1
|
Zhu L, Shen Z, Liu X, Tang R, Zhang Z, Zhao F, Wang J, Zhan W, Zhou L, Liang G, Wang R. Acid and phosphatase-triggered release and trapping of a prodrug on cancer cell enhance its chemotherapy. Biomaterials 2025; 320:123254. [PMID: 40088578 DOI: 10.1016/j.biomaterials.2025.123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Using anticancer drug-encapsulated nanocarriers to actively target tumors is a promising chemotherapy strategy. Nevertheless, premature release of the drugs in tumor microenvironment (TME) or low tumor targeting efficiency of the nanocarriers significantly reduces its therapeutic efficiency. Herein, we propose a release-and-trapping strategy that significantly enhances the chemotherapeutic efficiency of an anticancer drug camptothecin. TME acid triggers the release of its prodrug from the nanocarrier and thereafter phosphatase instructs the prodrug to form hydrogel to trap the nanocarrier on cancer cell membrane. As trapped nanocarrier facilitates cell uptake of the prodrug and its intracellular carboxylesterase-mediated hydrolysis to release camptothecin. In vitro studies showed that the prodrug release from nanocarrier was maximized at pH 6.5. In tumor-bearing mice, our release-and-trapping strategy significantly prolonged the retention of the nanocarrier in tumor and significantly enhanced the anticancer efficacy of camptothecin. We propose that our release-and-trapping strategy be applied for more efficient cancer treatment in the future.
Collapse
Affiliation(s)
- Liangxi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zixiu Shen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Runqun Tang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Ziyi Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Furong Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Jue Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Lei Zhou
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China.
| | - Rui Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025; 15:1935-1961. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
3
|
Hani U, Mahammed N, Reshma T, Talath S, Wali AF, Aljasser A, Al Fatease A, Alamri AH, Khan S. Enhanced colon-targeted drug delivery through development of 5-fluorouracil-loaded cross-linked mastic gum nanoparticles. Sci Rep 2025; 15:18355. [PMID: 40419601 DOI: 10.1038/s41598-025-03533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/21/2025] [Indexed: 05/28/2025] Open
Abstract
This study explored the development of a novel colon-specific drug delivery system for 5-fluorouracil (5-FU) using cross-linked mastic gum (MG) nanoparticles (NPs). The primary goal is to enhance the treatment efficacy of colon cancer while minimizing systemic side effects. We employed Fourier Transform Infrared Radiation (FTIR) and Scanning Electron Microscopy (SEM) for the detailed characterization of the samples. FTIR analysis confirmed the successful cross-linking of MG, whereas SEM images revealed the spherical and uniform morphology of the NPs. Additionally, analysis of drug encapsulation efficiency (83.53%), particle size (240 nm), and drug release kinetics (zero-order), and the drug release percentage (95.20% ) were analyzed. The results demonstrated that MG NPs effectively encapsulated and controlled the release of 5-FU in a colon-targeted manner. This study recommends the proposed drug delivery system because of its potential to improve the outcomes of colon cancer treatment.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Nawaz Mahammed
- Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, K.R. Palli Cross, Anantapur, Chiyyedu, 515721, Andhra Pradesh, India.
| | - T Reshma
- Department of Pharmaceutical Quality Assurance, Raghavendra Institute of Pharmaceutical Education and Research, K.R. Palli Cross, Anantapur, Chiyyedu, 515721, Andhra Pradesh, India
| | - Sirajunisa Talath
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Adil Farooq Wali
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Abdullah Aljasser
- Department of Pharmaceutics, College of Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sharuk Khan
- Department of Pharmaceutical Chemistry, N.B.S Institute of Pharmacy, Ausa, latur, Maharashtra, India
| |
Collapse
|
4
|
Xiong W, Huang Y, Zhao C, Luo Q, Zhao L, Yu F, Cheng Z. Engineering ultrasmall gold nanoclusters: tailored optical modulation for phototherapeutic and multimodal biomedical applications. Chem Commun (Camb) 2025. [PMID: 40391500 DOI: 10.1039/d5cc02027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Ultrasmall gold nanoclusters (Au NCs) with core sizes below 2 nm exhibit distinctive physicochemical properties and hold remarkable promise in a variety of biomedical applications. Through precise synthesis and surface engineering, Au NCs can be endowed with high quantum yields, excellent stability, and favorable biocompatibility. Recent studies have demonstrated the versatility of Au NCs in imaging modalities-ranging from fluorescence and Raman to photoacoustics-as well as in light-driven therapeutics such as photodynamic therapy (PDT) and photothermal therapy (PTT). This review provides an overview of Au NC design strategies, highlighting ligand-assisted synthesis and supramolecular self-assembly for optimizing optical features and biological performance. Representative biomedical applications in optical imaging, biosensing, and phototherapy are summarized to illustrate the multifaceted benefits of Au NCs in disease diagnosis and treatment. Finally, challenges related to large-scale production, long-term biosafety, and clinical translation are discussed, along with future perspectives on leveraging Au NCs for next-generation theranostic platforms.
Collapse
Affiliation(s)
- Wei Xiong
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Yibao Huang
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Chenxiao Zhao
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Linlu Zhao
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Ziyi Cheng
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
5
|
Venturini J, Chakraborty A, Baysal MA, Tsimberidou AM. Developments in nanotechnology approaches for the treatment of solid tumors. Exp Hematol Oncol 2025; 14:76. [PMID: 40390104 PMCID: PMC12090476 DOI: 10.1186/s40164-025-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
Nanotechnology has revolutionized cancer therapy by introducing advanced drug delivery systems that enhance therapeutic efficacy while reducing adverse effects. By leveraging various nanoparticle platforms-including liposomes, polymeric nanoparticles, and inorganic nanoparticles-researchers have improved drug solubility, stability, and bioavailability. Additionally, new nanodevices are being engineered to respond to specific physiological conditions like temperature and pH variations, enabling controlled drug release and optimizing therapeutic outcomes. Beyond drug delivery, nanotechnology plays a crucial role in the theranostic field due to the functionalization of specific materials that combine tumor detection and targeted treatment features. This review analyzes the clinical impact of nanotechnology, spanning from early-phase trials to pivotal phase 3 studies that have obtained regulatory approval, while also offering a critical perspective on the preclinical domain and its translational potential for future human applications. Despite significant progress, greater attention must be placed on key challenges, such as biocompatibility barriers and the lack of regulatory standardization, to ensure the successful translation of nanomedicine into routine clinical practice.
