1
|
Yang J, Yang Y, Tan X, Du H, Zhou Z, Chen L, Tian X, Zheng G, Hu J, Zhang C, Qiu Z. Unlocking the potential of the ACE2/Ang-(1-7)/Mas Axis in liver diseases: From molecular mechanisms to translational applications. Diabetes Obes Metab 2025. [PMID: 40344459 DOI: 10.1111/dom.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Over the past two decades, the identification of new functions within the renin-angiotensin system (RAS) has extended beyond its traditional roles, with the emergence of the angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas axis being particularly significant. This axis is hypothesized to balance or modulate the effects of the traditional ACE/Ang II/AT1 axis in various physiological and pathological contexts. ACE2, a membrane-bound carboxypeptidase and an ancient homologue of ACE converts Angiotensin II (Ang II) into Angiotensin 1-7 (Ang-(1-7)). The Mas receptor is a G-protein-coupled receptor that specifically binds Ang-(1-7). Recent research has increasingly focused on the local expression of RAS in different tissues. Ang-(1-7) produces a variety of biological effects by binding to the Mas receptor, including anti-inflammatory, antioxidant, anti-apoptotic and anti-fibrotic actions, thereby influencing a range of mechanisms in the heart, kidneys, brain and other tissues. Preclinical animal model studies indicate that manipulating the protective RAS can significantly alter the progression of multiple liver diseases. Hepatic overexpression of ACE2 or administration of Ang-(1-7) and its analogues has been shown to be therapeutically effective against drug-induced liver injury, metabolic-associated fatty liver disease, liver fibrosis and hepatocellular carcinoma progression. These effects are achieved through various pathways, including the regulation of lipid metabolism, inhibition of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) production, as well as suppression of aerobic glycolysis. In current clinical trials, while recombinant human ACE2 (Rh-ACE2) has demonstrated safety and good tolerance in most studies, research on the relevance of activating the ACE2/Ang-(1-7) axis in the mechanisms and evolution of human diseases remains in its early stages. Therefore, further elucidation of the complex interactions between the classical and counter-regulatory RAS axes in clinical settings is crucial. This review will summarize the roles of selective activation of the ACE2/Ang-(1-7)/Mas axis, with a focus on its mechanisms in the treatment of liver diseases. Additionally, we will discuss the safety concerns regarding selective activation of the ACE2/Ang-(1-7)/Mas axis in clinical applications and the challenges of tissue-specific activation of this axis, providing effective therapeutic strategies for targeted activation of the hepatic ACE2/Ang-(1-7)/Mas axis in clinical practice.
Collapse
Affiliation(s)
- Jun Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangyun Tan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Xianxiang Tian
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Cong Zhang
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Li Y, Zhu B, Shi K, Lu Y, Zeng X, Li Y, Zhang Q, Feng Y, Wang X. Advances in intrahepatic and extrahepatic vascular dysregulations in cirrhotic portal hypertension. Front Med (Lausanne) 2025; 12:1515400. [PMID: 39958826 PMCID: PMC11825794 DOI: 10.3389/fmed.2025.1515400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Cirrhotic portal hypertension, the most prevalent and clinically significant complication of liver cirrhosis, manifests as elevated portal venous pressure and is associated with severe complications. Although much research on the mechanisms of portal hypertension has focused on liver fibrosis, less attention has been given to the role of intrahepatic and extrahepatic vascular dysfunction, particularly with respect to extrahepatic vasculature. While the role of hepatic fibrosis in cirrhotic portal hypertension is undeniable, the underlying mechanisms involving intrahepatic and extrahepatic vasculature are highly complex. Sinusoidal capillarization and endothelial dysfunction contribute to increased intrahepatic vascular resistance. Hemodynamic changes in the extrahepatic circulation, including splanchnic vasodilation and hyperdynamic circulation, play a significant role in the development of portal hypertension. Additionally, therapeutic strategies targeting these vascular mechanisms are diverse, including improvement of sinusoidal microcirculation, therapies targeting hepatic stellate cells activation, and pharmacological modulation of systemic vascular tone. Therefore, in this review, we will discuss the vascular-related mechanisms and treatment progress of portal hypertension in cirrhosis to provide a new theoretical basis and practical guidance for clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Feng
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Pavan AR, Terroni B, Dos Santos JL. Endothelial dysfunction in Sickle Cell Disease: Strategies for the treatment. Nitric Oxide 2024; 149:7-17. [PMID: 38806107 DOI: 10.1016/j.niox.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.
| | - Barbara Terroni
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | |
Collapse
|
4
|
Liu L, Li Y, Li JX, Xiao X, Wan TT, Li HH, Guo SB. ACE2 Expressed on Myeloid Cells Alleviates Sepsis-Induced Acute Liver Injury via the Ang-(1-7)-Mas Receptor Axis. Inflammation 2024; 47:891-908. [PMID: 38240986 DOI: 10.1007/s10753-023-01949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 06/04/2024]
Abstract
Sepsis-induced acute liver injury (ALI) is common in intensive care units. Angiotensin-converting enzyme 2 (ACE2) plays a vital role in hepatic fibrosis and steatosis; however, its role in sepsis-induced ALI remains unclear. This study found that hepatic ACE2 expression in cecal ligation and puncture (CLP)-treated mice significantly decreased 24 h after CLP. ACE2-transgenic (TG) mice exhibited a significant improvement in CLP-induced ALI, accompanied by the inhibition of hepatocyte apoptosis, oxidative stress, and inflammation, while ACE2-knockout mice demonstrated an opposite trend. During sepsis-induced ALI, ACE2-TG could also elevate the Ang-(1-7) and Mas receptor (MasR) levels in liver tissues. Interestingly, the MasR inhibitor A779 abrogated the favorable effects of ACE2 on CLP-induced ALI. In a bone marrow transplantation experiment, the ACE2-TG transplantation group showed significantly improved inflammation and liver dysfunction, less hepatocyte apoptosis, and reduced oxidative stress after CLP compared with the wild-type transplantation group. In contrast, the ACE2-knockout group showed poor inflammatory response and liver dysfunction, significantly more hepatocyte apoptosis, and elevated oxidative stress than the wild-type transplantation group after CLP. ACE2 protects against sepsis-induced ALI by inhibiting hepatocyte apoptosis, oxidative stress, and inflammation via the Ang-(1-7)-Mas receptor axis. Thus, targeting ACE2 may be a promising novel strategy for preventing and treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China
| | - Ya Li
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China
| | - Jia-Xin Li
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China
| | - Xue Xiao
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China
| | - Tian-Tian Wan
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China
| | - Hui-Hua Li
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China.
| | - Shu-Bin Guo
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
5
|
Nasrallah D, Abdelhamid A, Tluli O, Al-Haneedi Y, Dakik H, Eid AH. Angiotensin receptor blocker-neprilysin inhibitor for heart failure with reduced ejection fraction. Pharmacol Res 2024; 204:107210. [PMID: 38740146 DOI: 10.1016/j.phrs.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a clinical syndrome characterized by volume overload, impaired exercise capacity, and recurrent hospital admissions. A major contributor to the pathophysiology and clinical presentation of heart failure is the activation of the renin-angiotensin-aldosterone system (RAAS). Normally, RAAS is responsible for the homeostatic regulation of blood pressure, extracellular fluid volume, and serum sodium concentration. In HFrEF, RAAS gets chronically activated in response to decreased cardiac output, further aggravating the congestion and cardiotoxic effects. Hence, inhibition of RAAS is a major approach in the pharmacologic treatment of those patients. The most recently introduced RAAS antagonizing medication class is angiotensin receptor blocker/ neprilysin inhibitor (ARNI). In this paper, we discuss ARNIs' superiority over traditional RAAS antagonizing agents in reducing heart failure hospitalization and mortality. We also tease out the evidence that shows ARNIs' renoprotective functions in heart failure patients including those with chronic or end stage kidney disease. We also discuss the evidence showing the added benefit resulting from combining ARNIs with a sodium-glucose cotransporter-2 (SGLT-2) inhibitor. Moreover, how ARNIs decrease the risk of arrhythmias and reverse cardiac remodeling, ultimately lowering the risk of cardiovascular death, is also discussed. We then present the positive outcome of ARNIs' use in patients with diabetes mellitus and those recovering from acute decompensated heart failure. ARNIs' side effects are also appreciated and discussed. Taken together, the provided insight and critical appraisal of the evidence justifies and supports the implementation of ARNIs in the guidelines for the treatment of HFrEF.
Collapse
Affiliation(s)
- Dima Nasrallah
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alaa Abdelhamid
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Omar Tluli
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yaman Al-Haneedi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Habib Dakik
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Luo W, Yao C, Sun J, Zhang B, Chen H, Miao J, Zhang Y. Alamandine attenuates ovariectomy-induced osteoporosis by promoting osteogenic differentiation via AMPK/eNOS axis. BMC Musculoskelet Disord 2024; 25:45. [PMID: 38200474 PMCID: PMC10777585 DOI: 10.1186/s12891-023-07159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Alamandine is a newly characterized peptide of renin angiotensin system. Our study aims to investigate the osteo-preservative effects of alamandine, explore underlying mechanism and bring a potential preventive strategy for postmenopausal osteoporosis in the future. METHODS An ovariectomy (OVX)-induced rat osteoporosis model was established for in vivo experiments. Micro-computed tomography and three-point bending test were used to evaluate bone strength. Histological femur slices were processed for immunohistochemistry (IHC). Bone turnover markers and nitric oxide (NO) concentrations in serum were determined with enzyme-linked immunosorbent assay (ELISA). The mouse embryo osteoblast precursor (MC3T3-E1) cells were used for in vitro experiments. The cell viability was analysed with a Cell Counting Kit‑8. We performed Alizarin Red S staining and alkaline phosphatase (ALP) activity assay to observe the differentiation status of osteoblasts. Western blotting was adopted to detect the expression of osteogenesis related proteins and AMP-activated protein kinase/endothelial nitric oxide synthase (AMPK/eNOS) in osteoblasts. DAF-FM diacetate was used for semi-quantitation of intracellular NO. RESULTS In OVX rats, alamandine alleviated osteoporosis and maintained bone strength. The IHC showed alamandine increased osteocalcin and collagen type I α1 (COL1A1) expression. The ELISA revealed alamandine decreased bone turnover markers and restored NO level in serum. In MC3T3-E1 cells, alamandine promoted osteogenic differentiation. Western blotting demonstrated that alamandine upregulated the expression of osteopontin, Runt-related transcription factor 2 and COL1A1. The intracellular NO was also raised by alamandine. Additionally, the activation of AMPK/eNOS axis mediated the effects of alamandine on MC3T3-E1 cells and bone tissue. PD123319 and dorsomorphin could repress the regulating effect of alamandine on bone metabolism. CONCLUSION Alamandine attenuates ovariectomy-induced osteoporosis by promoting osteogenic differentiation via AMPK/eNOS axis.
