1
|
Cheng YA, Chien SY, Chen PPY, Hsu IJ, Lee CM. Photoinduced NO production from a mononuclear {MnNO} 6 complex bearing a metal-diaryldisulphide ligand. Dalton Trans 2025; 54:7415-7424. [PMID: 40223644 DOI: 10.1039/d5dt00165j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A solution of six-coordinate [Mn(PS2)2] (1) is inert towards nitric oxide (NO) at room temperature. In the presence of a proton source such as p-toluenesulfonic acid or perchloric acid, however, the treatment of 1 with NO in the dark leads to the formation of {MnNO}6 [Mn(NO)(SPS-SPS)] (2) with a metal-diaryldisulphide ligand, as confirmed by several spectroscopy investigations, including single-crystal X-ray diffraction. A possible pathway for the formation of 2 was determined through theoretical studies and involves the following: (i) the thiolato sulphur in 1 interacts with H+ to generate an intermediate [Mn(PS2)(PS2H)]+ (A) with an S⋯H interaction; (ii) the reaction of A with NO yields HNO and an Mn(IV)-bound-thiyl radical species (B); and (iii) the nucleophilicity of the thiyl radical B to an adjacent thiolato sulphur produces a five-coordinate Mn(III)-diaryldisulphide species (C), which reacts with the generated HNO to yield 2. Complex 2 is sensitive to visible light. When photolysis of 2 in solution is performed, complex 1 is regenerated and NO is released, which is related to metal-disulphide/metal-thiolate interconversion.
Collapse
Affiliation(s)
- Yu-An Cheng
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|
2
|
Zhou H, Jin Y, Wang S, Wang Y, Bu M. A Near-Infrared Fluorescent Probe for the Rapid Detection of Nitroxyl in Living Cells. J Fluoresc 2025; 35:1675-1683. [PMID: 38430415 DOI: 10.1007/s10895-024-03637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Nitroxyl (HNO) plays an important role in various physiological activities. It has the potential to be used as a treatment for certain diseases such as alcohol poisoning, acute hypertension, and atherosclerosis. However, traditional methods for detecting HNO are challenging due to its rapid polymerization and elimination into N2O. Therefore, it is crucial to establish direct and effective HNO detection methods to comprehend these physiological processes better. In this study, a new near-infrared fluorescent probe called HXM-P based on the intramolecular charge transfer (ICT) mechanism was designed and synthesized. This probe employs 2-((6-hydroxy-2,3dihydro-1 H-xanthen-4-yl)methylene)malononitrile as a fluorophore and 2-(diphenylphosphine) benzoate as a recognition group. The results showed that probe HXM-P can detect HNO with high sensitivity (1.07 × 10- 8 M). A good linear correlation was observed between the fluorescence intensities at 640 nm and the concentrations of HNO in the range of 0-80 µM (R2 = 0.997). Moreover, probe HXM-P exhibited a rapid response rate (within 15 s) toward HNO, and the fluorescent intensity reached a plateau within 5 min, making it easier to track the highly reactive and short-lived HNO in living systems. Additionally, HXM-P was successfully employed for imaging HNO in HepG2 cells.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, Shaanxi, 710054, China.
| | - Yu Jin
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, Shaanxi, 710054, China
| | - Sheng Wang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, Shaanxi, 710054, China
| | - Yixiang Wang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, Shaanxi, 710054, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
3
|
Ma Q, Liu S, Xu J, Mao G, Wang G, Hou S, Ma Y, Lian Y. A coumarin-naphthalimide-based ratiometric fluorescent probe for nitroxyl (HNO) based on an ICT-FRET mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124876. [PMID: 39059141 DOI: 10.1016/j.saa.2024.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Nitroxyl (HNO) is an important reactive nitrogen that is associated with various states in physiology and pathology and plays a unique function in living systems. So, it is important to exploit fluorescent probes with high sensitivity and selectivity for sensing HNO. In this paper, a novel ratiometric fluorescent probe for HNO was developed utilizing intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET) mechanisms. The probe selected coumarin as energy donor, naphthalimide as energy receptor and 2-(diphenylphosphino)benzoate as the sensing site for detecting HNO. When HNO was not present, the 2-(diphenylphosphino)benzoate unit of the probe restricted electron transfer and the ICT process could not occur, leading to the inhibition of FRET process as well. Thus, in the absence of HNO the probe displayed the intrinsic blue fluorescence of coumarin. When HNO was added, the HNO reacted with the 2-(diphenylphosphino)benzoate unit of the probe to yield a hydroxyl group which resulting in the opening of ICT process and the occurring of FRET process. Thus, after providing HNO the probe displayed yellow fluorescence. In addition, the probe showed good linearity in the ratio of fluorescence intensity at 545 nm and 472 nm (I545 nm/I472 nm) with a concentration of HNO (0.1-20 μM). The probe processed a detection limit of 0.014 μM and a response time of 4 min. The probe also specifically identified HNO over a wide pH scope (pH = 4.00-10.00), including physiological conditions. Cellular experiments had shown that this fluorescent probe was virtually non-cytotoxic and could be applied for ratiometric sensing of HNO in A549 cells.
