1
|
Dąbrowska AM, Dudka J. Fexaramine as the intestine-specific farnesoid X receptor agonist: A promising agent to treat obesity and metabolic disorders. Drug Discov Today 2025; 30:104386. [PMID: 40409402 DOI: 10.1016/j.drudis.2025.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 05/08/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Fexaramine, a gut-restricted farnesoid X receptor (FXR) agonist, promotes glucose and lipid homeostasis, improves insulin sensitivity, promotes white adipose tissue browning, and stimulates nonshivering thermogenesis. Enhancement in energy expenditure due to an increase in amount of energy burned by brown and 'beige' adipocytes results in subsequent weight loss. Fexaramine is poorly absorbed into circulation when delivered orally, which limits systemic FXR activation and toxicity. An increase in β3-adrenoceptor signaling, activation of Takeda G protein-coupled receptor 5/glucagon-like peptide-1 (TGR5/GLP-1) signaling, and induction of fibroblast growth factor (FGF)-19/FGF-15 play crucial roles in fexaramine metabolic actions. Intestinal FXR activation is a promising, potentially safe approach for treating obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Anna Maria Dąbrowska
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland; Endocrinology Outpatient Clinic, Lublin, Poland.
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland.
| |
Collapse
|
2
|
Guo M, Mao Y, Xie F, Wang R, Zhang L. Profile of Serum Bile Acids in Elderly Type 2 Diabetic Patients with Various Obesity Types: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2025; 18:1353-1364. [PMID: 40321677 PMCID: PMC12049121 DOI: 10.2147/dmso.s495623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Objective The distribution of body fat plays a critical role in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the specific metabolic profiles and biomarkers that distinguish the different obesity phenotypes in T2DM remain to be fully elucidated. Bile acids (BAs), which are recognized as pivotal signaling molecules in the regulation of glucose and lipid metabolism, warrant further investigation to characterize their profiles across different obesity phenotypes. Understanding the clinical significance of these BAs in the management of T2DM is essential and merits thorough exploration. Design In this cross-sectional study conducted at the Zhangjiang Community Health Service Center in Shanghai, ninety-nine elderly participants were recruited and categorized into four groups: non-diabetic controls (NC), T2DM with lean phenotype (TN), T2DM with overweight phenotype (TO), and T2DM with abdominal obesity phenotype (TA). Biochemical indices, visceral adiposity indices, and bile acid (BA) profiles were analyzed and compared across the groups. Results Healthy individuals exhibited lower triglyceride levels, waist-to-hip ratio (WHR), visceral adiposity index (VAI), and Chinese visceral adiposity index (CVAI), as well as higher HDL-c level and total BA levels compared to T2DM patients. T2DM patients with different obesity phenotypes displayed distinct BA profiles. Specifically, the TN group showed higher levels of conjugated DCA BA species, GDCA, and TDCA, compared to the TO group. These BA species are essential for regulating lipid and glucose metabolism. In contrast, the TA group exhibited higher ratios of 12α-hydroxylated BAs to non 12α-hydroxylated BAs, taurine-conjugated BAs to glycine-conjugated BAs, and higher levels of LCA compared to the TO group. Additionally, CVAI was positively associated with unconjugated SBAs, CA-7S, and DLCA. Conclusion These results revealed that T2DM patients with different obesity phenotypes exhibit distinct BA profiles. Specific BAs, particularly GDCA, TDCA, and LCA, are closely associated with adiposity indices and may serve as crucial signaling molecules in modulating visceral adiposity, serum lipid profiles, and glucose homeostasis in obese T2DM patients. These BA species play a pivotal role in the pathogenetic process underlying diabetes and various forms of obesity. Furthermore, their significance highlights their potential contributors to drug development and as therapeutic targets for T2DM patients with specific obesity subtypes.
Collapse
Affiliation(s)
- Mengxiao Guo
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Endocrinology Department, Wuxi Rehabilitation Hospital, Wuxi, 214000, People’s Republic of China
| | - Yuejian Mao
- Mengniu Institute of Nutrition Science, Inner Mongolia Mengniu Dairy Co. LTD, Hohhot, 010000, People’s Republic of China
| | - Feng Xie
- Traditional Chinese Medicine Department, Beicai Community Health Service Center of Pudong New District, Shanghai, 200000, People’s Republic of China
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
3
|
Basu S, Običan SG, Bertaggia E, Staab H, Izquierdo MC, Gyamfi-Bannerman C, Haeusler RA. Unresolved alterations in bile acid composition and dyslipidemia in maternal and cord blood after UDCA treatment for intrahepatic cholestasis of pregnancy. Am J Physiol Gastrointest Liver Physiol 2025; 328:G364-G376. [PMID: 39947696 PMCID: PMC12053871 DOI: 10.1152/ajpgi.00266.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 02/03/2025] [Indexed: 02/19/2025]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by elevated plasma bile acid levels. ICP is linked to adverse metabolic outcomes, including a reported increased risk of gestational diabetes. The standard therapeutic approach for managing ICP is treatment with ursodeoxycholic acid (UDCA) and induction of labor before 40 wk of gestation. To investigate bile acid and metabolic parameters after UDCA treatment, we enrolled 12 ICP patients with singleton pregnancies-half with and half without gestational diabetes-and 7 controls. Our study reveals that after UDCA treatment, notwithstanding a reduction in total bile acid and alanine aminotransferase levels, imbalances persist in the cholic acid (CA) to chenodeoxycholic acid (CDCA) ratio in maternal and cord blood plasma. This indicates a continued dysregulation of bile acid metabolism despite therapeutic intervention. Maternal plasma lipid analysis showed a distinct maternal dyslipidemia pattern among patients with ICP, marked by elevated cholesterol levels on VLDL particles and heightened triglyceride concentrations on LDL particles, persisting even after UDCA treatment. Cord plasma lipid profiles in patients with ICP exhibited elevated triglyceride and free fatty acid levels alongside a tendency toward increased β-hydroxybutyrate. The changes in lipid metabolism in both maternal and cord blood correlated with the high CA/CDCA ratio but not total bile acid levels or gestational diabetes status. Understanding the imbalances in maternal and cord bile acid and lipid profiles that persist after standard UDCA therapy provides insights for improving management strategies and mitigating the long-term consequences of ICP.NEW & NOTEWORTHY This study uncovers that despite ursodeoxycholic acid treatment, intrahepatic cholestasis of pregnancy (ICP) is associated with increases in the ratio of cholic acid to chenodeoxycholic acid in both maternal and cord blood, suggesting ongoing dysregulation of bile acid metabolism. The high cholic to chenodeoxycholic acid ratio is correlated with maternal dyslipidemia and high cord blood lipids. These findings may inform more targeted approaches to managing ICP.
Collapse
Affiliation(s)
- Srijani Basu
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States
- Columbia University Digestive and Liver Disease Research Center, Columbia University, New York, New York, United States
- Department of Medicine, Columbia University, New York, New York, United States
| | - Sarah G Običan
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, United States
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, Florida, United States
| | - Enrico Bertaggia
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Hannah Staab
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States
| | - M Concepcion Izquierdo
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | | | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States
- Columbia University Digestive and Liver Disease Research Center, Columbia University, New York, New York, United States
- Department of Medicine, Columbia University, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| |
Collapse
|
4
|
Chaudhari SN, Chen Y, Ferraz-Bannitz R, Cummings C, Sheehan A, Querol PC, Ozturk B, Wang H, D'Agostino G, Ye F, Sheu EG, Devlin AS, Patti ME. Alterations in intestinal bile acid transport provide a therapeutic target in patients with post-bariatric hypoglycaemia. Nat Metab 2025; 7:792-807. [PMID: 40186075 DOI: 10.1038/s42255-025-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
While Roux-en-Y gastric bypass is an effective treatment for obesity and type 2 diabetes, up to one-third of patients develop post-bariatric hypoglycaemia (PBH). Individuals with PBH exhibit increased postprandial secretion of the intestinal hormone fibroblast growth factor 19 (FGF19, Fgf15 in mice). However, the underlying mechanisms contributing to PBH remain uncertain. Here we demonstrate that faecal and plasma bile acid (BA) profiles are significantly altered in postoperative individuals with PBH versus those without hypoglycaemia. Furthermore, altered BAs in PBH induce FGF19 secretion in intestinal cells in a manner dependent on the apical sodium-dependent BA transporter (ASBT). We demonstrate that ASBT inhibition reduces Fgf15 expression and increases postprandial glucose in hypoglycaemic mice. Our data suggest that dysregulation of luminal BA profiles and transport may contribute to PBH and provide proof of concept that ASBT inhibition could be developed as a new therapeutic strategy for PBH.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yingjia Chen
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael Ferraz-Bannitz
- Department of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Cameron Cummings
- Department of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Amanda Sheehan
- Department of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Pilar Casanova Querol
- Department of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Berkcan Ozturk
- Department of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hanna Wang
- Department of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Fei Ye
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Mary-Elizabeth Patti