Collapse
Affiliation(s)
- Wanxin Luo
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong City, 226001, Jiangsu Province, PR China
| | - Chen Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong City, 226001, Jiangsu Province, PR China
| | - Jie Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong City, 226001, Jiangsu Province, PR China
| | - Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong City, 226001, Jiangsu Province, PR China
| | - Hao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong City, 226001, Jiangsu Province, PR China
| | - Jin Miao
- Laboratory Animal Center of Nantong University, Medical School of Nantong University, Nantong City, 226001, Jiangsu Province, PR China
| | - Yafeng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong City, 226001, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Ortiz C, Klein S, Reul WH, Magdaleno F, Gröschl S, Dietrich P, Schierwagen R, Uschner FE, Torres S, Hieber C, Meier C, Kraus N, Tyc O, Brol M, Zeuzem S, Welsch C, Poglitsch M, Hellerbrand C, Alfonso-Prieto M, Mira F, Keller UAD, Tetzner A, Moore A, Walther T, Trebicka J. Neprilysin-dependent neuropeptide Y cleavage in the liver promotes fibrosis by blocking NPY-receptor 1. Cell Rep 2023; 42:112059. [PMID: 36729833 PMCID: PMC9989826 DOI: 10.1016/j.celrep.2023.112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Development of liver fibrosis is paralleled by contraction of hepatic stellate cells (HSCs), the main profibrotic hepatic cells. Yet, little is known about the interplay of neprilysin (NEP) and its substrate neuropeptide Y (NPY), a potent enhancer of contraction, in liver fibrosis. We demonstrate that HSCs are the source of NEP. Importantly, NPY originates majorly from the splanchnic region and is cleaved by NEP in order to terminate contraction. Interestingly, NEP deficiency (Nep-/-) showed less fibrosis but portal hypertension upon liver injury in two different fibrosis models in mice. We demonstrate the incremental benefit of Nep-/- in addition to AT1R blocker (ARB) or ACE inhibitors for fibrosis and portal hypertension. Finally, oral administration of Entresto, a combination of ARB and NEP inhibitor, decreased hepatic fibrosis and portal pressure in mice. These results provide a mechanistic rationale for translation of NEP-AT1R-blockade in human liver fibrosis and portal hypertension.
Collapse
Affiliation(s)
- Cristina Ortiz
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sabine Klein
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Internal Medicine B, University of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Winfried H Reul
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Stefanie Gröschl
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Department of Internal Medicine 1, FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Robert Schierwagen
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Frank E Uschner
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sandra Torres
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Hieber
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Caroline Meier
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Nico Kraus
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Olaf Tyc
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Maximilian Brol
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Welsch
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Mercedes Alfonso-Prieto
- Institute for Neuroscience and Medicine INM-9 and Institute for Advanced Simulations IAS-5, Forschungszentrum Jülich, Jülich, Germany; Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabio Mira
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anja Tetzner
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Andrew Moore
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Thomas Walther
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Department of Pediatric Surgery, Centre for Fetal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany; Department of Obstetrics, Centre for Fetal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany; Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain; Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Internal Medicine B, University of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany.
| |
Collapse
|
8
|
Hartl L, Rumpf B, Domenig O, Simbrunner B, Paternostro R, Jachs M, Poglitsch M, Marculescu R, Trauner M, Reindl-Schwaighofer R, Hecking M, Mandorfer M, Reiberger T. The systemic and hepatic alternative renin-angiotensin system is activated in liver cirrhosis, linked to endothelial dysfunction and inflammation. Sci Rep 2023; 13:953. [PMID: 36653504 PMCID: PMC9849268 DOI: 10.1038/s41598-023-28239-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
We aimed to assess the systemic and hepatic renin-angiotensin-system (RAS) fingerprint in advanced chronic liver disease (ACLD). This prospective study included 13 compensated (cACLD) and 12 decompensated ACLD (dACLD) patients undergoing hepatic venous pressure gradient (HVPG) measurement. Plasma components (all patients) and liver-local enzymes (n = 5) of the RAS were analyzed using liquid chromatography-tandem mass spectrometry. Patients with dACLD had significantly higher angiotensin (Ang) I, Ang II and aldosterone plasma levels. Ang 1-7, a major mediator of the alternative RAS, was almost exclusively detectable in dACLD (n = 12/13; vs. n = 1/13 in cACLD). Also, dACLD patients had higher Ang 1-5 (33.5 pmol/L versus cACLD: 6.6 pmol/L, p < 0.001) and numerically higher Ang III and Ang IV levels. Ang 1-7 correlated with HVPG (ρ = 0.655; p < 0.001), von Willebrand Factor (ρ = 0.681; p < 0.001), MELD (ρ = 0.593; p = 0.002) and interleukin-6 (ρ = 0.418; p = 0.047). Considerable activity of ACE, chymase, ACE2, and neprilysin was detectable in all liver biopsies, with highest chymase and ACE2 activity in cACLD patients. While liver-local classical and alternative RAS activity was already observed in cACLD, systemic activation of alternative RAS components occurred only in dACLD. Increased Ang 1-7 was linked to severe liver disease, portal hypertension, endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Rumpf
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.,Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Rodrig Marculescu
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Manfred Hecking
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria. .,Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Jimenez C, Hawn MB, Akin E, Leblanc N. Translational potential of targeting Anoctamin-1-Encoded Calcium-Activated chloride channels in hypertension. Biochem Pharmacol 2022; 206:115320. [PMID: 36279919 DOI: 10.1016/j.bcp.2022.115320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Calcium-activated chloride channels (CaCC) provide a depolarizing stimulus to a variety of tissues through chloride efflux in response to a rise in internal Ca2+ and voltage. One of these channels, Anoctamin-1 (ANO1 or TMEM16A) is now recognized to play a central role in promoting smooth muscle tone in various types of blood vessels. Its role in hypertension, and thus the therapeutic promise of targeting ANO1, is less straightforward. This review gives an overview of our current knowledge about the potential role ANO1 may play in hypertension within the systemic, portal, and pulmonary vascular systems and the importance of this information when pursuing potential treatment strategies. While the role of ANO1 is well-established in several forms of pulmonary hypertension, its contributions to both the generation of vascular tone and its role in hypertension within the systemic and portal systems are much less clear. This, combined with ANO1's various roles throughout a multitude of tissues throughout the body, command caution when targeting ANO1 as a therapeutic target and may require tissue-selective strategies.
Collapse
Affiliation(s)
- Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Matthew B Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Elizabeth Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA.
| |
Collapse
|
10
|
Bu FT, Jia PC, Zhu Y, Yang YR, Meng HW, Bi YH, Huang C, Li J. Emerging therapeutic potential of adeno-associated virus-mediated gene therapy in liver fibrosis. Mol Ther Methods Clin Dev 2022; 26:191-206. [PMID: 35859692 PMCID: PMC9271983 DOI: 10.1016/j.omtm.2022.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Liver fibrosis is a wound-healing response that results from various chronic damages. If the causes of damage are not removed or effective treatments are not given in a timely manner, it will progress to cirrhosis, even liver cancer. Currently, there are no specific medical therapies for liver fibrosis. Adeno-associated virus (AAV)-mediated gene therapy, one of the frontiers of modern medicine, has gained more attention in many fields due to its high safety profile, low immunogenicity, long-term efficacy in mediating gene expression, and increasingly known tropism. Notably, increasing evidence suggests a promising therapeutic potential for AAV-mediated gene therapy in different liver fibrosis models, which helps to correct abnormally changed target genes in the process of fibrosis and improve liver fibrosis at the molecular level. Moreover, the addition of cell-specific promoters to the genome of recombinant AAV helps to limit gene expression in specific cells, thereby producing better therapeutic efficacy in liver fibrosis. However, animal models are considered to be powerless predictive of tissue tropism, immunogenicity, and genotoxic risks in humans. Thus, AAV-mediated gene therapy will face many challenges. This review systemically summarizes the recent advances of AAV-mediated gene therapy in liver fibrosis, especially focusing on cellular and molecular mechanisms of transferred genes, and presents prospective challenges.
Collapse
Affiliation(s)
- Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya-Ru Yang
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Wu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yi-Hui Bi
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
12
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
13
|
Kondo R, Furukawa N, Deguchi A, Kawata N, Suzuki Y, Imaizumi Y, Yamamura H. Downregulation of Ca 2+-Activated Cl - Channel TMEM16A Mediated by Angiotensin II in Cirrhotic Portal Hypertensive Mice. Front Pharmacol 2022; 13:831311. [PMID: 35370660 PMCID: PMC8966666 DOI: 10.3389/fphar.2022.831311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/01/2022] [Indexed: 12/29/2022] Open
Abstract
Portal hypertension is defined as an increased pressure in the portal venous system and occurs as a major complication in chronic liver diseases. The pathological mechanism underlying the pathogenesis and development of portal hypertension has been extensively investigated. Vascular tone of portal vein smooth muscles (PVSMs) is regulated by the activities of several ion channels, including Ca2+-activated Cl- (ClCa) channels. TMEM16A is mainly responsible for ClCa channel conductance in vascular smooth muscle cells, including portal vein smooth muscle cells (PVSMCs). In the present study, the functional roles of TMEM16A channels were examined using two experimental portal hypertensive models, bile duct ligation (BDL) mice with cirrhotic portal hypertension and partial portal vein ligation (PPVL) mice with non-cirrhotic portal hypertension. Expression analyses revealed that the expression of TMEM16A was downregulated in BDL-PVSMs, but not in PPVL-PVSMs. Whole-cell ClCa currents were smaller in BDL-PVSMCs than in sham- and PPVL-PVSMCs. The amplitude of spontaneous contractions was smaller and the frequency was higher in BDL-PVSMs than in sham- and PPVL-PVSMs. Spontaneous contractions sensitive to a specific inhibitor of TMEM16A channels, T16Ainh-A01, were reduced in BDL-PVSMs. Furthermore, in normal PVSMs, the downregulation of TMEM16A expression was mimicked by the exposure to angiotensin II, but not to bilirubin. This study suggests that the activity of ClCa channels is attenuated by the downregulation of TMEM16A expression in PVSMCs associated with cirrhotic portal hypertension, which is partly mediated by increased angiotensin II in cirrhosis.