Collapse
Affiliation(s)
- Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, 450046, PR China.
| | - Shuangyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Junhong Xu
- Department of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Gege Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shuqi Hou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yijie Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yujie Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
4
|
Li C, Wang X, Zhu X, Liu J, Ye Y. A novel NIR fluorescent probe to image HNO during ferroptosis. Anal Chim Acta 2024; 1330:343265. [PMID: 39489948 DOI: 10.1016/j.aca.2024.343265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND As an important reactive nitrogen species (RNS), HNO has been identified as an essential signaling molecule in many physiological processes. Ferroptosis produces a large amount of reactive oxygen species and reactive nitrogen species. However, the detailed mechanism of HNO during process of ferroptosis is rarely reported, especially in the near-infrared range. So, we designed a new near-infrared (NIR) HNO fluorescent probe X-1 based on a tricyanofuran (TCF) derivative and then applied it in ferroptosis imaging. The TCF derivative was chosen as the NIR fluorophore and 2-(diphenylphosphino)benzoate was used as the recognition group. RESULTS In this paper, a novel NIR HNO fluorescent probe X-1 based on tricyanofuran (TCF) derivatives was synthesized using the Staudinger linkage reaction. X-1 exhibited high selectivity for HNO in the near-infrared region (λem = 660 nm). When the recognition group undergoes the Staudinger linkage reaction with HNO, the NIR fluorescence emission increased significantly with the enhancement of the ICT effect. The response mechanism of X-1 to HNO was verified by high-resolution mass spectrometry (HRMS). Probe X-1 has the advantages of fast response (5 min), low detection limit, a large Stokes shift (120 nm) and strong anti-interference ability for HNO recognition. CCK-8 staining result indicates that the probe X-1 has good biocompatibility and little toxic effect on the cells. The probe was successfully applied to imaging the exogenous and endogenous HNO in living cells. SIGNIFICANCE In the near-infrared range, HNO was discovered as a mediator of cellular signaling molecules, increasing in concentration during the process of ferroptosis. Furthermore, using this probe, it was further verified that sorafenib, a commonly used drug for cancer treatment, exerts its therapeutic effect by inducing ferroptosis in cancer cells, leading to cell death.
Collapse
Affiliation(s)
- Changyi Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaokai Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofei Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianfei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Qi FY, Qiao L, Peng L, Yang Y, Zhang CH, Liu X. An activatable fluorescent-photoacoustic dual-modal probe for highly sensitive imaging of nitroxyl in vivo. Analyst 2024; 149:2299-2305. [PMID: 38516833 DOI: 10.1039/d4an00188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nitroxyl (HNO) plays a vital role in various biological functions and pharmacological activities, so the development of an excellent near-infrared fluorescent (NIRF) and photoacoustic (PA) dual-modality probe is crucial for understanding HNO-related physiological and pathological progression. Herein, we proposed and synthesized a novel NIRF/PA dual probe (QL-HNO) by substituting an indole with quinolinium in hemicyanine for the sensitive detection of exogenous and endogenous HNO in vivo. The designed probe showed the highest sensitivity in NIRF mode and a desirable PA signal-to-noise ratio for HNO detection in vitro and was further applied for NIRF/PA dual-modal imaging of HNO with high contrast in living cells and tumor-bearing animals. Based on the excellent performance of QL-HNO, we believe that this study provides a promising molecular tool for further understanding of HNO-related physiological and pathological progression.