- Department of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Cobar JP, Bond DS, Ebadinejad A, Wu Y, Santana C, Steffen K, Tishler DS, Papasavas PK. The Effect of Cholecystectomy on Weight Loss after Metabolic Bariatric Surgery. Obes Surg 2025; 35:1163-1168. [PMID: 39934521 DOI: 10.1007/s11695-025-07711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Bile acids (BAs) play a crucial role in metabolic regulation and weight loss, especially in the context of metabolic bariatric surgery (MBS). BAs contribute to the body's hormonal response to meals, influencing glucose metabolism, lipid regulation, and energy expenditure. Changes in BA homeostasis following MBS have been associated with metabolic improvements. Conversely, cholecystectomy (CCx) disrupts the rhythmic secretion of bile and has been linked to metabolic disturbances, including non-alcoholic fatty liver disease and metabolic syndrome. The impact of CCx performed prior to or concurrently with MBS on weight loss remains unclear. METHODS We conducted a retrospective analysis of MBS patients (2016-2023), categorizing them by CCx status and type of primary MBS. Weight loss outcomes were assessed at 30 days, 6 months, and 1 year postoperatively. Linear mixed models were used to evaluate percent total weight loss (%TWL), adjusting for age, sex, BMI, and comorbidities. RESULTS Among 2437 patients, 22.2% had a history of CCx (21.1% before MBS, 1.1% concurrent). Roux-en-Y gastric bypass (RYGB) patients with CCx achieved significantly greater %TWL (32.7% vs. 29.5%; p = 0.002) and dBMI (15.2 ± 6.7 vs. 13.1 ± 4.6, p = 0.001) at 1 year compared to those without CCx. No significant differences in %TWL or dBMI were observed in sleeve gastrectomy patients. CONCLUSIONS RYGB patients with prior or concurrent CCx experienced greater weight loss than those without CCx. Further research is needed to clarify the metabolic impact of CCx on MBS and the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Juan P Cobar
- Center for Obesity Research, Innovation, and Education, Hartford, USA
- University of Connecticut School of Medicine, Farmington, USA
| | - Dale S Bond
- Center for Obesity Research, Innovation, and Education, Hartford, USA
| | - Amir Ebadinejad
- Center for Obesity Research, Innovation, and Education, Hartford, USA
| | - Yin Wu
- Center for Obesity Research, Innovation, and Education, Hartford, USA
| | - Connie Santana
- Center for Obesity Research, Innovation, and Education, Hartford, USA
| | | | - Darren S Tishler
- Center for Obesity Research, Innovation, and Education, Hartford, USA
| | | |
Collapse
|
6
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Li H, He J, Hou J, He C, Dai X, Song Z, Liu Q, Wang Z, Huang H, Ding Y, Qi T, Zhang H, Wu L. Intestinal rearrangement of biliopancreatic limbs, alimentary limbs, and common limbs in obese type 2 diabetic mice after duodenal jejunal bypass surgery. Front Endocrinol (Lausanne) 2025; 15:1456885. [PMID: 39845886 PMCID: PMC11750664 DOI: 10.3389/fendo.2024.1456885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice. We performed DJB and SHAM surgery in obese T2DM mice to investigate changes in the gut microbiota and barrier across different intestinal limbs. The effects on serum metabolism and potential associations with T2DM improvement were also investigated. Following DJB surgery, there was an increased abundance of commensals across various limbs. Additionally, the surgery improved intestinal permeability and inflammation in the alimentary and common limbs, while reducing inflammation in the biliopancreatic limbs. Furthermore, DJB surgery also improved T2DM by increasing L-glutamine, short-chain fatty acids, and bile acids and decreasing branched-chain amino acids. This study underscores the role of intestinal rearrangement in reshaping gut microbiota composition and enhancing gut barrier function, thereby contributing to the amelioration of T2DM following bariatric surgery, and providing new insights for further research on bariatric surgery.
Collapse
Affiliation(s)
- Heng Li
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jipei He
- Department of Basic Medical Research, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Jie Hou
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengjun He
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojiang Dai
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigao Song
- Department of Cardiovascular Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou, China
| | - Zixin Wang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyan Huang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunfa Ding
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengfei Qi
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongbin Zhang
- Department of Basic Medical Research, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Liangping Wu
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Hualiang Qingying Biotechnology Co. Ltd, Guangzhou, China
| |
Collapse
|
8
|
Custers E, van der Burgh YG, Vreeken D, Schuren F, van den Broek TJ, Verschuren L, de Blaauw I, Bouwens M, Kleemann R, Kiliaan AJ, Hazebroek EJ. Gastrointestinal complaints after Roux-en-Y gastric bypass surgery. Impact of microbiota and its metabolites. Heliyon 2024; 10:e39899. [PMID: 39559236 PMCID: PMC11570293 DOI: 10.1016/j.heliyon.2024.e39899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Unexplainable gastrointestinal complaints occasionally occur after Roux-en-Y Gastric Bypass (RYGB) surgery. We therefor investigated the impact of microbiota composition and metabolites on gastrointestinal complaints after RYGB. In the BARICO study (Bariatric surgery Rijnstate and Radboudumc neuroimaging and Cognition in Obesity), microbiota and metabolites were measured before surgery, and 6, and 24 months after surgery. Gastrointestinal complaints were assessed with the Irritable Bowel Syndrome Severity Scoring System (IBS-SSS) questionnaire 24 months after surgery. 65 participants (86.2 % female) with a mean age of 46.2 ± 6.0 years, and mean BMI of 41.2 ± 3.6 kg/m2 were included. According to the IBS-SSS questionnaire, 32.3 % had moderate/severe gastrointestinal complaints 24 months after surgery. Microbiota alpha diversity remained stable, while beta diversity significantly changed over time. Bile acids and short-chain fatty acids were significantly higher, and inflammatory markers significantly lower after surgery. Barnesiella sp., Escherichia/Shigella sp., and Faecalibacterium prausnitzii correlated positively, while Akkermansia sp correlated inversely with gastrointestinal complaints. Patients with mild and moderate/severe gastrointestinal complaints showed higher levels of GLC-3S. These findings suggest involvement of microbiota and metabolite changes in gastrointestinal complaints after surgery. However, it remains unclear whether bacteria influence gastrointestinal complaints directly or indirectly. Further exploration is required for development of interventions against gastrointestinal symptoms after surgery.
Collapse
Affiliation(s)
- Emma Custers
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, Nijmegen, the Netherlands
| | - Yonta G.R. van der Burgh
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Debby Vreeken
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, Nijmegen, the Netherlands
| | - Frank Schuren
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Tim J. van den Broek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Mark Bouwens
- Dutch Digestive Foundation, Amersfoort, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, Nijmegen, the Netherlands
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
9
|
Ghusn W, Calderon G, Abu Dayyeh BK, Acosta A. Mechanism of action and selection of endoscopic bariatric therapies for treatment of obesity. Clin Endosc 2024; 57:701-710. [PMID: 39206501 PMCID: PMC11637673 DOI: 10.5946/ce.2024.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 09/04/2024] Open
Abstract
Endoscopic bariatric therapies (EBTs) are minimally invasive and safe procedures with favorable weight loss outcomes in obesity treatment. We aimed to present the weight loss mechanism of action of EBTs and an individualized selection method for patients with obesity. We searched PubMed, Medline, Scopus, Embase, and Google Scholar databases for studies on the topic from databases inception to July 1, 2023, written in English. We focused on EBTs potential mechanism of action to induce weight loss. We also present an expert opinion on a novel selection of EBTs based on their mechanism of action. EBTs can result in weight loss through variable mechanisms of action. They can induce earlier satiation, delay gastric emptying, restrict the accommodative response of the stomach, decrease caloric absorption, and alter the secretion of gastrointestinal hormones. Selecting EBTs may be guided through their mechanism of action by which patients with abnormal satiation may benefit more from tissue apposition devices and aspiration therapy while patients with fast gastric emptying may be better candidates for intragastric devices, endoscopic anastomosis devices, and duodenal mucosal resurfacing. Consequently, the selection of EBTs should be guided by the mechanism of action which is specific to each type of therapy.
Collapse
Affiliation(s)
- Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gerardo Calderon
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Schmid A, Liebisch G, Burkhardt R, Belikan H, Köhler S, Steger D, Schweitzer L, Pons-Kühnemann J, Karrasch T, Schäffler A. Dynamics of the human bile acid metabolome during weight loss. Sci Rep 2024; 14:25743. [PMID: 39468179 PMCID: PMC11519931 DOI: 10.1038/s41598-024-75831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Bile acids (BA) are supposed to cause metabolic alterations after bariatric surgery (BS). Here we report the longitudinal dynamics of the human BA metabolome by LC-MS/MS after BS versus low calory diet (LCD) in two obesity cohorts over 12 months. Rapid and persistent oscillations of 23 BA subspecies could be identified with highly specific patterns in BS vs. LCD. TCDCA, GLCA, and TLCA represent most promising candidates for drug development.
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory of Molecular Endocrinology, Adipocyte Biology and Biochemistry, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Hannah Belikan
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Sebastian Köhler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Daniel Steger
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Leonie Schweitzer
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, University of Giessen, Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany.