Collapse
Affiliation(s)
- Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nami Furukawa
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akari Deguchi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoki Kawata
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
14
|
Huang Z, Khalifa MO, Li P, Huang Y, Gu W, Li TS. Angiotensin receptor blocker alleviates liver fibrosis by altering the mechanotransduction properties of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2022; 322:G446-G456. [PMID: 35138187 DOI: 10.1152/ajpgi.00238.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiotensin receptor blockers have been reported to be beneficial to liver fibrosis, but the relevant molecular and cellular mechanisms remain unclear. We herein investigated whether low-dose angiotensin receptor blocker alleviated liver fibrosis through mechanotransduction regulation. Hydrostatic pressure-induced liver fibrosis model was established in mice by ligating partially the inferior vena cava, and then randomly received a very low dose of losartan (0.5 mg/kg) or placebo treatment for 8 weeks. We found that losartan administration interfered the expression of several mechanotransductive molecules, and effectively alleviated liver fibrosis. Using a commercial device, we further confirmed that ex vivo loading of hepatic stellate cells to 50 mmHg hydrostatic pressure for 24 h significantly upregulated RhoA, ROCK, AT1R, and p-MLC2, which was effectively attenuated by adding 10 nM losartan in medium. Our in vivo and ex vivo experimental data suggest that low-dose angiotensin receptor blockers may alleviate hydrostatic pressure-induced liver fibrosis by altering the mechanotransduction properties of hepatic stellate cells.NEW & NOTEWORTHY Our ex vivo and in vivo experiments clearly indicated that low-dose losartan alleviated liver fibrosis, likely by modulating the mechanotransduction properties of HSCs. Uncovering the biomechanical signaling pathway of ARB treatment on liver fibrosis will be helpful to develop novel molecular targeting therapy for liver diseases.
Collapse
Affiliation(s)
- Zisheng Huang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mahmoud Osman Khalifa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Peilin Li
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Yu Huang
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Weili Gu
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
Cai Y, Feng Z, Jia Q, Guo J, Zhang P, Zhao Q, Wang YX, Liu YN, Liu WJ. Cordyceps cicadae Ameliorates Renal Hypertensive Injury and Fibrosis Through the Regulation of SIRT1-Mediated Autophagy. Front Pharmacol 2022; 12:801094. [PMID: 35222012 PMCID: PMC8866973 DOI: 10.3389/fphar.2021.801094] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hypertensive renal injury is a complication of hypertension. Cordyceps cicadae (C. cicadae) is a traditional Chinese medicine used to treat chronic kidney diseases especially renal fibrosis. Autophagy is described as a cell self-renewal process that requires lysosomal degradation and is utilized for the maintenance of cellular energy homeostasis. The present study explores the mechanism underlying C. cicadae’s renoprotection on hypertensive nephropathy (HN). First, HN rat models were established on spontaneously hypertensive rats (SHRs). The expression of fibrosis-related protein and autophagy-associated protein was detected in vivo. NRK-52E cells exposed to AngII were chosen to observe the potential health benefits of C. cicadae on renal damage. The level of extracellular matrix accumulation was detected using capillary electrophoresis immunoquantification and immunohistochemistry. After treatment with lysosomal inhibitors (chloroquine) or an autophagy activator (rapamycin), the expression of Beclin-1, LC3II, and SQSTM1/p62 was further investigated. The study also investigated the change in sirtuin1 (SIRT1), fork head box O3a (FOXO3a), and peroxidation (superoxide dismutase (SOD) and malondialdehyde (MDA)) expression when intervened by resveratrol. The changes in SIRT1 and FOXO3a were measured in patients and the SHRs. Here, we observed that C. cicadae significantly decreased damage to renal tubular epithelial cells and TGFβ1, α-smooth muscle actin (α-SMA), collagen I (Col-1), and fibronectin expression. Meanwhile, autophagy defects were observed both in vivo and in vitro. C. cicadae intervention significantly downregulated Beclin-1 and LC3II and decreased SQSTM1/p62, showing an inhibition of autophagic vesicles and the alleviation of autophagy stress. These functions were suppressed by rapamycin, and the results were just as effective as the resveratrol treatment. HN patients and the SHRs exhibited decreased levels of SIRT1 and FOXO3a. We also observed a positive correlation between SIRT1/FOXO3a and antifibrotic effects. Similar to the resveratrol group, the expression of SIRT1/FOXO3a and oxidative stress were elevated by C. cicadae in vivo. Taken together, our findings show that C. cicadae ameliorates tubulointerstitial fibrosis and delays HN progression. Renoprotection was likely attributable to the regulation of autophagic stress mediated by the SIRT1 pathway and achieved by regulating FOXO3a and oxidative stress.
Collapse
Affiliation(s)
- Yuzi Cai
- Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital Addiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhendong Feng
- Department of Nephropathy, Beijing Traditional Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Qi Jia
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital Addiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Pingna Zhang
- Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital Addiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital Addiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital Addiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Ning Liu
- Department of Endocrinology Nephropathy of Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yu Ning Liu, ; Wei Jing Liu,
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital Addiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yu Ning Liu, ; Wei Jing Liu,
| |
Collapse
|
16
|
Prasad S, Patel S, Behera AK, Gitismita N, Shah S, Nanda R, Mohapatra E. Early Biochemical Markers in Predicting the Clinical Outcome of COVID-19 Patients Admitted in Tertiary Care Hospital in Chhattisgarh, India. J Lab Physicians 2022; 14:295-305. [PMID: 36119415 PMCID: PMC9473929 DOI: 10.1055/s-0042-1742631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction
An array of routinely accessible serum biomarkers was assessed to explore their overall impact on severity and mortality in coronavirus disease 2019.
Materials and Methods
A retrospective analysis of 1,233 adults was conducted. The study groups comprised 127 nonsurvivors and 1,106 survivors. Data for demographic details, clinical presentations, and laboratory reports were recorded from the medical record section. The predictors were analyzed for their influence on mortality.
Results
The mean (+ standard deviation) age of the patients in the nonsurvivor group was 58.8 (13.8) years. The mean age (56.4 years) was highest in severe grade patients. The odds ratio for death was 2.72 times for patients above the age of 40 years. About 46% of nonsurvivors died within 5 days of admission. Males were found to be more prone to death than females by a factor of 1.36. Serum urea depicted highest sensitivity (85%) for nonsurvival at 52.5 mg/dL. Serum albumin (3.23 g/dL), albumin-to-globulin ratio (0.97), and C-reactive protein-to albumin ratio (CAR) (2.08) showed a sensitivity of more than 70% for mortality outcomes. The high hazard ratio (HR) for deceased patients with hyperkalemia was 2.419 (95% confidence interval [CI] = 1.96–2.99;
p
< 0.001). The risk for nonsurvival was increased with elevated serum creatinine by 15.6% and uric acid by 21.7% (
p
< 0.001). The HR for hypoalbuminemia was 0.254 (95% CI: 0.196–0.33;
p
< 0.001) and CAR was 1.319 (95% CI: 1.246–1.397;
p
< 0.001). Saturation of oxygen (
p
< 0.001), lactate dehydrogenase (
p
= 0.006), ferritin (
p
= 0.004), hyperuricemia (
p
= 0.027), hyperkalemia (
p
< 0.001), hypoalbuminemia (
p
= 0.002), and high CAR values (0.031) served as potential predictors for mortality.
Conclusion
Adjusting for all the predictor variables, serum uric acid, potassium, albumin, and CAR values at the time of admission were affirmed as the potential biomarkers for mortality.
Collapse
Affiliation(s)
- Shrishtidhar Prasad
- Department of Biochemistry, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suprava Patel
- Department of Biochemistry, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Ajoy Kumar Behera
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Naik Gitismita
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Seema Shah
- Department of Biochemistry, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rachita Nanda
- Department of Biochemistry, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Eli Mohapatra
- Department of Biochemistry, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
17
|
van der Graaff D, Chotkoe S, De Winter B, De Man J, Casteleyn C, Timmermans JP, Pintelon I, Vonghia L, Kwanten WJ, Francque S. Vasoconstrictor antagonism improves functional and structural vascular alterations and liver damage in rats with early NAFLD. JHEP Rep 2022; 4:100412. [PMID: 35036886 PMCID: PMC8749167 DOI: 10.1016/j.jhepr.2021.100412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND & AIMS Intrahepatic vascular resistance is increased in early non-alcoholic fatty liver disease (NAFLD), potentially leading to tissue hypoxia and triggering disease progression. Hepatic vascular hyperreactivity to vasoconstrictors has been identified as an underlying mechanism. This study investigates vasoconstrictive agonism and antagonism in 2 models of early NAFLD and in non-alcoholic steatohepatitis (NASH). METHODS The effects of endothelin-1 (ET-1), angiotensin II (ATII) and thromboxane A2 (TxA2) agonism and antagonism were studied by in situ ex vivo liver perfusion and preventive/therapeutic treatment experiments in a methionine-choline-deficient diet model of steatosis. Furthermore, important results were validated in Zucker fatty rats after 4 or 8 weeks of high-fat high-fructose diet feeding. In vivo systemic and portal pressures, ex vivo transhepatic pressure gradients (THPG) and transaminase levels were measured. Liver tissue was harvested for structural and mRNA analysis. RESULTS The THPG and consequent portal pressure were significantly increased in both models of steatosis and in NASH. ET-1, ATII and TxA2 increased the THPG even further. Bosentan (ET-1 receptor antagonist), valsartan (ATII receptor blocker) and celecoxib (COX-2 inhibitor) attenuated or even normalised the increased THPG in steatosis. Simultaneously, bosentan and valsartan treatment improved transaminase levels. Moreover, bosentan was able to mitigate the degree of steatosis and restored the disrupted microvascular structure. Finally, beneficial vascular effects of bosentan endured in NASH. CONCLUSIONS Antagonism of vasoconstrictive mediators improves intrahepatic vascular function. Both ET-1 and ATII antagonists showed additional benefit and bosentan even mitigated steatosis and structural liver damage. In conclusion, vasoconstrictive antagonism is a potentially promising therapeutic option for the treatment of early NAFLD. LAY SUMMARY In non-alcoholic fatty liver disease (NAFLD), hepatic blood flow is impaired and the blood pressure in the liver blood vessels is increased as a result of an increased response of the liver vasculature to vasoconstrictors. Using drugs to block the constriction of the intrahepatic vasculature, the resistance of the liver blood vessels decreases and the increased portal pressure is reduced. Moreover, blocking the vasoconstrictive endothelin-1 pathway restored parenchymal architecture and reduced disease severity.