Collapse
Affiliation(s)
- Fang-Yuan Qi
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Lei Qiao
- Central Laboratory of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou 221116, Jiangsu, China.
| | - Lan Peng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yu Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Chong-Hua Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xianjun Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
6
|
Zhou Y, Chen J, Cui Y, Tang L, Wu P, Yu P, Fu K, Sun Z, Liu Y. Azobenzene-based colorimetric and fluorometric chemosensor for nitroxyl releasing. Nitric Oxide 2024; 145:49-56. [PMID: 38364967 DOI: 10.1016/j.niox.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The precise release and characterization of nitroxyl (HNO) gas signaling molecule remain a challenge due to its short lifetime to date. To solve this issue, an azobenzene-based HNO donor (Azo-D1) was proposed as a colorimetric and fluorometric chemosensor for HNO releasing, to release both HNO and an azobenzene fluorescent reporter together. Specifically, the Azo-D1 has an HNO release half-life of ∼68 min under physiological conditions. The characteristic color change from the original orange to the yellow color indicated the decomposition of the donor molecule. In addition, the stoichiometry release of HNO was qualitatively and quantitatively verified through the classical phosphine compound trap. As compared with the donor molecule by itself, the decomposed product demonstrates a maximum fluorescence emission at 424 nm, where the increase of fluorescence intensity by 6.8 times can be applied to infer the real-time concentration of HNO. Moreover, cellular imaging can also be achieved using this Azo-D1 HNO donor through photoexcitation at 405 and 488 nm, where the real-time monitoring of HNO release was achieved without consuming the HNO source. Finally, the Azo-D1 HNO donor would open a new platform in the exploration of the biochemistry and the biology of HNO.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jiajun Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Yunxi Cui
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingjuan Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Peixuan Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Peng Yu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
7
|
Mishra V, Tripathi DK, Corpas FJ, Gupta R, Singh VP. Nitroxyl, the "prodigal son" of the NO family. PLANT CELL REPORTS 2024; 43:91. [PMID: 38466458 DOI: 10.1007/s00299-024-03190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity, Institute of Organic Agriculture, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
8
|
Chu JM, Baizhigitova D, Nguyen V, Zhang Y. Reusable HNO Sensors Derived from Cu Cyclam: A DFT Study on the Mechanistic Origin of High Reactivity and Favorable Conformation Changes and Potential Improvements. Inorg Chem 2024; 63:3586-3598. [PMID: 38307037 PMCID: PMC10880060 DOI: 10.1021/acs.inorgchem.3c04506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Nitroxyl (HNO) exhibits unique favorable properties in regulating biological and pharmacological activities. However, currently, there is only one Cu-based HNO sensor that can be recycled for reusable detection, which is a Cu cyclam derivative with a mixed thia/aza ligand. To elucidate the missing mechanistic origin of its high HNO reactivity and subsequent favorable conformation change toward a stable CuI product that is critical to be oxidized back by the physiological O2 level for HNO detection again, a density functional theory (DFT) computational study was performed. It not only reproduced experimental structural and reaction properties but also, more importantly, revealed an unknown role of the coordination atom in high reactivity. Its conformation change mechanism was found to not follow the previously proposed one but involve a novel favorable rotation pathway. Several newly designed complexes incorporating beneficial effects of coordination atoms and substituents to further enhance HNO reactivity while maintaining or even improving favorable conformation changes for reusable HNO detection were computationally validated. These novel results will facilitate the future development of reusable HNO sensors for true spatiotemporal resolution and repeated detection.
Collapse
Affiliation(s)
- Jia-Min Chu
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Dariya Baizhigitova
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Vy Nguyen
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| |
Collapse
|
9
|
Kang H, Shu W, Yu J, Wang Y, Zhang X, Zhang R, Jing J, Zhang X. Endoplasmic Reticulum-Targeted Two-Photon Fluorescent Probe for the Detection of Nitroxyl in a Parkinson's Disease Model. Anal Chem 2023; 95:6295-6302. [PMID: 37011139 DOI: 10.1021/acs.analchem.2c05127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Nitroxyl (HNO) and endoplasmic reticulum (ER) stress are considered to play important effects in the administration of many pathological processes of Parkinson's disease (PD). However, the intricate relationship between the neurotoxicity of HNO and ER stress in the processes of PD is still unknown. To completely comprehend the pathogenic activity of HNO during ER stress and achieve early diagnosis of PD, developing sensitive tools for HNO sensing in vivo is essential. In this work, a two-photon fluorescent probe (KD-HNO) was developed with highly selective and sensitive (7.93 nM) response for HNO in vitro. Then, utilizing KD-HNO, we found that HNO levels were distinctly increased in tunicamycin-stimulated PC12 cells, which are characterized by ER stress and PD features. Most importantly, we detected a considerable increase in HNO levels in the brains of PD-model mice, indicating a positive correlation between PD and HNO levels for the first time. Collectively, these findings revealed that KD-HNO is an excellent tool not only for understanding the biological effects of HNO in pathological processes of PD but also for early PD diagnosis.