- Department of Internal Medicine, Giessen University Hospital, Klinikstrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
11
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
12
|
Ferraz-Bannitz R, Ozturk B, Cummings C, Efthymiou V, Casanova Querol P, Poulos L, Wang H, Navarrete V, Saeed H, Mulla CM, Pan H, Dreyfuss JM, Simonson DC, Sandoval DA, Patti ME. Postprandial metabolomics analysis reveals disordered serotonin metabolism in post-bariatric hypoglycemia. J Clin Invest 2024; 134:e180157. [PMID: 39264731 PMCID: PMC11527454 DOI: 10.1172/jci180157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUNDBariatric surgery is a potent therapeutic approach for obesity and type 2 diabetes but can be complicated by post-bariatric hypoglycemia (PBH). PBH typically occurs 1-3 hours after meals, in association with exaggerated postprandial levels of incretins and insulin.METHODSTo identify mediators of disordered metabolism in PBH, we analyzed the plasma metabolome in the fasting state and 30 and 120 minutes after mixed meal in 3 groups: PBH (n = 13), asymptomatic post-Roux-en-Y gastric bypass (post-RYGB) (n = 10), and nonsurgical controls (n = 8).RESULTSIn the fasting state, multiple tricarboxylic acid cycle intermediates and the ketone β-hydroxybutyrate were increased by 30%-80% in PBH versus asymptomatic. Conversely, multiple amino acids (branched-chain amino acids, tryptophan) and polyunsaturated lipids were reduced by 20%-50% in PBH versus asymptomatic. Tryptophan-related metabolites, including kynurenate, xanthurenate, and serotonin, were reduced 2- to 10-fold in PBH in the fasting state. Postprandially, plasma serotonin was uniquely increased 1.9-fold in PBH versus asymptomatic post-RYGB. In mice, serotonin administration lowered glucose and increased plasma insulin and GLP-1. Moreover, serotonin-induced hypoglycemia in mice was blocked by the nonspecific serotonin receptor antagonist cyproheptadine and the specific serotonin receptor 2 antagonist ketanserin.CONCLUSIONTogether these data suggest that increased postprandial serotonin may contribute to the pathophysiology of PBH and provide a potential therapeutic target.FUNDINGNational Institutes of Health (NIH) grant R01-DK121995, NIH grant P30-DK036836 (Diabetes Research Center grant, Joslin Diabetes Center), and Fundação de Amparo à Pesquisa do Estado de São Paulo grant 2018/22111-2.
Collapse
Affiliation(s)
- Rafael Ferraz-Bannitz
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Berkcan Ozturk
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Cameron Cummings
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Vissarion Efthymiou
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Pilar Casanova Querol
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lindsay Poulos
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hanna Wang
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Valerie Navarrete
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hamayle Saeed
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M. Mulla
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Donald C. Simonson
- Harvard Medical School, Boston, Massachusetts, USA
- Divsion of Endocrinology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Darleen A. Sandoval
- Section of Nutrition, Department of Pediatrics, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Karlsson C, Johnson LK, Greasley PJ, Retterstøl K, Hedberg J, Hall M, Hawker N, Robertsen I, Havsol J, Hertel JK, Sandbu R, Skovlund E, Olsen T, Christensen H, Jansson-Löfmark R, Andersson S, Åsberg A, Hjelmesæth J. Gastric Bypass vs Diet and Cardiovascular Risk Factors: A Nonrandomized Controlled Trial. JAMA Surg 2024; 159:971-980. [PMID: 38959017 PMCID: PMC11223056 DOI: 10.1001/jamasurg.2024.2162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/13/2024] [Indexed: 07/04/2024]
Abstract
Importance Roux-en-Y gastric bypass (RYGB) is associated with reduced cardiovascular (CV) risk factors, morbidity, and mortality. Whether these effects are specifically induced by the surgical procedure or the weight loss is unclear. Objective To compare 6-week changes in CV risk factors in patients with obesity undergoing matching caloric restriction and weight loss by RYGB or a very low-energy diet (VLED). Design, Setting, and Participants This nonrandomized controlled study (Impact of Body Weight, Low Calorie Diet, and Gastric Bypass on Drug Bioavailability, Cardiovascular Risk Factors, and Metabolic Biomarkers [COCKTAIL]) was conducted at a tertiary care obesity center in Norway. Participants were individuals with severe obesity preparing for RYGB or a VLED. Recruitment began February 26, 2015; the first patient visit was on March 18, 2015, and the last patient visit (9-week follow-up) was on August 9, 2017. Data were analyzed from April 30, 2021, through June 29, 2023. Interventions VLED alone for 6 weeks or VLED for 6 weeks after RYGB; both interventions were preceded by 3-week LED. Main Outcomes and Measures Between-group comparisons of 6-week changes in CV risk factors. Results Among 78 patients included in the analyses, the mean (SD) age was 47.5 (9.7) years; 51 (65%) were women, and 27 (35%) were men. Except for a slightly higher mean (SD) body mass index of 44.5 (6.2) in the RYGB group (n = 41) vs 41.9 (5.4) in the VLED group (n = 37), baseline demographic and clinical characteristics were similar between groups. Major atherogenic blood lipids (low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, apolipoprotein B, lipoprotein[a]) were reduced after RYGB in comparison with VLED despite a similar fat mass loss. Mean between-group differences were -17.7 mg/dL (95% CI, -27.9 to -7.5), -17.4 mg/dL (95% CI, -29.8 to -5.0) mg/dL, -9.94 mg/dL (95% CI, -15.75 to -4.14), and geometric mean ratio was 0.55 U/L (95% CI, 0.42 to 0.72), respectively. Changes in glycemic control and blood pressure were similar between groups. Conclusions and Relevance This study found that clinically meaningful reductions in major atherogenic blood lipids were demonstrated after RYGB, indicating that RYGB may reduce CV risk independent of weight loss. Trial Registration ClinicalTrials.gov Identifier: NCT02386917.
Collapse
Affiliation(s)
- Cecilia Karlsson
- Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Peter J. Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kjetil Retterstøl
- The Lipid Clinic, Oslo University Hospital, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jonatan Hedberg
- Medical Evidence and Observational Research, Global Medical BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Martin Hall
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Noele Hawker
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jesper Havsol
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jens Kristoffer Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Rune Sandbu
- Department of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shalini Andersson
- Research and Early Development, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Basu S, Običan SG, Bertaggia E, Staab H, Izquierdo MC, Gyamfi-Bannerman C, Haeusler RA. Unresolved alterations in bile acid composition and dyslipidemia in maternal and cord blood after ursodeoxycholic acid treatment for intrahepatic cholestasis of pregnancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.21.24312246. [PMID: 39228704 PMCID: PMC11370516 DOI: 10.1101/2024.08.21.24312246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by elevated plasma bile acid levels. ICP is linked to adverse metabolic outcomes, including a reported increased risk of gestational diabetes. The standard therapeutic approach for managing ICP is treatment with ursodeoxycholic acid (UDCA) and induction of labor prior to 40 weeks of gestation. To investigate bile acid and metabolic parameters after UDCA treatment, we enrolled 12 ICP patients with singleton pregnancies-half with and half without gestational diabetes-and 7 controls. Our study reveals that after UDCA treatment, notwithstanding a reduction in total bile acid and ALT levels, imbalances persist in the cholic acid (CA) to chenodeoxycholic acid (CDCA) ratio in maternal and cord blood plasma. This indicates a continued dysregulation of bile acid metabolism despite therapeutic intervention. Maternal plasma lipid analysis showed a distinct maternal dyslipidemia pattern among ICP patients, marked by elevated cholesterol levels on VLDL particles and heightened triglyceride concentrations on LDL particles, persisting even after UDCA treatment. Cord plasma lipid profiles in ICP patients exhibited elevated triglyceride and free fatty acid levels alongside a tendency toward increased β-hydroxybutyrate. The changes in lipid metabolism in both maternal and cord blood correlated with the high CA/CDCA ratio, but not total bile acid levels or gestational diabetes status. Understanding the imbalances in maternal and cord bile acid and lipid profiles that persist after standard UDCA therapy provides insights for improving management strategies and mitigating the long-term consequences of ICP. News and Noteworthy This study uncovers that despite ursodeoxycholic acid treatment, intrahepatic cholestasis of pregnancy (ICP) is associated with increases in the ratio of cholic acid to chenodeoxycholic acid in both maternal and cord blood, suggesting ongoing dysregulation of bile acid metabolism. The high cholic to chenodeoxycholic acid ratio is correlated with maternal dyslipidemia and high cord blood lipids. These findings may inform more targeted approaches to managing ICP.
Collapse
|
15
|
Chen Y, Chaudhari SN, Harris DA, Roberts CF, Moscalu A, Mathur V, Zhao L, Tavakkoli A, Devlin AS, Sheu EG. A small intestinal bile acid modulates the gut microbiome to improve host metabolic phenotypes following bariatric surgery. Cell Host Microbe 2024; 32:1315-1330.e5. [PMID: 39043190 PMCID: PMC11332993 DOI: 10.1016/j.chom.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Bariatric surgical procedures such as sleeve gastrectomy (SG) provide effective type 2 diabetes (T2D) remission in human patients. Previous work demonstrated that gastrointestinal levels of the bacterial metabolite lithocholic acid (LCA) are decreased after SG in mice and humans. Here, we show that LCA worsens glucose tolerance and impairs whole-body metabolism. We also show that taurodeoxycholic acid (TDCA), which is the only bile acid whose concentration increases in the murine small intestine post-SG, suppresses the bacterial bile acid-inducible (bai) operon and production of LCA both in vitro and in vivo. Treatment of diet-induced obese mice with TDCA reduces LCA levels and leads to microbiome-dependent improvements in glucose handling. Moreover, TDCA abundance is decreased in small intestinal tissue from T2D patients. This work reveals that TDCA is an endogenous inhibitor of LCA production and suggests that TDCA may contribute to the glucoregulatory effects of bariatric surgery.