Collapse
Key Words
- ALT, alanine aminotransferase
- ARB, angiotensin receptor blocker
- AST, aspartate aminotransferase
- ATII, angiotensin II
- COX, cyclooxygenase
- ET, endothelin
- HFHFD, high-fat high-fructose diet
- IHVR, intrahepatic vascular resistance
- Jak2, Janus-kinase-2
- MCD, methionine-choline deficient diet
- Mx, methoxamine
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NO, nitric oxide
- PP, portal pressure
- PR, pulse rate
- SEM, scanning electron microscopy
- TBW, total body weight
- TEM, transmission electron microscopy
- TXAS, thromboxane synthase
- TxA2, thromboxane A2
- ZFR, Zucker fatty rats
- angiotensin II
- endothelin-1
- non-alcoholic fatty liver disease
- portal hypertension
- thromboxane A2
- transhepatic pressure gradient
Collapse
Affiliation(s)
- Denise van der Graaff
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- European Reference Network Rare Hepatic Diseases (ERN RARE-LIVER)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shivani Chotkoe
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- European Reference Network Rare Hepatic Diseases (ERN RARE-LIVER)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Benedicte De Winter
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- European Reference Network Rare Hepatic Diseases (ERN RARE-LIVER)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Joris De Man
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Christophe Casteleyn
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Applied Veterinary Morphology, Faculty of Veterinary Medicine, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- European Reference Network Rare Hepatic Diseases (ERN RARE-LIVER)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Wilhelmus J. Kwanten
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- European Reference Network Rare Hepatic Diseases (ERN RARE-LIVER)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- European Reference Network Rare Hepatic Diseases (ERN RARE-LIVER)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Caradonna A, Patel T, Toleska M, Alabed S, Chang SL. Meta-Analysis of APP Expression Modulated by SARS-CoV-2 Infection via the ACE2 Receptor. Int J Mol Sci 2022; 23:ijms23031182. [PMID: 35163117 PMCID: PMC8835589 DOI: 10.3390/ijms23031182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Aβ) plaques from improper amyloid-beta precursor protein (APP) cleavage. Following studies of inflammation caused by coronavirus-2019 (COVID-19) infection, this study investigated the impact of COVID-19 on APP expression. A meta-analysis was conducted utilizing QIAGEN Ingenuity Pathway Analysis (IPA) to examine the link between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the modulation of APP expression upon virus binding the Angiotensin-converting enzyme-2 (ACE2) receptor. A Core Analysis was run on the infection by severe acute respiratory syndrome (SARS) coronavirus node, which included molecules affected by SARS-CoV-2, revealing its upstream regulators. Intermediary molecules were found between the upstream regulators and ACE2 and between ACE2 and APP. Activation of the upstream regulators downregulated the expression of ACE2 with a Z-score of -1.719 (p-value = 0.086) and upregulated APP with a Z-score of 1.898 (p-value = 0.058), showing a less than 10% chance of the results occurring by chance and pointing to an inverse relationship between ACE2 and APP expression. The neuroinflammation signaling pathway was the fifth top canonical pathway involved in APP upregulation. The study results suggest that ACE2 could be downregulated by SARS-CoV-2, resulting in APP upregulation, and potentially exacerbating the onset and progression of AD.
Collapse
Affiliation(s)
- Alyssa Caradonna
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Tanvi Patel
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
| | - Matea Toleska
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Sedra Alabed
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| | - Sulie L. Chang
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| |
Collapse
|
19
|
Lo CWS, Tsui TKC, Ma RCW, Chan MHM, Ho CS. Quantitation of plasma angiotensin II in healthy Chinese subjects by a validated liquid chromatography tandem mass spectrometry method. Biomed Chromatogr 2022; 36:e5318. [PMID: 34981551 DOI: 10.1002/bmc.5318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Quantitation of plasma angiotensin (Ang) II, the active mediator of the renin-angiotensin system (RAS), is challenging due to its low physiological concentration. We report a validated liquid chromatography-mass spectrometry (LCMS) method to overcome this challenge. METHOD Ang II was extracted from EDTA plasma by an offline solid-phase extraction procedure with Waters MAX μElution plate. LCMS quantitation was performed on the Waters TQS system, monitoring the 3+ ions of the peptide. The analytical performance of the LCMS method was validated. The stability of Ang II was studied with or without the presence of a protease inhibitor. Local reference intervals were established from 143 healthy normotensive subjects (57% female, 21-60 years old). RESULTS The Ang II LCMS method had a measurable range of 3.3 - 700 pmol/L. Between batch precision coefficient of variation was <7% over the Ang II concentrations of 8.6 - 110 pmol/L. No significant matrix interference and carryover was observed. There was no significant difference in Ang II concentration in EDTA blood and plasma for at least 2 hours and 1 hour at room temperature, respectively. Ang II was stable for at least one year when stored at -80 o C, with or without the protease inhibitor. Age-dependent Ang II reference intervals were established: 4.4-17.7 pmol/L (21-30 years) and 3.9-12.8 pmol/L (31-60 years). CONCLUSION The present LCMS method is suitable for quantitation of Ang II to study the RAS system. Ang II collected at room temperature into EDTA bottles was stable at -80 o C for at least 1 year. The first age-dependent reference intervals of plasma Ang II were established for a healthy normotensive Chinese population.
Collapse
Affiliation(s)
- Clara Wai-Shan Lo
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| | - Teresa Kam-Chi Tsui
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| | - Ronald Ching-Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | - Michael Ho-Ming Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| | - Chung-Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| |
Collapse
|
20
|
Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne) 2021; 8:651658. [PMID: 34646834 PMCID: PMC8502894 DOI: 10.3389/fmed.2021.651658] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The coronaviruses that cause notable diseases, namely, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19), exhibit remarkable similarities in genomic components and pathogenetic mechanisms. Although coronaviruses have widely been studied as respiratory tract pathogens, their effects on the hepatobiliary system have seldom been reported. Overall, the manifestations of liver injury caused by coronaviruses typically involve decreased albumin and elevated aminotransferase and bilirubin levels. Several pathophysiological hypotheses have been proposed, including direct damage, immune-mediated injury, ischemia and hypoxia, thrombosis and drug hepatotoxicity. The interaction between pre-existing liver disease and coronavirus infection has been illustrated, whereby coronaviruses influence the occurrence, severity, prognosis and treatment of liver diseases. Drugs and vaccines used for treating and preventing coronavirus infection also have hepatotoxicity. Currently, the establishment of optimized therapy for coronavirus infection and liver disease comorbidity is of significance, warranting further safety tests, animal trials and clinical trials.
Collapse
Affiliation(s)
- Xinyi Wang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lunan Yan
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Zahedi M, Yousefi M, Abounoori M, Malekan M, Tajik F, Heydari K, Mortazavi P, Ghahramani S, Ghazaeian M, Sheydaee F, Nasirzadeh A, Alizadeh-Navaei R. The Interrelationship between Liver Function Test and the Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:237-255. [PMID: 34305236 PMCID: PMC8288495 DOI: 10.30476/ijms.2021.87555.1793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 01/16/2021] [Indexed: 02/05/2023]
Abstract
Background The outbreak of the coronavirus disease-2019 (COVID-19) has become a global public health challenge. Assessing the effect of COVID-19 on liver injury is of great importance. A systematic review and meta-analysis were conducted to establish the characteristics of liver function tests in COVID-19 patients. Methods A systematic search of publications from December 2019 up to April 2020 in Web of Science, Scopus, and Medline (via PubMed) databases was performed. Both cross-sectional and case series studies reporting an association between liver injury and COVID-19 infection were included. The data were analyzed using the STATA software (version 11.0) and the random-effects model for I2>50% was used to pool the results. Results In this meta-analysis, 42 articles comprising a total of 6,557 COVID-19 patients were studied. The prevalence of increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels was 30% and 21% in non-severe patients and 38% and 48% in severe patients, respectively. Patients with severe COVID-19 infection were 4.22, 4.96, and 4.13 times more likely to have elevated AST, ALT, and lactate dehydrogenase (LDH) levels, respectively. Conclusion Elevation in liver function tests was higher in patients with severe than non-severe COVID-19 infection. Given the widespread use of drugs that increases the risk of hepatotoxicity, healthcare providers should be aware of changes in liver enzymes in COVID-19 patients. The inclusion of other studies from outside China could confirm the pattern of elevation in liver function tests in COVID-19 patients across the globe. Preprint of this article is available on medRxiv, https://www.medrxiv.org/content/10.1101/2020.05.20.20108357v1.
Collapse
Affiliation(s)
- Mohammad Zahedi
- Department of Laboratory Sciences, School of Allied Medical Science, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Yousefi
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Abounoori
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Tajik
- Department of Medicine, School of Medicine, Azad University of Tehran, Tehran, Iran
| | - Keyvan Heydari
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parham Mortazavi
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sulmaz Ghahramani
- Health Policy Research Center, Institute of Health, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Ghazaeian
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fateme Sheydaee
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amirreza Nasirzadeh
- Student of Basic Sciences in Nursing, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Leowattana W. Angiotensin-converting enzyme 2 receptors, chronic liver diseases, common medications, and clinical outcomes in coronavirus disease 2019 patients. World J Virol 2021; 10:86-96. [PMID: 34079691 PMCID: PMC8152453 DOI: 10.5501/wjv.v10.i3.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), enters affected cells through the angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed in type II alveolar cells, enterocytes, and cholangiocytes. SARS-CoV-2 infection causes fever, dry cough, and breathing difficulty, which can progress to respiratory distress due to interstitial pneumonia, and hepatobiliary injury due to COVID-19 is increasingly recognized. The hepatobiliary injury may be evident at presentation of the disease or develop during the disease progression. The development of more severe clinical outcomes in patients with chronic liver diseases (CLD) with or without cirrhosis infected with SARS-CoV-2 has not been elucidated. Moreover, there is limited data related to common medications that affect the disease severity of COVID-19 patients. Additionally, ACE2 receptor expression of hepatobiliary tissue related to the disease severity also have not been clarified. This review summarized the current situation regarding the clinical outcomes of COVID-19 patients with chronic liver diseases who were treated with common medications. Furthermore, the association between ACE2 receptor expression and disease severity in these patients is discussed.
Collapse
Affiliation(s)
- Wattana Leowattana
- Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
23
|
ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond) 2021; 135:535-554. [PMID: 33533405 DOI: 10.1042/cs20200752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.