Collapse
Affiliation(s)
- Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Jin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunpeng Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoli Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Rubo Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Chen H, Lee G, Chien S, Lee C. Light‐induced
NO
release from iron‐nitrosyl‐thiolato complex: The role of noncovalent thiol/thioether. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Huai‐Cheng Chen
- Department of Applied Science National Taitung University Taitung Taiwan
| | - Gene‐Hsiang Lee
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Su‐Ying Chien
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Chien‐Ming Lee
- Department of Applied Science National Taitung University Taitung Taiwan
| |
Collapse
|
11
|
Alvarez MA, García ME, García-Vivó D, Guerra AM, Ruiz MA, Falvello LR. Chemistry of a Nitrosyl Ligand κ:η-Bridging a Ditungsten Center: Rearrangement and N–O Bond Cleavage Reactions. Inorg Chem 2022; 61:14929-14933. [PMID: 36106823 PMCID: PMC9516685 DOI: 10.1021/acs.inorgchem.2c02216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The novel nitrosyl-bridged
complex [W2Cp2(μ-PtBu2)(μ-κ:η-NO)(CO)(NO)](BAr4) [Ar = 3,5-C6H3(CF3)2] was prepared in a multistep procedure starting from the
hydride [W2Cp2(μ-H)(μ-PtBu2)(CO)4] and involving the
new complexes [W2Cp2(μ-PtBu2)(CO)4](BF4), [W2Cp2(μ-PtBu2)(CO)2(NO)2](BAr4), and [W2(μ-κ:η5-C5H4)Cp(μ-PtBu2)(CO)(NO)2] as intermediates,
which follow from reactions with HBF4·OEt2, NO, and Me3NO·2H2O, respectively. The
nitrosyl-bridged cation easily added chloride upon reaction with [N(PPh3)2]Cl, with concomitant NO rearrangement into the
terminal coordination mode, to give [W2ClCp2(μ-PtBu2)(CO)(NO)2], and underwent N–O and W–W bond cleavages
upon the addition of CNtBu to give the
mononuclear phosphinoimido complex [WCp(NPtBu2)(CNtBu)2](BAr4). Another N–O bond cleavage was induced upon photochemical
decarbonylation at 243 K, which gave the oxo- and phosphinito-bridged
nitrido complex [W2Cp2(N)(μ-O)(μ-OPtBu2)(NO)](BAr4), likely
resulting from a N–O bond cleavage step following decarbonylation. The π binding of the NO ligand in the cation
[W2Cp2(μ-PtBu2)(μ-κ:η-NO)(CO)(NO)]+ facilitates
the addition of ligands with concomitant rearrangement of the bridging
nitrosyl into the terminal coordination mode and also facilitates
cleavage of the N−O bond of that ligand at low temperature
possibly in two different ways: either through the oxidative addition
of this ligand to the dimetal center or through deoxygenation by another
ligand.