Collapse
Affiliation(s)
- Yingjia Chen
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Harris
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cullen F Roberts
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andrei Moscalu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vasundhara Mathur
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Komorniak N, Pawlus J, Gaweł K, Hawryłkowicz V, Stachowska E. Cholelithiasis, Gut Microbiota and Bile Acids after Bariatric Surgery-Can Cholelithiasis Be Prevented by Modulating the Microbiota? A Literature Review. Nutrients 2024; 16:2551. [PMID: 39125429 PMCID: PMC11314327 DOI: 10.3390/nu16152551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cholelithiasis is one of the more common complications following bariatric surgery. This may be related to the rapid weight loss during this period, although the exact mechanism of gallstone formation after bariatric surgery has not been fully elucidated. METHODS The present literature review focuses on risk factors, prevention options and the impact of the gut microbiota on the development of gallbladder stones after bariatric surgery. RESULTS A potential risk factor for the development of cholelithiasis after bariatric surgery may be changes in the composition of the intestinal microbiota and bile acids. One of the bile acids-ursodeoxycholic acid-is considered to reduce the concentration of mucin proteins and thus contribute to reducing the formation of cholesterol crystals in patients with cholelithiasis. Additionally, it reduces the risk of both asymptomatic and symptomatic gallstones after bariatric surgery. Patients who developed gallstones after bariatric surgery had a higher abundance of Ruminococcus gnavus and those who did not develop cholelithiasis had a higher abundance of Lactobacillaceae and Enterobacteriaceae. CONCLUSION The exact mechanism of gallstone formation after bariatric surgery has not yet been clarified. Research suggests that the intestinal microbiota and bile acids may have an important role in this.
Collapse
Affiliation(s)
- Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Jan Pawlus
- Department of General Mini-Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Katarzyna Gaweł
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| |
Collapse
|
17
|
Qin D, Pan P, Lyu B, Chen W, Gao Y. Lupeol improves bile acid metabolism and metabolic dysfunction-associated steatotic liver disease in mice via FXR signaling pathway and gut-liver axis. Biomed Pharmacother 2024; 177:116942. [PMID: 38889641 DOI: 10.1016/j.biopha.2024.116942] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has a multifactorial and complex pathogenesis. Notably, the disorder of Bile acid (BA) metabolism and lipid metabolism-induced lipotoxicity are the main risk factors of MASLD. Lupeol, traditional regional medicine from Xinjiang, has a long history of use for its anti-inflammatory, anti-tumor, and immune-modulating properties. Recent research suggests its potential as a therapeutic option for MASLD due to its proposed binding capacity to the nuclear BA receptor, Farnesoid X receptor (FXR), hence could represent a therapeutic option for MASLD. In this study, a natural triterpenoid drug lupeol improved BA metabolism and MASLD in mice through the FXR signaling pathway and the gut-liver axis. Furthermore, lupeol effectively restored gut healthiness and improved intestinal immunity, barrier integrity, and inflammation, as indicated by the reconstructed gut flora. Compared with fenofibrate (Feno), lupeol treatment significantly reduced weight gain, fat deposition, and liver injury, decreased serum total cholesterol (TC) and triglyceride (TG) levels, and alleviated hepatic steatosis and liver inflammation. BA analysis showed that lupeol treatment accelerated BA efflux and decreased uptake of BA by increasing hepatic FXR and bile salt export pump (BSEP) expression. Gut microbiota alterations could be related to enhanced fecal BA excretion in lupeol-treated mice. Therefore, consumption of lupeol may prevent HFD-induced MASLD and BA accumulation, possibly via the FXR signaling pathway and regulating the gut microbiota.
Collapse
Affiliation(s)
- Dongmei Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China.
| | - Peiyan Pan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China.
| | - Bo Lyu
- The First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi 832000, China.
| | - Weijun Chen
- Xinjiang Second Medical College, Karamay 834000, China.
| | - Yuefeng Gao
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China.
| |
Collapse
|
18
|
Gioiello A, Rosatelli E, Cerra B. Patented Farnesoid X receptor modulators: a review (2019 - present). Expert Opin Ther Pat 2024; 34:547-564. [PMID: 38308658 DOI: 10.1080/13543776.2024.2314296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION The Farnesoid X receptor (FXR) is a key transcription factor that is involved in the bile acid signaling network. The modulation of the FXR activity influences glucose and lipid homeostasis, reduces obesity and insulin resistance, as well as it regulates the pathogenesis of inflammatory and metabolic disorders. FXR ligands have therefore emerged in drug discovery as promising therapeutic agents for the prevention and treatment of gastrointestinal and liver diseases, including cancer. AREAS COVERED Recent advances in the field of FXR modulators are reviewed, with a particular attention on patent applications filed in the past 5 years related to both the discovery and development of FXR targeting drugs. EXPERT OPINION FXR agonists have proven their efficacy and safety in humans and have shown a significant potential as clinical agents to treat metabolic and inflammatory associated conditions. However, several challenges, including adverse events such as pruritus, remain to be solved. Current studies aim to gain insights into the pathophysiological mechanisms by which FXR regulates metabolism and inflammation in terms of tissue/organ/isoform-specificity, post-translational modifications and coregulatory proteins, on the route of novel, improved FXR modulators.
Collapse
Affiliation(s)
- Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Yang Y, Miao C, Wang Y, He J. The long-term effect of bariatric/metabolic surgery versus pharmacologic therapy in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Diabetes Metab Res Rev 2024; 40:e3830. [PMID: 38873748 DOI: 10.1002/dmrr.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Metabolic/bariatric surgery as a treatment for obesity and related diseases, such as type 2 diabetes mellitus (T2DM), has been increasingly recognised in recent years. However, compared with conventional pharmacologic therapy, the long-term effect (≥ 5 years) of metabolic surgery in T2DM patients is still unclear. This study aimed to evaluate the diabetes remission rate, incidence of diabetic microvascular complications, incidence of macrovascular complications, and mortality in T2DM patients who received metabolic surgery versus pharmacologic therapy more than 5 years after the surgery. Searching the database, including PubMed, Embase, Web of Science, and Cochrane Library from the inception to recent (2024), for randomised clinical trials (RCTs) or cohort studies comparing T2DM patients treated with metabolic surgery versus pharmacologic therapy reporting on the outcomes of the diabetes remission rate, diabetic microvascular complications, macrovascular complications, or mortality over 5 years or more. A total of 15 articles with a total of 85,473 patients with T2DM were eligible for review and meta-analysis in this study. There is a significant long-term increase in diabetes remission for metabolic surgery compared with conventional medical therapy in the overall pooled estimation and RCT studies or cohort studies separately (overall: OR = 4.58, 95% CI: 1.89-11.07, P < 0.001). Significant long-term decreases were found in the pooled results of microvascular complications incidence (HR = 0.57, 95% CI: 0.41-0.78, P < 0.001), macrovascular complications incidence (HR = 0.59, 95% CI: 0.50-0.70, P < 0.001) and mortality (HR = 0.53, 95% CI: 0.53-0.79, P = 0.0018). Metabolic surgery showed more significant long-term effects than pharmacologic therapy on diabetes remission, macrovascular complications, microvascular complications incidence, and all-cause mortality in patients with T2DM using currently available evidence. More high-quality evidence is needed to validate the long-term effects of metabolic surgery versus conventional treatment in diabetes management.
Collapse
Affiliation(s)
- Yumeng Yang
- Division of Epidemiology and Biostatistics, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chuhan Miao
- Department of Surgery, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Yingli Wang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Jianxun He
- Department of Neurosurgery, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Shishani R, Wang A, Lyo V, Nandakumar R, Cummings BP. Vertical Sleeve Gastrectomy Reduces Gut Luminal Deoxycholic Acid Concentrations in Mice. Obes Surg 2024; 34:2483-2491. [PMID: 38777944 PMCID: PMC11217124 DOI: 10.1007/s11695-024-07288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bariatric surgery alters bile acid metabolism, which contributes to post-operative improvements in metabolic health. However, the mechanisms by which bariatric surgery alters bile acid metabolism are incompletely defined. In particular, the role of the gut microbiome in the effects of bariatric surgery on bile acid metabolism is incompletely understood. Therefore, we sought to define the changes in gut luminal bile acid composition after vertical sleeve gastrectomy (VSG). METHODS Bile acid profile was determined by UPLC-MS/MS in serum and gut luminal samples from VSG and sham-operated mice. Sham-operated mice were divided into two groups: one was fed ad libitum, while the other was food-restricted to match their body weight to the VSG-operated mice. RESULTS VSG decreased gut luminal secondary bile acids, which was driven by a decrease in gut luminal deoxycholic acid concentrations and abundance. However, gut luminal cholic acid (precursor for deoxycholic acid) concentration and abundance did not differ between groups. Therefore, the observed decrease in gut luminal deoxycholic acid abundance after VSG was not due to a reduction in substrate availability. CONCLUSION VSG decreased gut luminal deoxycholic acid abundance independently of body weight, which may be driven by a decrease in gut bacterial bile acid metabolism.
Collapse
Affiliation(s)
- Rahaf Shishani
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA
| | - Annie Wang
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Victoria Lyo
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Bethany P Cummings
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA.
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
22
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
23
|
Morissette A, Mulvihill EE. Obesity management for the treatment of type 2 diabetes: emerging evidence and therapeutic approaches. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13065. [PMID: 38903652 PMCID: PMC11186996 DOI: 10.3389/jpps.2024.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Excess adiposity can contribute to metabolic complications, such as type 2 diabetes mellitus (T2DM), which poses a significant global health burden. Traditionally viewed as a chronic and irreversible condition, T2DM management has evolved and new approaches emphasizing reversal and remission are emerging. Bariatric surgery demonstrates significant improvements in body weight and glucose homeostasis. However, its complexity limits widespread implementation as a population-wide intervention. The identification of glucagon-like peptide 1 (GLP-1) and the development of GLP-1 receptor agonists (GLP-1RAs) have improved T2DM management and offer promising outcomes in terms of weight loss. Innovative treatment approaches combining GLP-1RA with other gut and pancreatic-derived hormone receptor agonists, such as glucose-dependant insulinotropic peptide (GIP) and glucagon (GCG) receptor agonists, or coadministered with amylin analogues, are demonstrating enhanced efficacy in both weight loss and glycemic control. This review aims to explore the benefits of bariatric surgery and emerging pharmacological therapies such as GLP-1RAs, and dual and triple agonists in managing obesity and T2DM while highlighting the caveats and evolving landscape of treatment options.