Collapse
Affiliation(s)
- Jacopo Venturini
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
- Current Affiliation: Department of Medical Oncology, Careggi University Hospital, Florence, Italy
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Yadav PK, Chauhan D, Yadav P, Tiwari AK, Sultana N, Gupta D, Mishra K, Gayen JR, Wahajuddin M, Chourasia MK. Nanotechnology Assisted Drug Delivery Strategies for Chemotherapy: Recent Advances and Future Prospects. ACS APPLIED BIO MATERIALS 2025; 8:3601-3622. [PMID: 40318022 DOI: 10.1021/acsabm.5c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In pursuit of the treatment of cancer, nanotechnology engineering has emerged as the simplest and most effective means, with the potential to deliver antitumor chemotherapeutics at the targeted site. Employing nanotechnology for drug delivery provides diverse nanosize particles ranging from one to a thousand nanometers. Reduced size improves drug bioavailability by increasing drug diffusion and decreasing the efflux rate. These nanocarriers offer an enormous scope for modification following the chemical and biological properties of both the drug and its disease. Moreover, these nanoformulations assist in targeting pharmaceutically active drug molecules to the desired site and have gained importance in recent years. Their modern use has revolutionized the antitumor action of many therapeutic agents. Higher drug loading efficiency, thermal stability, easy fabrication, low production cost, and large-scale industrial production draw attention to the application of nanotechnology as a better platform for the delivery of drug molecules. Furthermore, the interaction of nanocarrier technology-assisted agents lowers a drug's toxicity and therapeutic dosage, reduces drug tolerance, and enhances active drug concentration in neoplasm tissue, thus decreasing the concentration in healthy tissue. Nanotechnology-based medications are being widely explored and have depicted effective cancer management in vivo and in vitro systems, leading to many clinical trials with promising results. This review summarizes the innovative impact and application of different nanocarriers developed in recent years in cancer therapy. Subsequently, it also describes the essential findings and methodologies and their effects on cancer treatment. Compared with conventional therapy, nanomedicines can significantly improve the therapeutic effectiveness of antitumor drugs. Thus, the adverse effects associated with healthy tissues are decreased, and adverse effects are scaled back through enhanced permeability and retention effects. Lastly, future insights assisting nanotechnology in active therapeutics delivery and their scope in cancer chemotherapeutics have also been discussed.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Deepak Gupta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Tiwari R, Dev D, Thalla M, Aher VD, Mundada AB, Mundada PA, Vaghela K. Nano-enabled pharmacogenomics: revolutionizing personalized drug therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:913-938. [PMID: 39589779 DOI: 10.1080/09205063.2024.2431426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
The combination of pharmacogenomics and nanotechnology science of pharmacogenomics into a highly advanced single entity has given birth to personalized medicine known as nano-enabled pharmacogenomics. This review article covers all aspects starting from pharmacogenomics to gene editing tools, how these have evolved or are likely to be evolved for pharmacogenomic application, and how these can be delivered using nanoparticle delivery systems. In this prior work, we explore the evolution of pharmacogenomics over the years, as well as new achievements in the field of genomic sciences, the challenges in drug creation, and application of the strategy of personalized medicine. Particular attention is paid to how nanotechnology helps avoid the problems that accompanied the development of pharmacogenomics earlier, for example, the question of drug resistance and targeted delivery. We also review the latest developments in nano-enabled pharmacogenomics, such as the coupling with other nanobio-technologies, artificial intelligence, and machine learning in pharmacogenomics, and the ethical and regulatory aspects of these developing technologies. The possible uses of nanotechnology in improving the chances of pated and treating drug-resistant cancers are exemplified by case studies together with the current clinical uses of nanotechnology. In the last section, we discuss the future trends and research prospects in this dynamically growing area, stressing the importance of further advancements and collaborations which will advance the nano-enabled pharmacogenomics to their maximum potential.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Psit-Pranveer Singh Institute of Technology (Pharmacy), Kanpur-Agra-Delhi National, Kanpur, India
| | - Dhruv Dev
- Department of Pharmacy, Shivalik College of Pharmacy Nangal, Rupnagar, India
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Vaibhav Dagaji Aher
- Department of Pharmaceutical Medicine, Maharashtra University of Health Sciences, Nashik, India
| | - Anand Badrivishal Mundada
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | | | - Krishna Vaghela
- Department of Pharmacy, Saraswati Institute of Pharmaceutical Sciences, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
8
|
Sun J, Li HL, Zhou WJ, Ma ZX, Huang XP, Li C. Current status and recent progress of nanomaterials in transcatheter arterial chemoembolization therapy for hepatocellular carcinoma. World J Clin Oncol 2025; 16:104435. [PMID: 40290691 PMCID: PMC12019268 DOI: 10.5306/wjco.v16.i4.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common cancers worldwide. Transcatheter arterial chemoembolization has become a common treatment modality for some patients with unresectable advanced HCC. Since the introduction of nanomaterials in 1974, their use in various fields has evolved rapidly. In medical applications, nanomaterials can serve as carriers for the delivery of chemotherapeutic drugs to tumour tissues. Additionally, nanomaterials have potential for in vivo tumour imaging. This article covers the properties and uses of several kinds of nanomaterials, focusing on their use in transcatheter arterial chemoembolization for HCC treatment. This paper also discusses the limitations currently associated with the use of nanomaterials.
Collapse
Affiliation(s)
- Jia Sun
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Hai-Liang Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Wen-Jun Zhou
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Zeng-Xin Ma
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Xiao-Pei Huang
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Cheng Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| |
Collapse
|
9
|
Skinner W, Sala RL, Sokolowski K, Blein-Dezayes I, Potter NS, Mosca S, Gardner B, Baumberg JJ, Matousek P, Scherman OA, Stone N. An All-in-One Nanoheater and Optical Thermometer Fabricated from Fractal Nanoparticle Assemblies. ACS NANO 2025; 19:13779-13789. [PMID: 40184431 PMCID: PMC12005048 DOI: 10.1021/acsnano.4c16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/06/2025]
Abstract
We designed and optimized a dual-functional photothermal agent that performs as a nanoheater and real-time optical thermometer by leveraging gold nanoparticle (AuNP) self-assembly and anti-Stokes thermometry. We engineered colloidally stable fractal AuNP clusters with well-defined nanogaps to absorb strongly in the near-infrared and enhance anti-Stokes vibrational modes via surface-enhanced Raman scattering (SERS) for electromagnetic (EM) hotspot-localized thermometry during plasmonic heating. Photothermal characterization and simulations of a range of AuNP building block sizes demonstrated that 40 nm AuNPs are optimum for combined plasmonic heating and SERS due to the high probability of in resonance chains within assemblies. We explored the relationship between the far-field of our AuNP clusters and the near-field enhancement of anti-Stokes modes in the context of SERS thermometry, setting out design considerations for applying SERS thermometry. Finally, using a single near-infrared (NIR) laser source, we demonstrated plasmonic heating of a colloidal system with simultaneous accurate temperature measurement from EM hotspots via the thermal information encoded in the anti-Stokes mode of surface-bound Raman reporter molecules. Ultimately, our approach could enable real-time noninvasive temperature feedback from plasmonic nanoparticles within tumor tissue environments to guide safe and effective temperature increases during cancer photothermal therapy.
Collapse
Affiliation(s)
- William
H. Skinner
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| | - Renata L. Sala
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kamil Sokolowski
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Ioana Blein-Dezayes
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| | - Natalie S. Potter
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Sara Mosca
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Oxford OX11 0QX, U.K.
| | - Benjamin Gardner
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Pavel Matousek
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Oxford OX11 0QX, U.K.
| | - Oren A. Scherman
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nick Stone
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| |
Collapse
|
10
|
Wang N, Zhou D, Xu K, Kou D, Chen C, Li C, Ge J, Chen L, Zeng J, Gao M. Iron Homeostasis-Regulated Adaptive Metabolism of PEGylated Ultrasmall Iron Oxide Nanoparticles. ACS NANO 2025; 19:13381-13398. [PMID: 40135968 DOI: 10.1021/acsnano.5c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Iron oxide nanoparticles have become increasingly significant in the biomedical field due to their exceptional magnetic properties and biocompatibility. However, understanding their in vivo metabolism and transformation is crucial due to the potential biological effects they may induce. This study investigates the metabolic pathways of PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs) in vivo, particularly under varying iron statuses and dosages. Employing a comprehensive analytical approach─including magnetic resonance imaging, elemental analysis, histological assessments, hematological analysis, and Western blot analysis─the biodistribution and transformation of PUSIONPs were mapped. The findings reveal significant differences in the metabolic fate of PUSIONPs between iron-sufficient and iron-deficient conditions, underscoring the pivotal role of iron homeostasis in regulating PUSIONPs biodegradation. In iron-deficient states, degradation and transformation were markedly accelerated, with the released iron rapidly incorporated into hemoglobin. Additionally, the liver and spleen exhibited different PUSIONPs metabolism rates due to their distinct physiological roles: the spleen, primarily responsible for iron recycling, facilitated faster degradation, while the liver, serving as an iron storage organ, showed slower degradation. Under iron deficiency, most degradation products were directed toward hemoglobin synthesis, whereas under normal conditions, the liver gradually metabolized the degradation products, and the spleen retained higher iron levels. Moreover, PUSIONPs degradation demonstrated dose dependency, with higher doses slowing degradation and reducing the utilization rate by the iron-deficient body. Comprehensive safety evaluations confirmed that PUSIONPs exhibit excellent biocompatibility across all doses, with no significant safety concerns. Compared to the clinically used intravenous iron supplement iron sucrose, PUSIONPs also demonstrated superior bioavailability and more effective iron supplementation. These findings provide critical insights into the interaction between iron oxide nanoparticles and iron metabolism, offering a foundation for future research and the broader application of PUSIONPs in biomedical contexts.
