1
|
Huang Y, Wan T, Hong Y, Wang X, Jiang X, Yang 杨洋 Y, Gao H, Ji J, Wang L, Yang 杨阳 Y, Li X, Wang H. Impact of NAFLD and Fibrosis on Adverse Cardiovascular Events in Patients With Hypertension. Hypertension 2025; 82:1012-1023. [PMID: 40265267 DOI: 10.1161/hypertensionaha.124.24252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common comorbidity in hypertension. However, the impact of NAFLD and related fibrosis on hypertension and its control of cardiovascular disease (CVD) and mortality outcomes remains unclear. METHODS Participants with hypertension were sourced from two cohorts, with 12 907 individuals from the National Health and Nutrition Examination Survey (NHANES) and 120 639 from the UK Biobank (UKBB). Mendelian randomization analyses explored the causal relationship among hypertension, NAFLD, and CVD. Cox regression models estimated the hazard ratios for CVD and mortality associated with NAFLD (defined by fatty liver index) and liver fibrosis (defined by fibrosis-4 index or NAFLD fibrosis score). RESULTS The NHANES documented 3376 deaths over a median follow-up of 8.5 years, and the UKBB documented 15 864 deaths, 4062 incident ischemic strokes, and 5314 incident myocardial infarctions over a median follow-up of 13.5 years. The hazard ratios for CVD and mortality increased in accordance with NAFLD grading (ischemic stroke, 1.16 [95% CI, 1.01-1.33]; myocardial infarction, 1.64 [95% CI, 1.44-1.86] in UKBB; and all-cause mortality, 1.29 [95% CI, 1.09-1.54] in NHANES). High-risk fibrosis increased the hazard ratios for all-cause mortality by 91% and ischemic stroke by 42% in patients with NAFLD in UKBB and for all-cause mortality by 95% in NHANES. NAFLD partially mediates the risk of hypertension for incident CVD and mortality (NHANES, 6.45% of all-cause mortality; UKBB, 5.17% of all-cause mortality; and 8.20% of myocardial infarction). CONCLUSIONS NAFLD and related liver fibrosis are associated with a higher risk of incident CVD and mortality in hypertensives. NAFLD and related liver fibrosis seem to partially mediate hypertension-induced CVD and mortality.
Collapse
Affiliation(s)
- Yanqiu Huang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health (Y.H., T.W., Y.H., Y.Y.[], X.L., H.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Tingya Wan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health (Y.H., T.W., Y.H., Y.Y.[], X.L., H.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Yuemei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health (Y.H., T.W., Y.H., Y.Y.[], X.L., H.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoyu Wang
- Division of Gastroenterology and Hepatology, National Health Commission Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Institute of Digestive Disease (X.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Xu Jiang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University of Medicine Affiliated Ninth People's Hospital (X.J., L.W.), Shanghai Jiao Tong University School of Medicine, China
| | | | - Hong Gao
- General Practice, Community Health Center of Huaqiao Town, Suzhou, China (H.G., J.J.)
| | - Juan Ji
- General Practice, Community Health Center of Huaqiao Town, Suzhou, China (H.G., J.J.)
| | - Liao Wang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University of Medicine Affiliated Ninth People's Hospital (X.J., L.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Yang Yang 杨阳
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health (Y.H., T.W., Y.H., Y.Y.[], X.L., H.W.), Shanghai Jiao Tong University School of Medicine, China
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD (Y.Y.[])
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health (Y.H., T.W., Y.H., Y.Y.[], X.L., H.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health (Y.H., T.W., Y.H., Y.Y.[], X.L., H.W.), Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
2
|
Caussy C, Vergès B, Leleu D, Duvillard L, Subtil F, Abichou-Klich A, Hervieu V, Milot L, Ségrestin B, Bin S, Rouland A, Delaunay D, Morcel P, Hadjadj S, Primot C, Petit JM, Charrière S, Moulin P, Levrero M, Cariou B, Disse E. Screening for Metabolic Dysfunction-Associated Steatotic Liver Disease-Related Advanced Fibrosis in Diabetology: A Prospective Multicenter Study. Diabetes Care 2025; 48:877-886. [PMID: 39887699 DOI: 10.2337/dc24-2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Screening for advanced fibrosis (AF) resulting from metabolic dysfunction-associated steatotic liver disease (MASLD) is recommended in diabetology. This study aimed to compare the performance of noninvasive tests (NITs) with that of two-step algorithms for detecting patients at high risk of AF requiring referral to hepatologists. RESEARCH DESIGN AND METHODS We conducted a planned interim analysis of a prospective multicenter study including participants with type 2 diabetes and/or obesity and MASLD with comprehensive liver assessment comprising blood-based NITs, vibration-controlled transient elastography (VCTE), and two-dimensional shear-wave elastography (2D-SWE). AF risk stratification was determined by a composite criterion of liver biopsy, magnetic resonance elastography, or VCTE ≥12 kPa depending on availability. RESULTS Of 654 patients (87% with type 2 diabetes, 56% male, 74% with obesity), 17.6% had an intermediate/high risk of AF, and 9.3% had a high risk of AF. The area under the empirical receiver operating characteristic curves of NITs for detection of high risk of AF were as follows: fibrosis-4 index (FIB-4) score, 0.78 (95% CI 0.72-0.84); FibroMeter, 0.74 (0.66-0.83); FibroTest, 0.78 (0.72-0.85); Enhanced Liver Fibrosis (ELF) test, 0.82 (0.76-0.87); and SWE, 0.84 (0.78-0.89). Algorithms with FIB-4 score/VCTE showed good diagnostic performance for referral of patients at intermediate/high risk of AF to specialized care in hepatology. An alternative FIB-4 score/ELF test strategy showed a high negative predictive value (NPV; 88-89%) and a lower positive predictive value (PPV; 39-46%) at a threshold of 9.8. The FIB-4 score/2D-SWE strategy had an NPV of 91% and a PPV of 58-62%. The age-adapted FIB-4 score threshold resulted in lower NPVs and PPVs in all algorithms. CONCLUSIONS The FIB-4 score/VCTE algorithm showed excellent diagnostic performance, demonstrating its applicability for routine screening in diabetology. The ELF test using an adapted low threshold at 9.8 may be used as an alternative to VCTE.
Collapse
Affiliation(s)
- Cyrielle Caussy
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- Institut d'Hépatologie de Lyon, Lyon, France
| | - Bruno Vergès
- Department of Endocrinology, Diabetes and Metabolic Disorders, INSERM Unit, Lipides, Nutrition, Cancer (LNC) UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Damien Leleu
- Department of Biochemistry, INSERM Unit, LNC-UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Laurence Duvillard
- Department of Biochemistry, INSERM Unit, LNC-UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Fabien Subtil
- Hospices Civils de Lyon, Service de Biostatistique, Lyon, France
- UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Amna Abichou-Klich
- Hospices Civils de Lyon, Service de Biostatistique, Lyon, France
- UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Valérie Hervieu
- Biopathology of Tumors, Groupement Hospitalier Est (GHE) Hospital, Hospices Civils de Lyon, Bron, France
| | - Laurent Milot
- Service de Radiologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Bérénice Ségrestin
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Sylvie Bin
- Service Recherche et Epidémiologie Cliniques, Pôle de Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - Alexia Rouland
- Department of Endocrinology, Diabetes and Metabolic Disorders, INSERM Unit, Lipides, Nutrition, Cancer (LNC) UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Dominique Delaunay
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Pierre Morcel
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Samy Hadjadj
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Claire Primot
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Jean-Michel Petit
- Department of Endocrinology, Diabetes and Metabolic Disorders, INSERM Unit, Lipides, Nutrition, Cancer (LNC) UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Sybil Charrière
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- Fédération d'Endocrinologie, Diabète et Nutrition, Hôpital Cardiovasculaire, Hospices Civils de Lyon, Bron, France
| | - Philippe Moulin
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- Fédération d'Endocrinologie, Diabète et Nutrition, Hôpital Cardiovasculaire, Hospices Civils de Lyon, Bron, France
| | - Massimo Levrero
- Institut d'Hépatologie de Lyon, Lyon, France
- Service d'Hépatologie, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- INSERM U1350, UMR PaThLiv, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Cariou
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Emmanuel Disse
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
3
|
Garcia-Morena D, Fernandez-Cantos MV, Escalera SL, Lok J, Iannone V, Cancellieri P, Maathuis W, Panagiotou G, Aranzamendi C, Aidy SE, Kolehmainen M, El-Nezami H, Wellejus A, Kuipers OP. In Vitro Influence of Specific Bacteroidales Strains on Gut and Liver Health Related to Metabolic Dysfunction-Associated Fatty Liver Disease. Probiotics Antimicrob Proteins 2025; 17:1498-1512. [PMID: 38319537 PMCID: PMC12055940 DOI: 10.1007/s12602-024-10219-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial. The gut has been proposed as a major factor in health and disease, and over the last decade, bacterial strains with potentially beneficial effects on the host have been identified. In vitro cell models have been commonly used as an early step before in vivo drug assessment and can confer complementary advantages in gut and liver health research. In this study, several selected strains of the order Bacteroidales were used in a three-cell line in vitro analysis (HT-29, Caco-2, and HepG2 cell lines) to investigate their potential as new-generation probiotics and microbiota therapeutics. Antimicrobial activity, a potentially useful trait, was studied, and the results showed that Bacteroidales can be a source of either wide- or narrow-spectrum antimicrobials targeting other closely related strains. Moreover, Bacteroides sp. 4_1_36 induced a significant decrease in gut permeability, as evidenced by the high TEER values in the Caco-2 monolayer assay, as well as a reduction in free fatty acid accumulation and improved fatty acid clearance in a steatosis HepG2 model. These results suggest that Bacteroidales may spearhead the next generation of probiotics to prevent or diminish MAFLD.
Collapse
Affiliation(s)
- Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Silvia Lopez Escalera
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, 18K, 07743, Bachstraβe, Germany
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Pierluca Cancellieri
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem Maathuis
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Faculty of Biological Sciences, Friedrich Schiller University, 07745, Jena, Germany
| | - Carmen Aranzamendi
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Sahar El Aidy
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Anja Wellejus
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Zhang R, Weng G, Wang J, Lin Y, Chen Q, Ou Y, Yu J. Association between HALP and all-cause and specific mortality in US adult with nonalcoholic fatty liver disease cirrhosis: a cohort study of National Health and Nutrition Examination Survey 2005-2018. Eur J Gastroenterol Hepatol 2025; 37:775-783. [PMID: 40207475 DOI: 10.1097/meg.0000000000002959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) cirrhosis is a significant health concern with a major impact on global morbidity and mortality. This study investigates the association of hemoglobin, albumin, lymphocyte, and platelet (HALP) with all-cause mortality, cardiovascular disease mortality, and cancer-related mortality in patients with NAFLD cirrhosis. METHODS This retrospective cohort study used data from the National Health and Nutrition Examination Survey, assessing 11 550 adults. NAFLD cirrhosis was defined by a hepatic steatosis index greater than 36 and a NAFLD fibrosis score greater than 0.676 in participants without viral hepatitis or excessive alcohol use. The HALP score was categorized into low (<32), moderate (32-48.3), and high (>48.3). Logistic and weighted Cox regression analyses were conducted, along with subgroup and restricted cubic spline analyses. RESULTS Higher HALP scores were associated with lower all-cause mortality. Subgroup analyses revealed significant interactions with gender and age, showing a decreased risk of all-cause mortality in males and individuals aged 40 and above with higher HALP scores. A U-shaped relationship between HALP scores and all-cause mortality was observed. CONCLUSION The study demonstrates that HALP is associated with a lower risk of all-cause mortality in the NAFLD cirrhosis population, suggesting that HALP may be a useful predictor of mortality risk.
Collapse
Affiliation(s)
- Ruifeng Zhang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Gengjia Weng
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Jiahao Wang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Yiyin Lin
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Qitai Chen
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Yusen Ou
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Jing Yu
- Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Khan KS, Fawzy M, Chien P, Geary M, Bueno-Cavanillas A, Nunez-Nunez M, Zamora J, Bedaiwy M, Serour G, D'Hooghe T, Pacey A, Andrews J, Scott JR, Ball E, Mahran A, Aboulghar M, Wasim T, Abdelaleem M, Maheshwari A, Odibo A, Sallam H, Grandi G, Zhang J, Fernández-Luna JM, Jawid SA, Mignini LE, Khalaf Y. International multistakeholder consensus statement on post-publication integrity issues in randomized clinical trials by Cairo Consensus Group. Int J Gynaecol Obstet 2025; 169:1093-1115. [PMID: 39887735 DOI: 10.1002/ijgo.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
The number of retractions of randomized clinical trials (RCTs) following post-publication allegations of misconduct is increasing. To address this issue, we aimed to establish an international multistakeholder consensus on post-publication integrity concerns related to RCTs. After prospective registration (https://osf.io/njksm), we assembled a multidisciplinary stakeholder group comprising 48 participants from 18 countries across six continents, recruited using a curated list of journal editors and snowballing. An underpinning evidence synthesis collated 89 articles related to post-publication integrity concerns. Integrity statements related to RCTs created were subjected to anonymized two-round Delphi survey. A hybrid face-to-face-online consensus development meeting was convened to consolidate the consensus. The response rates of the two Delphi survey rounds were 65% (31/48) and 67% (32/ 48), respectively. There were 101 and 41 statements in the first and second Delphi rounds, respectively. After the two Delphi rounds and the consensus development meeting, consensus was achieved on 104 statements consolidated to 84 after merging, editing, and removing duplicates. This set of statements included general aspects (n = 9), journal instructions (n = 14), editorial and peer review (n = 7), correspondence and complaints (n = 4), investigations for integrity concerns (n = 16), decisions and sanctions (n = 9), critical appraisal guidance (n = 1), systematic reviews of RCTs (n = 8), and research recommendations (n = 16). In conclusion, this international multistakeholder consensus statement aimed to underpin policies for preventing post-publication integrity concerns in RCT publications and assist in improving investigations of misconduct allegations.
