can be seen in both, but motor symptoms are more common in hepatic encephalopathy. Recent advances show that in addition to clinical manifestations both encephalopathies share some pathogenetic mechanisms. Dysfunction of astrocytes, osmotic changes in the brain and brain edema are present in both situations. Recognition of these abnormalities is important to plan therapy. New drugs that affect brain hydration may be useful for both encephalopathies.
Collapse
Affiliation(s)
- Juan Córdoba
- Servei de Medicina Interna-Hepatologia, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119, Barcelona, 08035, Spain.
| | | | | |
Collapse
|
39
|
Harris MK, Elliott D, Schwendimann RN, Minagar A, Jaffe SL. Neurologic Presentations of Hepatic Disease. Neurol Clin 2010; 28:89-105. [DOI: 10.1016/j.ncl.2009.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Acosta GB, Fernández MA, Roselló DM, Tomaro ML, Balestrasse K, Lemberg A. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats. World J Gastroenterol 2009; 15:2893-9. [PMID: 19533812 PMCID: PMC2699008 DOI: 10.3748/wjg.15.2893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension.
METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas.
RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity.
CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions.
Collapse
|
41
|
Abstract
Hyponatremia, a common complication inpatients with advanced liver disease and impaired free water clearance, has been shown to be an important predictor of short-term mortality. Hepatic encephalopathy, also a late complication of end-stage liver disease, has been associated with low-grade cerebral edema as a result of swelling of astrocytes. Guevara et al. hypothesized that hyponatremia and the resultant depletion of organic osmolytes (e.g.,myo-inositol) from brain cells contribute to brain edema, playing an important role in the pathogenesis of hepatic encephalopathy. Using a multivariable analysis, they demonstrated that hyponatremia increased the risk of hepatic encephalopathy more than eightfold, after adjustment for serum bilirubin and creatinine concentrations and previous history of encephalopathy. Their magnetic resonance spectroscopy data correlated low brain concentrations of myoinositol with hepatic encephalopathy. As both hyponatremia and encephalopathy occur in patients with advanced liver disease, it has been difficult to implicate hyponatremia independently in the pathogenesis of hepatic encephalopathy. Guevara's data do suggest that hyponatremia is more likely an accomplice than an innocent bystander.
Collapse
|
42
|
Jayakumar AR, Rama Rao KV, Tong XY, Norenberg MD. Calcium in the mechanism of ammonia-induced astrocyte swelling. J Neurochem 2009; 109 Suppl 1:252-7. [PMID: 19393035 DOI: 10.1111/j.1471-4159.2009.05842.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,-N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA). We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS), and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pre-treatment of cultures with 7-nitroindazole, apocyanin, and quinacrine, respective inhibitors of cNOS, NOX, and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX, and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling.
Collapse
|
43
|
Bragagnolo Jr. MA, Teodoro V, Lucchesi LM, Ribeiro TCDR, Tufik S, Kondo M. Detecção de encefalopatia hepática mínima através de testes neuropsicológicos e neurofisiológicos e o papel da amônia no seu diagnóstico. ARQUIVOS DE GASTROENTEROLOGIA 2009; 46:43-9. [DOI: 10.1590/s0004-28032009000100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 12/24/2008] [Indexed: 01/03/2023]
Abstract
CONTEXTO: A encefalopatia hepática mínima vem sendo sistematicamente investigada em pacientes com cirrose hepática. Entretanto, existem controvérsias quanto aos melhores métodos, bem como o papel da amônia para seu diagnóstico. OBJETIVO: Avaliar a frequência de encefalopatia hepática mínima diagnosticada através de testes neuropsicológicos e neurofisiológicos em cirróticos, bem como os possíveis fatores de risco para esta condição, incluindo o papel da concentração arterial de amônia em seu diagnóstico. MÉTODOS: Indivíduos com cirrose hepática foram avaliados através do teste de conexão numérica partes A e B (TCN-A e TCN-B) e potencial evocado relacionado a eventos (P300). O diagnóstico de encefalopatia hepática mínima foi feito quando da presença de anormalidade no P300 e em, pelo menos, um dos testes neuropsicológicos. As concentrações arteriais de amônia, a escolaridade e a gravidade da cirrose hepática também foram avaliadas em todos. RESULTADOS: Foram avaliados 48 pacientes cirróticos, com média de idade 50 ± 8 anos, sendo 79% do sexo masculino. As principais causas foram a alcoólica e a viral. O P300 foi anormal em 75% dos casos e o TCN-A e TCN-B anormais em 58% e 65% dos casos, respectivamente. Os resultados do TCN-B foram influenciados pela escolaridade. A frequência de encefalopatia hepática mínima foi de 50%. A concentração arterial de amônia não foi significantemente maior em pacientes com diagnóstico de encefalopatia hepática mínima (195 ± 152 mmol/L versus 148 ± 146 mmol/L; P>0,05). Não houve diferença significante entre os grupos com e sem encefalopatia hepática mínima quanto às demais variáveis estudadas. CONCLUSÃO:A encefalopatia hepática mínima é condição frequente em pacientes com cirrose hepática. A concentração arterial de amônia não parece ter papel importante no seu diagnóstico.