Collapse
Affiliation(s)
| | - Erin E. Mulvihill
- The University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
24
|
Holst JJ, Madsbad S, Bojsen-Møller KN, Dirksen C, Svane M. New Lessons from the gut: Studies of the role of gut peptides in weight loss and diabetes resolution after gastric bypass and sleeve gastrectomy. Peptides 2024; 176:171199. [PMID: 38552903 DOI: 10.1016/j.peptides.2024.171199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
It has been known since 2005 that the secretion of several gut hormones changes radically after gastric bypass operations and, although more moderately, after sleeve gastrectomy but not after gastric banding. It has therefore been speculated that increased secretion of particularly GLP-1 and Peptide YY (PYY), which both inhibit appetite and food intake, may be involved in the weight loss effects of surgery and for improvements in glucose tolerance. Experiments involving inhibition of hormone secretion with somatostatin, blockade of their actions with antagonists, or blockade of hormone formation/activation support this notion. However, differences between results of bypass and sleeve operations indicate that distinct mechanisms may also be involved. Although the reductions in ghrelin secretion after sleeve gastrectomy would seem to provide an obvious explanation, experiments with restoration of ghrelin levels pointed towards effects on insulin secretion and glucose tolerance rather than on food intake. It seems clear that changes in GLP-1 secretion are important for insulin secretion after bypass and appear to be responsible for postbariatric hypoglycemia in glucose-tolerant individuals; however, with time the improvements in insulin sensitivity, which in turn are secondary to the weight loss, may be more important. Changes in bile acid metabolism do not seem to be of particular importance in humans.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | | | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Maria Svane
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Liu Y, Tu J, Shi L, Fang Z, Fan M, Zhang J, Ding L, Chen Y, Wang Y, Zhang E, Xu S, Sharma N, Gillece JD, Reining LJ, Jin L, Huang W. CYP8B1 downregulation mediates the metabolic effects of vertical sleeve gastrectomy in mice. Hepatology 2024; 79:1005-1018. [PMID: 37820064 PMCID: PMC11006827 DOI: 10.1097/hep.0000000000000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Although the benefits of vertical sleeve gastrectomy (VSG) surgery are well known, the molecular mechanisms by which VSG alleviates obesity and its complications remain unclear. We aim to determine the role of CYP8B1 (cytochrome P450, family 8, subfamily B, polypeptide 1) in mediating the metabolic benefits of VSG. APPROACH AND RESULTS We found that expression of CYP8B1, a key enzyme in controlling the 12α-hydroxylated (12α-OH) bile acid (BA) to non-12α-OH BA ratio, was strongly downregulated after VSG. Using genetic mouse models of CYP8B1 overexpression, knockdown, and knockout, we demonstrated that overexpression of CYP8B1 dampened the metabolic improvements associated with VSG. In contrast, short hairpin RNA-mediated CYP8B1 knockdown improved metabolism similar to those observed after VSG. Cyp8b1 deficiency diminished the metabolic effects of VSG. Further, VSG-induced alterations to the 12α-OH/non-12α-OH BA ratio in the BA pool depended on CYP8B1 expression level. Consequently, intestinal lipid absorption was restricted, and the gut microbiota (GM) profile was altered. Fecal microbiota transplantation from wild type-VSG mice (vs. fecal microbiota transplantation from wild-type-sham mice) improved metabolism in recipient mice, while there were no differences between mice that received fecal microbiota transplantation from knockout-sham and knockout-VSG mice. CONCLUSIONS CYP8B1 is a critical downstream target of VSG. Modulation of BA composition and gut microbiota profile by targeting CYP8B1 may provide novel insight into the development of therapies that noninvasively mimic bariatric surgery to treat obesity and its complications.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Research Center of Lipid and Vegetable Protein, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jianying Zhang
- Biostatistics and Mathematical Oncology Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yiqiang Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nisha Sharma
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - John D. Gillece
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Lauren J. Reining
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
26
|
Taneera J, Saber-Ayad MM. Preservation of β-Cells as a Therapeutic Strategy for Diabetes. Horm Metab Res 2024; 56:261-271. [PMID: 38387480 DOI: 10.1055/a-2239-2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The preservation of pancreatic islet β-cells is crucial in diabetes mellitus, encompassing both type 1 and type 2 diabetes. β-cell dysfunction, reduced mass, and apoptosis are central to insufficient insulin secretion in both types. Research is focused on understanding β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches. In type 1 diabetes (T1D), β-cell destruction by the immune system calls for exploring immunosuppressive therapies, non-steroidal anti-inflammatory drugs, and leukotriene antagonists. Islet transplantation, stem cell therapy, and xenogeneic transplantation offer promising strategies for type 1 diabetes treatment. For type 2 diabetes (T2D), lifestyle changes like weight loss and exercise enhance insulin sensitivity and maintain β-cell function. Additionally, various pharmacological approaches, such as cytokine inhibitors and protein kinase inhibitors, are being investigated to protect β-cells from inflammation and glucotoxicity. Bariatric surgery emerges as an effective treatment for obesity and T2D by promoting β-cell survival and function. It improves insulin sensitivity, modulates gut hormones, and expands β-cell mass, leading to diabetes remission and better glycemic control. In conclusion, preserving β-cells offers a promising approach to managing both types of diabetes. By combining lifestyle modifications, targeted pharmacological interventions, and advanced therapies like stem cell transplantation and bariatric surgery, we have a significant chance to preserve β-cell function and enhance glucose regulation in diabetic patients.
Collapse
Affiliation(s)
- Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha M Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
27
|
Bacha F, Gupta R, Jenkins TM, Brandt ML, Inge TH, Kleiner DE, Xanthakos SA. Prognostic factors in resolution of nonalcoholic fatty liver disease post bariatric surgery in adolescents. Surg Obes Relat Dis 2024; 20:367-375. [PMID: 38155077 DOI: 10.1016/j.soard.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The long-term effect of bariatric surgery on adolescent non-alcoholic fatty liver disease is not clear. OBJECTIVES To evaluate longitudinal change in serum alanine aminotransferase (ALT) levels and to determine the factors independently associated with this change over 2 years after bariatric surgery in adolescents with severe obesity. SETTING An observational prospective cohort from the Teen-LABS Consortium. METHODS We examined the relationship of longitudinal change in serum ALT (% change and normalization) to change in body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR), triglycerides (TG), high- (HDL) and low-density lipoprotein cholesterol, A1C and fasting glucose, accounting for age, sex, race-ethnicity, blood pressure, and baseline BMI in 219 adolescents during the first 2 years post-surgery. RESULTS Mean BMI declined from a baseline of 52.6 to 37.2 kg/m2 at 2 years (P < .01). Alanine aminotransferase decreased significantly from baseline (36.5 [95% CI: 31.4, 41.7]) to 6 months (30.5 [95% CI: 25.4, 35.6]), and remained stable at 12 and 24 months, all P < .01 versus baseline. After adjustment, improvement in BMI, fasting glucose, HOMA-IR, triglycerides, TG/HDL ratio, and HDL were independently associated with reduced ALT at 6 months. These remained significantly associated with a decline in ALT after adjusting for BMI change. The %participants with elevated ALT decreased from 71% at baseline to 42% and 36% at 1 and 2 years post-surgery. CONCLUSIONS Bariatric surgery resulted in significant and sustained improvement in ALT levels over 2 years. Although associated with weight loss, this decline was also associated with improved metabolic indices, independent of weight loss.
Collapse
Affiliation(s)
- Fida Bacha
- Children's Nutrition Research Center and Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.
| | - Resmi Gupta
- Department of Internal Medicine, Division of Clinical and Translational Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Todd M Jenkins
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary L Brandt
- Department of Surgery, Tulane University School of Medicine and Children's Hospital New Orleans, New Orleans, Louisiana
| | - Thomas H Inge
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stavra A Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
28
|
Kong X, Feng L, Yan D, Li B, Yang Y, Ma X. FXR-mediated epigenetic regulation of GLP-1R expression contributes to enhanced incretin effect in diabetes after RYGB. J Cell Mol Med 2024; 28:e16339. [PMID: 33611845 PMCID: PMC10941525 DOI: 10.1111/jcmm.16339] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 01/07/2023] Open
Abstract
In this study, we investigated how Roux-en-Y gastric bypass (RYGB) enhances glucagon-like peptide 1 (GLP-1) response in GK rats and explored the potential link between RYGB-stimulated BAs/FXR signalling and GLP-1R-linked signalling in β-cells, a key pathway that regulates glucose-stimulated insulin secretion (GSIS). Here we show that RYGB restores GLP-1R expression in GK rat islets. This involves increased total BAs as well as chenodeoxycholic acid (CDCA), leading to FXR activation, increasing FXR binding to the promoter of Glp-1r and enhancing occupancy of histone acetyltransferase steroid receptor coactivator-1 (SRC1), thus increasing histone H3 acetylation at the promoter. These coordinated events bring about increased GLP-1R expression, resulting in greater GLP-1 response in β-cells. Moreover, ablation of FXR suppressed the stimulatory effects of GLP-1. Thus, this study unravels the crucial role of the BAs/FXR/SRC1 axis-controlled GLP-1R expression in β-cells, which results in enhanced incretin effect and normalized blood glucose of GK rats after RYGB.