Collapse
Affiliation(s)
| | - Mohamed Fawzy
- IbnSina (Sohag), Banon (Assiut), Amshaj (Sohag), and Qena (Qena) IVF Centers, Egypt
| | | | | | | | - Maria Nunez-Nunez
- San Cecilio University Hospital, Ibs Granada, CIBERESP, Madrid, Spain
| | - Javier Zamora
- Hospital Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain
- Birmingham University, Birmingham, UK
| | - Mohamed Bedaiwy
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Gamal Serour
- Al-Azhar University and Egyptian IVF-ET Center, Cairo, Egypt
| | - Thomas D'Hooghe
- Global Medical Affairs Fertility, Research and Development, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Jeff Andrews
- BD Integrated Diagnostic Solutions, Franklin Lakes, NJ, USA
| | - James R Scott
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth Ball
- The Royal London Hospital, BartsHealth NHS Trust, London, UK
| | | | | | - Tayyiba Wasim
- Services Institute of Medical Sciences, Services Hospital, Lahore, Pakistan
| | | | - Abha Maheshwari
- Aberdeen Fertility Center, Aberdeen Maternity Hospital, NHS Grampian, Aberdeen, UK
| | - Anthony Odibo
- Washington University in Saint Louis, Saint Louis, Missouri, USA
| | | | - Giovanni Grandi
- University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Jim Zhang
- Shangai Jiao Tong University School of Medicine, Shangai, China
| | | | - Shaukat Ali Jawid
- Eastern Mediterranean Association of Medical Editors (EMAME), Karachi, Pakistan
| | - Luciano E Mignini
- Hospital Escuela Eva Perón de Granadero Baigorria, Grupo Oroño, Santa Fe, Argentina
| | - Yacoub Khalaf
- Guy's & St Thomas' Hospital Foundation Trust, London, UK
| |
Collapse
|
6
|
Yan LS, Kang JY, Gu CY, Qiu XY, Li JJ, Cheng BCY, Wang YW, Luo G, Zhang Y. Schisandra chinensis lignans ameliorate hepatic inflammation and steatosis in methionine choline-deficient diet-fed mice by modulating the gut-liver axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119801. [PMID: 40222688 DOI: 10.1016/j.jep.2025.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis is used as a traditional Chinese medicine to treat a variety of diseases. Schisandra chinensis lignans (SCL) are one of the most active components extracted from Schisandrae chinensis fructus, exhibit a broad array of pharmacological properties, especially anti-inflammatory and hepatic lipid-lowering effects, suggesting SCL may have potential anti-nonalcoholic steatohepatitis (NASH) ability. However, the therapeutic efficacy of SCL against NASH and the underlying mechanism of this action remains unclear. AIM OF THE STUDY In the current study, we aimed to investigate the anti-NASH action of SCL and explore the underlying mechanism in vitro and in vivo. We also assess the involvement of the gut-liver axis in the anti-NASH effects of SCL. METHODS Palmitic acid (PA)-treated HepG2 cells, mouse primary hepatocytes (MPHs) and methionine-choline deficient (MCD) diet-fed mice were selected as NASH models. ORO staining and qRT-PCR were performed to assess hepatic steatosis and inflammatory responses, respectively. Masson's trichrome staining was used to detect the liver fibrosis. Protein expression was detected by Western blotting or immunohistochemistry. The changes of gut microbiota were analyzed using 16S rDNA sequencing in mice. The levels of metabolites in liver and feces were measured by metabolomics. RESULTS The results showed that SCL treatment alleviated steatosis and inflammation in palmitic acid (PA)-treated HepG2 cells and mouse primary hepatocytes (MPHs). SCL treatment suppressed the phosphorylation of key components involved in NF-κB signaling and enhanced the expression of fatty acid oxidation (FAO)-related enzymes (e.g. CPT1, HMGCS2, and ACOX1) in PA-treated HepG2 cells. SCL could ameliorate hepatic steatosis and inflammation in NASH mice. SCL also ameliorated intestinal barrier injury and restructured the gut microbiota in NASH mice. SCL also modulated hepatic and colonic bile acid metabolism via FXR signaling. CONCLUSION These findings indicate that SCL treatment ameliorates hepatic inflammation and steatosis in NASH mice, potentially though to the suppression of NF-κB signaling and the promotion of fatty acid β-oxidation. Moreover, SCL could restore gut microbiota-mediated bile acid homeostasis via activation of FXR/FGF15 signaling. Our study presents a pharmacological rationale for using SCL in the management of NASH.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chun-Yu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jia-Jia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
7
|
El-Kassas M. Bridging the gap: increasing MENA representation in MASLD clinical trials. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01081-9. [PMID: 40410567 DOI: 10.1038/s41575-025-01081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Affiliation(s)
- Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
- Steatotic Liver Diseases Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt.
| |
Collapse
|
8
|
Salmanizadeh F, Sabzevari S, Shafieipour S, Zahedi MJ, Sarafinejad A. Challenges and needs in the management of non-alcoholic fatty liver disease from the perspective of gastroenterology and hepatology specialists: a qualitative study. BMC Gastroenterol 2025; 25:396. [PMID: 40405078 PMCID: PMC12096504 DOI: 10.1186/s12876-025-03921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 04/21/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and it poses a significant threat to public health. There is insufficient documented evidence about the problems and needs of patients and physicians in managing NAFLD. This study aimed to explore the challenges and needs in managing NAFLD from the perspective of gastroenterology and hepatology (GH) specialists. METHODS This qualitative study was conducted from January to September 2023. Fifteen Iranian GH specialists selected by purposive sampling. Data were collected through semi-structured interviews. The interviews were analyzed inductively using the Elo and Kyngas content analysis approach. The criteria proposed by Guba and Lincoln were used to ensure the study's validity. RESULTS The identified challenges were divided into thirteen main categories (34 subcategories and 117 primary codes), and the identified needs were divided into eight main categories (21 subcategories and 97 primary codes). The main categories of the challenges were chronic nature and time-consuming differential diagnosis, complex treatment process, defects in the patient management process, shortcomings of the healthcare system, the effect of unhealthy eating and cultural and social factors on the diet, incorrect attitude of patients, lack of knowledge and awareness of patients, lack of comprehensive treatment plans based on patients' conditions, defect in knowledge and awareness of physicians, inadequate cooperation of patients, defects in the process of recording and monitoring information and providing feedback, insufficient policies and plans in the prevention of NAFLD, and economic problems. The main categories of needs included developing a comprehensive treatment plan, updating physicians' knowledge and creating standard treatment protocols, changing attitudes and empowering patients, informing and educating patients, establishing multi-specialty clinics for NAFLD treatment, establishing peer support groups and facilitating communication, utilizing digital technology to track patient information and monitor their progress, and supportive, educational, prevention, and management policies in the treatment of NAFLD. CONCLUSIONS This study showed that managing NAFLD involves physical, psychological, nutritional, sports, economic, and social aspects and requires multidisciplinary clinical approaches, digital technologies, and supportive and educational policies. These findings have important implications that can help patients, physicians, and policymakers design better lifestyle prescriptions to manage NAFLD.
Collapse
Affiliation(s)
- Farzad Salmanizadeh
- Student Research Committee, Faculty of Management and Medical Information Science, Kerman University of Medical Sciences, Kerman, Iran
| | - Sakineh Sabzevari
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Shafieipour
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of medical Science, Kerman, Iran
| | - Mohammad Javad Zahedi
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of medical Science, Kerman, Iran
| | - Afshin Sarafinejad
- Clinical Informatics Research and Development Lab, Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Lv C, Shi K, Guo Y, Guo Z, Luo P, Wang L, Wu Z, Yu P. Emerging Roles of Periodontal Pathogen-Derived Outer Membrane Vesicles in NAFLD. Int Dent J 2025; 75:100825. [PMID: 40378508 DOI: 10.1016/j.identj.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 05/19/2025] Open
Abstract
The rising incidence of nonalcoholic fatty liver disease (NAFLD) poses a great socioeconomic burden worldwide. Also, periodontitis is the most common chronic inflammatory disease caused by a group of oral pathogens, affecting both oral health and systemic conditions, especially liver disease. Although accumulating evidence has elucidated an association between periodontal pathogens and NAFLD, the role of periodontal pathogen-derived outer membrane vesicles (OMVs) has not yet been clarified. In this comprehensive review, we aim to address this gap by summarising the progression and pathogenesis of NAFLD and revealing the relationship between periodontal disease and NAFLD multidimensionally. Additionally, this review sheds light on the multifunctional roles of periodontal pathogens OMVs and emphasises that periodontal pathogen-derived OMVs promote the development of NAFLD by stimulating Kupffer cells to produce inflammatory factors and inducing the activation of Hepatic stellate cells. However, it is still controversial whether periodontal pathogen-derived OMVs can be transferred to the liver through the bloodstream route or the oral-gut-liver axis. This highlights the pressing need for continued research efforts to develop new and optimised research schemes to observe the formation of the systemic distribution pathway of periodontal pathogen-derived OMVs. Finally, it is notable that there are currently no relevant clinical treatment guidelines to make specific provisions on controlling the level of periodontal pathogen-derived OMVs in patients with NAFLD. Guidelines developed based on our findings may contribute to the standardisation of practices. It can also provide effective strategies and potential therapeutic targets for NAFLD patients with periodontitis to alleviate the development of NAFLD diseases by inhibiting periodontal pathogens OMVs.
Collapse
Affiliation(s)
- Congcong Lv
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Kaikai Shi
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yadong Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zixin Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Pingchan Luo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhe Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Pei Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Dissayabutra T, Chuaypen N, Somnark P, Boonkaew B, Udomkarnjananun S, Kittiskulnam P, Charoenchittang P, Prombutara P, Tangkijvanich P. Characterization of gut dysbiosis and intestinal barrier dysfunction in patients with metabolic dysfunction-associated steatotic liver disease and chronic kidney disease: a comparative study. Sci Rep 2025; 15:15481. [PMID: 40319096 PMCID: PMC12049563 DOI: 10.1038/s41598-025-00237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
The mechanistic role of gut microbiota in metabolic dysfunction-associated steatotic liver disease (MASLD) and chronic kidney disease (CKD) is increasingly recognized. Despite their close association, comparative data regarding gut dysbiosis in these disorders are limited. This study included 22 healthy controls and 180 patients (90 MASLD, 60 CKD, and 30 both diseases with sex- and age-matched). Fecal bacterial 16 S ribosomal RNA sequencing and butyryl-CoA: acetate CoA transferase (BCoAT) gene expression were analyzed. Plasma intestinal fatty acid binding protein (I-FABP), representing intestinal barrier dysfunction, was assessed using the ELISA method. Our data showed that alpha and beta diversities of gut microbiota differed between MASLD and healthy controls. However, only beta diversities were different between CKD and healthy individuals. The MASLD and CKD groups displayed fewer SCFA-producing genera, particularly Bifidobacterium, than healthy controls. Fecal BCoAT levels were inversely correlated with eGFR and I-FABP levels. Patients with CKD had significantly enriched pathogenic bacteria, reduced BCoAT, and increased I-FABP levels versus MASLD. Combining significant bacterial genera discriminated MASLD from CKD with high diagnostic accuracy (AUC of 0.90). Among patients with both diseases, gut microbial alterations showed mixed characteristics of MASLD and CKD. These data highlighted the shared and distinct gut dysbiosis and related biomarkers, which could provide a better understanding of MASLD and CKD pathogenesis.
Collapse
Affiliation(s)
- Thasinas Dissayabutra
- Metabolic Diseases in Gut and Urinary System Research Unit (MeDGURU), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Metabolic Diseases in Gut and Urinary System Research Unit (MeDGURU), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornjira Somnark
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bootsakorn Boonkaew
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Kittiskulnam
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Internal Medicine-Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Pimpisa Charoenchittang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Mod Gut Co., Ltd., Bangkok, Thailand
| | - Pinidphon Prombutara
- Mod Gut Co., Ltd., Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Alhazzani W, AlMuhaidib S, Alotaibi HF, Alomaim WS, Alqahtani R, Sanai FM, Abaalkhail F, Alqahtani SA. A bibliometric analysis of a decade's research on metabolic dysfunction-associated steatotic liver disease in the Arab world. Saudi J Gastroenterol 2025; 31:157-167. [PMID: 40025997 DOI: 10.4103/sjg.sjg_431_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a significant global health challenge, with the Arab region exhibiting a markedly higher prevalence. We aim to evaluate MASLD research output, collaboration patterns, and funding impact in the Arab region over the last decade. METHODS We conducted a bibliometric analysis of MASLD research in 22 Arab countries (2014-2023) using Clarivate Analytics' InCites. Data on MASLD prevalence were extracted from the Global Burden of Disease, while population and economic data from the World Bank. We assessed MASLD-related publications, prevalence, collaboration patterns, and citation and funding impact. RESULTS Between 2014 and 2023, Arab countries contributed 844 publications (3.3% of global MASLD research). We identified positive correlations between MASLD-related publications and gross domestic product (GDP) ( rs = 0.825, P < 0.001), age-standardized prevalence ( rs = 0.627, P = 0.002), and population size ( rs = 0.509, P = 0.016). International collaborations accounted for 48.7% of these publications, with a citation impact of 15.7 compared to the global average of 23.7. Arab-funded MASLD-related publications constituted 19.4% of MASLD publications in the Arab world versus 42.3% globally funded. Citation impacts were similar between Arab-funded (30.6) and globally funded publications (30.3). Of the top 10 countries globally with the highest GDP, 47.8% of the MASLD publications received funding, yielding a citation impact of 33.5. CONCLUSION Despite the high MASLD prevalence, Arab countries exhibit lower research output, impact, and funding compared to global levels. Increased regional collaboration and investment in MASLD research are critical to addressing this disparity.
Collapse
Affiliation(s)
- Waleed Alhazzani
- Health Research Center, Ministry of Defense Health Services, Riyadh, Saudi Arabia
- Department of Critical Care, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Critical Care and Internal Medicine Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shadan AlMuhaidib
- Liver, Digestive, and Lifestyle Health Research Section, and Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haifa F Alotaibi
- Health Research Center, Ministry of Defense Health Services, Riyadh, Saudi Arabia
| | - Waleed S Alomaim
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rawan Alqahtani
- Department of Business Intelligence and Information Management, Rumah General Hospital, Riyadh Second Health Cluster, Ministry of Health, Riyadh, Saudi Arabia
| | - Faisal M Sanai
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal Abaalkhail
- Department of Medicine, Gastroenterology Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saleh A Alqahtani
- Liver, Digestive, and Lifestyle Health Research Section, and Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Younossi ZM, Razavi H, Sherman M, Allen AM, Anstee QM, Cusi K, Friedman SL, Lawitz E, Lazarus JV, Schuppan D, Romero-Gómez M, Schattenberg JM, Vos MB, Wong VWS, Ratziu V, Hompesch M, Sanyal AJ, Loomba R. Addressing the High and Rising Global Burden of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction-Associated Steatohepatitis (MASH): From the Growing Prevalence to Payors' Perspective. Aliment Pharmacol Ther 2025; 61:1467-1478. [PMID: 39967239 DOI: 10.1111/apt.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND The continuum of metabolic syndrome encompasses a spectrum of dysfunctions impacting obesity-linked insulin resistance, glucose homeostasis, lipid metabolism and pro-inflammatory immune responses. The global prevalence of metabolic diseases, including diabetes, chronic liver disease, cardiometabolic disease and kidney disease, has surged in recent decades, contributing significantly to population mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a leading cause of liver disease worldwide. MASLD poses a significant global health challenge with its rising prevalence, placing a substantial burden on healthcare systems, impacts patient well-being and incurs significant economic costs. Addressing MASLD requires a comprehensive understanding of its interconnected factors, including its prevalence, healthcare burden and economic implications. Lack of awareness, imprecise non-invasive diagnostic methods and ineffective preventive interventions are core components of the MASLD-related problem. AIM The aim of this article was to summarise the global burden of MASLD from the payer's perspective. METHODS We carried out a review of the global comprehensive burden of MASLD. These topics led to discussions and insights by an expert panel during the 7th Metabolic Continuum Roundtable meeting, which took place in November 2023. This meeting focused on the burden, patient-reported outcomes and health economics, from payor and societal perspectives, and aimed to identify opportunities for improving patient care, optimise resource allocation and mitigate the overall impact on individuals and society related to MASLD. During the roundtable, an emphasis emerged on the need for greater awareness and strategic deployment of diagnostic, therapeutic and preventative measures to address MASLD effectively. CONCLUSION The global burden of MASLD is high and growing. Prioritising the prevention of metabolic dysregulation and timely therapeutic interventions can yield a holistic strategy to combat MASLD, its progression and potentially lower disease costs. TRIAL REGISTRATION NCT06309992.