Collapse
|
24
|
Update on New Aspects of the Renin-Angiotensin System in Hepatic Fibrosis and Portal Hypertension: Implications for Novel Therapeutic Options. J Clin Med 2021; 10:jcm10040702. [PMID: 33670126 PMCID: PMC7916881 DOI: 10.3390/jcm10040702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable experimental evidence that the renin angiotensin system (RAS) plays a central role in both hepatic fibrogenesis and portal hypertension. Angiotensin converting enzyme (ACE), a key enzyme of the classical RAS, converts angiotensin I (Ang I) to angiotensin II (Ang II), which acts via the Ang II type 1 receptor (AT1R) to stimulate hepatic fibrosis and increase intrahepatic vascular tone and portal pressure. Inhibitors of the classical RAS, drugs which are widely used in clinical practice in patients with hypertension, have been shown to inhibit liver fibrosis in animal models but their efficacy in human liver disease is yet to be tested in adequately powered clinical trials. Small trials in cirrhotic patients have demonstrated that these drugs may lower portal pressure but produce off-target complications such as systemic hypotension and renal failure. More recently, the alternate RAS, comprising its key enzyme, ACE2, the effector peptide angiotensin-(1–7) (Ang-(1–7)) which mediates its effects via the putative receptor Mas (MasR), has also been implicated in the pathogenesis of liver fibrosis and portal hypertension. This system is activated in both preclinical animal models and human chronic liver disease and it is now well established that the alternate RAS counter-regulates many of the deleterious effects of the ACE-dependent classical RAS. Work from our laboratory has demonstrated that liver-specific ACE2 overexpression reduces hepatic fibrosis and liver perfusion pressure without producing off-target effects. In addition, recent studies suggest that the blockers of the receptors of alternate RAS, such as the MasR and Mas related G protein-coupled receptor type-D (MrgD), increase splanchnic vascular resistance in cirrhotic animals, and thus drugs targeting the alternate RAS may be useful in the treatment of portal hypertension. This review outlines the role of the RAS in liver fibrosis and portal hypertension with a special emphasis on the possible new therapeutic approaches targeting the ACE2-driven alternate RAS.
Collapse
|
25
|
Chou AH, Lin YS, Wu VCC, Chen FT, Yang CH, Chen DY, Chen SW. Effect of medications after cardiac surgery on long-term outcomes in patients with cirrhosis. Medicine (Baltimore) 2021; 100:e23075. [PMID: 33592816 PMCID: PMC7870262 DOI: 10.1097/md.0000000000023075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to evaluate the effect of beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) after cardiac surgery in the liver cirrhosis (LC) patients. We conducted a population-based cohort study using data from the Taiwanese National Health Insurance Research Database (NHIRD) from 2001 to 2013. The outcomes of interest included all-cause mortality, major adverse cardiac and cerebrovascular events (MACCE) and liver and renal outcomes. Among 1470 LC patients, 35.6% (n = 524) received beta-blockers and 33.4% (n = 491) were prescribed ACEIs and/or ARBs after cardiac surgery. The risk of negative liver outcomes was significantly lower in the ARB group compared with the ACEI group (9.6% vs 22.7%, hazard ratio [HR] 0.50, 95% confidence interval [CI] 0.31-0.83). Furthermore, the risk of MACCE (44.2% vs 54.7%, HR 0.79, 95% CI 0.65-0.96), all-cause mortality (35.3% vs 46.4%, HR 0.74, 95% CI 0.60-0.92), composite liver outcomes (9.6% vs 16.5%, HR 0.56, 95% CI 0.38-0.85) and hepatic encephalopathy (2.7% vs 5.7%, HR 0.45, 95% CI 0.21-0.94) were lower in the ARB group than the control group. Our study demonstrated that ARBs provide a greater protective effect than ACEIs in regard to long-term outcomes following cardiac surgery in patients with LC.
Collapse
Affiliation(s)
- An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical, Center
- Collage of Medicine, Chang Gung University, Taoyuan City
| | - Yu-Sheng Lin
- Department of Cardiology, Chiayi Branch, Chiayi City
| | | | - Fang-Ting Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical, Center
| | | | | | - Shao-Wei Chen
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center
- Graduate Institute of Clinical Medical Sciences, College of medicine, Chang Gung, University, Taoyuan City, Taiwan
| |
Collapse
|
26
|
Bahardoust M, Heiat M, Khodabandeh M, Karbasi A, Bagheri-Hosseinabadi Z, Ataee MH, Seidalian N, Babazadeh A, Agah S, Abyazi MA. Predictors for the severe coronavirus disease 2019 (COVID-19) infection in patients with underlying liver disease: a retrospective analytical study in Iran. Sci Rep 2021; 11:3066. [PMID: 33542426 PMCID: PMC7862282 DOI: 10.1038/s41598-021-82721-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Risk factors for clinical outcomes of COVID-19 pneumonia have not yet been well established in patients with underlying liver diseases. Our study aimed to describe the clinical characteristics and outcomes of COVID-19 infection among patients with underlying liver diseases and determine the risk factors for severe COVID-19 among them. In a retrospective analytical study, 1002 patients with confirmed COVID-19 pneumonia were divided into two groups: patients with and without underlying liver diseases. The admission period was from 5 March to 14 May 2020. The prevalence of underlying conditions, Demographic data, clinical parameters, laboratory data, and participants' outcomes were evaluated. Logistic regression was used to estimate the predictive factors. Eighty-one (8%) of patients had underlying liver diseases. The frequencies of gastrointestinal symptoms such as diarrhea and vomiting were significantly higher among patients with liver diseases (48% vs. 25% and 46.1% vs. 30% respectively, both P < 0.05). Moreover, ALT and AST were significantly higher among patients with liver diseases (54.5 ± 45.6 vs. 37.1 ± 28.4, P = 0.013 and 41.4 ± 27.2 vs. 29.2 ± 24.3, P = 0.028, respectively). Additionally, the mortality rate was significantly high in patients with liver disease (12.4% vs. 7%, P = 0.018). We also observed that the parameters such as neutrophil to leukocyte ratio [Odds Ratio Adjusted (ORAdj) 1.81, 95% CI 1.21-3.11, P = 0.011] and blood group A (ORAdj 1.59, 95% CI 1.15-2.11, P = 0.001) were associated with progression of symptoms of COVID-19. The presence of underlying liver diseases should be considered one of the poor prognostic factors for worse outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Mansour Bahardoust
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Khodabandeh
- Department of Physical Medicine and Rehabilitation, Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashraf Karbasi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Ataee
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Narjes Seidalian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Babazadeh
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Matyas C, Haskó G, Liaudet L, Trojnar E, Pacher P. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications. Nat Rev Cardiol 2021; 18:117-135. [PMID: 32999450 DOI: 10.1038/s41569-020-0433-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
The liver is a crucial metabolic organ that has a key role in maintaining immune and endocrine homeostasis. Accumulating evidence suggests that chronic liver disease might promote the development of various cardiac disorders (such as arrhythmias and cardiomyopathy) and circulatory complications (including systemic, splanchnic and pulmonary complications), which can eventually culminate in clinical conditions ranging from portal and pulmonary hypertension to pulmonary, cardiac and renal failure, ascites and encephalopathy. Liver diseases can affect cardiovascular function during the early stages of disease progression. The development of cardiovascular diseases in patients with chronic liver failure is associated with increased morbidity and mortality, and cardiovascular complications can in turn affect liver function and liver disease progression. Furthermore, numerous infectious, inflammatory, metabolic and genetic diseases, as well as alcohol abuse can also influence both hepatic and cardiovascular outcomes. In this Review, we highlight how chronic liver diseases and associated cardiovascular effects can influence different organ pathologies. Furthermore, we explore the potential roles of inflammation, oxidative stress, vasoactive mediator imbalance, dysregulated endocannabinoid and autonomic nervous systems and endothelial dysfunction in mediating the complex interplay between the liver and the systemic vasculature that results in the development of the extrahepatic complications of chronic liver disease. The roles of ageing, sex, the gut microbiome and organ transplantation in this complex interplay are also discussed.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA.
| |
Collapse
|
28
|
ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond) 2020; 134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.
Collapse
|
29
|
Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol 2020; 26:6111-6140. [PMID: 33177789 PMCID: PMC7596642 DOI: 10.3748/wjg.v26.i40.6111] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin II type receptor 1 blockers, which target the components of the classical renin angiotensin system (RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant off-target effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective -blockers (NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs. Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.
Collapse
Affiliation(s)
- Lakmie S Gunarathne
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Harinda Rajapaksha
- School of Molecular Science, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Peter W Angus
- Department of Gastroenterology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Chandana B Herath
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, NSW 2170, Australia
| |
Collapse
|
30
|
Grace JA, Casey S, Burrell LM, Angus PW. Proposed mechanism for increased COVID-19 mortality in patients with decompensated cirrhosis. Hepatol Int 2020; 14:884-885. [PMID: 32886332 PMCID: PMC7471588 DOI: 10.1007/s12072-020-10084-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Josephine A Grace
- Department of Gastroenterology and Hepatology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- Department of Medicine and Cardiology, University of Melbourne, Austin Health, Heidelberg, Australia.