Collapse
Affiliation(s)
- Xiangchen Kong
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Linxian Feng
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Dan Yan
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Bingfeng Li
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Yanhui Yang
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Xiaosong Ma
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| |
Collapse
|
29
|
Chen M, Miao G, Huo Z, Peng H, Wen X, Anton S, Zhang D, Hu G, Brock R, Brantley PJ, Zhao J. Longitudinal Profiling of Fasting Plasma Metabolome in Response to Weight-Loss Interventions in Patients with Morbid Obesity. Metabolites 2024; 14:116. [PMID: 38393008 PMCID: PMC10890440 DOI: 10.3390/metabo14020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
It is well recognized that patients with severe obesity exhibit remarkable heterogeneity in response to different types of weight-loss interventions. Those who undergo Roux-en-Y gastric bypass (RYGB) usually exhibit more favorable glycemic outcomes than those who receive adjustable gastric banding (BAND) or intensive medical intervention (IMI). The molecular mechanisms behind these observations, however, remain largely unknown. To identify the plasma metabolites associated with differential glycemic outcomes induced by weight-loss intervention, we studied 75 patients with severe obesity (25 each in RYGB, BAND, or IMI). Using untargeted metabolomics, we repeatedly measured 364 metabolites in plasma samples at baseline and 1-year after intervention. Linear regression was used to examine whether baseline metabolites or changes in metabolites are associated with differential glycemic outcomes in response to different types of weight-loss intervention, adjusting for sex, baseline age, and BMI as well as weight loss. Network analyses were performed to identify differential metabolic pathways involved in the observed associations. After correction for multiple testing (q < 0.05), 33 (RYGB vs. IMI) and 28 (RYGB vs. BAND) baseline metabolites were associated with changes in fasting plasma glucose (FPG) or glycated hemoglobin (HbA1c). Longitudinal changes in 38 (RYGB vs. IMI) and 38 metabolites (RYGB vs. BAND) were significantly associated with changes in FPG or HbA1c. The identified metabolites are enriched in pathways involved in the biosynthesis of aminoacyl-tRNA and branched-chain amino acids. Weight-loss intervention evokes extensive changes in plasma metabolites, and the altered metabolome may underlie the differential glycemic outcomes in response to different types of weight-loss intervention, independent of weight loss itself.
Collapse
Affiliation(s)
- Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Hao Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Soochow University, Suzhou 215123, China
| | - Xiaoxiao Wen
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Stephen Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32603, USA
| | - Dachuan Zhang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Ricky Brock
- Behavioral Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Phillip J Brantley
- Behavioral Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
30
|
Rossini G, Risi R, Monte L, Sancetta B, Quadrini M, Ugoccioni M, Masi D, Rossetti R, D'Alessio R, Mazzilli R, Defeudis G, Lubrano C, Gnessi L, Watanabe M, Manfrini S, Tuccinardi D. Postbariatric surgery hypoglycemia: Nutritional, pharmacological and surgical perspectives. Diabetes Metab Res Rev 2024; 40:e3750. [PMID: 38018334 DOI: 10.1002/dmrr.3750] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
Post-bariatric hypoglycaemia (PBH) is a metabolic complication of bariatric surgery (BS), consisting of low post-prandial glucose levels in patients having undergone bariatric procedures. While BS is currently the most effective and relatively safe treatment for obesity and its complications, the development of PBH can significantly impact patients' quality of life and mental health. The diagnosis of PBH is still challenging, considering the lack of definitive and reliable diagnostic tools, and the fact that this condition is frequently asymptomatic. However, PBH's prevalence is alarming, involving up to 88% of the post-bariatric population, depending on the diagnostic tool, and this may be underestimated. Given the prevalence of obesity soaring, and an increasing number of bariatric procedures being performed, it is crucial that physicians are skilled to diagnose PBH and promptly treat patients suffering from it. While the milestone of managing this condition is nutritional therapy, growing evidence suggests that old and new pharmacological approaches may be adopted as adjunct therapies for managing this complex condition.
Collapse
Affiliation(s)
- Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lavinia Monte
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Biagio Sancetta
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Maria Quadrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimiliano Ugoccioni
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Davide Masi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rebecca Rossetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Defeudis
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
31
|
Tsilingiris D, Kokkinos A. Advances in obesity pharmacotherapy; learning from metabolic surgery and beyond. Metabolism 2024; 151:155741. [PMID: 37995806 DOI: 10.1016/j.metabol.2023.155741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Currently, metabolic surgery (MS) constitutes the most effective means for durable weight loss of clinically meaningful magnitude, type 2 diabetes remission and resolution of non-alcoholic steatohepatitis, as well as other obesity-related comorbidities. Accumulating evidence on the mechanisms through which MS exerts its actions has highlighted the altered secretion of hormonally active peptides of intestinal origin with biological actions crucial to energy metabolism as key drivers of MS clinical effects. The initial success of glucagon-like peptide-1 (GLP-1) receptor agonists regarding weight loss and metabolic amelioration have been followed by the development of unimolecular dual and triple polyagonists, additionally exploiting the effects of glucagon and/or glucose-dependent insulinotropic polypeptide (GIP) which achieves a magnitude of weight loss approximating that of common MS operations. Through the implementation of such therapies, the feasibility of a "medical bypass", namely the replication of the clinical effects of MS through non-surgical interventions may be foreseeable in the near future. Apart from weight loss, this approach ought to be put to the test also regarding other clinical outcomes, such as liver steatosis and steatohepatitis, cardiovascular disease, and overall prognosis, on which MS has a robustly demonstrated impact. Besides, a medical bypass as an alternative, salvage, or combination strategy to MS may promote precision medicine in obesity therapeutics.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexander Kokkinos
- 1st Department of Propaedeutic Internal Medicine, Athens University Medical School, Laiko Hospital, Athens, Greece.
| |
Collapse
|
32
|
Luo K, Chen GC, Zhang Y, Moon JY, Xing J, Peters BA, Usyk M, Wang Z, Hu G, Li J, Selvin E, Rebholz CM, Wang T, Isasi CR, Yu B, Knight R, Boerwinkle E, Burk RD, Kaplan RC, Qi Q. Variant of the lactase LCT gene explains association between milk intake and incident type 2 diabetes. Nat Metab 2024; 6:169-186. [PMID: 38253929 PMCID: PMC11097298 DOI: 10.1038/s42255-023-00961-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Cow's milk is frequently included in the human diet, but the relationship between milk intake and type 2 diabetes (T2D) remains controversial. Here, using data from the Hispanic Community Health Study/Study of Latinos, we show that in both sexes, higher milk intake is associated with lower risk of T2D in lactase non-persistent (LNP) individuals (determined by a variant of the lactase LCT gene, single nucleotide polymorphism rs4988235 ) but not in lactase persistent individuals. We validate this finding in the UK Biobank. Further analyses reveal that among LNP individuals, higher milk intake is associated with alterations in gut microbiota (for example, enriched Bifidobacterium and reduced Prevotella) and circulating metabolites (for example, increased indolepropionate and reduced branched-chain amino acid metabolites). Many of these metabolites are related to the identified milk-associated bacteria and partially mediate the association between milk intake and T2D in LNP individuals. Our study demonstrates a protective association between milk intake and T2D among LNP individuals and a potential involvement of gut microbiota and blood metabolites in this association.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiaqian Xing
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jun Li
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
33
|
Lee YR, Lee HB, Oh MJ, Kim Y, Park HY. Thyme Extract Alleviates High-Fat Diet-Induced Obesity and Gut Dysfunction. Nutrients 2023; 15:5007. [PMID: 38068865 PMCID: PMC10708554 DOI: 10.3390/nu15235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Prolonged intake of a high-fat diet (HFD) disturbs the composition of gut microbiota, contributing to the development of metabolic diseases, notably obesity and increased intestinal permeability. Thyme (Thymus vulgaris L.), an aromatic plant, is known for its several therapeutic properties. In this study, we explored the potential of thyme extract (TLE) to mitigate HFD-induced metabolic derangements and improve the gut environment. Eight-week-old C57BL/6 mice were administered 50 or 100 mg/kg TLE for eight weeks. Administration of 100 mg/kg TLE resulted in decreased weight gain and body fat percentage, alongside the regulation of serum biomarkers linked to obesity induced by a HFD. Moreover, TLE enhanced intestinal barrier function by increasing the expression of tight junction proteins and ameliorated colon shortening. TLE also altered the levels of various metabolites. Especially, when compared with a HFD, it was confirmed that 2-hydroxypalmitic acid and 3-indoleacrylic acid returned to normal levels after TLE treatment. Additionally, we investigated the correlation between fecal metabolites and metabolic parameters; deoxycholic acid displayed a positive correlation with most parameters, except for colon length. In contrast, hypoxanthine was negatively correlated with most parameters. These results suggest a promising role for thyme in ameliorating obesity and related gut conditions associated with a HFD.