Collapse
Affiliation(s)
- Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Washington, DC, USA
| | - Homie Razavi
- Center for Disease Analysis Foundation, Lafayette, Colorado, USA
| | - Michael Sherman
- RA Capital Management, L.P., Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| | - Quentin M Anstee
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes & Metabolism, University of Florida, Gainesville, Florida, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jeffrey V Lazarus
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York, New York, USA
| | - Detlef Schuppan
- Mainz University, Mainz, Germany
- Germany & Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel Romero-Gómez
- Department of Medicine, UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), CIBEREHD, ISCIII, University of Seville, Seville, Spain
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Miriam B Vos
- Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vincent Wai-Sun Wong
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Vlad Ratziu
- Sorbonne Université and Pitié-Salpêtrière Hospital Paris, Paris, France
| | | | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology at UC San Diego, MASLD Research Center California, La Jolla, California, USA
| |
Collapse
|
13
|
Allen AM, Lazarus JV, Alkhouri N, Noureddin M, Wong VWS, Tsochatzis EA, de Avila L, Racila A, Nader F, Mark HE, Henry L, Stepanova M, Castera L, Younossi ZM. Global patterns of utilization of noninvasive tests for the clinical management of metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2025; 9:e0678. [PMID: 40304566 PMCID: PMC12045536 DOI: 10.1097/hc9.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Noninvasive tests (NITs) are used to risk-stratify metabolic dysfunction-associated steatotic liver disease. The aim was to survey global patterns of real-world use of NITs. METHODS A 38-item survey was designed by the Global NASH Council. Providers were asked about risks for advanced fibrosis, which NITs (cutoff values) they use to risk-stratify liver disease, monitor progression, and which professional guidelines they follow. RESULTS A total of 321 participants from 43 countries completed the survey (54% hepatologists, 28% gastroenterologists, and 18% other). Of the respondents, 85% would risk-stratify patients with type 2 diabetes, obesity (82%), or abnormal liver enzymes (73%). Among NITs to rule out significant or advanced fibrosis, transient elastography (TE) and fibrosis-4 (FIB-4) were most used, followed by NAFLD Fibrosis Score, Enhanced Liver Fibrosis, and magnetic resonance elastography. The cutoffs for ruling out significant fibrosis varied considerably between practices and from guidelines, with only 50% using TE <8 kPa, 65% using FIB-4 <1.30 for age <65, and 41% using FIB-4 <2.00 for age ≥65. Similar variability was found for ruling in advanced fibrosis, where thresholds of FIB-4 ≥2.67 and TE ≥10 kPa were used by 20% and 17%, respectively. To establish advanced fibrosis, 48% would use 2 NITs while 23% would consider 1 NIT, and 17% would confirm with liver biopsy. TE was used by >75% to monitor, and 66% would monitor (intermediate or high risk) annually. Finally, 65% follow professional guideline recommendations regarding NITs. CONCLUSIONS In clinical practice, there is variability in NIT use and their thresholds. Additionally, there is suboptimal adherence to professional societies' guidelines.
Collapse
Affiliation(s)
- Alina M. Allen
- The Global NASH Council, Washington, District of Columbia, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey V. Lazarus
- The Global NASH Council, Washington, District of Columbia, USA
- CUNY Graduate School of Public Health and Health Policy, New York, New York, USA
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Naim Alkhouri
- The Global NASH Council, Washington, District of Columbia, USA
- Arizona Liver Health, Chandler, Arizona, USA
| | - Mazen Noureddin
- The Global NASH Council, Washington, District of Columbia, USA
- Houston Methodist Hospital, Houston, Texas, USA
| | - Vincent Wai-Sun Wong
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Emmanuel A. Tsochatzis
- The Global NASH Council, Washington, District of Columbia, USA
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Leyla de Avila
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Andrei Racila
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Fatema Nader
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Henry E. Mark
- The Global NASH Council, Washington, District of Columbia, USA
| | - Linda Henry
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Maria Stepanova
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Laurent Castera
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Hepatology, Beaujon Hospital, Assistance Publique—Hôpitaux de Paris, Université Paris-Cité, Clichy, France
| | - Zobair M. Younossi
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Iruzubieta P, Crespo J. Breaking the silence: MASLD and the scarcity of data on the Roma population. Lancet Gastroenterol Hepatol 2025; 10:409-410. [PMID: 39947211 DOI: 10.1016/s2468-1253(25)00019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 04/14/2025]
Affiliation(s)
- Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Santander E-39008, Spain; Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute, Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Santander E-39008, Spain; Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute, Santander, Spain.
| |
Collapse
|
15
|
Tan EY, Danpanichkul P, Yong JN, Yu Z, Tan DJH, Lim WH, Koh B, Lim RYZ, Tham EKJ, Mitra K, Morishita A, Hsu YC, Yang JD, Takahashi H, Zheng MH, Nakajima A, Ng CH, Wijarnpreecha K, Muthiah MD, Singal AG, Huang DQ. Liver cancer in 2021: Global Burden of Disease study. J Hepatol 2025; 82:851-860. [PMID: 39481652 DOI: 10.1016/j.jhep.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND & AIMS The epidemiology of adult primary liver cancer continues to evolve, owing to the increasing prevalence of metabolic disease, rising alcohol consumption, advances in vaccination for HBV, and antiviral therapy for HCV. Disparities in care and the burden of liver cancer between populations persist. We assess trends in the burden of liver cancer and contributions by various etiologies across 204 countries and territories from 2010 to 2021. METHODS Utilizing the methodological framework of the Global Burden of Disease Study 2021, we analyzed global and regional temporal trends in incidence and mortality, and the contributions of various etiologies of liver disease. RESULTS In 2021, there were an estimated 529,202 incident cases and 483,875 deaths related to liver cancer. From 2010 to 2021, global liver cancer incident cases and deaths increased by 26% and 25%, respectively. Age-standardized incidence rates (ASIRs) and death rates (ASDRs) for liver cancer declined globally, but rose in the Americas and Southeast Asia. HBV remained the dominant cause of global incident liver cancer cases and deaths. MASLD (metabolic dysfunction-associated steatotic liver disease) was the only etiology of liver cancer with rising ASIRs and ASDRs. By contrast, ASIRs and ASDRs remained stable for alcohol-related liver cancer, and declined for HBV- and HCV-related liver cancer. CONCLUSIONS While age-adjusted incidence and deaths from liver cancer have started to decline, the absolute number of incident cases and deaths continues to increase. Population growth and aging contribute to the observed disconnect in the temporal trends of absolute cases and rates. Disparities remain, and the incidence and mortality associated with MASLD-related liver cancer continue to rise. IMPACT AND IMPLICATIONS Liver cancer remains a major cause of death globally, but its causes and burden in various regions are changing. This study highlights that new diagnoses and deaths related to liver cancer continue to rise. Age-adjusted death rates of liver cancer related to viral hepatitis are declining but remain high. By contrast, age-adjusted death rates of liver cancer related to MASLD (metabolic dysfunction-associated steatotic liver disease) are rising. Sustained efforts and resources are needed to eliminate viral hepatitis, reverse current trends in heavy alcohol use, and tackle the metabolic risk factors of MASLD.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Pojsakorn Danpanichkul
- Department of Internal Medicine, Texas Tech University Health Science Center, Lubbock, Texas, USA
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhenning Yu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Benjamin Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ryan Yan Zhe Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ethan Kai Jun Tham
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kartik Mitra
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Yao-Chun Hsu
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hirokazu Takahashi
- Liver Center, Faculty of Medicine, Saga University Hospital, Saga University, Saga, Japan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore; Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Vianna P, Mehrbod P, Chaudhary M, Eickenberg M, Wolf G, Belilovsky E, Tang A, Cloutier G. Unsupervised Test-Time Adaptation for Hepatic Steatosis Grading Using Ultrasound B-Mode Images. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:601-611. [PMID: 40138246 DOI: 10.1109/tuffc.2025.3555180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Ultrasound (US) is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its noninvasiveness and availability. Deep learning methods have attracted considerable interest in this field, as they are capable of learning patterns in a collection of images and achieve clinically comparable levels of accuracy in steatosis grading. However, variations in patient populations, acquisition protocols, equipment, and operator expertise across clinical sites can introduce domain shifts that reduce model performance when applied outside the original training setting. In response, unsupervised domain adaptation techniques are being investigated to address these shifts, allowing models to generalize more effectively across diverse clinical environments. In this work, we propose a test-time batch normalization (TTN) technique designed to handle domain shift, especially for changes in label distribution, by adapting selected features of batch normalization (BatchNorm) layers in a trained convolutional neural network model. This approach operates in an unsupervised manner, allowing robust adaptation to new distributions without access to label data. The method was evaluated on two abdominal US datasets collected at different institutions, assessing its capability in mitigating domain shift for hepatic steatosis classification. The proposed method reduced the mean absolute error in steatosis grading by 37% and improved the area under the receiver operating characteristic curves (AUC) for steatosis detection from 0.78 to 0.97, compared to nonadapted models. These findings demonstrate the potential of the proposed method to address domain shift in US-based hepatic steatosis diagnosis, minimizing risks associated with deploying trained models in various clinical settings.
Collapse
|
17
|
Boeckmans J, Hagström H, Cryer DR, Schattenberg JM. The importance of patient engagement in the multimodal treatment of MASLD. COMMUNICATIONS MEDICINE 2025; 5:148. [PMID: 40312453 PMCID: PMC12046057 DOI: 10.1038/s43856-025-00871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is often regarded in society as a disease caused by personal lifestyle and dietary choices. Healthcare providers who have empathy and are able to explain the disease trajectory can better engage with people with MASLD and actively work with them to improve their metabolic health on a sustainable basis. Non-invasive tests can assist in this process, but healthcare providers must ensure they explain their advantages and limitations. Discussing and setting lifestyle goals are priorities before initiating specific pharmacological treatment, since living a healthy lifestyle will remain the backbone of the multimodal management of MASLD. In this review, we discuss challenges and opportunities to actively engage with people living with MASLD in a multimodal treatment framework as a healthcare provider.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- In Vitro Liver Disease Modelling Team, Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jörn M Schattenberg
- Department of Medicine II, University Medical Center Homburg, Homburg and Saarland University, Saarbrücken, Germany.
- PharmaScienceHub (PSH) Saarland University, Saarbrücken, Germany.
- Centrum für geschlechtsspezifische Biologie und Medizin (CGBM), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
18
|
Gu Y, Guo C, Liu Z, Zhang Y, Han X, Zhang X, Zhao S, Wang H, Zhang T. The trend in incidence of non-alcoholic fatty liver disease and its impact on cirrhosis and liver cancer: An analysis from Global Burden of Disease 2021. Public Health 2025; 242:79-86. [PMID: 40037155 DOI: 10.1016/j.puhe.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
OBJECTIVES We aimed to recognize the burden of NAFLD and support public health policy development for its prevention and management. STUDY DESIGN A cross-sectional analysis of GBD 2021 results was conducted. METHODS We collected incidence data on NAFLD from 1990 to 2021 using Global Burden of Disease Study in 2021. Estimated annual percentage changes (EAPCs) in NAFLD age standardized incidence rate (ASR) were calculated to quantify the temporal trends in NAFLD ASR. Bayesian age-period-cohort models were constructed to project NAFLD incidence rates and cases up to 2050. Additionally, we assessed the percentage of cirrhosis and liver cancer attributable to NAFLD. RESULTS Globally, the newly-occurred cases of NAFLD increased by 94.49 % from 24, 856, 159 in 1990 to 48, 353, 272 in 2021. The case number will further increase to 78,602,984 in 2050, and ASR will increase from 5.93 per 1000 in 2021 to 7.26 per 1000 in 2050. The most pronounced increases were observed in young people and men. In 2021, NAFLD accounted for 82.7 % of cirrhosis and other chronic liver diseases and 8.0 % of liver cancer cases. CONCLUSIONS From 1990 to 2021, the incidence of NAFLD has been continuously increasing and is expected to continue rising until 2050. The increases in young people and men highlight their priority in future schedules. The rising proportions of cirrhosis and liver cancer caused by NAFLD further underscore the serious health risks.
Collapse
Affiliation(s)
- Yu Gu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chengnan Guo
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhenqiu Liu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Yujiao Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xinyu Han
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, China; Yiwu Research Institute, Fudan University, Yiwu, 200032, China.
| |
Collapse
|
19
|
Huang ZL, Zhang SB, Xu SF, Gu XN, Wu ZQ, Zhang Y, Li J, Ji LL. TSG attenuated NAFLD and facilitated weight loss in HFD-fed mice via activating the RUNX1/FGF21 signaling axis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01568-w. [PMID: 40307458 DOI: 10.1038/s41401-025-01568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by steatosis in hepatocytes and is now becoming the major cause of liver-related mortality. Fibroblast growth factor 21 (FGF21) is an endocrine hormone mainly secreted by the liver, which can bind to its receptor (FGFR) and co-receptor beta klotho (KLB) to form a receptor complex, exerting its lipid-lowering function. 2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG), a natural compound isolated from Polygonum multiflorum Thunb, has shown excellent activity in lowering lipid content and efficacy in improving NAFLD. In this study we investigated whether FGF21 was implicated in the therapeutic effect of TSG in NAFLD mice. NAFLD was induced in mice by feeding with a high-fat diet (HFD) for 12 weeks, and treated with TSG (20, 40 mg·kg-1·d-1, i.g.) during the last 4 weeks. We showed that TSG treatment significantly alleviated NAFLD in HFD-fed mice evidenced by reduced hepatic triglyceride (TG) and non-esterified fatty acids (NEFA), diminished lipid droplets and decreased NAFLD activity score (NAS) in liver tissues. We demonstrated that TSG treatment significantly increased the mRNA and protein levels of FGF21 in vitro and in vivo, and reduced lipid accumulation in both the liver and adipose tissues. Transcriptomics analysis revealed that TSG treatment significantly increased the nuclear translocation of a transcription factor RUNX1. Knockdown of Runx1 in HFD-fed mice eliminated the efficacy of TSG in alleviating NAFLD, reducing hepatic lipid accumulation and regulating FGF21 signaling pathway in liver and adipose tissues. In conclusion, TSG alleviates NAFLD by enhancing the FGF21-mediated lipid metabolism in a RUNX1-dependent manner.