Collapse
|
44
|
Schliess F, Görg B, Häussinger D. RNA oxidation and zinc in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 2009; 24:119-34. [PMID: 19148713 DOI: 10.1007/s11011-008-9125-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/28/2008] [Indexed: 01/31/2023]
Abstract
Hepatic encephalopathy is a neuropsychiatric manifestation of acute and chronic liver failure. Ammonia plays a key role in the pathogenesis of hepatic encephalopathy by inducing astrocyte swelling and/or sensitizing astrocytes to swelling by a heterogeneous panel of precipitating factors and conditions. Whereas astrocyte swelling in acute liver failure contributes to a clinically overt brain edema, a low grade glial edema without clinically overt brain edema is observed in hepatic encephalopathy in liver cirrhosis. Astrocyte swelling produces reactive oxygen and nitrogen oxide species (ROS/RNOS), which again increase astrocyte swelling, thereby creating a self-amplifying signaling loop. Astroglial swelling and ROS/RNOS increase protein tyrosine nitration and may account for neurotoxic effects of ammonia and other precipitants of hepatic encephalopathy. Recently, RNA oxidation and an increase of free intracellular zinc ([Zn(2+)](i)) were identified as further consequences of astrocyte swelling and ROS/RNOS production. An elevation of [Zn(2+)](i) mediates mRNA expression of metallothionein and the peripheral benzodiazepine receptor (PBR) induced by hypoosmotic astrocyte swelling. Further, Zn(2+) mediates RNA oxidation in ammonia-treated astrocytes. In the brain of hyperammonemic rats oxidized RNA localizes in part to perivascular astrocyte processes and to postsynaptic dendritic spines. RNA oxidation may impair postsynaptic protein synthesis, which is critically involved in learning and memory consolidation. RNA oxidation offers a novel explanation for multiple disturbances of neurotransmitter systems and gene expression and the cognitive deficits observed in hepatic encephalopathy.
Collapse
Affiliation(s)
- Freimut Schliess
- Heinrich-Heine-Universität Düsseldorf, Klinik für Gastroenterologie, Hepatologie, und Infektiologie, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
45
|
Parés A, Deulofeu R, Cisneros L, Escorsell A, Salmerón JM, Caballería J, Mas A. Albumin dialysis improves hepatic encephalopathy and decreases circulating phenolic aromatic amino acids in patients with alcoholic hepatitis and severe liver failure. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R8. [PMID: 19175915 PMCID: PMC2688120 DOI: 10.1186/cc7697] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/22/2009] [Accepted: 01/28/2009] [Indexed: 01/08/2023]
Abstract
Introduction The aim of this study was to assess the effects of albumin dialysis on hepatic encephalopathy and circulating levels of amino acids in severe alcoholic hepatitis. Methods The study was carried out in nine patients with severe alcoholic hepatitis and four with primary biliary cirrhosis treated with the molecular adsorbent recirculating system. Besides standard liver function tests, circulating levels of ammonia, total, branched chain and aromatic amino acids, the presence and severity of hepatic encephalopathy, and number connection test were measured before and after each treatment. Results There were eight episodes of encephalopathy in patients with alcoholic hepatitis. Albumin dialysis was associated with significant improvement in encephalopathy (p = 0.02), and a decrease in total amino acid levels (2490 ± 152 μM to 2229 ± 114 μM, p < 0.001). Moreover, the Fischer's ratio, which was significantly lower in patients with alcoholic hepatitis (1.32 ± 0.08) than in controls (3.20 ± 0.16), increased by 17% after albumin dialysis (p < 0.02) because of a significant decrease in phenolic aromatic amino acids (193 ± 17 μM to 165 ± 9 μM, p = 0.04). No differences were observed in circulating ammonia. Changes in phenolic aromatic amino acids and the Fischer's ratio were more prominent in patients with encephalopathy and higher bilirubin removal. Albumin dialysis did not significantly affect the amino acid profile in the controls. Conclusions Albumin dialysis results in a significant decrease in circulating phenolic aromatic amino acids and improvement of hepatic encephalopathy in patients with severe liver failure.