Collapse
Affiliation(s)
- Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Mi-Jin Oh
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
34
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
35
|
Igwe JK, Surapaneni PK, Cruz E, Cole C, Njoku K, Kim J, Alaribe U, Weze K, Mohammed B. Bariatric Surgery and Inflammatory Bowel Disease: National Trends and Outcomes Associated with Procedural Sleeve Gastrectomy vs Historical Bariatric Surgery Among US Hospitalized Patients 2009-2020. Obes Surg 2023; 33:3472-3486. [PMID: 37804470 PMCID: PMC10603008 DOI: 10.1007/s11695-023-06833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE The association between bariatric surgery and IBD-related inpatient outcomes is not well characterized. We report, analyze, and compare inpatient trends and outcomes among encounters with a history of bariatric surgery (Hx-MBS) compared to those receiving bariatric surgery during index admission (PR-MBS) admitted from 2009 to 2020. METHODS Retrospective cohort design: the 2009-2020 National Inpatient Sample (NIS) databases were used to identify hospital encounters with patients aged ≥ 18 years with a history of MBS (Hx-MBS) or with procedure coding indicating MBS procedure (PR-MBS) according to International Classification of Diseases, Ninth (ICD-9-CM/ ICD-9-PCS) or Tenth Revision (ICD-10-CM/ICD-10-PCS) Clinical Modification/Procedure Coding System during index admission (ICD-9-CM: V4586; ICD-10-CM: Z9884; ICD-9-PR: 4382, 4389; ICD-10-PR: 0DB64Z3, 0DB63ZZ). Pearson χ2 analysis, analysis of variance, multivariable regression analyses, and propensity matching on independent variables were conducted to analyze significant associations between variables and for primary outcome inflammatory bowel disease-related admission, and secondary outcomes: diagnosis of nonalcoholic steatohepatitis, nonalcoholic fatty liver disease, or chronic mesenteric ischemia during admission. RESULTS We identified 3,365,784 (76.20%) Hx-MBS hospitalizations and 1,050,900 hospitalizations with PR-MBS (23.80%). Propensity score matching analysis demonstrated significantly higher odds of inflammatory bowel disease, and chronic mesenteric ischemia for Hx-MBS compared to PR-MBS, and significantly lower odds of nonalcoholic steatohepatitis and nonalcoholic fatty liver disease for Hx-MBS compared to PR-MBS. CONCLUSION In our study, Hx-MBS was associated with significantly increased odds of inflammatory bowel disease and other GI pathologies compared to matched controls. The mechanism by which this occurs is unclear. Additional studies are needed to examine these findings.
Collapse
Affiliation(s)
- Joseph-Kevin Igwe
- School of Medicine, Department of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA.
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30313, USA.
- American Heart Association Strategically Focused Research Network on the Science of Diversity in Clinical Trials Research Fellowship, 5001 S Miami Blvd #300, Durham, NC, 27703, USA.
| | | | - Erin Cruz
- School of Medicine, Department of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Cedric Cole
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30313, USA
| | - Kingsley Njoku
- Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Jisoo Kim
- Department of Surgery, Texas Tech University Health Sciences Center at El Paso, El Paso, USA
| | - Ugo Alaribe
- School of Medicine, Caribbean Medical University, Willemstad, USA
| | - Kelechi Weze
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30313, USA
| | - Bilal Mohammed
- Department of Medicine, Ascension Saint Vincent, Indianapolis, USA
| |
Collapse
|
36
|
Wilder E, Fakhreddine A. Noninvasive Colorectal Cancer Screening in Bariatric Surgery Patients As a Viable Option to Increase Uptake. GASTRO HEP ADVANCES 2023; 2:1014-1015. [PMID: 39130761 PMCID: PMC11307808 DOI: 10.1016/j.gastha.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 08/13/2024]
Affiliation(s)
- Evan Wilder
- Division of Gastroenterology, Scripps Clinic Medical Group, La Jolla, California
| | - Ali Fakhreddine
- Division of Gastroenterology, Scripps Clinic Medical Group, La Jolla, California
| |
Collapse
|
37
|
Han K, Feng G, Li T, Wan Z, Zhao W, Yang X. Extension Region Domain of Soybean 7S Globulin Contributes to Serum Triglyceride-Lowering Effect via Modulation of Bile Acids Homeostasis. Mol Nutr Food Res 2023; 67:e2200883. [PMID: 37423975 DOI: 10.1002/mnfr.202200883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/14/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Soybean 7S globulin (β-conglycinin), a major soybean storage protein, has been demonstrated to exert remarkable triglyceride (TG) and cholesterol-lowering effects, yet the underlying mechanism remains controversial. METHODS AND RESULTS A comparative investigation is performed to assess the contribution of different structural domains of soybean 7S globulin, including core region (CR) and extension region (ER) domains, to biological effects of soybean 7S globulin using a high-fat diet rat model. The results show that ER domain mainly contributes to the serum TG-lowering effect of soybean 7S globulin, but not for CR domain. Metabolomics analysis reveals that oral administration of ER peptides obviously influences the metabolic profiling of serum bile acids (BAs), as well as significantly increased the fecal excretion of total BAs. Meanwhile, ER peptides supplementation reshapes the composition of gut microbiota and impacts the gut microbiota-dependent biotransformation of BAs which indicate by a significantly increased secondary BAs concentration in fecal samples. These results highlight that TG-lowering effects of ER peptides mainly stem from their modulation of BAs homeostasis. CONCLUSION Oral administration of ER peptides can effectively lower serum TG level by regulating BAs metabolism. ER peptides have potential to be used as a candidate pharmaceutical for the intervention of dyslipidemia.
Collapse
Affiliation(s)
- Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Wenjing Zhao
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
38
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
39
|
Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E, Ben-Zvi D. Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience 2023; 26:107046. [PMID: 37389181 PMCID: PMC10300224 DOI: 10.1016/j.isci.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.
Collapse
Affiliation(s)
- Arnon Haran
- Department of Hematology, Haddasah Medical Center, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | | | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
40
|
Wang M, Huang Y, Xin M, Li T, Wang X, Fang Y, Liang S, Cai T, Xu X, Dong L, Wang C, Xu Z, Song X, Li J, Zheng Y, Sun W, Li L. The impact of microbially modified metabolites associated with obesity and bariatric surgery on antitumor immunity. Front Immunol 2023; 14:1156471. [PMID: 37266441 PMCID: PMC10230250 DOI: 10.3389/fimmu.2023.1156471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol 2023; 19:164-176. [PMID: 36289368 PMCID: PMC10805109 DOI: 10.1038/s41574-022-00757-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Although promising therapeutics are in the pipeline, bariatric surgery (also known as metabolic surgery) remains our most effective strategy for the treatment of obesity and type 2 diabetes mellitus (T2DM). Of the many available options, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are currently the most widely used procedures. RYGB and VSG have very different anatomical restructuring but both surgeries are effective, to varying degrees, at inducing weight loss and T2DM remission. Both weight loss-dependent and weight loss-independent alterations in multiple tissues (such as the intestine, liver, pancreas, adipose tissue and skeletal muscle) yield net improvements in insulin resistance, insulin secretion and insulin-independent glucose metabolism. In a subset of patients, post-bariatric hypoglycaemia can develop months to years after surgery, potentially reflecting the extreme effects of potent glucose reduction after surgery. This Review addresses the effects of bariatric surgery on glucose regulation and the potential mechanisms responsible for both the resolution of T2DM and the induction of hypoglycaemia.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Paediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | |
Collapse
|
42
|
Steenackers N, Vanuytsel T, Augustijns P, Deleus E, Deckers W, Deroose CM, Falony G, Lannoo M, Mertens A, Mols R, Vangoitsenhoven R, Wauters L, Van der Schueren B, Matthys C. Effect of sleeve gastrectomy and Roux-en-Y gastric bypass on gastrointestinal physiology. Eur J Pharm Biopharm 2023; 183:92-101. [PMID: 36603693 DOI: 10.1016/j.ejpb.2022.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Knowledge regarding the gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass is urgently needed to understand, prevent and treat the nutritional and pharmacological complications of bariatric surgery. AIM To investigate the effect of sleeve gastrectomy and Roux-en-Y gastric bypass on gastrointestinal motility (e.g., transit and pressure), pH, and intestinal bile acid concentration. MATERIAL AND METHODS An exploratory cross-sectional study was performed in six participants living with obesity, six participants who underwent sleeve gastrectomy, and six participants who underwent Roux-en-Y gastric bypass. During the first visit, a wireless motility capsule (SmartPill©) was ingested after an overnight fast to measure gastrointestinal transit, pH, and pressure. During the second visit, a gastric emptying scintigraphy test of a nutritional drink labeled with 99mTc-colloid by a dual-head SPECT gamma camera was performed to measure gastric emptying half-time (GET1/2). During the third visit, two customized multiple lumen aspiration catheters were positioned to collect fasting and postprandial intestinal fluids to measure bile acid concentration. RESULTS Immediate pouch emptying (P = 0.0007) and a trend for faster GET1/2 (P = 0.09) were observed in both bariatric groups. There was a tendency for a shorter orocecal transit in participants with sleeve gastrectomy and Roux-en-Y gastric bypass (P = 0.08). The orocecal segment was characterized by a higher 25th percentile pH (P = 0.004) and a trend for a higher median pH in both bariatric groups (P = 0.07). Fasting total bile acid concentration was 7.5-fold higher in the common limb after Roux-en-Y gastric bypass (P < 0.0001) and 3.5-fold higher in the jejunum after sleeve gastrectomy (P = 0.009) compared to obesity. Postprandial bile acid concentration was 3-fold higher in the jejunum after sleeve gastrectomy (P = 0.0004) and 6.5-fold higher in the common limb after Roux-en-Y gastric bypass (P < 0.0001) compared to obesity. CONCLUSION The anatomical alterations of sleeve gastrectomy and Roux-en-Y gastric bypass have an important impact on gastrointestinal physiology. This data confirms changes in transit and pH and provides the first evidence for altered intraluminal bile acid concentration.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Ellen Deleus
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Wies Deckers
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Gwen Falony
- Institute, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Center for Microbiology, VIB, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Raf Mols
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
43
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
44
|
The impact of bariatric surgery on colorectal cancer risk. Surg Obes Relat Dis 2023; 19:144-157. [PMID: 36446717 DOI: 10.1016/j.soard.2022.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Obesity is considered a risk factor for different types of cancer, including colorectal cancer (CRC). Bariatric surgery has been associated with improvements in obesity-related co-morbidities and reductions in overall cancer risk. However, given the contradictory outcomes of several cohort studies, the impact of bariatric surgery on CRC risk appears controversial. Furthermore, measurement of CRC biomarkers following Roux-en-Y gastric bypass (RYGB) has revealed hyperproliferation and increased pro-inflammatory gene expression in the rectal mucosa. The proposed mechanisms leading to increased CRC risk are alterations of the gut microbiota and exposure of the colorectum to high concentrations of bile acids, both of which are caused by RYGB-induced anatomical rearrangements. Studies in animals and humans have highlighted the similarities between RYGB-induced microbial profiles and the gut microbiota documented in CRC. Microbial alterations common to post-RYGB cases and CRC include the enrichment of pro-inflammatory microbes and reduction in butyrate-producing bacteria. Lower concentrations of butyrate following RYGB may also contribute to an increased risk of CRC, given the anti-inflammatory and anticarcinogenic properties of this molecule. Laparoscopic sleeve gastrectomy appears to have a more moderate impact than RYGB; however, relatively few animal and human studies have investigated its effects on CRC risk. Moreover, evidence regarding the impact of anastomosis gastric bypass on one is even more limited. Therefore, further studies are required to establish whether the potential increase in CRC risk is restricted to RYGB or may also be associated with other bariatric procedures.