Collapse
Affiliation(s)
- Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shao-Bo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shang-Fu Xu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xin-Nan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- Technology Center of Jinling Pharmaceutical Co., Ltd, Nanjing, 210009, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
20
|
Wu Q, Yang Y, Lin S, Geller DA, Yan Y. The microenvironment in the development of MASLD-MASH-HCC and associated therapeutic in MASH-HCC. Front Immunol 2025; 16:1569915. [PMID: 40370443 PMCID: PMC12074932 DOI: 10.3389/fimmu.2025.1569915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of obesity-related metabolic liver diseases, ranging from relatively benign hepatic steatosis to metabolic-associated steatohepatitis (MASH). With the changes in lifestyle, its incidence and prevalence have risen to epidemic proportions globally. In recent years, an increasing amount of evidence has indicated that the hepatic microenvironment is involved in the pathophysiological processes of MASH-induced liver fibrosis and the formation of hepatocellular carcinoma (HCC). The hepatic microenvironment is composed of various parenchymal and non-parenchymal cells, which communicate with each other through various factors. In this review, we focus on the changes in hepatocytes, cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-associated invariant T cells (MAIT), γδT cells, and gut microbiota during the progression of MASLD. Furthermore, we discuss promising therapeutic strategies targeting the microenvironment of MASLD-MASH-HCC.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixun Lin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Shen D, Song S, Hu J, Cai X, Zhu Q, Zhang Y, Ma R, Zhou P, Zhang Z, Hong J, Li N. The potential of spironolactone to mitigate the risk of nonalcoholic fatty liver disease in hypertensive populations: evidence from a cohort study. Eur J Gastroenterol Hepatol 2025:00042737-990000000-00523. [PMID: 40359267 DOI: 10.1097/meg.0000000000002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
OBJECTIVE While the link between nonalcoholic fatty liver disease (NAFLD) and hypertension is well recognized, the potential protective effects of the widely used antihypertensive medication, spironolactone, on NAFLD risk remain unclear. This study aimed to evaluate the impact of spironolactone on the development of NAFLD in hypertensive patients, shedding light on its potential broader clinical benefits beyond blood pressure control. METHODS A total of 7241 participants were included. Propensity score matching (1 : 4 ratio) was employed to minimize confounding factors, creating balanced groups of spironolactone users and nonusers. Multivariate Cox regression analysis and Kaplan-Meier survival analysis were used to evaluate the association between spironolactone use and NAFLD risk. Restricted cubic splines (RCS) were applied to assess the dose-response relationship, and subgroup and sensitivity analyses were performed to validate the robustness of the findings. RESULTS After matching, the study included 4110 participants (822 spironolactone users and 3288 nonusers). Spironolactone use was associated with a significantly lower risk of NAFLD, with a 16.3% reduction in risk compared with nonusers (hazard ratio: 0.821; 95% confidence interval: 0.714-0.944). The RCS analysis revealed that a cumulative spironolactone dose exceeding 635 mg*months was associated with a significant reduction in NAFLD risk. Subgroup and sensitivity analyses confirmed the consistency of these findings across various patient characteristics and conditions. CONCLUSION This study demonstrates a significant association between spironolactone use and a reduced risk of NAFLD in hypertensive patients, suggesting that it may have potential dual benefits in managing hypertension and protecting liver health.
Collapse
Affiliation(s)
- Di Shen
- NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Urumqi, Xinjiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
23
|
Yu Y, Yang Y, Li Q, Yuan J, Zha Y. Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods. Sci Rep 2025; 15:12382. [PMID: 40216893 PMCID: PMC11992218 DOI: 10.1038/s41598-025-96478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Early and accurate identification of patients at high risk of metabolic dysfunction-associated steatotic liver disease (MASLD) is critical to prevent and improve prognosis potentially. We aimed to develop and validate an explainable prediction model based on machine learning (ML) approaches for MASLD among the adult population. The national cross-sectional study collected data from the National Health and Nutrition Examination Survey from 2017 to 2020, consisting of 13,436 participants, who were randomly split into 70% training, 20% internal validation, and 10% external validation cohorts. MASLD was defined based on transient elastography and cardiometabolic risk factors. With 50 medical characteristics easily obtained, six ML algorithms were used to develop prediction models. Several evaluation parameters were used to compare the predictive performance, including the area under the receiver-operating-characteristic curve (AUC) and precision-recall (P-R) curve. The recursive feature elimination method was applied to select the optimal feature subset. The Shapley Additive exPlanations method offered global and local explanations for the model. The random forest (RF) model performed best in discriminative ability among 6 ML models, and the optimal 10-feature RF model was finally chosen. The final model could accurately predict MASLD in internal and external validation cohorts (AUC: 0.928, 0.918; area under P-R curve: 0.876, 0.863, respectively). The final model performed better than each of the traditional risk indicators for MASLD. An explainable 10-feature prediction model with excellent discrimination and calibration performance was successfully developed and validated for MASLD based on clinical data easily extracted using an RF algorithm.
Collapse
Affiliation(s)
- Yihao Yu
- Master of Finance, Australian National University, Canberra, Australia
| | - Yuqi Yang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qian Li
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
24
|
Song Z, Gu HQ, Xu C. Association of the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio with non-alcoholic fatty liver disease and hepatic steatosis in United States adults: insights from NHANES 2017-2020. Front Nutr 2025; 12:1540903. [PMID: 40290661 PMCID: PMC12021641 DOI: 10.3389/fnut.2025.1540903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Objective This study aimed to investigate the association between the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and NAFLD, as well as its relationship with hepatic steatosis and liver fibrosis, in a nationally representative sample of U.S. adults. Methods This cross-sectional study analyzed data from 3,529 participants from the National Health and Nutrition Examination Survey in 2017-2020. Multivariable logistic regression and subgroup analyses were used to assess the association between NHHR and NAFLD. Multivariate linear regression was employed to evaluate the relationship between NHHR and hepatic steatosis (controlled attenuation parameter) and liver fibrosis (liver stiffness measurement). Nonlinear relationships were explored through fitted smoothing curves and threshold effect analysis. Receiver operating curve (ROC) analysis was performed to compare the diagnostic performance of NHHR with body mass index (BMI), high-density lipoprotein cholesterol (HDL-C), and total cholesterol (TC). Results The study included 3,529 participants (mean age: 51.34 years, 95% CI: 49.97, 52.72), with 53.53% male. NHHR showed a significant positive association with NAFLD after adjusting for confounders (OR: 1.33, 95% CI: 1.24, 1.42). Subgroup analysis indicated a stronger association in females and individuals with normal weight. A nonlinear relationship was identified, with a significant positive association below an inflection point of 4 (OR: 1.52, 95% CI: 1.38, 1.68). NHHR was positively associated with hepatic steatosis but not with liver fibrosis. For NAFLD diagnosis, NHHR achieved an area under the curve (AUC) of 0.66, outperforming TC (AUC = 0.51) but indicating lower accuracy than BMI (AUC = 0.77) and HDL-C (AUC = 0.68). Conclusion NHHR is positively associated with NAFLD and hepatic steatosis in U.S. population, highlighting the important role of lipid control in the prevention and clinical management of NAFLD.
Collapse
Affiliation(s)
- Zhen Song
- Yancheng Binhai Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Hai-Qi Gu
- Yancheng Binhai Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Cheng Xu
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Hong J, Kim YH. Cutting-edge biotherapeutics and advanced delivery strategies for the treatment of metabolic dysfunction-associated steatotic liver disease spectrum. J Control Release 2025; 380:433-456. [PMID: 39923856 DOI: 10.1016/j.jconrel.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a condition with the potential to progress into liver cirrhosis or hepatocellular carcinoma, has become a significant global health concern due to its increasing prevalence alongside obesity and metabolic syndrome. Despite the promise of existing therapies such as thyroid hormone receptor-β (THR-β) agonists, PPAR agonists, FXR agonists, and GLP-1 receptor agonists, their effectiveness is limited by the complexity of the metabolic, inflammatory, and fibrotic pathways that drive MASLD progression, encompassing steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and reversible liver fibrosis. Recent advances in targeted therapeutics, including RNA interference (RNAi), mRNA-based gene therapies, monoclonal antibodies, proteolysis-targeting chimeras (PROTAC), peptide-based strategies, cell-based therapies such as CAR-modified immune cells and stem cells, and extracellular vesicle-based approaches, have emerged as promising interventions. Alongside these developments, innovative drug delivery systems are being actively researched to enhance the stability, precision, and therapeutic efficacy of these biotherapeutics. These delivery strategies aim to optimize biodistribution, improve target-specific action, and reduce systemic exposure, thus addressing critical limitations of existing treatment modalities. This review provides a comprehensive exploration of the underlying biological mechanisms of MASLD and evaluates the potential of these cutting-edge biotherapeutics in synergy with advanced delivery approaches to address unmet clinical needs. By integrating fundamental disease biology with translational advancements, it aims to highlight future directions for the development of effective, targeted treatments for MASLD and its associated complications.
Collapse
Affiliation(s)
- Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea; Cursus Bio Inc., Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea.
| |
Collapse
|
26
|
Huang H, Liu Z, Ruan J, Fang Z, Xu C. Laparoscopically confirmed endometriosis and the risk of incident NAFLD: a prospective cohort study. Reprod Biol Endocrinol 2025; 23:55. [PMID: 40205408 PMCID: PMC11983926 DOI: 10.1186/s12958-025-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND To investigate whether endometriosis is associated with the risk of incident nonalcoholic fatty liver disease (NAFLD). METHODS Data were retrieved from Nurses' Health Study II with participants followed up from 1995 to 2017. A total of 61,649 participants were included in this prospective cohort study. The exposure of this study was laparoscopically confirmed endometriosis. We performed Cox proportional hazard regression analyses to estimate the hazard ratio (HR) and 95% confidence interval (95% CI) of the association between endometriosis and NAFLD. RESULTS A total of 4,774 incident NAFLD cases were recorded during a 1,313,067 person-years of follow-up. In the multivariable adjusted model, laparoscopically confirmed endometriosis was positively associated with the risk of NAFLD (HR: 1.17, 95% CI: 1.07 - 1.29). The results of the mediation analyses revealed that the association was partly attributable to hysterectomy/oophorectomy (31.6% mediated, 95% CI: 18.8-47.9%), hypercholesterolemia, hypertension and infertility. Further analysis revealed that the interaction effect of age was significant for the association between endometriosis and NAFLD (P = 0.01). CONCLUSIONS Laparoscopically confirmed endometriosis was positively associated with the risk of incident NAFLD. Awareness of the potential NAFLD risk should be raised for clinicians and patients during the regular follow-up of endometriosis.
Collapse
Affiliation(s)
- Hangkai Huang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhening Liu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiaqi Ruan
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zejun Fang
- Sanmenwan Branch, The First Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, China
| | - Chengfu Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
27
|
Li Y, Pan T, Wang Y, Wang G, Wang F. The predictive value of triglyceride-glucose-high density lipoprotein-body mass index (TGH-BMI) for different degrees of hepatic steatosis and liver fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Nutr ESPEN 2025; 66:290-301. [PMID: 39863255 DOI: 10.1016/j.clnesp.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND & AIMS The triglyceride-glucose index (TyG) and triglyceride-glucose body mass index (TyG-BMI) have been identified as potential predictive factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, they do not include high density lipoprotein (HDL-C), which is closely related to lipid metabolism. Furthermore, there is a lack of comprehensive and longitudinal data to determine the cut-off points for different degrees of hepatic steatosis and liver fibrosis in MASLD. This study aimed to investigate the predictive capability of triglyceride-glucose-high density lipoprotein-body mass index (TGH-BMI) in determining hepatic steatosis and liver fibrosis in MASLD, as well as to establish the predictive cut-off points. METHODS We analyzed the relationships of TGH-BMI (TGH-BMI = ln [TG (mg/dL) ∗FBG (mg/dL)/HDL-C (mg/dL)] ∗ BMI (kg/m2)) with different degrees of hepatic steatosis and fibrosis in 35,114 participants who underwent health check-ups. A total of 2262 subjects without MASLD were selected for the analysis of cumulative hazard of hepatic steatosis and liver fibrosis in TGH-BMI dichotomous groups over a follow-up period of 1001 days. RESULTS Controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) demonstrated a consistent upward trend as TGH-BMI increased across quartile groups, as determined by One-way analysis of variance (P < 0.001). TGH-BMI and CAP, LSM exhibit distinct curve-like relationships between males and females when utilizing smoothing functions and conducting threshold effect analysis (P < 0.05). In males, prior to the inflection point at TGH-BMI = 177.733, there was a significant increase of 0.807 in CAP for every 1 unit increase in TGH-BMI (P < 0.05), after the inflection point, there was still an increase of 0.417 in CAP for every 1 unit increase in TGH-BMI (P < 0.05); There was no significant correlation between LSM and TGH-BMI before the first inflection point at TGH-BMI = 131.689 (P > 0.05) and after the second inflection point at TGH-BMI = 253.268 (P > 0.05). Between the first and the second inflection, LSM showed an increase of 0.015 for every 1 unit increase in TGH-BMI (P < 0.05). In females, before the inflection point at TGH-BMI = 94.686, there was a significant increase of 0.272 in CAP for every 1 unit increase in TGH-BMI (P < 0.05), after the inflection point, there was a notable change as CAP increased by 0.806 for every 1 unit increase in TGH-BMI (P < 0.05). There was no significant correlation between LSM and TGH-BMI before the inflection point at TGH-BMI = 118.098 (P > 0.05), after the inflection point, LSM showed an increase of 0.017 for every 1 unit increase in TGH-BMI (P < 0.05). Notably, TGH-BMI has been shown to be a strong predictor for the severity of hepatic steatosis and liver fibrosis in MASLD. The Area Under Curves (AUCs) for hepatic steatosis, moderate or above hepatic steatosis, severe hepatic steatosis and liver fibrosis in males were 0.845, 0.846, 0.882 and 0.668 respectively, the AUCs for hepatic steatosis, moderate or above hepatic steatosis, severe hepatic steatosis and liver fibrosis in females were 0.855, 0.895, 0.939 and 0.705 respectively (P < 0.05). In individuals without MASLD, the cumulative hazard of hepatic steatosis was found to be strongly associated with the dichotomy of increased TGH-BMI (TGH-BMID2: Hazard Ratio (HR) = 2.412, 95 % Confidence interval (CI): 2.0164-2.9071, P < 0.0001), while the same is true in liver fibrosis (TGH-BMID2: HR = 1.454, 95 % CI: 1.0633-1.9883, P = 0.0191). CONCLUSIONS The TGH-BMI demonstrates a strong predictive value for hepatic steatosis and liver fibrosis, with significantly different cut-off points for men and women. Therefore, it is important to consider the potential need for gender-specific cut-off points for triglyceride, glucose, high density lipoprotein and body mass index in clinical practice. In individuals without MASLD, a higher TGH-BMI is associated with an increased risk of developing MASLD in the future.