Collapse
Affiliation(s)
- Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Keyang Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- School of life Sciences, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Zhu X, Zhang Y, Liao H, Hu J, Xiao X. Crosstalk Between Gastric Cancer and Adjacent Mucosa Reveals EDN1-EDNRA-Mediated Regulation of Cancer Stemness and Immunomodulation Networks. J Cell Mol Med 2025; 29:e70547. [PMID: 40245183 PMCID: PMC12005395 DOI: 10.1111/jcmm.70547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Within the complex system of gastric cancer, the tumour microenvironment mediates a complex network of cellular interactions, yet its tissue-specific intracellular communication patterns have remained poorly understood. Leveraging cutting-edge single-cell RNA sequencing, we investigated two independent research studies (GSE183904 and GSE184198), creating an unprecedented map of cellular crosstalk across gastric cancer tissues, their adjacent normal tissue and gastric mucosa (GM). Our systematic analysis revealed two distinct patterns: 7557 distinct interactions from normal tissue to tumour cells, while gastric mucosa engaged in 7320 unique interactions with malignant conditions. Within this cellular network, the endothelin pathway emerged as a key regulator, specifically increased in gastric mucosa-to-tumour interaction. The Cancer Genome Atlas data demonstrated that patients harbouring elevated EDNRA expression faced significantly poorer outcomes. EDNRA, previously underexplored in this context, showed remarkable upregulation across diverse gastric cancer cell lines. Through experimental validation, we demonstrated that EDNRA overexpression, when stimulated by endothelin-1, dramatically accelerated the proliferation of human gastric epithelial GSE-1 cells. Conversely, pharmacological inhibition of EDNRA using ABT-627 suppressed both NCI-N87 and MKN-28 gastric cancer cells proliferation. Further mechanistic investigation revealed the molecular mechanism of ABT-627: simultaneously triggering both extrinsic and intrinsic apoptotic cascades. TISIDB analysis revealed significant positive correlations between EDNRA and multiple immunostimulators, suggesting the role of EDNRA in immunomodulation networks. These findings reveal a previously unidentified connection between gastric mucosa and tumour progression, positioning EDNRA not only as a molecular target, but also as a critical mediator of tissue-specific cancer communication. In conclusion, EDNRA functions as both a regulatory factor and therapeutic target, offering a promising therapeutic avenue for gastric cancer intervention.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal TumorZhongnan Hospital of Wuhan UniversityWuhan CityHubei ProvincePeople's Republic of China
| | - Yating Zhang
- Institute of Health Inspection and TestingHubei Provincial Center for Disease Control and PreventionWuhanHubeiPeople's Republic of China
| | - Hanlin Liao
- Department of Medical Services SectionTaihe Hospital, Hubei University of MedicineShiyanPeople's Republic of China
| | - Jing Hu
- Occupational Disease Prevention and Control DepartmentCenter for Disease Control and Prevention of Yangtze River Navigation AdministrationWuhanHubeiPeople's Republic of China
| | - Xiao Xiao
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanPeople's Republic of China
| |
Collapse
|
12
|
Yao C, Zhang C, Fan D, Li X, Zhang S, Liu D. Advancements in research on the precise eradication of cancer cells through nanophotocatalytic technology. Front Oncol 2025; 15:1523444. [PMID: 40236645 PMCID: PMC11996665 DOI: 10.3389/fonc.2025.1523444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
The rapid development of nanotechnology has significantly advanced the application of nanophotocatalysis in the medical field, particularly for cancer therapy. Traditional cancer treatments, such as chemotherapy and radiotherapy, often cause severe side effects, including damage to healthy tissues and the development of drug resistance. In contrast, nanophotocatalytic therapy offers a promising approach by utilizing nanomaterials that generate reactive oxygen species (ROS) under light activation, allowing for precise tumor targeting and minimizing collateral damage to surrounding tissues. This review systematically explores the latest advancements in highly efficient nanophotocatalysts for cancer treatment, focusing on their toxicological profiles, underlying mechanisms for cancer cell eradication, and potential for clinical application. Recent research shows that nanophotocatalysts, such as TiO2, In2O3, and g-C3N4 composites, along with photocatalysts with high conduction band or high valence band positions, generate ROS under light irradiation, which induces oxidative stress and leads to cancer cell apoptosis or necrosis. These ROS cause cellular damage by interacting with key biological molecules such as DNA, proteins, and lipids, triggering a cascade of biochemical reactions that ultimately result in cancer cell death. Furthermore, strategies such as S-scheme heterojunctions and oxygen vacancies (OVs) have been incorporated to enhance charge separation efficiency and light absorption, resulting in increased ROS generation, which improves photocatalytic performance for cancer cell targeting. Notably, these photocatalysts exhibit low toxicity to healthy cells, making them a safe and effective treatment modality. The review also discusses the challenges associated with photocatalytic cancer therapy, including limitations in light penetration and the need for improved biocompatibility. The findings suggest that nanophotocatalytic technology holds significant potential for precision cancer therapy, paving the way for safer and more effective treatment strategies.
Collapse
Affiliation(s)
- Changyang Yao
- Department of General Surgery, Fengyang County People’s Hospital, Chuzhou, China
| | - Chensong Zhang
- Department of Surgical Oncology Surgery (General Ward), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Dongwei Fan
- Department of General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Lu’an, Anhui, China
| | - Xuanhe Li
- Department of Surgical Oncology Surgery (General Ward), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shaofa Zhang
- Department of General Surgery, Fengyang County People’s Hospital, Chuzhou, China
| | - Daoxin Liu
- Department of General Surgery, Fengyang County People’s Hospital, Chuzhou, China
| |
Collapse
|
13
|
Yao L, Jiang B, Xu D. Strategies to combat cancer drug resistance: focus on copper metabolism and cuproptosis. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:15. [PMID: 40201308 PMCID: PMC11977383 DOI: 10.20517/cdr.2025.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Cancer cells often develop tolerance to chemotherapy, targeted therapy, and immunotherapy drugs either before or during treatment. The significant heterogeneity among various tumors poses a critical challenge in modern cancer research, particularly in overcoming drug resistance. Copper, as an essential trace element in the body, participates in various biological processes of diseases, including cancers. The growth of many types of tumor cells exhibits a heightened dependence on copper. Thus, targeting copper metabolism or inducing cuproptosis may be potential ways to overcome cancer drug resistance. Copper chelators have shown potential in overcoming cancer drug resistance by targeting copper-dependent processes in cancer cells. In contrast, copper ionophores, copper-based nanomaterials, and other small molecules have been used to induce copper-dependent cell death (cuproptosis) in cancer cells, including drug-resistant tumor cells. This review summarizes the regulation of copper metabolism and cuproptosis in cancer cells and the role of copper metabolism and cuproptosis in cancer drug resistance, providing ideas for overcoming cancer resistance in the future.
Collapse
Affiliation(s)
- Leyi Yao
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang 524033, Guangdong, China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524033, Guangdong, China
- Authors contributed equally
| | - Baoyi Jiang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
- Authors contributed equally
| | - Dacai Xu
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang 524033, Guangdong, China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524033, Guangdong, China
| |
Collapse
|
14
|
Schock Vaiani J, Broekgaarden M, Coll JL, Sancey L, Busser B. In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology. NANOSCALE 2025; 17:5501-5525. [PMID: 39927415 DOI: 10.1039/d4nr05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modulation of tumor-associated genes and proteins. This review explores the latest advances in payload vectorization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks guide future directions and emphasize the need for safe, scalable production. The potential convergence of these systems with combination therapies paves the way toward personalized cancer medicine.
Collapse
Affiliation(s)
- Julie Schock Vaiani
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Mans Broekgaarden
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Lucie Sancey
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Benoit Busser
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
- Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
15
|
Attar FA, Irani S, Oloomi M, Bolhassani A, Geranpayeh L, Atyabi F. Doxorubicin loaded exosomes inhibit cancer-associated fibroblasts growth: in vitro and in vivo study. Cancer Cell Int 2025; 25:72. [PMID: 40016747 PMCID: PMC11869484 DOI: 10.1186/s12935-025-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cancer-associated fibroblast cells (CAFs) play a key role in the breast cancer (BC) microenvironment that induces resistance to chemotherapy. Adipose mesenchymal stem cells (ADMSCs) derived exosomes were utilized to deliver the doxorubicin (Dox) to BC cell lines (MDA-MB-231, MCF-7) and CAFs in both mono and co-culture systems. Immunocytochemistry (ICC) for VIMENTIN and flow cytometry for the CD45, CD34, CD73, and CD90 markers were used to confirm the phenotypic characteristics of CAFs and MSC cells. Dox was loaded into ADMSCs-derived exosomes (Exo-Dox) through sonication and its loading wasa confirmed by transmission electron microscope (TEM). Compared to free Dox, Exo-Dox showed a higher efficiency in inducing apoptosis and inhibiting growth and migration in co-culture cells with CAFs (P < 0.05). The up-regulation of H19 and UCA1 lncRNAs, associated with chemoresistance, was confirmed using real-time PCR in CAF-derived breast cancer patients, CAF-derived exosomes, and exosome-derived patient serums. H19 and UCA1 expression levels were significantly down-regulated in MDA-MB-231, MCF-7, and co-cultures of MDA-MB-231 and MCF-7 cells with CAFs that received Exo-Dox treatment. In vivo results indicated that ADMSCs-derived exosomes (MSC-Exos) can accumulate at the tumor site. Exo-Dox suppressed cancer cell growth and significantly decreased tumor size compared to PBS (p < 0.01). The findings confirmed the growth inhibition effects of Exo-Dox n in CAFs, BC cells, and tumor-bearing mice.