| | - Stephen Casey
- Department of Gastroenterology and Hepatology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Medicine and Cardiology, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Louise M Burrell
- Department of Medicine and Cardiology, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Peter W Angus
- Department of Gastroenterology and Hepatology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Medicine and Cardiology, University of Melbourne, Austin Health, Heidelberg, Australia
| |
Collapse
|
31
|
Zhang Y, Zheng L, Liu L, Zhao M, Xiao J, Zhao Q. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver Int 2020; 40:2095-2103. [PMID: 32239796 DOI: 10.1111/liv.14455] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The SARS-CoV-2 pandemic is an ongoing global health emergency. The aim of our study was to investigate the changes of liver function and its clinical significance in COVID-19 patients. METHOD This retrospective, single-centre study was conducted on 115 confirmed cases of COVID-19 in Zhongnan hospital of Wuhan University from 18 January 2020 to 22 February 2020. Liver function and related indexes were analysed to evaluate its relationship with disease progression in COVID-19 patients. RESULTS Part of the COVID-19 patients presented with varying degrees of abnormality in liver function indexes. However, the levels of ALT, AST, TBIL, GGT and LDH in COVID-19 patients were not significantly different when compared with hospitalised community-acquired pneumonia patients, and the levels of albumin is even significantly higher. The levels of ALT, AST, TBIL, LDH and INR showed statistically significant elevation in severe COVID-19 cases compared with that in mild cases. However, the clinical significance of the elevation is unremarkable. Majority of severe COVID-19 patients showed significantly decreasing in albumin level and continuously decreasing in the progress of illness. Most of the liver function indexes in COVID-19 patients were correlated with CRP and NLR, the markers of inflammation. Logistic regression analysis further identified NLR as the independent risk factor for severe COVID-19, as well as age. CONCLUSIONS Although abnormalities of liver function indexes are common in COVID-19 patients, the impairment of liver function is not a prominent feature of COVID-19, and also may not have serious clinical consequences.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Liang Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Mengya Zhao
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| |
Collapse
|
32
|
Noh MR, Jang HS, Kim J, Padanilam BJ. Renal Sympathetic Nerve-Derived Signaling in Acute and Chronic kidney Diseases. Int J Mol Sci 2020; 21:ijms21051647. [PMID: 32121260 PMCID: PMC7084190 DOI: 10.3390/ijms21051647] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
The kidney is innervated by afferent sensory and efferent sympathetic nerve fibers. Norepinephrine (NE) is the primary neurotransmitter for post-ganglionic sympathetic adrenergic nerves, and its signaling, regulated through adrenergic receptors (AR), modulates renal function and pathophysiology under disease conditions. Renal sympathetic overactivity and increased NE level are commonly seen in chronic kidney disease (CKD) and are critical factors in the progression of renal disease. Blockade of sympathetic nerve-derived signaling by renal denervation or AR blockade in clinical and experimental studies demonstrates that renal nerves and its downstream signaling contribute to progression of acute kidney injury (AKI) to CKD and fibrogenesis. This review summarizes our current knowledge of the role of renal sympathetic nerve and adrenergic receptors in AKI, AKI to CKD transition and CKDand provides new insights into the therapeutic potential of intervening in its signaling pathways.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
| | - Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
| | - Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
- Department of Anatomy, Jeju National University School of Medicine, Jeju 63243, Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Babu J. Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
- Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
- Correspondence:
| |
Collapse
|
33
|
Bahat G. Covid-19 and the Renin Angiotensin System: Implications for the Older Adults. J Nutr Health Aging 2020; 24:699-704. [PMID: 32744564 PMCID: PMC7271637 DOI: 10.1007/s12603-020-1403-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- G Bahat
- Gülistan Bahat, Istanbul University, Istanbul Medical School, Department of Internal Medicine, Division of Geriatrics, Fatih 34093, Istanbul, Turkey, Telephone: +90 212 414 20 00, Fax: + 90 212 414 22 48, + 90 212 532 42 08, E-Mail Address: , ORCID ID: 0000-0001-5343-9795
| |
Collapse
|
34
|
Rajapaksha IG, Gunarathne LS, Asadi K, Cunningham SC, Sharland A, Alexander IE, Angus PW, Herath CB. Liver-Targeted Angiotensin Converting Enzyme 2 Therapy Inhibits Chronic Biliary Fibrosis in Multiple Drug-Resistant Gene 2-Knockout Mice. Hepatol Commun 2019; 3:1656-1673. [PMID: 31832573 PMCID: PMC6887688 DOI: 10.1002/hep4.1434] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
There is a large unmet need for effective therapies for cholestatic disorders, including primary sclerosing cholangitis (PSC), a disease that commonly results in liver failure. Angiotensin (Ang) II of the renin Ang system (RAS) is a potent profibrotic peptide, and Ang converting enzyme 2 (ACE2) of the alternate RAS breaks down Ang II to antifibrotic peptide Ang‐(1‐7). In the present study, we investigated long‐term effects of ACE2 delivered by an adeno‐associated viral vector and short‐term effects of Ang‐(1‐7) peptide in multiple drug‐resistant gene 2‐knockout (Mdr2‐KO) mice. These mice develop progressive biliary fibrosis with pathologic features closely resembling those observed in PSC. A single intraperitoneal injection of ACE2 therapy markedly reduced liver injury (P < 0.05) and biliary fibrosis (P < 0.01) at both established (3‐6 months of age) and advanced (7‐9 months of age) disease compared to control vector‐injected Mdr2‐KO mice. This was accompanied by increased hepatic Ang‐(1‐7) levels (P < 0.05) with concomitant reduction in hepatic Ang II levels (P < 0.05) compared to controls. Moreover, Ang‐(1‐7) peptide infusion improved liver injury (P < 0.05) and biliary fibrosis (P < 0.0001) compared to saline‐infused disease controls. The therapeutic effects of both ACE2 therapy and Ang‐(1‐7) infusion were associated with significant (P < 0.01) reduction in hepatic stellate cell (HSC) activation and collagen expression. While ACE2 therapy prevented the loss of epithelial characteristics of hepatocytes and/or cholangiocytes in vivo, Ang‐(1‐7) prevented transdifferentiation of human cholangiocytes (H69 cells) into the collagen‐secreting myofibroblastic phenotype in vitro. We showed that an increased ratio of hepatic Ang‐(1‐7) to Ang II levels by ACE2 therapy results in the inhibition of HSC activation and biliary fibrosis. Conclusion: ACE2 therapy has the potential to treat patients with biliary diseases, such as PSC.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| | - Lakmie S Gunarathne
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| | | | - Sharon C Cunningham
- Children's Medical Research Institute School of Medicine University of Sydney Sydney Australia
| | - Alexandra Sharland
- Central Clinical School School of Medicine University of Sydney Sydney Australia
| | - Ian E Alexander
- Children's Medical Research Institute School of Medicine University of Sydney Sydney Australia
| | - Peter W Angus
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| | - Chandana B Herath
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| |
Collapse
|
35
|
Zhao J, Yang H, Chen B, Zhang R. The skeletal renin-angiotensin system: A potential therapeutic target for the treatment of osteoarticular diseases. Int Immunopharmacol 2019; 72:258-263. [PMID: 31003003 DOI: 10.1016/j.intimp.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
The classical renin-angiotensin system (RAS) is known to be a key regulator of blood pressure as well as fluid and electrolyte homeostasis. Additionally, it is now evident that components of the RAS are produced and act locally in many tissues, including liver, kidney, heart, lung, eye, bone, reproductive organ, adipose, and adrenal tissue, and these components are collectively known as tissue RAS. Recently, several studies have shown that local bone RAS is directly involved in bone metabolism, and activation of skeletal RAS plays an important role in bone diseases, such as osteoporosis, arthritis, and deterioration as well as in fracture healing. Based on the identification of RAS components in bone, we examined a new therapeutic approach to attenuate bone diseases through RAS inhibitors: renin inhibitor, angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers. In this paper, we provide a systematic review of the skeletal RAS in the pathophysiology of bone diseases and the beneficial effect of RAS inhibitors on bone tissue.
Collapse
Affiliation(s)
- Jingjing Zhao
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bo Chen
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
36
|
Activation of the Alternate Renin-Angiotensin System Correlates with the Clinical Status in Human Cirrhosis and Corrects Post Liver Transplantation. J Clin Med 2019; 8:jcm8040419. [PMID: 30934723 PMCID: PMC6518205 DOI: 10.3390/jcm8040419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction: Recent animal studies have shown that the alternate renin-angiotensin system (RAS) consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1–7) (Ang-(1–7)) and the Mas receptor is upregulated in cirrhosis and contributes to splanchnic vasodilatation and portal hypertension. To determine the potential relevance of these findings to human liver disease, we evaluated its expression and relationship to the patients’ clinical status in subjects with cirrhosis. Methods: Blood sampling from peripheral and central vascular beds was performed intra-operatively for cirrhotic patients at the time of liver transplantation (LT) or trans-jugular intra-hepatic portosystemic shunt (TIPS) procedures to measure angiotensin II (Ang II) and Ang-(1–7) peptide levels and ACE and ACE2 enzyme activity. Relevant clinical and hemodynamic data were recorded pre-operatively for all subjects and peripheral blood sampling was repeated 3 months or later post-operatively. Results: Ang-(1–-7) and ACE2 activity were up-regulated more than twofold in cirrhotic subjects both at the time of LT and TIPS and levels returned to comparable levels as control subjects post-transplantation. Ang-(1–7) levels correlated positively with the degree of liver disease severity, as measured by the model for an end-stage liver disease (MELD) and also with clinical parameters of pathological vasodilatation including cardiac output (CO). There were strong correlations found between the ACE2:ACE and the Ang-(1–7):Ang II ratio highlighting the inter-dependence of the alternate and classical arms of the RAS and thus their potential impact on vascular tone. Conclusions: In human cirrhosis, the alternate RAS is markedly upregulated and the activation of this system is associated strongly with features of the hyperdynamic circulation in advanced human cirrhosis.
Collapse
|
37
|
Rajapaksha IG, Angus PW, Herath CB. Current therapies and novel approaches for biliary diseases. World J Gastrointest Pathophysiol 2019; 10:1-10. [PMID: 30622832 PMCID: PMC6318481 DOI: 10.4291/wjgp.v10.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases that inevitably lead to hepatic fibrosis, cirrhosis and/or hepatocellular carcinoma have become a major cause of illness and death worldwide. Among them, cholangiopathies or cholestatic liver diseases comprise a large group of conditions in which injury is primarily focused on the biliary system. These include congenital diseases (such as biliary atresia and cystic fibrosis), acquired diseases (such as primary sclerosing cholangitis and primary biliary cirrhosis), and those that arise from secondary damage to the biliary tree from obstruction, cholangitis or ischaemia. These conditions are associated with a specific pattern of chronic liver injury centered on damaged bile ducts that drive the development of peribiliary fibrosis and, ultimately, biliary cirrhosis and liver failure. For most, there is no established medical therapy and, hence, these diseases remain one of the most important indications for liver transplantation. As a result, there is a major need to develop new therapies that can prevent the development of chronic biliary injury and fibrosis. This mini-review briefly discusses the pathophysiology of liver fibrosis and its progression to cirrhosis. We make a special emphasis on biliary fibrosis and current therapeutic options, such as angiotensin converting enzyme-2 (known as ACE2) over-expression in the diseased liver as a novel potential therapy to treat this condition.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Peter W Angus
- Department of Gastroenterology and Hepatology, Austin Health, Melbourne, VIC 3084, Australia
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3084, Australia
| |
Collapse
|
38
|
de Miranda AS, Simões e Silva AC. Liver. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7121918 DOI: 10.1007/978-3-030-22696-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery that renin–angiotensin system (RAS) components are locally expressed in the liver tissue, pointed out to a role for this system in the pathogenesis of hepatic fibrosis and cirrhosis. The RAS counter-regulatory axis composed by the angiotensin converting enzyme 2 (ACE2), angiotensin-(1-7) [Ang-(1-7)] and Mas receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes, frequently opposing the classical RAS arm (ACE-Ang II-AT1 receptor) actions. Therefore, the balance between both RAS axes most likely affects the clinical and histopathological expression of liver diseases. It is worth noticing that liver diseases are major causes of morbidity and mortality worldwide. Without proper treatment, all types of chronic hepatitis will progress to end-stage liver diseases, including cirrhosis, liver failure, and hepatocellular carcinoma, which ultimately lead to death. In this context, to better comprehend the role of RAS components in liver failure might pave the way for the search of potential predictive biomarkers as well as the development of novel therapeutic approaches. Valuable data have been generated from preclinical and clinical studies. Herein, we summarize the current evidence, mainly focusing in the ACE2-Ang-(1-7)-Mas receptor arm, regarding the role of RAS in liver diseases. The therapeutic potential of the modulation of RAS molecules in liver diseases is also discussed.