Collapse
Affiliation(s)
- Ying Li
- Department of Endocrinology, Hefei City First People's Hospital, Hefei 230001, Anhui, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Guojuan Wang
- Department of Endocrinology, Hefei City First People's Hospital, Hefei 230001, Anhui, China
| | - Fang Wang
- Department of the Health Management Center, The First Affiliated Hospital of USTC: Anhui Provincial Hospital, Hefei 230001, Anhui, China.
| |
Collapse
|
28
|
Wu W, Guo Y, Li Q, Jia C. Exploring the potential of large language models in identifying metabolic dysfunction-associated steatotic liver disease: A comparative study of non-invasive tests and artificial intelligence-generated responses. Liver Int 2025; 45:e16112. [PMID: 39526465 DOI: 10.1111/liv.16112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS This study sought to assess the capabilities of large language models (LLMs) in identifying clinically significant metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS We included individuals from NHANES 2017-2018. The validity and reliability of MASLD diagnosis by GPT-3.5 and GPT-4 were quantitatively examined and compared with those of the Fatty Liver Index (FLI) and United States FLI (USFLI). A receiver operating characteristic curve was conducted to assess the accuracy of MASLD diagnosis via different scoring systems. Additionally, GPT-4V's potential in clinical diagnosis using ultrasound images from MASLD patients was evaluated to provide assessments of LLM capabilities in both textual and visual data interpretation. RESULTS GPT-4 demonstrated comparable performance in MASLD diagnosis to FLI and USFLI with the AUROC values of .831 (95% CI .796-.867), .817 (95% CI .797-.837) and .827 (95% CI .807-.848), respectively. GPT-4 exhibited a trend of enhanced accuracy, clinical relevance and efficiency compared to GPT-3.5 based on clinician evaluation. Additionally, Pearson's r values between GPT-4 and FLI, as well as USFLI, were .718 and .695, respectively, indicating robust and moderate correlations. Moreover, GPT-4V showed potential in understanding characteristics from hepatic ultrasound imaging but exhibited limited interpretive accuracy in diagnosing MASLD compared to skilled radiologists. CONCLUSIONS GPT-4 achieved performance comparable to traditional risk scores in diagnosing MASLD and exhibited improved convenience, versatility and the capacity to offer user-friendly outputs. The integration of GPT-4V highlights the capacities of LLMs in handling both textual and visual medical data, reinforcing their expansive utility in healthcare practice.
Collapse
Affiliation(s)
- Wanying Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Guo
- Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Congzhuo Jia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
29
|
Kumar A, Arora A, Choudhury A, Arora V, Rela M, Jothimani DK, Mahtab MA, Devarbhavi H, Eapen CE, Goel A, Yaghi C, Ning Q, Chen T, Jia J, Zhongping D, Hamid SS, Butt AS, Jafri W, Shukla A, Tan SS, Kim DJ, Saraya A, Hu J, Sood A, Goyal O, Midha V, Pati GK, Singh A, Lee GH, Treeprasertsuk S, Thanapirom K, Mandot A, Maghade R, Lesmana RC, Ghazinyan H, Mohan Prasad VG, Dokmeci AK, Sollano JD, Abbas Z, Shrestha A, Lau GK, Payawal DA, Shiha GE, Duseja A, Taneja S, Verma N, Rao PN, Kulkarni AV, Karim F, Saraswat VA, Alam S, Chowdhury D, Kedarisetty CK, Saigal S, Sharma P, Yattoo GN, Koshy A, Patwa AK, Elbasiony M, Rathi PM, Maharshi S, Dayal VM, Jha AK, Kalista KF, Gani RA, Yuen MF, Singh V, Sargsyan VA, Huang CH, Mukewar SS, Xin S, Rajaram RB, Panackel C, Dadhich S, Sachdeva S, Kumar A, Behera S, Kamani L, Saithanyamurthi HV, Prasad B, Sarin SK. Impact of Diabetes, Drug-Induced Liver Injury, and Sepsis on Outcomes in Metabolic Dysfunction Associated Fatty Liver Disease-Related Acute-on-Chronic Liver Failure. Am J Gastroenterol 2025; 120:816-826. [PMID: 39016385 DOI: 10.14309/ajg.0000000000002951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/09/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) and its complication, MAFLD-related acute-on-chronic liver failure (MAFLD-ACLF), is rising. Yet, factors determining patient outcomes in MAFLD-ACLF remain understudied. METHODS Patients with MAFLD-ACLF were recruited from the Asian Pacific Association for the Study of the Liver-ACLF Research Consortium (AARC registry). The diagnosis of MAFLD-ACLF was made when the treating unit had identified the etiology of chronic liver disease as MAFLD (or previous nomenclature such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, or non-alcoholic steatohepatitis-cirrhosis). Patients with coexisting other etiologies of chronic liver disease (such as alcohol, hepatitis B virus, hepatitis C virus, etc.) were excluded. Data were randomly split into derivation (n = 258) and validation (n = 111) cohorts at a 70:30 ratio. The primary outcome was 90-day mortality. Only the baseline clinical, laboratory features and severity scores were considered. RESULTS The derivation group had 258 patients; 60% were male, with a mean age of 53. Diabetes was noted in 27% and hypertension in 29%. The dominant precipitants included viral hepatitis (hepatitis A virus and hepatitis E virus, 32%), drug-induced injury (drug-induced liver injury, 29%), and sepsis (23%). Model for End-Stage Liver Disease-Sodium (MELD-Na) and AARC scores on admission averaged 32 ± 6 and 10.4 ± 1.9. At 90 days, 51% survived. Nonviral precipitant, diabetes, bilirubin, international normalized ratio, and encephalopathy were independent factors influencing mortality. Adding diabetes and precipitant to MELD-Na and AARC scores, the novel MAFLD-MELD-Na score (+12 for diabetes, +12 for nonviral precipitant), and MAFLD-AARC score (+5 for each) were formed. These outperformed the standard scores in both cohorts. DISCUSSION Almost half of patients with MAFLD-ACLF die within 90 days. Diabetes and nonviral precipitants such as drug-induced liver injury and sepsis lead to adverse outcomes. The new MAFLD-MELD-Na and MAFLD-AARC scores provide reliable 90-day mortality predictions for patients with MAFLD-ACLF.
Collapse
Affiliation(s)
- Ashish Kumar
- Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Anil Arora
- Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | | | - Vinod Arora
- Institute of Liver and Biliary Sciences, New Delhi, India
| | | | | | - Mamun A Mahtab
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | | | | | | | - Qin Ning
- Tongji Hospital, Wuhan/Capital Medical University, Beijing, China
| | | | - Jidong Jia
- Tongji Hospital, Wuhan/Capital Medical University, Beijing, China
| | - Duan Zhongping
- Youan Hospital Capital Medical University, Beijing, China
| | | | - Amna S Butt
- Aga Khan University Hospital, Karachi, Pakistan
| | - Wasim Jafri
- Aga Khan University Hospital, Karachi, Pakistan
| | - Akash Shukla
- Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Seok S Tan
- Selayang Hospital University of Malaysia, Malaya, Malaysia
| | - Dong J Kim
- Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Anoop Saraya
- Institute of liver and Biliary Sciences, New Delhi, India
| | - Jinhua Hu
- The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Ajit Sood
- Dayanand Medical College, Ludhiana, India
| | | | | | | | - Ayaskant Singh
- SUM Ultimate Medicare and SUM Hospital, SOA University, Bhubaneswar, Odisha, India
| | - Guan H Lee
- National University Hospital, Kent Ridge, Queenstown, Singapore
| | | | | | | | | | - Rinaldi C Lesmana
- Digestive Disease and Oncology Center, Medistra Hospital, Jakarta, Indonesia
| | | | | | - Abdul K Dokmeci
- Ankara University School of Medicine, Hacettepe, Ankara, Turkey
| | - Jose D Sollano
- Cardinal Santos Medical Center, Metro Manila, Philippines
| | - Zaigham Abbas
- Dr. Ziauddin University Hospital, Clifton, Karachi, Pakistan
| | | | - George K Lau
- Humanity and Health Medical Centre, Hong Kong, SAR, China
| | | | - Gamal E Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH), Egypt
| | - Ajay Duseja
- Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Sunil Taneja
- Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Nipun Verma
- Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Padaki N Rao
- Asian Institute of Gastroentrology, Somajiguda, Hyderabad, India
| | - Anand V Kulkarni
- Asian Institute of Gastroentrology, Somajiguda, Hyderabad, India
| | - Fazal Karim
- Sir Salimullah Medical College, Mitford Hospital, Dhaka, Bangladesh
| | - Vivek A Saraswat
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shahinul Alam
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | | | - Sanjiv Saigal
- Max Super Speciallity Hospital, Saket, New Delhi, India
| | - Praveen Sharma
- Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Ghulam N Yattoo
- Sher-e-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Abraham Koshy
- VPS Lakeshore Hospital and Research Center Ltd, Kochi, Kerala, India
| | | | | | - Pravin M Rathi
- Topi Wala National (TN) Medical College and BYL Nair Charitable Hospital, Mumbai, India
| | | | - Vishwa M Dayal
- Indira Gandhi Institute of Medical Sciences (IGIMS), Bailey Road, Patna, Bihar, India
| | - Ashish K Jha
- Indira Gandhi Institute of Medical Sciences (IGIMS), Bailey Road, Patna, Bihar, India
| | | | - Rino A Gani
- Cipto Mangunkusumo General Hospital, Jakarta , Indonesia
| | - Man F Yuen
- Department of Medicine , University of Hong Kong, Hong Kong, China
| | - Virendra Singh
- Punjab Institute of Liver and Biliary Sciences, Mohali, Punjab, India
| | | | - Chien H Huang
- Chang Gung Medical Foundation Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | | | | | | | | | - Sunil Dadhich
- Dr. Sampuranand Medical College (SNMC), Jodhpur, Rajasthan, India
| | | | - Ajay Kumar
- Govind Ballabh Pant Hospital, New Delhi, India
| | | | | | | | - Babita Prasad
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv K Sarin
- Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
30
|
Li Y, Chen L, Sottas C, Patel ND, Raul MC, Papadopoulos V. Tspo Depletion Exacerbates Steatosis Through Fatty Acid Uptake. J Cell Mol Med 2025; 29:e70500. [PMID: 40195072 PMCID: PMC11975627 DOI: 10.1111/jcmm.70500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Previous studies demonstrated that Tspo loss causes simple steatosis (SS) in hepatocytes in vitro. However, its effect on SS in vivo remains unclear. In this study, we hypothesise that Tspo loss promotes early-stage MASLD. WT and Tspo KO rats were fed a Gubra Amylin NASH (GAN) diet for 8 weeks to induce SS. Tspo KO rats fed the GAN diet (KO GAN) exhibited increased insulin resistance, higher plasma cholesterol, and elevated hepatic triacylglycerol (TAG) levels, along with higher de novo lipogenesis (DNL) and free fatty acid (FFA) uptake, evidenced by increased fatty acid synthase (FASN) and CD36 expression. The Acyl-coenzyme A binding protein/diazepam-binding inhibitor-TSPO complex facilitated FA transport to the mitochondria, where carnitine palmitoyltransferase 1A (CPT1A) directed them for β-oxidation. TSPO interacted with CPT1A in the outer mitochondrial membrane, while its depletion increased CPT1A expression, boosting FA oxidation. Primary Tspo KO rat hepatocytes and stably overexpressed CD36 (CD36_OE) in Huh7 cells displayed impaired mitochondrial function and compromised mitochondrial membrane potential. KO GAN livers had significantly elevated AcCoA, which acetylated RAPTOR, activating mTORC1 to suppress autophagy. Overall, Tspo deficiency exacerbates the advancement of SS by enhancing CD36-mediated FFA uptake, elevating AcCoA levels, compromising mitochondrial function and impairing autophagy during the early stages of MASLD.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nrupa Dinesh Patel
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mahima Chandrakant Raul
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
31
|
Askeland A, Rasmussen RW, Gjela M, Frøkjær JB, Højlund K, Mellergaard M, Handberg A. Non-invasive liver fibrosis markers are increased in obese individuals with non-alcoholic fatty liver disease and the metabolic syndrome. Sci Rep 2025; 15:10652. [PMID: 40148373 PMCID: PMC11950363 DOI: 10.1038/s41598-025-85508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 03/29/2025] Open
Abstract
The need for early non-invasive diagnostic tools for chronic liver fibrosis is growing, particularly in individuals with obesity, non-alcoholic fatty liver disease (NAFLD), and the metabolic syndrome (MetS) since prevalence of these conditions is increasing. This case-control study compared non-invasive liver fibrosis markers in obesity with NAFLD and MetS (NAFLD-MetS, n = 33), in obese (n = 28) and lean (n = 27) control groups. We used MRI (T1 relaxation times (T1) and liver stiffness), circulating biomarkers (CK18, PIIINP, and TIMP1), and algorithms (FIB-4 index, Forns score, FNI, and MACK3 score) to assess their potential in predicting liver fibrosis risk. We found that T1 (892 ± 81 ms vs. 818 ± 64 ms, p < 0.001), FNI (15 ± 12% vs. 9 ± 7%, p = 0.018), CK18 (166 ± 110 U/L vs. 113 ± 41 U/L, p = 0.019), and MACK3 (0.18 ± 0.15 vs. 0.05 ± 0.04, p < 0.001) were higher in the NAFLD-MetS group compared with the obese control group. Moreover, correlations were found between CK18 and FNI (r = 0.69, p < 0.001), CK18 and T1 (r = 0.41, p < 0.001), FNI and T1 (r = 0.33, p = 0.006), MACK3 and FNI (r = 0.79, p < 0.001), and MACK3 and T1 (r = 0.50, p < 0.001). We show that liver fibrosis markers are increased in obese individuals with NAFLD and MetS without clinical signs of liver fibrosis. More studies are needed to validate the use of these non-invasive biomarkers for early identification of liver fibrosis risk.