Collapse
Affiliation(s)
- M. Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, Oviedo E33071, Spain
| | - M. Esther García
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, Oviedo E33071, Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, Oviedo E33071, Spain
| | - Ana M. Guerra
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, Oviedo E33071, Spain
| | - Miguel A. Ruiz
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, Oviedo E33071, Spain
| | - Larry R. Falvello
- Instituto de Nanociencia y Materiales de Aragón, Departamento de Química Inorgánica, CSIC, Universidad de Zaragoza, Zaragoza E-50009, Spain
| |
Collapse
|
12
|
Kaesemeyer W, Suvorava T. Nitric Oxide Is the Cause of Nitroglycerin Tolerance: Providing an Old Dog New Tricks for Acute Heart Failure. J Cardiovasc Pharmacol Ther 2022; 27:10742484221086091. [DOI: 10.1177/10742484221086091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our paper highlights the past 50 years of research focusing solely on tolerance involving nitroglycerin (glyceryl trinitrate, GTN). It also identifies and discusses inconsistencies in previous mechanistic explanations that have failed to provide a way to administer GTN continuously, free of limitations from tolerance and without the requirement of a nitrate-free interval. We illustrate, for the first time in 135 years, a mechanism whereby nitric oxide, the mediator of vasodilation by GTN, may also be the cause of tolerance. Based on targeting superoxide from mitochondrial complex I, uncoupled by glutathione depletion in response to nitric oxide from GTN, a novel unit dose GTN formulation in glutathione for use as a continuous i.v. infusion has been proposed. We hypothesize that this will reduce or eliminate tolerance seen currently with i.v. GTN. Finally, to evaluate the new formulation we suggest future studies of this new formulation for the treatment of acute decompensated heart failure.
Collapse
Affiliation(s)
| | - Tatsiana Suvorava
- Institute of Pharmacology and Clinical Pharmacology, University Hospital, Duesseldorf, Germany
| |
Collapse
|
13
|
Bieza S, Mazzeo A, Pellegrino J, Doctorovich F. H 2S/Thiols, NO •, and NO -/HNO: Interactions with Iron Porphyrins. ACS OMEGA 2022; 7:1602-1611. [PMID: 35071856 PMCID: PMC8771695 DOI: 10.1021/acsomega.1c06427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 05/14/2023]
Abstract
In the past decade, gasotransmitters NO• and H2S have been thoroughly studied in biological contexts, as their biosynthesis and physiological effects became known. Moreover, an additional intricate crosstalk reaction scheme between these compounds and related species is thought to exist as part of the cascade signaling processes in physiological conditions. In this context, heme enzymes, as modeled by iron porphyrins, play a central role in catalyzing the key interconversions involved. In this work, iron porphyrin interactions with sulfide and nitric-oxide-related species are described. The stability and reactivity of mixed ternary systems are also described, and future perspectives are discussed.
Collapse
|
14
|
Gallego CM, Mazzeo A, Gaviglio C, Pellegrino J, Doctorovich F. Structure and Reactivity of NO/NO
+
/NO
−
Pincer and Porphyrin Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Carina Gaviglio
- Departamento de Física de la Materia Condensada Comisión Nacional de Energía Atómica, CAC-GIyANN Avenida General Paz 1499, San Martín Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| |
Collapse
|
15
|
Pramanik SK, Das A. Fluorescent probes for imaging bioactive species in subcellular organelles. Chem Commun (Camb) 2021; 57:12058-12073. [PMID: 34706371 DOI: 10.1039/d1cc04273d] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Luminescent molecular probes and nanoscale materials have become important tools in biosensing and bioimaging applications because of their high sensitivity, fast response, specificity, and methodological simplicity. In recent years, there has been a notable advancement in fluorescent probes that respond to the subtle changes in subcellular microenvironments (e.g., polarity, pH, and viscosity) or distribution of certain crucial biomarkers (e.g., reactive oxygen species, ions, amino acids, and enzymes). The dynamic fluctuations of these bio-molecules in subcellular microenvironments control cellular homeostasis, immunity, signal conduction, and metabolism. Their abnormal expressions are linked to various biological disorders and disease states. Thus, the real-time monitoring of such bioactive species is intimately linked to clinical diagnostics. Appropriately designed luminescent probes are ideally suited for desired organelle specificity, as well as for reporting intracellular changes in biochemicals/microenvironmental factors with the luminescence ON response. In this perspective, we review our recent work on the development of fluorescent probes for sensing and imaging within sub-cellular organelles. We have also discussed the design aspects for developing a prodrug with a fluorescent probe as an integral part of possible theranostic applications. An overview of the design principles, photophysical properties, detection mechanisms, current challenges, and potential future directions of fluorescent probes is presented in this feature article. We have also discussed the limitations and challenges of developing the solution platform for sensing technologies in clinical diagnostics.
Collapse
Affiliation(s)
- Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India.
| | - Amitva Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741 246, West Bengal, India.
| |
Collapse
|