Collapse
|
45
|
Decreased Weight Loss Following Bariatric Surgery in Patients with Type 2 Diabetes. Obes Surg 2023; 33:179-187. [PMID: 36322345 PMCID: PMC9834097 DOI: 10.1007/s11695-022-06350-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bariatric surgery represents the most effective treatment for achieving significant and sustained weight loss. We aimed to assess whether presence of type 2 diabetes (T2D) at baseline, and T2D remission following bariatric surgery affect the weight loss outcome. METHODS Data of 312 consecutive morbidly obese subjects who underwent bariatric surgery were analysed. Patients underwent either RYGB (77%), or sleeve gastrectomy (23%), and their body weight was followed-up for 1, 2, 3, 4, and 5 years at regular ambulatory visits (N = 269, 312, 210, 151, 105, at each year, respectively). T2D remission was assessed according to the ADA criteria. RESULTS In the whole dataset, 92 patients were affected by T2D. Patients with T2D were older than patients without T2D (52 ± 9 vs 45 ± 11 years, p < 0.0001), but there were no differences in baseline BMI, sex, and type of intervention received. We found that presence of T2D at baseline was associated with smaller weight loss at 1, 2, 3, 4, and 5 years following bariatric surgery (δ BMI at 2 years: - 13.7 [7.7] vs - 16.4 [7.3] kg/m2; at 5 years - 12.9 [8.8] vs - 16.3 [8.7] kg/m2 in patients with T2D vs patients without T2D respectively, all p < 0.05). When dividing the patients with T2D in remitters and non-remitters, non-remitters had significantly smaller weight loss compared to remitters (δ BMI at 2 years: - 11.8 [6.3] vs - 15.4 [7.8] kg/m2; at 5 years: - 8.0 [7.1] vs - 15.0 [7.2] kg/m2, non-remitters vs remitters respectively, all p < 0.05). CONCLUSIONS T2D is independently associated to smaller weight loss following bariatric surgery, especially in subjects not achieving diabetes remission. • Patients with T2D achieve smaller weight loss following bariatric surgery • When dividing the T2D patients in remitters and non-remitters, non-remitters achieve significantly smaller weight loss compared to remitters.
Collapse
|
46
|
Feris F, McRae A, Kellogg TA, McKenzie T, Ghanem O, Acosta A. Mucosal and hormonal adaptations after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2023; 19:37-49. [PMID: 36243547 PMCID: PMC9797451 DOI: 10.1016/j.soard.2022.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
The aim of this study was to perform a comprehensive literature review regarding the relevant hormonal and histologic changes observed after Roux-en-Y gastric bypass (RYGB). We aimed to describe the relevant hormonal (glucagon-like peptides 1 and 2 [GLP-1 and GLP-2], peptide YY [PYY], oxyntomodulin [OXM], bile acids [BA], cholecystokinin [CCK], ghrelin, glucagon, gastric inhibitory polypeptide [GIP], and amylin) profiles, as well as the histologic (mucosal cellular) adaptations happening after patients undergo RYGB. Our review compiles the current evidence and furthers the understanding of the rationale behind the food intake regulatory adaptations occurring after RYGB surgery. We identify gaps in the literature where the potential for future investigations and therapeutics may lie. We performed a comprehensive database search without language restrictions looking for RYGB bariatric surgery outcomes in patients with pre- and postoperative blood work hormonal profiling and/or gut mucosal biopsies. We gathered the relevant study results and describe them in this review. Where human findings were lacking, we included animal model studies. The amalgamation of physiologic, metabolic, and cellular adaptations following RYGB is yet to be fully characterized. This constitutes a fundamental aspiration for enhancing and individualizing obesity therapy.
Collapse
Affiliation(s)
- Fauzi Feris
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Todd A Kellogg
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Travis McKenzie
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Omar Ghanem
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
47
|
Wang A, Nimeri A. Laparoscopic Roux-en-Y Gastric Bypass: Current Controversies in Limb Length Measurements. OBESITY, BARIATRIC AND METABOLIC SURGERY 2023:413-423. [DOI: 10.1007/978-3-030-60596-4_81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Ricci M, Mancebo-Sevilla JJ, Cobos Palacios L, Sanz-Cánovas J, López-Sampalo A, Hernández-Negrin H, Pérez-Velasco MA, Pérez-Belmonte LM, Bernal-López MR, Gómez-Huelgas R. Remission of type 2 diabetes: A critical appraisal. Front Endocrinol (Lausanne) 2023; 14:1125961. [PMID: 37077356 PMCID: PMC10107406 DOI: 10.3389/fendo.2023.1125961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Michele Ricci
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
- *Correspondence: Michele Ricci, ; Maria Rosa Bernal-López,
| | - Juan José Mancebo-Sevilla
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
| | - Lidia Cobos Palacios
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
| | - Jaime Sanz-Cánovas
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
| | - Almudena López-Sampalo
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
| | - Halbert Hernández-Negrin
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
| | - Miguel Angel Pérez-Velasco
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Luis M. Pérez-Belmonte
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
- Servicio de Medicina Interna, Hospital Helicópteros Sanitarios, Marbella, Spain
| | - Maria Rosa Bernal-López
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Michele Ricci, ; Maria Rosa Bernal-López,
| | - Ricardo Gómez-Huelgas
- Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Faculty of Medicine, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28:6846-6866. [PMID: 36632317 PMCID: PMC9827586 DOI: 10.3748/wjg.v28.i48.6846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bile acids (BAs) serve as physiological detergents that enable the intestinal absorption and transportation of nutrients, lipids and vitamins. BAs are primarily produced by humans to catabolize cholesterol and play crucial roles in gut metabolism, microbiota habitat regulation and cell signaling. BA-activated nuclear receptors regulate the enterohepatic circulation of BAs which play a role in energy, lipid, glucose, and drug metabolism. The gut microbiota plays an essential role in the biotransformation of BAs and regulates BAs composition and metabolism. Therefore, altered gut microbial and BAs activity can affect human metabolism and thus result in the alteration of metabolic pathways and the occurrence of metabolic diseases/syndromes, such as diabetes mellitus, obesity/hypercholesterolemia, and cardiovascular diseases. BAs and their metabolites are used to treat altered gut microbiota and metabolic diseases. This review explores the increasing body of evidence that links alterations of gut microbial activity and BAs with the pathogenesis of metabolic diseases. Moreover, we summarize existing research on gut microbes and BAs in relation to intracellular pathways pertinent to metabolic disorders. Finally, we discuss how therapeutic interventions using BAs can facilitate microbiome functioning and ease metabolic diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Sun Young Park
- Department of Internal Medicine, Chonnam National University, Gwangju 501190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| |
Collapse
|
50
|
Roessler J, Leistner DM, Landmesser U, Haghikia A. Modulatory role of gut microbiota in cholesterol and glucose metabolism: Potential implications for atherosclerotic cardiovascular disease Atherosclerosis. Atherosclerosis 2022; 359:1-12. [PMID: 36126379 DOI: 10.1016/j.atherosclerosis.2022.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Accumulating evidence suggests an important role of gut microbiota in physiological processes of host metabolism as well as cardiometabolic disease. Recent advances in metagenomic and metabolomic research have led to discoveries of novel pathways in which intestinal microbial metabolism of dietary nutrients is linked to metabolic profiles and cardiovascular disease risk. A number of metaorganismal circuits have been identified by microbiota transplantation studies and experimental models using germ-free rodents. Many of these pathways involve gut microbiota-related bioactive metabolites that impact host metabolism, in particular lipid and glucose homeostasis, partly via specific host receptors. In this review, we summarize the current knowledge of how the gut microbiome can impact cardiometabolic phenotypes and provide an overview of recent advances of gut microbiome research. Finally, the potential of modulating intestinal microbiota composition and/or targeting microbiota-related pathways for novel preventive and therapeutic strategies in cardiometabolic and cardiovascular diseases will be discussed.
Collapse
Affiliation(s)
- Johann Roessler
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - David M Leistner
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; DZHK (German Center of Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; DZHK (German Center of Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; DZHK (German Center of Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|