Collapse
Affiliation(s)
- Albert Parés
- Liver Unit, Digestive Diseases Institute, Hospital Clínic, Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
46
|
Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B, Reddy PVB, Norenberg MD. Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 2008; 283:33874-82. [PMID: 18849345 PMCID: PMC2590687 DOI: 10.1074/jbc.m804016200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 10/08/2008] [Indexed: 11/06/2022] Open
Abstract
Brain edema and the consequent increase in intracranial pressure and brain herniation are major complications of acute liver failure (fulminant hepatic failure) and a major cause of death in this condition. Ammonia has been strongly implicated as an important factor, and astrocyte swelling appears to be primarily responsible for the edema. Ammonia is known to cause cell swelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter (NKCC1) has been shown to be involved in cell swelling in several neurological disorders. We therefore examined the effect of ammonia on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to ammonia (NH(4)Cl; 5 mm), and NKCC activity was measured. Ammonia increased NKCC activity at 24 h. Inhibition of this activity by bumetanide diminished ammonia-induced astrocyte swelling. Ammonia also increased total as well as phosphorylated NKCC1. Treatment with cyclohexamide, a potent inhibitor of protein synthesis, diminished NKCC1 protein expression and NKCC activity. Since ammonia is known to induce oxidative/nitrosative stress, and antioxidants and nitric-oxide synthase inhibition diminish astrocyte swelling, we also examined whether ammonia caused oxidation and/or nitration of NKCC1. Cultures exposed to ammonia increased the state of oxidation and nitration of NKCC1, whereas the antioxidants N-nitro-l-arginine methyl ester and uric acid all significantly diminished NKCC activity. These agents also reduced phosphorylated NKCC1 expression. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by ammonia and that such activation appears to be mediated by NKCC1 abundance as well as by its oxidation/nitration and phosphorylation.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology and Biochemistry, University of Miami School of Medicine and Veterans Affairs Medical Center, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Basal and learning task-related brain oxidative metabolism in cirrhotic rats. Brain Res Bull 2008; 78:195-201. [PMID: 19015011 DOI: 10.1016/j.brainresbull.2008.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/19/2008] [Accepted: 10/17/2008] [Indexed: 11/24/2022]
Abstract
Hepatic encephalopathy is a neurological complication observed in patients with liver disease. Subjects with hepatic encephalopathy can develop memory alterations. In order to investigate brain oxidative metabolism in an animal model of chronic cirrhosis and its modification after spatial working memory task, we determined the neural metabolic activity of several brain limbic system regions by cytochrome oxidase (COx) histochemistry and assessed the spatial working memory in the Morris water maze of rats with cirrhosis by administration of thioacetamide. This COx histochemistry was done in cirrhotic and control rats under basal conditions and after the spatial working memory task. The histochemical results showed differences in basal COx activity between control and cirrhotic rats in hippocampal and thalamic regions. In cirrhotic rats basal COx activity was increased in the CA1 and CA3 areas of the hippocampus and reduced in the anterodorsal and anteroventral thalamic nuclei. We found impaired spatial working memory in animals with cirrhosis. These animals showed absence of metabolic activation of the CA3 hippocampal subfield and the lateral mammillary nucleus and disturbance of COx activity in the medial mammillary nucleus and the anteroventral thalamus. These findings suggest that cirrhotic rats show spatial working memory deficits that could be related to the alteration of metabolic activity of neural regions thought to be involved in the processing of spatial memories.