Collapse
Affiliation(s)
- Fatemeh Akhavan Attar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Moura JVB, Gomes-da-Silva NC, Rebêlo Alencar LM, Ferreira WC, da Luz Lima C, Santos-Oliveira R. Silver Dimolybdate Nanorods: In Vitro Anticancer Activity Against Breast and Prostate Tumors and In Vivo Pharmacological Insights. Pharmaceutics 2025; 17:298. [PMID: 40142962 PMCID: PMC11946425 DOI: 10.3390/pharmaceutics17030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Background: The development of nanostructured materials for cancer therapy has garnered significant interest due to their unique physicochemical properties, including enhanced surface area and tunable electronic structures, which can facilitate targeted drug delivery and oxidative stress modulation. This study investigates the anticancer potential of monoclinic silver dimolybdate nanorods (m-Ag₂Mo₂O₇) against aggressive breast (MDA-MB-231) and prostate (PC-3) cancer cells and explores their in vivo pharmacokinetic behavior. Methods: m-Ag₂Mo₂O₇ nanorods were synthesized via a hydrothermal method and characterized using XRD, SEM, Raman, and FTIR spectroscopy. In vitro cytotoxicity was evaluated using MTT assays on MDA-MB-231 and PC-3 cell lines across concentrations ranging from 1.56 to 100 µg/mL. In vivo biodistribution and radiopharmacokinetics were assessed using technetium-99m-labeled nanorods in male Swiss rats, with gamma counting employed for tissue uptake analysis and pharmacokinetic parameter determination. Results: m-Ag₂Mo₂O₇ nanorods exhibited a modest cytotoxic effect on MDA-MB-231 cells, with 50 µg/mL reducing cell viability by 23.5% (p < 0.05), while no significant cytotoxicity was observed in PC-3 cells. In vivo studies revealed predominant accumulation in the stomach, liver, spleen, and bladder, indicating reticuloendothelial system uptake and renal clearance. Pharmacokinetic analysis showed a rapid systemic clearance (half-life ~6.76 h) and a low volume of distribution (0.0786 L), suggesting primary retention in circulation with minimal off-target diffusion. Conclusions: While m-Ag₂Mo₂O₇ nanorods display limited standalone cytotoxicity, their ability to induce oxidative stress and favorable pharmacokinetic profile support their potential as adjuvant agents in cancer therapy, particularly for chemoresistant breast cancers. Further studies are warranted to elucidate their molecular mechanisms, optimize combinatorial treatment strategies, and assess long-term safety in preclinical models.
Collapse
Affiliation(s)
| | - Natália Cristina Gomes-da-Silva
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, RJ, Brazil;
| | | | | | - Cleânio da Luz Lima
- Department of Physics, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, RJ, Brazil;
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070-200, RJ, Brazil
| |
Collapse
|
17
|
Alkatheeri A, Salih S, Kamil N, Alnuaimi S, Abuzar M, Abdelrahman SS. Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions. Pharmaceuticals (Basel) 2025; 18:257. [PMID: 40006069 PMCID: PMC11859487 DOI: 10.3390/ph18020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Colon cancer remains a significant global health challenge; however, the treatment outcome for colon patients can be improved through early detection and effective treatment. Nano-radiopharmaceuticals, combining nanotechnology with radiopharmaceuticals, are emerging as a revolutionary approach in both colon cancer diagnostic imaging and therapy, playing a significant role in the management of colon cancer patients. This review examines the use of nano-radiopharmaceuticals in the diagnosis and treatment of colon cancer, highlighting current applications, challenges, and future directions. Nanocarriers of radionuclides have shown potential in improving cancer treatment, including liposomes, microparticles, nanoparticles, micelles, dendrimers, and hydrogels, which are approved by the FDA. These nanocarriers can deliver targeted drugs into malignant cells without affecting normal cells, reducing side effects. Antibody-guided systemic radionuclide-targeted therapy has shown potential for treating cancer. Novel cancer nanomedicines, like Hensify and 32P BioSilicon, are under clinical development for targeted radiation delivery in percutaneous intratumoral injections. Although using nano-radiopharmaceuticals is a superior technique for diagnosing and treating colon cancer, there are limitations and challenges, such as the unintentional accumulation of nanoparticles in healthy tissues, which leads to toxicity due to biodistribution issues, as well as high manufacturing costs that limit their availability for patients. However, the future direction is moving toward providing more precise radiopharmaceuticals, which is crucial for enhancing the diagnosis and treatment of colon cancer and reducing production costs.
Collapse
Affiliation(s)
- Ajnas Alkatheeri
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
| | - Suliman Salih
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
- National Cancer Institute, University of Gezira, Wad Madani 2667, Sudan
| | - Noon Kamil
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Sara Alnuaimi
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Memona Abuzar
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | | |
Collapse
|
18
|
Liao Z, Liu T, Yao Z, Hu T, Ji X, Yao B. Harnessing stimuli-responsive biomaterials for advanced biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230133. [PMID: 40040822 PMCID: PMC11875454 DOI: 10.1002/exp.20230133] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 03/06/2025]
Abstract
Cell behavior is intricately intertwined with the in vivo microenvironment and endogenous pathways. The ability to guide cellular behavior toward specific goals can be achieved by external stimuli, notably electricity, light, ultrasound, and magnetism, simultaneously harnessed through biomaterial-mediated responses. These external triggers become focal points within the body due to interactions with biomaterials, facilitating a range of cellular pathways: electrical signal transmission, biochemical cues, drug release, cell loading, and modulation of mechanical stress. Stimulus-responsive biomaterials hold immense potential in biomedical research, establishing themselves as a pivotal focal point in interdisciplinary pursuits. This comprehensive review systematically elucidates prevalent physical stimuli and their corresponding biomaterial response mechanisms. Moreover, it delves deeply into the application of biomaterials within the domain of biomedicine. A balanced assessment of distinct physical stimulation techniques is provided, along with a discussion of their merits and limitations. The review aims to shed light on the future trajectory of physical stimulus-responsive biomaterials in disease treatment and outline their application prospects and potential for future development. This review is poised to spark novel concepts for advancing intelligent, stimulus-responsive biomaterials.
Collapse
Affiliation(s)
- Ziming Liao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Tingting Liu
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMassachusettsUSA
- Research Center for Nano‐Biomaterials and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanShanxiP. R. China
- Department of Laboratory DiagnosisThe 971th HospitalQingdaoP. R. China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingP. R. China
| | - Zhimin Yao
- Sichuan Preschool Educators' CollegeMianyangP. R. China
| | - Tian Hu
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordJohn Radcliffe HospitalOxfordUK
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| |
Collapse
|
19
|
Das P, Chakraborty G, Kaur J, Mandal SK. Nano-Scale Anti-Cancer Drug Delivery by a Zn-Based Metal Organic Framework Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408810. [PMID: 39916512 DOI: 10.1002/smll.202408810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Porous functional metal organic frameworks (MOFs) have showcased their potential in biomedical applications, specifically in drug delivery systems (DDSs), due to high surface area, tailorable pore size, tunable functionality, etc. In this work, the efficient nano drug carrier behavior of a Zn-MOF is reported for two highly utilized drugs, 5-fluorouracil and calcein. It exhibits a high drug loading capacity and a slow, sustained release profile as monitored by the spectroscopic and microscopic techniques. Utilizing these two drugs, its good anticancer activity against the human breast cancer MCF-7 cell is established.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| | - Gouri Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| | - Jasreen Kaur
- Center for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| |
Collapse
|
20
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
21
|
Song R, Tan J, Cen J, Li Z, Zhang Y, Hou M, Li R, Tang L, Hu J, Liu S. Optimizing Surface Maleimide/cRGD Ratios Enhances Targeting Efficiency of cRGD-Functionalized Nanomedicines. J Am Chem Soc 2025; 147:2889-2901. [PMID: 39780364 DOI: 10.1021/jacs.4c17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Thiol-maleimide (MI) chemistry is a cornerstone of bioconjugation strategies, particularly in the development of drug delivery systems. The cyclic arginine-glycine-aspartic acid (cRGD) peptide, recognized for its ability to target the integrin αvβ3, is commonly employed to functionalize maleimide-bearing nanoparticles (NPs) for fabricating cRGD-functionalized nanomedicines. However, the impact of cRGD density on tumor targeting efficiency remains poorly understood. In this study, we investigate how varying MI/cRGD ratios affect the biological fate of cRGD-functionalized nanomedicines. Using a model system of nanomedicines self-assembled from phthalocyanine derivatives and PEG-PLA block copolymers, we demonstrate that an optimized cRGD/MI ratio can markedly alter the protein corona composition, leading to increased albumin adsorption, while MI-free cRGD-functionalized nanomedicines attract immunoglobulins and complement proteins. Our findings reveal that higher cRGD densities, contrary to expectations, do not enhance tumor targeting but instead promote sequestration in the liver and spleen. However, the presence of MI moieties can significantly mitigate this sequestration of cRGD-functionalized nanomedicines by promoting the formation of an albumin-rich protein corona on nanomedicines. These insights highlight the capacity of MI moieties in improving the targeting and therapeutic effects of cRGD-functionalized nanomedicines, providing refined strategies to maximize the efficacy of nanomedicines while minimizing off-target effects.