Collapse
|
39
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 723] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
40
|
Yao H, Zhang C. Angiotensin II receptor blockers for the treatment of portal hypertension in patients with liver cirrhosis: a systematic review and meta-analysis of randomized controlled trials. Ir J Med Sci 2018; 187:925-934. [PMID: 29470765 DOI: 10.1007/s11845-018-1765-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Randomized controlled trials (RCTs) showed inconsistent results regarding the efficacy of angiotensin II receptor blockers (ARBs) on portal pressure as indicated by hepatic venous pressure gradient (HVPG). METHODS A meta-analysis of RCTs was performed to evaluate the influence of ARBs treatment on HVPG. PubMed, Embase, and Cochrane's Library were searched for relevant RCTs. A fixed or a randomized effect model was used to pool the results according the heterogeneity. Subgroup analyses were performed to explore the source of heterogeneity. RESULTS Eleven RCTs with 394 patients were included. ARBs treatment did not significantly change HVPG as compared with controls (weighted mean difference [WMD] = -0.63, 95% confidence interval [CI] -1.73 to 0.47 mmHg, p = 0.26; I2 = 60%). These results were consistent in studies comparing ARBs with propranolol (WMD = -0.40, 95% CI -2.22 to 1.41 mmHg, p = 0.67; I2 = 68%), and those comparing ARBs with non-active controls including placebo or no treatment (WMD = -1.05, 95% CI -2.33 to 0.24 mmHg, p = 0.13; I2 = 44%). These results were also not affected by the individual ARBs used. Moreover, treatment of ARBs significantly reduced mean arterial blood pressure (WMD = -6.12, 95% CI -9.69 to -2.55 mmHg, p = 0.008; I2 = 53%), and the risk of symptomatic hypotension was increased (RR = 4.13, 95% CI 0.94 to 18.18, p = 0.06; I2 = 0%). CONCLUSIONS ARBs did not reduce portal pressure in patients with cirrhosis; moreover, the risk of symptomatic hypotension may increase.
Collapse
Affiliation(s)
- Huijing Yao
- Department of Digestive Diseases, Shandong Provincial Hospital affiliated to Shandong University, No. 9677 Jingshi Road, Lixia District, Jinan, 250014, China
- Department of Digestive Diseases, Tai'an Central Hospital, Tai'an, 271000, China
| | - Chunqing Zhang
- Department of Digestive Diseases, Shandong Provincial Hospital affiliated to Shandong University, No. 9677 Jingshi Road, Lixia District, Jinan, 250014, China.
| |
Collapse
|
41
|
Fialla AD, Schaffalitzky de Muckadell OB, Bie P, Thiesson HC. Activation of RAAS in a rat model of liver cirrhosis: no effect of losartan on renal sodium excretion. BMC Nephrol 2018; 19:238. [PMID: 30231858 PMCID: PMC6146747 DOI: 10.1186/s12882-018-1039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Liver cirrhosis is characterized by avid sodium retention where the activation of the renin angiotensin aldosterone system (RAAS) is considered to be the hallmark of the sodium retaining mechanisms. The direct effect of angiotensin II (ANGII) on the AT-1 receptor in the proximal tubules is partly responsible for the sodium retention. The aim was to estimate the natriuretic and neurohumoral effects of an ANGII receptor antagonist (losartan) in the late phase of the disease in a rat model of liver cirrhosis. Methods Bile duct ligated (BDL) and sham operated rats received 2 weeks of treatment with losartan 4 mg/kg/day or placebo, given by gastric gavage 5 weeks after surgery. Daily sodium and potassium intakes and renal excretions were measured. Results The renal sodium excretion decreased in the BDL animals and this was not affected by losartan treatment. At baseline the plasma renin concentration (PRC) was similar in sham and BDL animals, but increased urinary excretion of ANGII and an increase P-Aldosterone was observed in the placebo treated BDL animals. The PRC was more than 150 times higher in the losartan treated BDL animals (p < 0.001) which indicated hemodynamic impairment. Conclusions Losartan 4 mg/kg/day did not increase renal sodium excretion in this model of liver cirrhosis, although the urinary ANGII excretion was increased. The BDL animals tolerated Losartan poorly, and the treatment induced a 150 times higher PRC.
Collapse
Affiliation(s)
- A D Fialla
- Department of Gastroenterology and Hepatology, Odense University Hospital, Sdr Boulevard, 5000 Odense C 29, Odense, Denmark.
| | - O B Schaffalitzky de Muckadell
- Department of Gastroenterology and Hepatology, Odense University Hospital, Sdr Boulevard, 5000 Odense C 29, Odense, Denmark
| | - P Bie
- Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - H C Thiesson
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
42
|
Kay WA, Moe T, Suter B, Tennancour A, Chan A, Krasuski RA, Zaidi AN. Long Term Consequences of the Fontan Procedure and How to Manage Them. Prog Cardiovasc Dis 2018; 61:365-376. [PMID: 30236751 DOI: 10.1016/j.pcad.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
In 1971, Fontan and Baudet described a surgical technique for successful palliation of patients with tricuspid atresia. Subsequently, this technique has been applied to treat most forms of functional single ventricles and has become the current standard of care for long-term palliation of all patients with single ventricle congenital heart disease. Since 1971, the Fontan procedure has undergone several variations. These patients require lifelong management including a thorough knowledge of their anatomic substrate, hemodynamic status, management of rhythm and ventricular function along with multi organ evaluation. As these patients enter middle age, there is increasing awareness regarding the long-term complications and mortality. This review highlights the long-term outcomes of the Fontan procedure and management of late sequelae.
Collapse
Affiliation(s)
- W Aaron Kay
- Indiana University School of Medicine, Krannert Institute of Cardiology, IN.
| | - Tabitha Moe
- University of Arizona School of Medicine, Phoenix, AZ.
| | - Blair Suter
- Indiana University School of Medicine, Departments of Medicine and Pediatrics, IN.
| | - Andrea Tennancour
- Indiana University School of Medicine, Krannert Institute of Cardiology, IN.
| | - Alice Chan
- Children's Hospital at Montefiore, Montefiore Medical Center, Albert Einstein College of Medicine, NY.
| | | | - Ali N Zaidi
- Children's Hospital at Montefiore, Montefiore Medical Center, Albert Einstein College of Medicine, NY.
| |
Collapse
|
43
|
The comparative efficacy of renin-angiotensin system blockers in schistosomal hepatic fibrosis. Exp Parasitol 2018; 191:9-18. [PMID: 29890165 DOI: 10.1016/j.exppara.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/26/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
Schistosomiasis mansoni is involved in hepatic fibrogenesis and portal hypertension. Previous studies proved that blockade of some components of the renin-angiotensin system (RAS) reduce liver fibrogenesis. However, the effects of inhibition of early stages of RAS pathway in schistosomal fibrosis have not been studied yet. Thus, the aim of this study was to compare the role of different antihypertensive drugs on hepatic fibrosis in murine schistosomiasis. BALB/c mice (n = 50) weighing 20g were subjected to inoculation of 50 cercariae and submitted to different treatments: aliskiren, 50 mg/kg (n = 10); bradykinin, 2 μg/kg (n = 5); losartan, 10 mg/kg (n = 10); lisinopril 10 mg/kg (n = 5) and control, proportional volume vehicle (n = 5); daily for 14 weeks. Six animals were not subjected to cercariae inoculation or any type of treatment. Ultrasound, histological, immunohistochemical and proteomic analyzes were performed to evaluate markers associated with hepatic fibrogenesis. The hepatic areas stained with Sirius red and thenumber of cells marked by α-SMA in animals treated with aliskiren, bradykinin, lisinopril and losartan were diminished when compared to control group, demonstrating reduced hepatic fibrosis after RAS blockade. These results were reinforced by ultrasonography analysis and protein expression of TGFβ. These findings demonstrated the effect of RAS inhibition on hepatic fibrosis in murine schistosomiasis, with the most evident results being observed in the losartan and aliskiren treated groups. The main mechanisms underlying this process appear to involve anti-fibrogenic activity through the inhibition of collagen and TGFβ synthesis.
Collapse
|
44
|
Shim KY, Eom YW, Kim MY, Kang SH, Baik SK. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension. Korean J Intern Med 2018; 33:453-461. [PMID: 29462546 PMCID: PMC5943664 DOI: 10.3904/kjim.2017.317] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/05/2017] [Indexed: 02/08/2023] Open
Abstract
The renin-angiotensin system (RAS) is an important regulator of cirrhosis and portal hypertension. As hepatic fibrosis progresses, levels of the RAS components angiotensin (Ang) II, Ang-(1-7), angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R) are increased. The primary effector Ang II regulates vasoconstriction, sodium homoeostasis, fibrosis, cell proliferation, and inflammation in various diseases, including liver cirrhosis, through the ACE/Ang II/AT1R axis in the classical RAS. The ACE2/Ang-(1-7)/Mas receptor and ACE2/Ang-(1-9)/AT2R axes make up the alternative RAS and promote vasodilation, antigrowth, proapoptotic, and anti-inflammatory effects; thus, countering the effects of the classical RAS axis to reduce hepatic fibrogenesis and portal hypertension. Patients with portal hypertension have been treated with RAS antagonists such as ACE inhibitors, Ang receptor blockers, and aldosterone antagonists, with very promising hemodynamic results. In this review, we examine the RAS, its roles in hepatic fibrosis and portal hypertension, and current therapeutic approaches based on the use of RAS antagonists in patients with portal hypertension.