Collapse
|
48
|
Mammillary body alterations and spatial memory impairment in Wistar rats with thioacetamide-induced cirrhosis. Brain Res 2008; 1233:185-95. [DOI: 10.1016/j.brainres.2008.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 11/23/2022]
|
49
|
Nath K, Saraswat VA, Krishna YR, Thomas MA, Rathore RKS, Pandey CM, Gupta RK. Quantification of cerebral edema on diffusion tensor imaging in acute-on-chronic liver failure. NMR IN BIOMEDICINE 2008; 21:713-722. [PMID: 18384180 DOI: 10.1002/nbm.1249] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cerebral edema is a major complication of acute liver failure but may also be seen in other forms of liver failure such as acute-on-chronic liver failure (ACLF) and chronic liver failure (CLF). ACLF develops in patients with previously well-compensated chronic liver disease following acute hepatitis A or E superimposed on underlying liver cirrhosis. The aim of this study was to detect the occurrence, and determine the nature, of cerebral edema in patients with the defined subset of ACLF using diffusion tensor imaging (DTI) metrics. Twenty-three patients with ACLF were studied and compared with 15 healthy controls and 15 patients with CLF. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), linear anisotropy (CL), planar anisotropy (CP), and spherical isotropy (CS) were calculated by selecting regions of interest in the white matter and deep grey matter of the brain. Significantly decreased FA and increased CS were observed in the anterior limb (ALIC) and posterior limb (PLIC) of the internal capsule and frontal white matter (P<0.05) in patients with different grades (1-4) of ACLF when compared with healthy controls. No significant changes in MD and CP were seen in any brain region. However, significantly decreased CL was observed in the PLIC, caudate nuclei and putamen. In patients with CLF, significantly decreased FA with increased CS in the ALIC and PLIC along with significantly increased MD in the ALIC and caudate nuclei were observed. The presence of significantly decreased FA and CL and increased CS along with no significant change in MD and CP suggests the presence of both intracellular and extracellular components of cerebral edema in patients with ACLF.
Collapse
Affiliation(s)
- Kavindra Nath
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Saraswat VA, Saksena S, Nath K, Mandal P, Singh J, Thomas MA, Rathore RS, Gupta RK. Evaluation of mannitol effect in patients with acute hepatic failure and acute-on-chronic liver failure using conventional MRI, diffusion tensor imaging and in-vivo proton MR spectroscopy. World J Gastroenterol 2008; 14:4168-78. [PMID: 18636662 PMCID: PMC2725378 DOI: 10.3748/wjg.14.4168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of an intravenous bolus of mannitol in altering brain metabolites, brain water content, brain parenchyma volume, cerebrospinal fluid (CSF) volume and clinical signs in controls and in patients with acute liver failure (ALF) and acute-on-chronic liver failure (ACLF), by comparing changes in conventional magnetic resonance imaging (MRI), in vivo proton magnetic resonance spectroscopy (PMRS) and diffusion tensor imaging (DTI) before and after its infusion.
METHODS: Five patients each with ALF and ACLF in grade 3 or 4 hepatic encephalopathy and with clinical signs of raised intracranial pressure were studied along with five healthy volunteers. After baseline MRI, an intravenous bolus of 20% mannitol solution was given over 10 min in controls as well as in patients with ALF and ACLF. Repeat MRI for the same position was acquired 30 min after completing the mannitol injection.
RESULTS: No statistically significant difference was observed between controls and patients with ALF and ACLF in metabolite ratios, DTI metrics and brain volume or CSF volume following 45 min of mannitol infusion. There was no change in clinical status at the end of post-mannitol imaging.
CONCLUSION: The osmotic effect of mannitol did not result in significant reduction of brain water content, alteration in metabolite ratios or any change in the clinical status of these patients during or within 45 min of mannitol infusion.
Collapse
|