Collapse
Affiliation(s)
- Rundi Song
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jie Cen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Ziwei Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Yuben Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Mingxuan Hou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Runjie Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| |
Collapse
|
22
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
23
|
Ashokan A, Birnhak M, Surnar B, Nguyen F, Basu U, Guin S, Dhar S. Cell specific mitochondria targeted metabolic alteration for precision medicine. NANOSCALE 2025; 17:1260-1269. [PMID: 39441617 DOI: 10.1039/d4nr01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mitochondria play important roles in the maintenance of cellular health. In cancer, these dynamic organelles undergo significant changes in terms of membrane hyperpolarization, altered metabolic functions, fusion-fission balance, and several other parameters. These alterations promote cancer growth, proliferation and spread, and the eventual development of metastatic disease and therapeutic resistance. Thus, routing therapeutics to the mitochondrial compartments can be one of the most promising methodologies for tackling such changes to achieve cancer control. Over the last decade, targeted cancer medicine has experienced tremendous growth, enabling the targeting of mitochondria for greater therapeutic specificity. Here, we demonstrate a feasibility method to specifically target the mitochondria of prostate cancer cells. We achieve such dual targeting by utilizing two functionalized polymers and constructing a single blended nanoparticle (NP). Such a targeting strategy was developed utilizing a polymeric platform that differed in terms of the length of the amphiphilic portions, the linker between the hydrophobic portions, and the attached targeting moieties. In doing this, we demonstrate prostate cancer specific mitochondrial delivery of a chemotherapeutic prodrug to create repair-resistant adducts within mitochondrial DNA promoting cellular death. This article documents the synthetic strategy, optimization of blended NPs for cell specific mitochondria targeting, and the utility of the proof-of-concept design was demonstrated using a combination of analytical and in vitro studies.
Collapse
Affiliation(s)
- Akash Ashokan
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Birnhak
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Bapurao Surnar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Felix Nguyen
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Uttara Basu
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Subham Guin
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
24
|
Tripathy NS, Sahoo L, Paikray S, Dilnawaz F. Emerging nanoplatforms towards microenvironment-responsive glioma therapy. Med Oncol 2025; 42:46. [PMID: 39812745 DOI: 10.1007/s12032-024-02596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier. Imaging plays a crucial role in gliomas which significantly plays an important role in the accuracy of the diagnosis followed by any subsequent surgery or therapy. Other diagnostic methods (such as biopsies or surgery) are often very invasive. Preoperative imaging and intraoperative image-guided surgery perform the most significant safe resection. In recent years, the rapid growth of nanotechnology has opened up new avenues for glioma diagnosis and treatment. For better therapeutic efficacy, developing microenvironment-responsive nanoplatforms, including novel nanotherapeutic platforms of sonodynamic therapy, photodynamic therapy, and photothermal treatments, are employed for improved patient survival and better clinical control outcome. In this review recent advancement of multifunctional nanoplatforms leading toward treatment of glioma is discussed.
Collapse
Affiliation(s)
- Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Safal Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
25
|
Lee H. Effect of PEGylation on the Adsorption and Binding Strength of Plasma Proteins to Nanoparticle Surfaces. Mol Pharm 2025; 22:520-532. [PMID: 39718345 DOI: 10.1021/acs.molpharmaceut.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The adsorption of plasma proteins (human serum albumin, immunoglobulin γ-1, apolipoproteins A-I and E-III) onto polystyrene surfaces grafted with polyethylene glycol (PEG) at different grafting densities is simulated using an all-atom PEG model validated by comparing the conformations of isolated PEG chains with previous simulation and theoretical values. At high PEG density, the grafted PEG chains extend like brushes, while at low density, they significantly adsorb to the surface due to electrostatic attraction between polystyrene amines and PEG oxygens, forming a PEG layer much thinner than its Flory radius. Free energy calculations show that PEGylation can either increase or decrease the binding strength between proteins and surfaces, to an extent dependent on PEG density and specific proteins involved, in agreement with experiments. In particular, grafted PEG chains not only sterically block the binding between proteins and surfaces but also strongly interact with proteins via hydrogen bonds and electrostatic and hydrophobic interactions, with apolipoproteins exhibiting stronger hydrophobic interactions with PEG than other proteins, implying that these specific protein-PEG interactions help certain proteins remain on the PEGylated surface. These simulation findings help explain experimental observations regarding the abundance of specific plasma proteins adsorbed onto nanoparticles grafted with PEG at different densities.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea
| |
Collapse
|
26
|
Muthu T, Adusumalli R, Vemuri SK, Indira Devi M, Pavan Kumar P, Banala RR, Gurava Reddy AV. Eco-biofabrication of silver nanoparticles from Azadirachta indica, Gymnema sylvestre, and Moringa oleifera for lung cancer treatment. J Egypt Natl Canc Inst 2025; 37:1. [PMID: 39757333 DOI: 10.1186/s43046-024-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Silver nanoparticles (AgNPs) derived from natural sources have garnered significant attention due to their unique properties and eco-friendly production methods. With lung cancer remaining a major global health issue, there is a continuous need for novel and effective therapeutic approaches beyond conventional treatments such as chemotherapy, immunotherapy, and targeted therapies. OBJECTIVE This study aims to synthesize AgNPs using plant extracts from Gymnema sylvestre, Moringa oleifera, and Azadirachta indica and to evaluate their anticancer activity, particularly their effects on gene expression in A549 lung cancer cells. METHODS AgNPs were synthesized using green chemistry techniques and characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Gene expression studies were performed to assess the impact of AgNPs on cancer-related genes such as VEGF and CYCLIN-D1. Cytotoxicity assays were conducted on A549 cells to determine the anticancer potential of the synthesized AgNPs compared to plant extracts alone. RESULTS XRD confirmed the formation of crystalline AgNPs, while FTIR indicated the presence of bioactive compounds interacting with the nanoparticles. Gene expression analysis revealed significant downregulation of VEGF and CYCLIN-D1, suggesting inhibitory effects on angiogenesis and cell cycle progression. The synthesized AgNPs exhibited potent cytotoxic activity against A549 cells, with enhanced efficacy compared to the leaf extracts alone. CONCLUSION The study highlights the potential of AgNPs synthesized from medicinal plant extracts as promising candidates for lung cancer therapy. Their environmentally sustainable production, combined with their ability to target key cancer pathways, positions them as innovative and affordable therapeutic agents in the field of nanomedicine.
Collapse
Affiliation(s)
- Tanya Muthu
- SMART, Sunshine Hospitals, Secunderabad, Telangana, India
| | - Ravi Adusumalli
- Department of Biosciences, University of Oslo, Blindern, Oslo, 0316, Norway
| | | | - M Indira Devi
- Mahatma Gandhi University, Nalgonda District, Telangana, India
| | - P Pavan Kumar
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
| | | | | |
Collapse
|
27
|
Yu J, Wu J, Huang J, Xu C, Xu M, Koh CZH, Pu K, Zhang Y. Hypoxia-tolerant polymeric photosensitizer prodrug for cancer photo-immunotherapy. Nat Commun 2025; 16:153. [PMID: 39747121 PMCID: PMC11695608 DOI: 10.1038/s41467-024-55529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Although photodynamic immunotherapy represents a promising therapeutic approach against malignant tumors, its efficacy is often hampered by the hypoxia and immunosuppressive conditions within the tumor microenvironment (TME) following photodynamic therapy (PDT). In this study, we report the design guidelines towards efficient Type-I semiconducting polymer photosensitizer and modify the best-performing polymer into a hypoxia-tolerant polymeric photosensitizer prodrug (HTPSNiclo) for cancer photo-immunotherapy. HTPSNiclo not only performs Type-I PDT process to partially overcome the limitation of hypoxic tumors in PDT by recycling oxygen but also specifically releases a Signal Transducer and Activator of Transcription-3 (STAT3) inhibitor (Niclosamide) in response to a cancer biomarker in the TME. Consequently, HTPSNiclo inhibits the phosphorylation of STAT3, and suppresses the expression of hypoxia-inducible factor-1α. The synergistic effect results in the enhanced activation of immune cells (including mature dendritic cells, cytotoxic T cells) and production of immunostimulatory cytokines compared to Type-I PDT alone. Thus, HTPSNiclo-mediated photodynamic immunotherapy enhances tumor inhibition rate from 75.53% to 91.23%, prolongs the 100% survival from 39 days to 60 days as compared to Type-I PDT alone. This study not only provides the generic approach towards design of polymer-based Type-I photosensitizers but also uncovers effective strategies to counteract the immunosuppressive TME for enhanced photo-immunotherapy in 4T1 tumor bearing female BALB/c mice.