Collapse
Affiliation(s)
- Kwang Yong Shim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seong Hee Kang
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Evidence Based Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Correspondence to Soon Koo Baik, M.D. Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea Tel: +82-33-741-1223 Fax: +82-33-745-6782 E-mail:
| |
Collapse
|
45
|
|
46
|
Balancing Effect of Biejiajian Oral Liquid () on ACE-Ang II-AT1R Axis and ACE2-Ang-(1-7)-Mas Axis in Rats with CCl 4-Induced Hepatic Fibrosis. Chin J Integr Med 2018; 24:853-859. [PMID: 29335866 DOI: 10.1007/s11655-017-2909-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the effect of Biejiajian Oral Liquid (, BOL) on CCl4-induced hepatic fibrosis in rats by detecting the changes in the levels of angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], angiotensin-converting enzyme (ACE), ACE2, angiotensin II type 1 receptor (AT1R), Mas, etc. METHODS: A total of 180 Wistar rats were randomly divided into two groups by random digital table method: prevention experiment and treatment experiment. Each group was further subdivided into the following 6 subgroups: normal control group, model group, vitamin E [100 mg/(kg·d), VE] group, enalapril [10 mg/(kg·g), Ena] group, high-dosage [20 g/(kg·d)] BOL group, and low-dosage [10 g/(kg·d)] BOL group. The hepatic fibrosis rat model was established by subcutaneous injection of CCl4 for 6 weeks. Prevention experiment and treatment experiment were administered with specific drugs at different times. At the end of treatment experiment, the pathological changes of liver were observed after hematoxylin-eosin staining. The expressions of ingredients in renin-angiotensin-aldosterone system (RAAS) such as AngII, Ang-(1-7), ACE, ACE2, AT1R, Mas, renin, CYP11B2 and angen in liver were detected by enzyme linked immunosorbent assay, immunohistochemistry method or reverse transcription-polymerase chain reaction, respectively. RESULTS The levels of AngII and Ang-(1-7) at the 6th week increased by 496.10% and 73.64%, respectively, compared with those at the 2nd week in the model group (P<0.01). With prevention or treatment with high-dosage BOL, there was an evident reduction of AngII level but an improvement of Ang-(1-7) level. Specifically, AngII level of high-dosage group decreased by 77.50% in prevention experiment (P=0.000) and by 76.93% in treatment experiment (P=0.002) compared with that in the model group. Ang-(1-7) level increased by 91.69% in prevention experiment (P=0.006) and by 70.77% in the treatment experiment (P=0.010) compared with that in the model group. The expression levels of mRNA of renin, ACE, CYP11B2, angen and AT1R decreased by 58.15%, 99.90%, 99.84%, 99.99% and 99.99% (all P<0.01), respectively. CONCLUSIONS BOL could help resist liver fibrosis in rats by enhancing the level of each ingredient in ACE2-Ang-(1-7)-Mas axis, while decreasing the level of each ingredient in ACE-AngII-AT1R axis. To some extent, BOL could enhance the regulation of RAAS in rats with CCl4-induced hepatic fibrosis.
Collapse
|
47
|
Kogiso T, Kobayashi M, Yamamoto K, Ikarashi Y, Kodama K, Taniai M, Torii N, Hashimoto E, Tokushige K. The Outcome of Cirrhotic Patients with Ascites Is Improved by the Normalization of the Serum Sodium Level by Tolvaptan. Intern Med 2017; 56:2993-3001. [PMID: 28943585 PMCID: PMC5725852 DOI: 10.2169/internalmedicine.9033-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Hyponatremia is frequently observed in patients with decompensated liver cirrhosis and it is also related to a poor prognosis. The vasopressin V2-receptor antagonist tolvaptan is used to treat cirrhotic patients with ascites and increases the serum sodium (Na) level. In this study, we investigated (i) whether or not correction of the Na level improves the prognosis of cirrhotic patients with ascites and (ii) predictors of normalization of the serum Na level after tolvaptan therapy. Methods This was a single-center retrospective study. A total of 95 Japanese cirrhotic patients (60 men, median age 63 years) were enrolled and received tolvaptan orally after hospitalization for ascites treatment. The serum Na level was monitored during the period of tolvaptan treatment. The laboratory data and survival rates of patients who achieved serum Na levels of <135 and ≥135 mEq/L after 1 week were compared. Results Patients showed serum Na levels of 136 (121-145) mEq/L, and 42.1% had a serum Na level of <135 mEq/L. Among patients with an initial serum Na level <135 mEq/L, 60.0% achieved a normal level after 1 week, and the survival rate was significantly higher in patients with a normalized serum Na level (p<0.01). The pretreatment brain natriuretic peptide (BNP) level was predictive of achieving a serum Na level of ≥135 mEq/L (odds ratio: 0.87, 95% confidence interval: 0.316-0.987, p<0.05). Conclusion Normalization of the Na level after one week was associated with a favorable outcome of tolvaptan therapy, and Na correction improved the prognosis.
Collapse
Affiliation(s)
- Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Mutsuki Kobayashi
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Kuniko Yamamoto
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Yuichi Ikarashi
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Kazuhisa Kodama
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Makiko Taniai
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Nobuyuki Torii
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Etsuko Hashimoto
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| |
Collapse
|
48
|
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94:317-325. [PMID: 28772209 DOI: 10.1016/j.biopha.2017.07.091] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is a vital system of human body, as it maintains plasma sodium concentration, arterial blood pressure and extracellular volume. Kidney-secreted renin enzyme acts on its substrate to form angiotensin II, a versatile effector peptide hormone. Every organ is affected by RAAS activation and the resultant hypertension, cell proliferation, inflammation, and fibrosis. The imbalance of renin and angiotensin II can result in an overwhelming number of chronic and acute diseases. RAAS is influenced by other enzymes, hormones, pumps and signaling pathways, hence, this review discusses important facets of this system, its crosstalk with other crucial factors like estrogen, thyroid, cortisol, kallikrein-kinin system, Wnt/β-catenin signaling, and sodium-potassium pump. The nexus of RAAS with the above-discussed systems was scantily explored before. So, this review furnishes a new perspective in comprehension of inflammation diseases. It is followed by the formulation of hypotheses, which can contribute to better management of an array of pathologies plaguing mankind. Manipulation of RAAS, by bending it towards ACE2 expression can regulate endocrine functions, which can be critical for a number of pathological management. Dietary intervention can restore RAAS to normalcy.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| |
Collapse
|
49
|
Wu HT, Chuang YW, Huang CP, Chang MH. Loss of angiotensin converting enzyme II (ACE2) accelerates the development of liver injury induced by thioacetamide. Exp Anim 2017; 67:41-49. [PMID: 28845018 PMCID: PMC5814313 DOI: 10.1538/expanim.17-0053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Angiotensin converting enzyme II (ACE2), an angiotensin converting enzyme (ACE) homologue
that displays antagonist effects on ACE/angiotensin II (Ang II) axis in renin-angiotensin
system (RAS), could play a protective role against liver damages. The purpose of this
study is to investigate whether inflammation-mediated liver injury could be affected by
ACE2 derived pathways in the RAS. Eight-weeks-old wild-type (WT; C57BL/6) and
Ace2 KO (hemizygous Ace2-/y) male mice were
used to induce liver fibrosis by thioacetamide (TAA) administration (0, 100, and 200 mg/kg
BW). The mice administrated with TAA could be successfully induced liver fibrosis in a
TAA-dose dependent manner. Compared to WT mice, the results show that
Ace2 KO mice have high sensitive, and developed more serious reaction
of hepatic inflammation and fibrosis by TAA administration. The physiological and
pathological examinations demonstrated higher serum aspartate aminotransferase (AST),
alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels, infiltration of
white blood cells and fibrotic lesions within liver in the Ace2 KO mice.
The severe liver damage of Ace2 KO mice were also confirmed by the
evidence of higher expression of hepatic inflammation-related genes (IL-6
and Tnf) and fibrosis-related genes (Col1a1,
Timp1 and Mmp9). Ace2 gene deficiency
could lead to a severe inflammation and collagen remodeling in the liver administrated by
TAA, and the responses lead the pathogenesis of liver fibrosis. Our studies provided the
main messages and favorable study directions of relationship of Ace2 and
liver disease.
Collapse
Affiliation(s)
- Hsi-Tien Wu
- Department of BioAgricultural Science, National Chia Yi University, 300 Syuefu Road, Chiayi 60004, Taiwan
| | - Ya-Wen Chuang
- Department of BioAgricultural Science, National Chia Yi University, 300 Syuefu Road, Chiayi 60004, Taiwan
| | - Cheng-Pu Huang
- Department of BioAgricultural Science, National Chia Yi University, 300 Syuefu Road, Chiayi 60004, Taiwan
| | - Ming-Huang Chang
- Department of Veterinary Medicine, National Chia Yi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| |
Collapse
|
50
|
Kogiso T, Yamamoto K, Kobayashi M, Ikarashi Y, Kodama K, Taniai M, Torii N, Hashimoto E, Tokushige K. Response to tolvaptan and its effect on prognosis in cirrhotic patients with ascites. Hepatol Res 2017; 47:835-844. [PMID: 27670393 DOI: 10.1111/hepr.12822] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 12/14/2022]
Abstract
AIM The vasopressin V2 receptor antagonist tolvaptan has been used for the treatment of cirrhotic patients with ascites; however, no predictor of efficacy and prognosis has been developed. We evaluated candidate predictors of response to tolvaptan treatment. METHODS This was a single-center retrospective study. Overall, 97 Japanese cirrhotic patients (60 men, median age 63 years), who were hospitalized for ascites treatment including oral tolvaptan coupled with conventional diuretics, were enrolled. The efficacy of tolvaptan was defined as a urination increase of ≥500 mL or a urine volume ≥2000 mL/day on the day following treatment. The prognosis of tolvaptan treatment was evaluated by the post-treatment survival time by Kaplan-Meier analysis. RESULTS Tolvaptan therapy was effective in 67% of cirrhotic patients. Patients showed -1.5 (-17.2 to +6.2) kg change in body weight and 40% achieved ≥2.0 kg reduction in body weight after 1 week of treatment. Platelet counts, urine sodium (Na) level, and urine Na/potassium (Na/K) ratio were higher, and the blood urea nitrogen (BUN)/creatinine (Cr) ratio was lower, in cases showing a response to tolvaptan. The combination of a BUN/Cr ratio ≥17.5 and urine Na/K ratio <3.09 was predictive of being non-responsive to tolvaptan, and the response rate in these patients was only 39% (P < 0.01). The mean post-treatment survival duration was significantly longer in patients who responded to tolvaptan therapy. CONCLUSIONS Urinary BUN and Na excretion were predictive of a response to tolvaptan, and tolvaptan treatment may improve the prognosis of cirrhotic patients.
Collapse
Affiliation(s)
- Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kuniko Yamamoto
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Mutsuki Kobayashi
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuichi Ikarashi
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuhisa Kodama
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Makiko Taniai
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuyuki Torii
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Etsuko Hashimoto
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|