Collapse
Affiliation(s)
- Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Mimoza Gjela
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
32
|
Krishnan A, Mukherjee D. Association of cardiovascular health metrics and metabolic associated fatty liver disease: Methodological limitations, and future directions. World J Hepatol 2025; 17:105635. [PMID: 40177198 PMCID: PMC11959666 DOI: 10.4254/wjh.v17.i3.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is an increasing global health challenge with substantial implications for metabolic and cardiovascular health (CVH). A recent study by Fu et al investigated the relationship between CVH metrics, specifically Life's Simple 7 and Life's Essential 8, and the prevalence of MAFLD. While this study offered important insights into the relationship between CVH and MAFLD, several methodological limitations, unaddressed confounding factors, and potential biases that could impact the interpretation of their findings should be considered. The study's cross-sectional nature restricted the ability to draw causal conclusions, and it did not fully account for potential confounding factors such as dietary habits, genetic predispositions, and medication use. Furthermore, relying on transient elastography to diagnose MAFLD introduces certain diagnostic limitations. Longitudinal study designs, advanced statistical modeling techniques, and diverse population groups should be utilized to strengthen future research. Exploring the mechanistic pathways that link CVH metrics to MAFLD through multi-omics approaches and interventional studies will be essential in formulating targeted prevention and treatment strategies. Structural equation modeling and machine learning techniques could provide a more refined analysis of these interrelated factors. Additionally, future research should employ longitudinal study designs and explore genetic and epigenetic influences to enhance our understanding of CVH and MAFLD interactions.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Department of Supportive Oncology, Atrium Health Levine Cancer, Charlotte, NC 28204, United States.
| | - Diptasree Mukherjee
- Department of Medicine, Apex Institute of Medical Science, Kolkata 700075, West Bengal, India
| |
Collapse
|
33
|
Hara E, Ohshima K, Takimoto M, Bai Y, Hirata M, Zeng W, Uomoto S, Todoroki M, Kobayashi M, Kozono T, Kigata T, Shibutani M, Yoshida T. Flutamide Promotes Early Hepatocarcinogenesis Through Mitophagy in High-Fat Diet-Fed Non-Obese Steatotic Rats. Int J Mol Sci 2025; 26:2709. [PMID: 40141351 PMCID: PMC11943065 DOI: 10.3390/ijms26062709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Flutamide (FL), a non-steroidal drug used for its antiandrogenic, anticancer, and disrupting endocrine properties, induces mitochondrial toxicity and drug metabolism enzymes and promotes hepatocarcinogenesis. The inhibition of mitophagy, leading to the accumulation of damaged mitochondria, is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the effects of FL in high-fat diet (HFD)-induced non-obese steatosis rats, categorized into four groups: basal diet (BD), BD + FL, HFD, and HFD + FL. The FL exacerbated HFD-induced steatosis and marginally increased preneoplastic lesions. To analyze hepatic preneoplastic lesions, we divided them into clusters based on the expression ratios of the mitophagy regulators LC3 and AMBRA1. The expression rates of LC3 and AMBRA1 in these precancerous lesions were classified into three clusters using k-means clustering. The HFD group exhibited an increased ratio of mitophagy inhibition clusters, as indicated by decreased LC3 and increased AMBRA1 levels in background hepatocytes and preneoplastic lesions. FL counteracted HFD-mediated mitophagy inhibition, as indicated by increased LC3 and decreased AMBRA1 levels in background hepatocytes. Our clustering analysis revealed that FL-induced mitophagy induction relied on Parkin expression. The present study underscores the significance of cluster analysis in understanding the role of mitophagy within small preneoplastic lesions and suggests that FL may potentially exacerbate NAFLD-associated hepatocarcinogenesis by affecting mitophagy.
Collapse
Affiliation(s)
- Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Kanami Ohshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Mio Takimoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Yidan Bai
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Mai Hirata
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Wen Zeng
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Mai Todoroki
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takuma Kozono
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan;
| | - Tetsuhito Kigata
- Laboratory of Veterinary Anatomy, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan;
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| |
Collapse
|
34
|
Lin YC, Wu CC, Li YE, Chen CL, Lin CR, Ni YH. Full-length 16S rRNA Sequencing Reveals Gut Microbiome Signatures Predictive of MASLD in children with obesity. BMC Microbiol 2025; 25:146. [PMID: 40091070 PMCID: PMC11912586 DOI: 10.1186/s12866-025-03849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The gut microbiota plays a crucial role in metabolic dysfunction-associated steatotic liver disease (MASLD). Next-generation sequencing technologies are essential for exploring the gut microbiome. While recent advancements in full-length 16S (FL16S) rRNA sequencing offer better taxonomic resolution, whether they establish stronger associations with the risk of MASLD remains to be determined. METHOD This study utilized long-read FL16S and short-read V3-V4 16S rRNA sequencing to profile gut microbiome compositions in age-, sex-, and BMI-matched case-control pairs of obese children with and without MASLD. A random forest predictive model was employed, using gut-microbiota features selected based on the top 35 most abundant taxa or a linear discriminant analysis score greater than 3. The model's performance was evaluated by comparing the area under the receiver operating characteristic curve (AUC) through a tenfold cross-validation method. RESULTS Subjects with MASLD exhibited significantly elevated serum alanine aminotransferase, triglycerides, and homeostasis model assessment of insulin resistance levels compared to controls. At the genus level, the gut microbiome compositions detected by both FL16S and V3-V4 sequencing were similar, predominantly comprising Phocaeicola and Bacteroides, followed by Prevotella, Bifidobacterium, Parabacteroides, and Blautia. The AUC for the model based on FL16S sequencing data (86.98%) was significantly higher than that based on V3-V4 sequencing data (70.27%), as determined by DeLong's test (p = 0.008). CONCLUSION FL16S rRNA sequencing data demonstrates stronger associations with the risk of MASLD in obese children, highlighting its potential for real-world clinical applications.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei City, Taiwan.
- Department of Healthcare Administration, Asia Eastern University of Science and Technology, New Taipei City, Taiwan.
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Chi-Chien Wu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yun-Er Li
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chun-Liang Chen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chia-Ray Lin
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Liang X, Lai K, Li X, Li Y, Xing Z, Gui S. Non-linear relationship between triglyceride glucose index and new-onset diabetes among individuals with non-alcoholic fatty liver disease: a cohort study. Lipids Health Dis 2025; 24:94. [PMID: 40089802 PMCID: PMC11910846 DOI: 10.1186/s12944-025-02518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The relationship between the triglyceride glucose (TyG) values and the development of diabetes in non-alcoholic fatty liver disease (NAFLD) patients is not yet well researched. This study aims to examine how the baseline TyG levels correlate with the incidence of new-onset diabetes in this specific cohort. METHODS This cohort included 2,506 normoglycemic Japanese adults with NAFLD who underwent routine health check-ups at Murakami Memorial Hospital between 2004 and 2015. Several statistical approaches, including restricted cubic splines and two-piecewise linear regression, were utilized to assess the relation between the TyG levels and diabetes risk. RESULTS Among the 2,506 participants (mean age: 44.78 ± 8.32 years; 81.09% male), 203 individuals (8.10%) developed diabetes over the course of the 11-year follow-up period. A U-shaped relationship was observed between the levels of TyG and the onset of diabetes, with an inflection point identified at a TyG value of 7.82 (95% CI: 7.72-8.00). Below this threshold, each one-unit elevation in TyG values reduced the probability of diabetes by 93% (HR = 0.07, 95% CI: 0.01-0.32, P = 0.001). Conversely, above this threshold, each one-unit elevation increased the probability of diabetes by 70% (HR = 1.70, 95% CI: 1.19-2.44, P = 0.004). CONCLUSIONS The findings validate a U-shaped association between TyG levels and new-onset diabetes in adults with NAFLD. Both low and high TyG levels increase diabetes probability in such a group.
Collapse
Affiliation(s)
- Xiaomin Liang
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kai Lai
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaohong Li
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ying Li
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Zemao Xing
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Shuiqing Gui
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
36
|
Li M, Qi L, Huang J, Li H, Cheng W, Shi Z, Jiang X, Zhou Y, Jiang W. The Novel Long-Acting Peptide S6-FA Attenuates Liver Fibrosis In Vitro and In Vivo. ACS OMEGA 2025; 10:9661-9674. [PMID: 40092780 PMCID: PMC11904669 DOI: 10.1021/acsomega.4c10956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Liver fibrosis can progress to cirrhosis and hepatocellular carcinoma. Currently, there is no effective drug for liver fibrosis. The peptide 6 (T6) is an endogenous peptide derived from human intrauterine adhesion tissues and has antifibrotic potential. Here, to improve the long-term efficacy and activity of T6, we conducted the rational modified of T6 through studying structure-activity, and synthesized a series of analogues. Among them, S6 and S6-FA exhibited optimal antihepatic fibrosis activity, and S6-FA had a stronger long-acting effect than T6 and S6. The two analogues inhibited the expression of α-SMA and Collagen 1 in TGF-β-induced LX2 cells model and CCl4-induced mouse model of liver fibrosis. Besides, we discovered that S6 and S6-FA remarkably reduced the AST and ALT serum levels. Mechanistic studies have demonstrated that analogues inhibited liver fibrosis through inhibiting Erk, Smad and P65 pathways. This study provided that the novel peptide S6 and S6-FA is potential candidate compounds for treating liver fibrosis.
Collapse
Affiliation(s)
- Mingmin Li
- College
of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Liang Qi
- State
Key Laboratory of Anti-Infective Drug Discovery and Development, School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou, Guangdong 510006, China
| | - Jin Huang
- Guangzhou
Dorsay Biotechnology Co., Ltd, Guangzhou, Guangdong 510006, China
| | - Haonan Li
- State
Key Laboratory of Anti-Infective Drug Discovery and Development, School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou, Guangdong 510006, China
| | - Wei Cheng
- State
Key Laboratory of Anti-Infective Drug Discovery and Development, School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou, Guangdong 510006, China
| | - Zihan Shi
- State
Key Laboratory of Anti-Infective Drug Discovery and Development, School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou, Guangdong 510006, China
| | - Xianxing Jiang
- State
Key Laboratory of Anti-Infective Drug Discovery and Development, School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou, Guangdong 510006, China
| | - Yifeng Zhou
- College
of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wanxiang Jiang
- Sichuan
Greentech Bioscience Co., Ltd, Meishan, Sichuan 620031, China
| |
Collapse
|
37
|
Ivashkin VT, Drapkina OM, Maevskaya MV, Raikhelson KL, Okovityi SV, Zharkova MS, Grechishnikova VR, Abdulganieva DI, Alekseenko SA, Ardatskaya MD, Bakulin IG, Bakulina NV, Bogomolov PO, Breder VV, Vinnitskaya EV, Geyvandova NI, Golovanova EV, Grinevich VB, Doshchitsin VL, Dudinskaya EN, Ershova EV, Kodzoeva KB, Kozlova IV, Komshilova KA, Konev YV, Korochanskaya NV, Kotovskaya YV, Kravchuk YA, Loranskaya ID, Maev IV, Martynov AI, Mekhtiev SN, Mishina EE, Nadinskaia MY, Nikitin IG, Osipenko MF, Ostroumova OD, Pavlov CS, Pogosova NV, Radchenko VG, Roytberg GE, Saifutdinov RG, Samsonov AA, Seliverstov PV, Sitkin SI, Tarasova LV, Tarzimanova AI, Tkacheva ON, Tkachenko EI, Troshina EA, Turkina SV, Uspenskiy YP, Fominykh YA, Khlynova OV, Tsyganova YV, Shamkhalova MS, Sharkhun OO, Shestakova MV. Clinical Guidelines of the Russian Society for the Study of the Liver, Russian Gastroenterological Association, Russian Society for the Prevention of Non-Communicable Diseases, Russian Association of Endocrinologists, Russian Scientific Medical Society of Therapists, National Society of Preventive Cardiology, Russian Association of Gerontologists and Geriatricians on Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2025; 35:94-152. [DOI: 10.22416/1382-4376-2025-35-1-94-152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
Abstract
Aim. The clinical guidelines are intended to provide information support for making decisions by gastroenterologists, general practitioners and internists that will improve the quality of medical care for patients with non-alcoholic fatty liver disease, taking into account the latest clinical data and principles of evidence-based medicine. Key points. Clinical guidelines contain information about current views on etiology, risk factors and pathogenesis of nonalcoholic fatty liver disease, peculiarities of its clinical course. Also given recommendations provide information on current methods of laboratory and instrumental diagnostics, invasive and non-invasive tools for nonalcoholic fatty liver disease and its clinical phenotypes assessment, approaches to its treatment, considering the presence of comorbidities, features of dispensary monitoring and prophylaxis. The information is illustrated with algorithms of differential diagnosis and physician's actions. In addition, there is information for the patient and criteria for assessing the quality of medical care. Conclusion. Awareness of specialists in the issues of diagnosis, treatment and follow-up of patients with nonalcoholic fatty liver disease contributes to the timely diagnosis and initiation of treatment, which in the long term will significantly affect their prognosis and quality of life.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. V. Maevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. L. Raikhelson
- Saint Petersburg State University;
Academician I.P. Pavlov First Saint Petersburg State Medical University
| | - S. V. Okovityi
- Saint Petersburg State Chemical Pharmaceutical University
| | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - M. D. Ardatskaya
- Central State Medical Academy of the Department of Presidential Affairs
| | - I. G. Bakulin
- North-Western State Medical University named after I.I. Mechnikov
| | - N. V. Bakulina
- North-Western State Medical University named after I.I. Mechnikov
| | - P. O. Bogomolov
- Russian University of Medicine;
Moscow Regional Research Clinical Institute
| | - V. V. Breder
- National Medical Research Center of Oncology named after N.N. Blokhin
| | | | | | | | | | | | | | | | - K. B. Kodzoeva
- National Medical Research Center for Transplantology and Artificial Organs named after Academician V.I. Shumakov
| | - I. V. Kozlova
- Saratov State Medical University named after V.I. Razumovsky
| | | | | | | | | | | | | | | | | | - S. N. Mekhtiev
- Academician I.P. Pavlov First Saint Petersburg State Medical University
| | | | - M. Yu. Nadinskaia
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. G. Nikitin
- N.I. Pirogov Russian National Research Medical University;
National Medical Research Center “Treatment and Rehabilitation Center”
| | | | | | - Ch. S. Pavlov
- I.M. Sechenov First Moscow State Medical University (Sechenov University);
Moscow Multidisciplinary Scientific and Clinical Center named after S.P. Botkin
| | - N. V. Pogosova
- National Medical Research Center of Cardiology named after Academician E.I. Chazov
| | | | - G. E. Roytberg
- N.I. Pirogov Russian National Research Medical University
| | - R. G. Saifutdinov
- Kazan State Medical Academy — Branch Campus of the Russian Medical Academy of Continuous Professional Education
| | | | | | - S. I. Sitkin
- North-Western State Medical University named after I.I. Mechnikov;
V.A. Almazov National Medical Research Center
| | | | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. N. Tkacheva
- N.I. Pirogov Russian National Research Medical University
| | | | | | | | - Yu. P. Uspenskiy
- Academician I.P. Pavlov First Saint Petersburg State Medical University;
Saint Petersburg State Pediatric Medical University
| | - Yu. A. Fominykh
- V.A. Almazov National Medical Research Center; Saint Petersburg State Pediatric Medical University
| | - O. V. Khlynova
- Perm State Medical University named after Academician E.A. Wagner
| | | | | | - O. O. Sharkhun
- N.I. Pirogov Russian National Research Medical University
| | | |
Collapse
|
38
|
Kan C, Zhang K, Wang Y, Zhang X, Liu C, Ma Y, Hou N, Huang N, Han F, Sun X. Global burden and future trends of metabolic dysfunction-associated Steatotic liver disease: 1990-2021 to 2045. Ann Hepatol 2025; 30:101898. [PMID: 40057034 DOI: 10.1016/j.aohep.2025.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly non-alcoholic fatty liver disease, is a growing global health challenge. This study examines the global burden of MASLD from 1990 to 2021 and projects data for 2045. MATERIALS AND METHODS Using data from the Global Burden of Disease (GBD) Study 2021, the study analyzed MASLD across 204 countries from 1990 to 2021, focusing on prevalence, incidence, deaths, and disability-adjusted life years (DALYs). Linear and Joinpoint regression assessed trends, an age-period-cohort model evaluated health outcomes, and a Bayesian model forecasted future cases. RESULTS In 2021, approximately 1.27 billion people globally had MASLD, with a higher prevalence in males (51.41 %). There were 48.35 million new cases, primarily in males (52.24 %). The age-standardized prevalence rate (ASPR) increased from 12,085.09 in 1990 to 15,018.07 per 100,000 in 2021 (AAPC 0.71). The age-standardized incidence rate (ASIR) rose from 475.54 to 593.28 per 100,000 (AAPC 0.71). MASLD caused 138,328 deaths, with females experiencing higher mortality (52.18 %). East Asia, South Asia, and North Africa/Middle East had the highest prevalence and incidence rates, while Western Europe showed the fastest growth. By 2045, ASIR is projected to reach 928.10 per 100,000, resulting in 667.58 million new cases, predominantly affecting males. CONCLUSIONS MASLD poses a significant burden with notable gender and regional disparities. The projected increase by 2045 underscores the need for urgent public health interventions and targeted strategies to mitigate this growing epidemic.