Collapse
Affiliation(s)
- Jie Yu
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Clarence Zhi Han Koh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
28
|
Zhou W, Liu YC, Liu GJ, Zhang Y, Feng GL, Xing GW. Glycosylated AIE-active Red Light-triggered Photocage with Precisely Tumor Targeting Capability for Synergistic Type I Photodynamic Therapy and CPT Chemotherapy. Angew Chem Int Ed Engl 2025; 64:e202413350. [PMID: 39266462 DOI: 10.1002/anie.202413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (1O2)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O2 -⋅)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O2 -⋅ through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.
Collapse
Affiliation(s)
- Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
29
|
Singh G, Rathee J, Triveni, Jain N, Nagaich U, Kaul S, Pandey M, Gorain B. Nano-approaches and Recent Advancements in Strategies to Combat Challenges Associated with Thyroid Cancer Therapies. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:381-394. [PMID: 37849227 DOI: 10.2174/0118722105257210230929083126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
The prevalence of thyroid cancer (TC) is more common in women and is up to 43% in patients aged between 45-65 years. The battle against TC is hampered by the lack of effective diagnostic and therapeutic approaches. The effectiveness of surgical procedures, such as thyroidectomy and nutraceutical treatments, are accompanied by several difficulties and still require further research. Alternatively, the DNA-damaging traditional model of chemotherapy is linked to poor solubility, untoward systemic effects, and associated cytotoxicity, instituting an urgent need to establish a specialized, factual, and reliable delivery tool. In order to overcome the limitations of conventional delivery systems, nanotechnology-based delivery tools have shown the potential of articulating endless inherent implementations. The probable benefits of emerging nanotechnology-based diagnostic techniques include rapid screening and early illness diagnosis, which draws investigators to investigate and assess the possibility of this treatment for TC. Subsequently, organic (e.g., liposomes, polymer-based, and dendrimers) and inorganic (e.g., gold, carbon-based, mesoporous silica, magnetic, and quantum dots) NPs and hybrids thereof (liposome-silica, chitosan-carbon, and cell membrane-coated) have been projected for TC biomarker screening, therapy, and detection, providing better outcomes than traditional diagnostic and treatment techniques. Therefore, this review aims to offer a broad perspective on nanoplatform in TC, accompanied by present and potential future treatment options and screening techniques; including the innovative patents utilized in the realm of thyroid cancer using nanocarriers. The goal of cancer therapy has traditionally been to "search a thorn in a hayloft"; therefore, this article raises the possibility of treating TC using nano-oncotherapeutics, which might be useful clinically and will encourage future researchers to explore this tool's potential and drawbacks.
Collapse
Affiliation(s)
- Gurmehar Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Jatin Rathee
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Triveni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| |
Collapse
|
30
|
Xing Y, Jing R, Kang J, Li Y, Zhang H, Tang X, Jiang Z. Carbon-based Nanomaterials in Photothermal Therapy Guided by Photoacoustic Imaging: State of Knowledge and Recent Advances. Curr Med Chem 2025; 32:238-257. [PMID: 38529603 DOI: 10.2174/0109298673287448240311112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/27/2024]
Abstract
Carbon-based nanomaterials (CBNM) have been widely used in various fields due to their excellent physicochemical properties. In particular, in the area of tumor diagnosis and treatment, researchers have frequently reported them for their potential fluorescence, photoacoustic (PA), and ultrasound imaging performance, as well as their photothermal, photodynamic, sonodynamic, and other therapeutic properties. As the functions of CBNM are increasingly developed, their excellent imaging properties and superior tumor treatment effects make them extremely promising theranostic agents. This review aims to integrate the considered and researched information in a specific field of this research topic and systematically present, summarize, and comment on the efforts made by authoritative scholars. In this review, we summarized the work exploring carbon-based materials in the field of tumor imaging and therapy, focusing on PA imaging-guided photothermal therapy (PTT) and discussing their imaging and therapeutic mechanisms and developments. Finally, the current challenges and potential opportunities of carbon-based materials for PA imaging-guided PTT are presented, and issues that researchers should be aware of when studying CBNM are provided.
Collapse
Affiliation(s)
- Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Rui Jing
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Kang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuwen Li
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
31
|
Behairy SM, Al-Maaqar SM, Al-Shaeri MA. Impact of SWCNT-conjugated senna leaf extract on breast cancer cells: A potential apoptotic therapeutic strategy. Open Life Sci 2024; 19:20220994. [PMID: 39759104 PMCID: PMC11699557 DOI: 10.1515/biol-2022-0994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer (BC) has a prevalence rate of 21.8% among Saudi women and ranks as the third leading cause of death in Western nations. Nanotechnology offers innovative methods for targeted BC therapy, and this study explores the use of single-walled carbon nanotubes (SWCNTs) for delivering the senna leaf extract. The study evaluated the effects of increasing dosages of senna leaf extract conjugated to SWCNTs on MCF-7 cells. Cell viability was assessed using the MTT assay, while Giemsa staining revealed morphological changes. Additionally, the comet assay and agarose gel electrophoresis were employed to evaluate the pro-apoptotic potential. The potential of mitochondrial membrane and the production of reactive oxygen species (ROS) were investigated using the JC-1 dye. The results indicated that treated cells exhibited apoptotic characteristics, including elevated ROS levels and decreased mitochondrial membrane potential. In summary, the application of nanotechnology to deliver the senna leaf extract shows promise as a herbal treatment for BC, suggesting a potential breakthrough in combating this widespread and deadly disease.
Collapse
Affiliation(s)
- Sabreen Mohammed Behairy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Mohammed Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Environmental Protection & Sustainability Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Environmental Protection & Sustainability Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Moscheni C, Sartori P, Hu K, Zecchini S, Brambilla L, Arcari A, Napoli A, Mocciaro E, Uboldi M, Zema L, Perrotta C, Castiglioni C. Tailored graphene nanoparticles for biomedical application: preliminary in vitro characterization of the functionality in model cell lines. Int J Pharm 2024; 667:124914. [PMID: 39515671 DOI: 10.1016/j.ijpharm.2024.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Thanks to an environmentally friendly physical treatment of high purity graphite, a good control of the structure of graphene nanoparticles (GNPs) has been obtained with the production of stable and reproducible GNPs water dispersions. The preparation protocol entailed ball-milling of synthetic graphite followed by sonication in water and centrifugation/separation procedures. This way, two different GNPs samples with slightly different structural characteristics were harvested: TOP60, showing an average lateral size of the graphene layers = 70 nm and average number of stacked layers = 4, and BOTTOM60, with = 120 nm and = 6. A detailed structural characterization of GNPs was performed as mandatory pre-requisite to build reliable structure/properties correlations, in terms of both biomedical efficacy and toxicity, aiming at a rationale design of tailored materials for applications in biological environments. To this end, in this study GNPs were thoroughly characterized, focusing on cytotoxicity, cellular uptake, and inflammatory response, by testing their effect in different cell lines. BOTTOM60 GNPs in culture medium and in the presence of cells showed a tendency to form big aggregates, phenomenon that was probably responsible for their cytotoxicity at high concentrations. On the other hand, TOP60 GNPs showed a diverse behavior depending on the cell type under investigation. Indeed, the nanoparticles were internalized by cells specialized in endo/phagocytosis, such as astrocytoma cells, but not by carcinoma cells of epithelial origin. Moreover, TOP60 GNPs caused a reduction of proliferation only at high concentration and did not trigger an inflammatory response in THP-1-derived macrophages. The evidence here collected paves the way for further investigations towards the development of GNPs-based drug delivery systems.
Collapse
Affiliation(s)
- Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Kaiyue Hu
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Silvia Zecchini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Luigi Brambilla
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Alessandro Arcari
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Alessandra Napoli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Emanuele Mocciaro
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Cristiana Perrotta
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy.
| | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| |
Collapse
|
33
|
Velapure P, Kansal D, Bobade C. Tumor microenvironment-responsive nanoformulations for breast cancer. DISCOVER NANO 2024; 19:212. [PMID: 39708097 DOI: 10.1186/s11671-024-04122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 12/23/2024]
Abstract
Nanomedicine, the most promising approach for regulated and targeted drug delivery, is frequently applied in cancer treatment. Essentially, accumulating evidence indicates that nanomedicine has positive results in the treatment of breast cancer (BC), with many BC patients benefiting from nanomedicine-related treatments. Currently, nanodrug delivery systems based on stimulus responses are gaining popularity because of their additional ability to manage drug release depending on the interior environment of the cancer. This review includes a synopsis of several types of internal (pH, redox, enzyme, reactive oxygen species, and hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspectives for forthcoming times. Stimulus-responsive nanoparticles can remain stable under physiological conditions while being rapidly activated to release drugs in response to specific stimuli, prolonging blood circulation and increasing cancer cellular uptake, resulting in excellent therapeutic performance and improved biosafety. In this paper, we discuss tumor microenvironment responsive Nanoformulation for breast cancer treatment.
Collapse
Affiliation(s)
- Pallavi Velapure
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Divyanshi Kansal
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Chandrashekhar Bobade
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India.
| |
Collapse
|
34
|
Tian S, Chen M. Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis. Front Oncol 2024; 14:1460201. [PMID: 39711965 PMCID: PMC11660184 DOI: 10.3389/fonc.2024.1460201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgery and chemoradiotherapy are the main clinical treatment methods for colorectal cancer (CRC), but the prognosis is poor. The emergence of nanomedicine brings bright light to the treatment of CRC. However, there has not been a comprehensive and systematic analysis of CRC and nanomedicine by bibliometrics. Methods We searched the Web of Science Core Collection database (WOSCC) for relevant literature published from 2011 to 2024. We used VOSviewer and Citespace to analyze countries, institutions, authors, keywords, highly cited references, and co-cited references. Results 3105 pieces of literatures were included in the research analysis, and PEOPLES R CHINA and the USA took the leading position in the number of papers published and had academic influence. The Chinese Academy of Sciences posted the most papers. The most prolific scholar was Abnous Khalil. The level of economic development is inversely proportional to the number of cases and deaths of colorectal cancer. Nanoparticles (NPs), the nanomedical drug delivery system (NDDS) is a hot topic in the field. Photodynamic therapy (PDT), immunogenic cell death (ICD), tumor microenvironment (TEM), folic acid, and pH are the cutting edge of the field. Conclusion This paper introduces the research hotspot, emphasis, and frontier of CRC and nanomedicine, and points out the direction for this field.
Collapse
Affiliation(s)
| | - Min Chen
- Proctology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
36
|
Moorthy DN, Dhinasekaran D, Rebecca PNB, Rajendran AR. Optical Biosensors for Detection of Cancer Biomarkers: Current and Future Perspectives. JOURNAL OF BIOPHOTONICS 2024; 17:e202400243. [PMID: 39442779 DOI: 10.1002/jbio.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.
Collapse
Affiliation(s)
| | | | - P N Blessy Rebecca
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
37
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024; 28:4515-4552. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
38
|
Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, Nuh AM, Jiang W, Farooqi HMU, Bai Q. Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:84-103. [PMID: 38235991 DOI: 10.1080/21691401.2024.2304814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Tamreez Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mansoor Husn
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Manzar Khan
- Department of Zoology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ahmad Khan
- Department of Psychology, University of Karachi, Karachi, Pakistan
| | - Abdifatah Mohamed Nuh
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Qain Bai
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Pathania H, Chauhan P, Chaudhary V, Khosla A, Neetika, Kumar S, Gaurav, Sharma M. Engineering core-shell mesoporous silica and Fe 3O 4@Au nanosystems for targeted cancer therapeutics: a review. Biotechnol Genet Eng Rev 2024; 40:3653-3681. [PMID: 36444150 DOI: 10.1080/02648725.2022.2147685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
The extensive utilization of nanoparticles in cancer therapies has inspired a new field of study called cancer nanomedicine. In contrast to traditional anticancer medications, nanomedicines offer a targeted strategy that eliminates side effects and has high efficacy. With its vast surface area, variable pore size, high pore volume, abundant surface chemistry and specific binding affinity, mesoporous silica nanoparticles (MPSNPs) are a potential candidate for cancer diagnosis and treatment. However, there are several bottlenecks associated with nanoparticles, including specific toxicity or affinity towards particular body fluid, which can cater by architecting core-shell nanosystems. The core-shell chemistries, synergistic effects, and interfacial heterojunctions in core-shell nanosystems enhance their stability, catalytic and physicochemical attributes, which possess high performance in cancer therapeutics. This review article summarizes research and development dedicated to engineering mesoporous core-shell nanosystems, especially silica nanoparticles and Fe3O4@Au nanoparticles, owing to their unique physicochemical characteristics. Moreover, it highlights state-of-the-art magnetic and optical attributes of Fe3O4@Au and MPSNP-based cancer therapy strategies. It details the designing of Fe3O4@Au and MPSN to bind with drugs, receptors, ligands, and destroy tumour cells and targeted drug delivery. This review serves as a fundamental comprehensive structure to guide future research towards prospects of core-shell nanosystems based on Fe3O4@Au and MPSNP for cancer theranostics.
Collapse
Affiliation(s)
- Himani Pathania
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Priyanka Chauhan
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Vishal Chaudhary
- Research Cell and Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, PR China
| | - Neetika
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Gaurav
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Mamta Sharma
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
- Department of Botany, Vivekananda Bhawan, Sardar Patel University, Mandi, India
| |
Collapse
|
40
|
Hani U, Choudhary VT, Ghazwani M, Alghazwani Y, Osmani RAM, Kulkarni GS, Shivakumar HG, Wani SUD, Paranthaman S. Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives. Pharmaceutics 2024; 16:1527. [PMID: 39771506 PMCID: PMC11679327 DOI: 10.3390/pharmaceutics16121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy-their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Vikram T. Choudhary
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Gururaj S. Kulkarni
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Hosakote G. Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India;
| | - Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India;
| |
Collapse
|
41
|
Rodrigues JS, Brandão P, Duarte SOD, da Silveira IB, Leite MDF, Gonçalves MP, Borsagli FGLM, Fonte P. Sustainable Carbon Dots Loaded into Carboxymethylcellulose Based Hydrogels for Uterine Cancer Bioimaging. Pharmaceutics 2024; 16:1500. [PMID: 39771480 PMCID: PMC11677459 DOI: 10.3390/pharmaceutics16121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The development of innovative materials for disease diagnostics and therapeutics is a fast-growing area of scientific research. In this work, we report the development of innovative hydrogels incorporating carbon dots (Cdots) for bioimaging purposes. Methods: The Cdots were prepared using a sustainable and low-cost process, starting with an underused fiber from the Brazilian semiarid region. Spectroscopy analysis (Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy), X-ray diffraction, photoluminescence, zeta potential, scanning electron microscopy, and transmission electron microscopy were used to characterize these hydrogels. In addition, biocompatibility using the resazurin assay and cellular uptake by confocal microscopy were evaluated. Results: Our results showed that the Cdots changed the structure and crystallinity of hydrogels, mainly due to heat treatment. In addition, hydrogels' chemical groups suffer red and blue shifts following the Cdots incorporation. Moreover, the Cdots were homogeneously incorporated into the hydrogel matrix. Importantly, the cytotoxicity levels were maintained above 90% (p < 0.01), and cellular uptake studies using HeLa cells demonstrated intracellular fluorescence of both the Cdots and hydrogels after incubation. Additionally, the concentration of Cdots within hydrogels significantly affected fluorescence intensity, even compared with pure Cdots. Conclusions: These results showcase the potential for these hydrogels to be further developed as biomarkers and therapeutic biomaterials for women's health.
Collapse
Affiliation(s)
- Jordane S. Rodrigues
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, Janaúba 39440-039, MG, Brazil; (J.S.R.)
| | - Pedro Brandão
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (P.B.); (S.O.D.D.)
- Associate Laboratory i4HB–Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Sofia O. D. Duarte
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (P.B.); (S.O.D.D.)
- Associate Laboratory i4HB–Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Izabela Boueri da Silveira
- Department of Physiology and Biophysics, Institute of Biology Science, Universidade Federal de Minas Gerais/UFMG, Av. Antônio Carlos, 6627, Belo Horizonte 30130-100, MG, Brazil (M.d.F.L.)
| | - Maria de Fátima Leite
- Department of Physiology and Biophysics, Institute of Biology Science, Universidade Federal de Minas Gerais/UFMG, Av. Antônio Carlos, 6627, Belo Horizonte 30130-100, MG, Brazil (M.d.F.L.)
| | - Max P. Gonçalves
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, Janaúba 39440-039, MG, Brazil; (J.S.R.)
| | - Fernanda G. L. Medeiros Borsagli
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, Janaúba 39440-039, MG, Brazil; (J.S.R.)
| | - Pedro Fonte
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (P.B.); (S.O.D.D.)