Collapse
Affiliation(s)
- Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Xiaofei Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Na Huang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China.
| |
Collapse
|
39
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
40
|
Xin X, Chen C, Xu X, Lv S, Sun Q, An Z, Chen Y, Xiong Z, Hu Y, Feng Q. Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9. Redox Biol 2025; 80:103499. [PMID: 39879738 PMCID: PMC11815699 DOI: 10.1016/j.redox.2025.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Caffeine (CAFF) is abundant in black coffee. As one of the most widely consumed beverages globally, coffee has been the focus of increasing clinical and basic research, particularly regarding its benefits in alleviating metabolic dysfunction-associated steatotic liver disease (MASLD). However, the therapeutic effects of CAFF on metabolic-associated steatohepatitis (MASH) and the underlying mechanisms remain unclear. In this study, we demonstrated that CAFF potently reduced hepatic steatosis, inflammation, and early-stage liver fibrosis in MASH mice induced by prolonged (36 weeks) high-fat high-carbohydrate (HFHC) diets and high-fat diets combined with carbon tetrachloride (CCl4) injections. By using multiple target-identifying strategies, including surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay, we identified dual-specificity phosphatase 9 (Dusp9) as a key therapeutic target, which was diminished by HFHC but restored with CAFF treatment. Dusp9 knockdown in vivo and in vitro exacerbated glycolipid metabolism disorders and stunningly counteracted the systemic therapeutic effects of CAFF in the MASH models. In addition, CAFF inactivated the ASK1-p38/JNK, a downstream signaling pathway of Dusp9, which regulates inflammation and apoptosis. Our study highlights the multifaceted benefits of CAFF in treating MASH by rescuing hepatic Dusp9 expression, thereby reversing glycolipid metabolism disorders, liver inflammation, and fibrosis. These findings provide experimental evidence supporting the clinical and daily use of CAFF and black coffee in managing MASH patients.
Collapse
Affiliation(s)
- Xin Xin
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Cheng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Sheng Lv
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Qinmei Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ziming An
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yi Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA
| | - Zhekun Xiong
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
41
|
Pan LX, Tian W, Huang ZH, Li JR, Su JY, Wang QY, Fan XH, Zhong JH. Identification of a liver fibrosis and disease progression-related transcriptome signature in non-alcoholic fatty liver disease. Int J Biochem Cell Biol 2025; 180:106751. [PMID: 39909111 DOI: 10.1016/j.biocel.2025.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD)-related liver fibrosis is closely associated with long-term outcomes of patients. This study aimed to establish a transcriptome signature to distinguish NAFLD patients with mild or advanced fibrosis and to monitor disease progression. Using least absolute shrinkage selection operator regression, we identified a signature of 11 hub genes by performing differential gene expression analysis in six bulk transcriptome profiles in the Gene Expression Omnibus database from liver fibrosis patients with different etiologies. Patients with NAFLD were classified using the 11-hub gene signature. Integrated analysis of signaling pathway enrichment, gene set enrichment, nearest template prediction, infiltration by hepatic stellate cells (HSCs) and pseudotime trajectories was performed on three bulk and one single-cell transcriptomes from NAFLD patients. Molecular features were compared between high-risk and low-risk groups, and associations were explored between hub gene signature expression and activation of HSCs. It was found that the high-risk group was characterized by advanced fibrosis stage, elevated risk for hepatocellular carcinoma, more significant infiltration by activated HSCs, as well as enrichment in signaling pathways related to fibrogenesis and NAFLD progression. Moreover, the 11-hub gene signature at the single-cell transcriptome level correlated with HSCs activation. In vitro experiments were conducted to evaluate the expression levels of hub genes, and IL6 was found to be up-regulated in activated LX-2 cells showing lipid accumulation. Our findings suggest that the 11-hub gene signature can help identify fibrosis stage in patients with NAFLD and detect disease progression. We also suggest that the role of IL6 in HSC activation deserves more investigation in the context of NAFLD.
Collapse
Affiliation(s)
- Li-Xin Pan
- Department of Microbiology, School of Preclinical Medicine, Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wei Tian
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning 530021, China; School of Life Sciences, Guangxi Medical University, Nanning 530021, China
| | - Zhi-Hao Huang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jian-Rong Li
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jia-Yong Su
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qiu-Yan Wang
- School of Life Sciences, Guangxi Medical University, Nanning 530021, China.
| | - Xiao-Hui Fan
- Department of Microbiology, School of Preclinical Medicine, Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning 530021, China.
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High, Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning 530021, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High, Frequency Tumors, Nanning 530021, China.
| |
Collapse
|
42
|
Zhong Q, Zhou R, Huang YN, Huang RD, Li FR, Chen HW, Wei YF, Liu K, Cao BF, Liao KY, Xu ZY, Wang SA, Wu XB. Frailty and risk of metabolic dysfunction-associated steatotic liver disease and other chronic liver diseases. J Hepatol 2025; 82:427-437. [PMID: 39218228 DOI: 10.1016/j.jhep.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Frailty is associated with multiple morbidities. However, its effect on chronic liver diseases remains largely unexplored. This study evaluated the association of frailty with the risk of incident metabolic dysfunction-associated steatotic liver disease (MASLD), cirrhosis, liver cancer, and liver-related mortality. METHODS A total of 339,298 participants without prior liver diseases from the UK Biobank were included. Baseline frailty was assessed by physical frailty and the frailty index, categorizing participants as non-frail, prefrail, or frail. The primary outcome was MASLD, with secondary outcomes, including cirrhosis, liver cancer, and liver-related mortality, confirmed through hospital admission records and death registries. RESULTS During a median follow-up of 11.6 years, 4,667 MASLD, 1,636 cirrhosis, 257 liver cancer, and 646 liver-related mortality cases were identified. After multivariable adjustment, the risk of MASLD was found to be higher in participants with prefrailty (physical frailty: hazard ratio [HR] 1.66, 95% CI 1.40-1.97; frailty index: HR 2.01, 95% CI 1.67-2.42) and frailty (physical frailty: HR 3.32, 95% CI 2.54-4.34; frailty index: HR 4.54, 95% CI 3.65-5.66) than in those with non-frailty. Similar results were also observed for cirrhosis, liver cancer, and liver-related mortality. Additionally, the frail groups had a higher risk of MASLD, which was defined as MRI-derived liver proton density fat fraction >5%, than the non-frail group (physical frailty: odds ratio 1.64, 95% CI 1.32-2.04; frailty index: odds ratio 1.48, 95% CI 1.30-1.68). CONCLUSIONS Frailty was associated with an increased risk of chronic liver diseases. Public health strategies should target reducing chronic liver disease risk in frail individuals. IMPACT AND IMPLICATIONS While frailty is common and associated with a poor prognosis in people with MASLD (metabolic dysfunction-associated steatotic liver disease) and advanced chronic liver diseases, its impact on the subsequent risk of these outcomes remains largely unexplored. Our study showed that frailty was associated with increased risks of MASLD, cirrhosis, liver cancer, and liver-related mortality. This finding suggests that assessing frailty may help identify a high-risk population vulnerable to developing chronic liver diseases. Implementing strategies that target frailty could have major public health benefits for liver-related disease prevention.
Collapse
Affiliation(s)
- Qi Zhong
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Yi-Ning Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Rui-Dian Huang
- Public Health Division, Hospital of Zhongluotan Town, Baiyun District, Guangzhou, China
| | - Fu-Rong Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Hao-Wen Chen
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Yan-Fei Wei
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Kuan Liu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Bi-Fei Cao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Kai-Yue Liao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Zheng-Yun Xu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Shi-Ao Wang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China.
| |
Collapse
|
43
|
El-Ashmawy NE, Al-Ashmawy GM, Kamel AA, Khedr EG. Unlocking the therapeutic potential of canagliflozin in NAFLD: Insights into AMPK/SIRT1-mediated lipophagy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167666. [PMID: 39837063 DOI: 10.1016/j.bbadis.2025.167666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising global health problem. The antidiabetic canagliflozin (CANA) has been proposed to ameliorate the metabolic abnormalities in NAFLD. AIM This study aimed to explore the possible anti-NAFLD effects of CANA in rats and HepG2 cells, focusing on AMPK/SIRT1-mediated lipophagy. METHODS Wistar rats were assigned to four groups: control group, NAFLD group, NAFLD+CANA group, and NAFLD+CANA+chloroquine (CQ) group, where CQ served as autophagy inhibitor. HepG2 cells were also divided into four groups: control group, NAFLD group, NAFLD+CANA group, and NAFLD+CANA+compound C (Comp C) group, where Comp C served as AMPK inhibitor. RESULTS The histopathological examination showed that CANA alleviated hepatic and intracellular lipid deposition in rats and HepG2 cells. CANA induced lipophagy by increasing LC3-II levels and lowering both p62 and perilipin 2 levels in rats and HepG2 cells, in addition to decreasing mTOR protein expression in rats' livers. These outcomes were associated with upregulation of the lipophagy regulator Rab7 and downregulation of the ER stress-related protein CHOP. CANA enhanced autophagic engulfment of lipid droplets while decreased ER stress and mitochondrial damage in rats' livers, as demonstrated by TEM. In rats, CANA improved hyperglycemia, hyperinsulinemia, dyslipidemia, and obesity. In HepG2 cells, CANA's effects were linked to increased phosphorylated AMPK level and enhanced SIRT1 level and expression. However, blocking lipophagy in rats and AMPK in HepG2 cells markedly weakened CANA's protective effects against NAFLD. CONCLUSION CANA ameliorated NAFLD via enhancing AMPK/SIRT1-mediated lipophagy, suggesting its potential as a therapeutic intervention for this metabolic disorder.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt; Department of Pharmacology & Biochemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt; Department of Biochemistry, Faculty of Pharmacy, Alsalam University in Egypt, Egypt
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
44
|
Mitsinikos T, Aw MM, Bandsma R, Godoy M, Ibrahim SH, Mann JP, Memon I, Mohan N, Mouane N, Porta G, Verduci E, Xanthakos S. FISPGHAN statement on the global public health impact of metabolic dysfunction-associated steatotic liver disease. J Pediatr Gastroenterol Nutr 2025; 80:397-407. [PMID: 39727048 DOI: 10.1002/jpn3.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024]
Abstract
As rates of obesity rise worldwide, incidence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly referred to as nonalcoholic fatty liver disease, is increasing, worsening the burden of healthcare systems. The council of the Federation of International Societies for Pediatric Gastroenterology, Hepatology, and Nutrition (FISPGHAN) identified the topic of MASLD epidemiology, treatment, and prevention as a global priority issue to be addressed by an expert team, with the goal to describe feasible and evidence-based actions that may contribute to reducing MASLD risk. The FISPGHAN member societies nominated experts in the field. The FISPGHAN council selected and appointed members of the expert team and a chair. The subtopics included in this manuscript were chosen through a consensus of the experts involved. We review the epidemiology, natural history, and screening and management. We further expand to relevant public health measures aimed at MASLD prevention, including identifying interventions that could reduce risk factors (environmental and iatrogenic), optimize maternal and newborn health, and support healthier lifestyles for older children and adolescents on a local, national, and international scale. While recognizing that various aspects of population health and public policy can shape MASLD risk, we also review what we can do on an individual level to support our patients to reduce the significant burden of this ever rising disease in pediatrics.
Collapse
Affiliation(s)
- Tania Mitsinikos
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Marion M Aw
- Division of Paediatric Gastroenterology, Nutrition, Hepatology and Liver Transplantation, National University of Singapore, Singapore
- Department of Paediatrics, National University Health System, Singapore
| | - Robert Bandsma
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcela Godoy
- Division of Pediatric Gastroenterology, Hospital Clinico San Borja Arriaran, Santiago, Chile
- Department of Pediatrics, University of Chile, Santiago, Chile
| | - Samar H Ibrahim
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jake P Mann
- Department of Immunology and immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Iqbal Memon
- Division of Gastroenterology, Hepatology, and Nutrition, Sir Syed College of Medical Sciences for Girls, Karachi, Pakistan
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta The Medicity, Gurugram, Haryana, India
| | - Nezha Mouane
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Academic Children's Hospital, Mohammed V University, Rabat, Morocco
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, São Paulo, Brazil
| | - Elvira Verduci
- Department of Pediatrics, Ospedale dei Bambini Vittore Buzzi, University of Milan, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
45
|
Fu W, Cheng GB, Zhao JL, Lv LY, Ding Y. Association of Life's Essential 8 and Life's Simple 7 with metabolic-associated fatty liver disease in the United States. World J Hepatol 2025; 17:97741. [PMID: 40027568 PMCID: PMC11866152 DOI: 10.4254/wjh.v17.i2.97741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Cardiovascular health (CVH) plays a crucial role in overall health, but its association with metabolic-associated fatty liver disease (MAFLD) remains unclear. AIM To investigate the relationship between CVH, measured using Life's Essential 8 (LE8) and Life's Simple 7 (LS7), and the prevalence of MAFLD. METHODS This cross-sectional study had a sample of 2234 individuals, representing approximately 120 million individuals in the United States. Baseline parameters were compared between the LE8 and LS7 groups. Logistic regression models were used to evaluate the relationship between LE8, LS7, and MAFLD, while taking into account confounding factors. The investigation employed restricted cubic splines to investigate non-linear associations. Subgroup analyses and sensitivity studies were performed to evaluate the strength and reliability of the results. RESULTS Higher LE8 and LS7 scores were significantly associated with a decreased risk of MAFLD, even after controlling for demographic, socioeconomic, and clinical variables. This association demonstrated a non-linear pattern, with the most dramatic risk reduction observed at higher CVH levels. Individual CVH components, notably healthy behaviors and factors, exhibited strong relationships with MAFLD. Subgroup analyses indicated consistent relationships across several demographics. Sensitivity tests utilizing other MAFLD definitions validated the robustness of the findings. CONCLUSION Higher adherence to CVH criteria, as indicated by LE8 and LS7 scores, is associated with a significantly lower risk of MAFLD. These results emphasize the need to advance CVH to control and avoid MAFLD.
Collapse
Affiliation(s)
- Wei Fu
- Department of Gastroenterology, The 925th of PLA Hospital, Guiyang 550009, Guizhou Province, China.
| | - Guo-Bin Cheng
- Department of Gastroenterology, 925 Hospital of PLA Joint Logistics Support Force, Guiyang 550009, Guizhou Province, China
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lin-Ya Lv
- Department of Gastroenterology, 925 Hospital of PLA Joint Logistics Support Force, Guiyang 550009, Guizhou Province, China
| | - Yao Ding
- Department of Gastroenterology, 925 Hospital of PLA Joint Logistics Support Force, Guiyang 550009, Guizhou Province, China
| |
Collapse
|
46
|
Kosmalski M, Mokros Ł. Non-Alcoholic Fatty Liver Disease in Everyday Clinical Practice: From Diagnosis to Therapy. Life (Basel) 2025; 15:363. [PMID: 40141708 PMCID: PMC11943963 DOI: 10.3390/life15030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently one of the most common hepatic disorders observed in daily medical practice [...].
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Łukasz Mokros
- Department of Child and Adolescent Psychiatry, Medical University of Lodz, 92-213 Lodz, Poland;
| |
Collapse
|
47
|
Liu J, Inchingolo R, Suryawanshi P, Guo BB, Kurepa D, Cortés RG, Yan W, Chi JH, Acosta CM, Jagła M, Sharma D, Sorantin E, Hsieh KS, Graziani G, Malta B, Woods P, Meng Q, You CM, Kruczek P, Kneyber M, Buda N, Smargiassi A, Lovrenski J, Ren XL, Guo YL, Qiu RX, Razak A, Feletti F. Guidelines for the use of lung ultrasound to optimise the management of neonatal respiratory distress: international expert consensus. BMC Med 2025; 23:114. [PMID: 39988689 PMCID: PMC11849336 DOI: 10.1186/s12916-025-03879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Respiratory distress is the main reason for the admission of infants to the neonatal intensive care unit (NICU). Rapid identification of the causes of respiratory distress and selection of appropriate and effective treatment strategies are important to optimise favourable short- and long-term patient outcomes. Lung ultrasound (LUS) technology has become increasingly important in this field. According to the scientific literature, LUS has high sensitivity (92-99%) and specificity (95-97%) in diagnosing neonatal respiratory distress syndrome. This diagnostic power helps guide timely interventions, such as surfactant therapy and mechanical ventilation. METHODS Our objective was to outline consensus guidelines among an international panel of experts on the use of LUS to support the decision-making process in managing respiratory distress in the NICU. We used a three-round Delphi process. In each Delphi round, 28 panellists rated their level of agreement with each statement using a four-point Likert scale. RESULTS In round 1, the panellists reviewed 30 initially proposed statements. In rounds 2 and 3, the statements were redeveloped based on the reviewers' comments, leading to the final approval of 18 statements. Among the 18 consensus statements, grade A was assigned a value of 10, grade B was assigned a value of 7, and grade C was assigned a value of 1. CONCLUSIONS A panel of experts agreed on 18 statements regarding managing infants with respiratory distress. Using LUS may help design future interventional studies and improve the benchmarking of respiratory care outcomes.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neonatology and NICU, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| | - Riccardo Inchingolo
- UOC Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pradeep Suryawanshi
- Department of Neonatology, Bharati Vidyapeeth University Medical College, Pune, India
| | - Bin-Bin Guo
- Department of Ultrasound, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dalibor Kurepa
- Cohen Children's Medical Center, Northwell Health, New York, USA
| | | | - Wei Yan
- Department of Ultrasound, Zhumadian Central Hospital of Henan Province, Zhumadian, China
| | - Jing-Han Chi
- Senior Department of Pediatrics, The Seventh Medical Centerof , PLA General Hospital, Beijing, China
| | - Cecilia M Acosta
- Department of Anesthesia, Hospital Privado de Comunidad, Mar del Plata, Argentina
| | - Mateusz Jagła
- Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Deepak Sharma
- Department of Neonatology, Cradle Children Hospital, Jaipur, Rajasthan, India
| | - Erich Sorantin
- Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| | - Kai-Sheng Hsieh
- Children's Hospital, China Medical University, Taichung, Taiwan
| | - Giulia Graziani
- Unità Operativa Di Pediatria E Neonatologia, Ospedale Santa Maria Delle Croci, Ausl Romagna, Ravenna, Italy
| | - Bruna Malta
- Unità Operativa Di Radiologia, Ospedale Santa Maria Delle Croci, Ausl Romagna, Ravenna, Italy
| | | | - Qiong Meng
- Department of Paediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chu-Ming You
- Department of Paediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Piotr Kruczek
- Department of Neonatology, Czerwiakowski Hospital at Siemiradzki St., Cracow, Poland
| | - Martin Kneyber
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Critical Care, Anaesthesiology, Perioperative & Emergency Medicine (CAPE), University of Groningen, Groningen, the Netherlands
| | - Natalia Buda
- Simulation Laboratory of Endoscopic and Minimally Invasive Techniques, Medical University of Gdansk, Gdansk, Poland
| | - Andrea Smargiassi
- Dipartimento Neuroscienze, UOC Pneumologia, Organi Di Senso E Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jovan Lovrenski
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Institute for Children and Adolescents Health Care of Vojvodina, Novi Sad, Serbia
| | - Xiao-Ling Ren
- Department of Neonatology and NICU, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
- Department of Neonatology, Beijing Chao-Yang District Maternal and Child Healthcare Hospital, Beijing, China
| | - Ya-Li Guo
- Department of Neonatology and NICU, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
- Department of Neonatology, Beijing Chao-Yang District Maternal and Child Healthcare Hospital, Beijing, China
| | - Ru-Xin Qiu
- Department of Neonatology, Beijing Chao-Yang District Maternal and Child Healthcare Hospital, Beijing, China
| | - Abdul Razak
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Francesco Feletti
- Dipartimento Di Medicina Traslazionale e per la Romagna, Università Di Ferrara, Ferrara, Italy
| |
Collapse
|
48
|
Jin L, Cui Y, Zhang Q, Xiong Y, Zheng X, Ye J, Zhang A, Xiao Z, Zhuang Z, Liang G, Hu X, Luo W, Zhu W. The natural product-derived JM-9 alleviates high-fat diet-induced fatty liver in mice by targeting MD2. Int Immunopharmacol 2025; 148:114053. [PMID: 39827672 DOI: 10.1016/j.intimp.2025.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), is gradually emerging as one of the most prevalent liver diseases worldwide. Previous research demonstrated the involvement of myeloid differentiation factor 2 (MD2), a co-receptor of TLR4, as a key mediator in MASLD pathogenesis. The current study identifies JM-9 as a novel MD2 inhibitor, and focuses on evaluating its potential therapeutic effects in mitigating MASLD progression. METHODS Drug affinity responsive target stability (DARTS) assay and surface plasmon resonance assay were utilized to evaluate the MD2-targeting specificity of JM-9. In vitro, hepatocytes and macrophages were stimulated with palmitic acid (PA) followed by JM-9 treatment. In vivo, a high-fat diet (HFD)-induced MASLD model was established and subjected to JM-9 administration during the last 2 months. RESULTS JM-9 directly bound the Phe76 residue of MD2 to disrupt the PA-induced MD2/TLR4 complex formation, thus further restoring AMPK phosphorylation and inhibiting NF-κB activation to reducing lipid accumulation and inflammation, respectively. In the HFD-mediated MASLD mouse model, JM-9 alleviated the binding between MD2 and TLR4 in the liver and counteracted hepatic TBK1 and p65 activation and AMPK suppression, thereby mitigating liver inflammation, steatosis, and fibrosis. CONCLUSION JM-9, as a novel MD2 inhibitor, holds potential as a viable treatment option for MASLD by playing a dual role in regulating both lipid metabolism and inflammation response.
Collapse
Affiliation(s)
- Leiming Jin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Yaqian Cui
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Qianhui Zhang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Yongqiang Xiong
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangsheng Zheng
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaxi Ye
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Anqi Zhang
- Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xiang Hu
- Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Weiwei Zhu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China.
| |
Collapse
|
49
|
Zeng T, Li F, Yang M, Wu Y, Cui W, Mou H, Luo X. Feasibility of Serum Galectin-1 as a Diagnostic Biomarker for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study on a Segment of the Chinese Population Using Convenience Sampling. Biomedicines 2025; 13:425. [PMID: 40002838 PMCID: PMC11853191 DOI: 10.3390/biomedicines13020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is commonly considered as a hepatic manifestation of metabolic syndrome, posing considerable public health and economic challenges due to its high prevalence. This study investigates the diagnostic potential of serum galectin-1 levels in MASLD patients. Methods: A total of 128 participants were analyzed for this study, comprising 68 healthy controls and 60 MASLD patients. The hepatic steatosis index (HSI) and fatty liver index (FLI) were calculated to evaluate the liver steatosis. Serum galectin-1 levels were measured using an enzyme-linked immunosorbent assay. We additionally conducted a comparative analysis of galectin-1 mRNA and protein expression levels in the liver tissue between the mouse models of MASLD, including ob/ob mice (n = 6), high-fat diet-fed C57 mice (n = 6), and the control group (n = 6). Results: Average serum galectin-1 levels significantly differed between groups, with lower values in the controls (p < 0.01). The frequency of MASLD increased with higher quartiles of galectin-1 levels (p < 0.01). The correlation analysis showed a positive relationship between serum galectin-1 and both HSI and FLI (p < 0.01). The multivariate logistic regression indicated that elevated galectin-1 was associated with an increased risk of MASLD (p < 0.01), yielding an area under the receiver operating characteristic curve for predicting MASLD at 0.745 (95% CI: 0.662-0.829). Hepatic galectin-1 levels were also elevated in the MASLD mouse model at both transcript and protein levels (p < 0.01). Conclusions: Serum galectin-1 can be used as a potential biomarker to help diagnose MASLD.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Fang Li
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Min Yang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Yao Wu
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
| | - Wei Cui
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Huaming Mou
- Department of Cardiovascular Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Xiaohe Luo
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China; (T.Z.); (F.L.); (Y.W.)
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| |
Collapse
|
50
|
Wang W, Qin J, Bai S, Tian J, Zhou Y, Qin X, Gao X. Integrative transcriptomics and lipidomics unravels the amelioration effects of Radix Bupleuri on non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119005. [PMID: 39490432 DOI: 10.1016/j.jep.2024.119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri (Bupleurum chinense DC.) is the most commonly used traditional Chinese medicine (TCM) for the treatment of liver diseases. While the effects of Radix Bupleuri (BR) on lipid-lowering and liver protection have been established, its role in the development of non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet remains unclear. AIM OF THE STUDY The objective of this study was to evaluate the alleviation effects of the active fraction of BR on NAFLD in vivo and to explore the underlying mechanisms through an analysis of liver transcriptome and lipidomics. MATERIALS AND METHODS The NAFLD model was established in SD rats by administering a high-fat diet (HFD) for 8 weeks. Subsequently, the NAFLD model rats were continuously gavaged with different polarity fractions of BR (25 g/kg/d) and melatonin (MT) (30 mg/kg/d) for an additional 6 weeks to assess therapeutic effects. The potential mechanism of the low polarity fraction of BR (LBR) in treating NAFLD was investigated through hepatic transcriptome analysis, non-targeted lipidomics, RT-qPCR, protein-protein interaction (PPI) network construction, molecular docking, and Western blotting, aiming to elucidate the underlying mechanisms by which LBR may ameliorate NAFLD. RESULTS These results demonstrated that LBR significantly alleviated the effects of HFD-induced NAFLD, as evidenced by reductions in body weight (BW), liver weight (LW), and epididymal fat weight (EFW) compared to model rats and other polarity fractions of BR. Furthermore, LBR notably down-regulated serum and liver levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), while up-regulating high-density lipoprotein cholesterol (HDL-C) in serum. Mechanistically, liver transcriptome analysis indicated that fatty acid metabolism may be a crucial pathway for the improvement of NAFLD following LBR treatment. Lipidomics data suggested that LBR can modulate the metabolic profile in NAFLD rats. Enrichment analysis revealed that glycerophospholipid and glycerolipid metabolism might be key pathways involved in the development of NAFLD. RT-qPCR analysis demonstrated that LBR could regulate the expression of lipid-related genes in these critical pathways. Additionally, Spearman correlation analysis showed a strong relationship between lipid metabolic biomarkers, pathological indices, and lipid-related genes. Moreover, protein-protein interaction (PPI) network and molecular docking analyses identified seven key targets with six ingredients of LBR exhibiting good binding capacity (<-5.0 kcal/mol). Finally, Western blotting analysis indicated that LBR up-regulates the expression levels of PPARα, CPT1, and FABP1 while down-regulating the expression levels of SREBF1 and SCD1, thereby improving metabolism and exerting a lipid-lowering effect. CONCLUSION In conclusion, the present research elucidated the lipid-lowering mechanisms of the active fractions of BR. Both BR and LBR presented themselves as promising candidates for the development of novel pharmacological agents targeting NAFLD. LBR effectively ameliorated lipid disturbances associated with HFD-induced NAFLD by modulating the metabolism of fatty acids, cholesterol, glycerolipid, and glycerophospholipids. Consequently, LBR held significant potential for development as an effective lipid-lowering therapeutic.
Collapse
Affiliation(s)
- Weiyu Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Jiaxin Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Shuaidong Bai
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|