- Associate Laboratory i4HB–Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
42
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
43
|
Tarasi S, Pirani Ahmad Abad S, Feghhe Miri O, Danafar H, Morsali A, Ramazani A. Investigating the Size Effect of Metal-Organic Frameworks in Drug Delivery and Anticancer Properties. Inorg Chem 2024; 63:19011-19022. [PMID: 39327737 DOI: 10.1021/acs.inorgchem.4c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here, we show particle size-dependent therapeutic efficacy with a Zn-based metal-organic framework (MOF). The size of MOFs was tuned in specific ranges (∼100, 200, and 300 nm) built upon the manipulation of synthetic conditions. X-ray photoelectron spectroscopy, infrared, PXRD, and dynamic light scattering and scanning electron microscopy analyses were used to identify the synthesized structures. The various analyses revealed minimal changes in the molecular properties of these structures regardless of their size, confirming our hypothesis regarding the preservation of the identity of MOF nanoparticles despite size variation. The synthesized carriers undergo structure relative destruction in response to a weak acidic tumor microenvironment, and this relative degradation allows the release of the Nimesulide drug into the environment. Interestingly, anticancer studies resulting in SKBR3 (Human breast cancer cell) cells indicate that the different sizes resulted in various inhibition capacities against cancer cells. This work shows the importance of optimizing the geometry of the drug carrier, such as size and shape, to achieve the highest cellular uptake and therapeutic performance. Besides, theoretical studies were carried out using B3LYP/6-31G (d,p) and density functional theory methods to more consider the drug adsorption mechanism.
Collapse
Affiliation(s)
- Somayeh Tarasi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Sina Pirani Ahmad Abad
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Omid Feghhe Miri
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran 1411713116, Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
- Department of Agronomy, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
- Department of Animal Science, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| |
Collapse
|
44
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
45
|
Zhang S, Jiang M, Lai W, Ren H, Hong C, Li H. Quenching study of Cu 2S-MPA/NGODs composites in electrochemiluminescence detection by modulating resonance energy transfer and adsorption process. Bioelectrochemistry 2024; 159:108729. [PMID: 38772096 DOI: 10.1016/j.bioelechem.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
This study explores the principles of resonance energy transfer and adsorption modulation using composites of Cu2S-MPA/NGODs. These composites can efficiently control the quenching process of electrochemiluminescence (ECL). Mercaptopropionic acid (MPA) was added during the synthesis of Cu2S-MPA to enhance its attachment to nitrogen-doped graphene quantum dots (NGODs). The UV absorption peaks of NGODs coincided with the emission peaks of luminol ECL, enabling resonance energy transfer and enhancing the quenching capability of Cu2S-MPA. Meanwhile, there is another quenching strategy. When the readily reducible Cu+ ions underwent partial reduction to Cu when they were bound to NGODs. This weakened the electrocatalytic effect on reactive oxygen species (ROS) and had a detrimental impact on electron transfer. Under optimal conditions, the immunosensor ECL intensity decreased linearly with the logarithm of carcinoembryonic antigen (CEA) concentration in the range of 0.00001-40 ng/mL, with a detection limit of 0.269 fg/mL. The sensor was effectively utilized for the identification of CEA in actual serum samples.
Collapse
Affiliation(s)
- Shaopeng Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Haoyi Ren
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China.
| | - Hongling Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China.
| |
Collapse
|
46
|
Al-Samydai A, Abu Hajleh MN, Al-Sahlawi F, Nsairat H, Khatib AA, Alqaraleh M, Ibrahim AK. Advancements of metallic nanoparticles: A promising frontier in cancer treatment. Sci Prog 2024; 107:368504241274967. [PMID: 39370817 PMCID: PMC11459474 DOI: 10.1177/00368504241274967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The incidence of cancer is increasing and evolving as a major source of mortality. Nanotechnology has garnered considerable scientific interest in recent decades and can offer a promising solution to the challenges encountered with traditional chemotherapy. Nanoparticle utilization holds promise in combating cancer and other diseases, offering exciting prospects for drug delivery systems and medicinal applications. Metallic nanoparticles exhibit remarkable physical and chemical properties, such as their minute size, chemical composition, structure, and extensive surface area, rendering them versatile and cost-effective. Research has demonstrated their significant and beneficial impact on cancer treatment, characterized by enhanced targeting abilities, gene activity suppression, and improved drug delivery efficiency. By incorporating targeting ligands, functionalized metal nanoparticles ensure precise energy deposition within tumors, thereby augmenting treatment accuracy. Moreover, beyond their therapeutic efficacy, metal nanoparticles serve as valuable tools for cancer cell visualization, contributing to diagnostic techniques. Utilizing metal nanoparticles in therapeutic systems allows for simultaneous cancer diagnosis and treatment, while also facilitating controlled drug release, thus revolutionizing cancer care. This narrative review investigates the advancements of metal nanoparticles in cancer treatment, types and mechanisms in targeting cancer cells, application in clinical scenarios, and potential toxicity in medicine.
Collapse
Affiliation(s)
- Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Maha N. Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Farah Al-Sahlawi
- Department of Pharmaceutics at the College of Pharmacy, University of Alkafeel, AlNajaf, Iraq
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Arwa Al Khatib
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Alia K. Ibrahim
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
47
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
48
|
Muteeb G, Khafaga DS, El-Morsy MT, Farhan M, Aatif M, Hosney M. Targeting tumor-associated macrophages with nanocarrier-based treatment for breast cancer: A step toward developing innovative anti-cancer therapeutics. Heliyon 2024; 10:e37217. [PMID: 39309874 PMCID: PMC11415663 DOI: 10.1016/j.heliyon.2024.e37217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor advancement in many ways, such as inducing angiogenesis and the formation of new blood vessels that provide tumors with nourishment and oxygen. TAMs also facilitate tumor invasion and metastasis by secreting enzymes that degrade the extracellular matrix and generating pro-inflammatory cytokines that enhance the migration of tumor cells. TAMs also have a role in inhibiting the immune response against malignancies. To accomplish this, they release immunosuppressive cytokines such as IL-10, and TAMs can hinder the function of T cells and natural killer cells, which play crucial roles in the immune system's ability to combat cancer. The role of TAMs in breast cancer advancement is a complex and dynamic field of research. Therefore, TAMs are a highly favorable focus for innovative breast cancer treatments. This review presents an extensive overview of the correlation between TAMs and breast cancer development as well as its role in the tumor microenvironment (TME) shedding light on their impact on tumor advancement and immune evasion mechanisms. Notably, our study provides an innovative approach to employing nanomedicine approaches for targeted TAM therapy in breast cancer, providing an in-depth overview of recent advances in this emerging field.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Doaa S.R. Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City, 43511, Suez, Egypt
| | - Manar T. El-Morsy
- Biotechnology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
49
|
Thabit RM, El-Aziz FEZAA, El-Fadl AA, Abu-Sehly AA, Sayed AM. Synthesis and evaluation of nanosized aluminum MOF encapsulating Umbelliferon: assessing antioxidant, anti-inflammatory, and wound healing potential in an earthworm model. BMC Biotechnol 2024; 24:61. [PMID: 39278901 PMCID: PMC11403860 DOI: 10.1186/s12896-024-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Nanoporous aluminum metal-organic framework (Al-MOF) was synthesized via solvothermal methods and employed as a carrier matrix for in vitro drug delivery of Umbelliferon (Um). The encapsulated Um was gradually released over seven days at 37 °C, using simulated body fluid phosphate-buffered saline (PBS) at pH 7.4 as the release medium. The drug release profile suggests the potential of Al-MOF nanoparticles as effective drug delivery carriers. Structural and chemical analyses of Um-loaded Al-MOF nanoparticles (Um-Al MOF) were conducted using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), and ultraviolet-visible (UV-Vis) spectroscopy. Thermal gravimetric analysis (TGA) was employed to investigate the thermal stability of the Al-MOF nanoparticles, while Transmission Electron Microscopy (TEM) was utilized to assess their morphological features. Um-Al MOF nanoparticles demonstrated notable antioxidant and anti-inflammatory properties compared to Um and Al-MOF nanoparticles individually. Moreover, they exhibited significant enhancement in wound healing in an earthworm model. These findings underscore the potential of Al-MOF nanoparticles as a promising drug delivery system, necessitating further investigations to explore their clinical applicability.
Collapse
Affiliation(s)
- Rabab M Thabit
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - A Abu El-Fadl
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - A A Abu-Sehly
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ahmed M Sayed
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
50
|
Dai X, Dai Y, Zheng Y, Lv Y. Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment. RSC Adv 2024; 14:29039-29051. [PMID: 39282063 PMCID: PMC11391930 DOI: 10.1039/d4ra03837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have significantly halted the clinical translation of these nanomaterials such as the relatively low therapeutic efficacy, hyperthermia resistance, and biosafety concerns. To identify innovative approaches possibly creating synergies with MNPs to resolve or mitigate these problems, we delineated the anti-cancer properties of MNPs and their existing onco-therapeutic portfolios, based on which we proposed cold atmospheric plasma (CAP) to be a possible synergizer of MNPs by enhancing free radical generation, reducing hyperthermia resistance, preventing MNP aggregation, and functioning as an innovative magnetic and light source for magnetothermal- and photo-therapies. Our insights on the possible facilitating role of CAP in translating MNPs for biomedical use may inspire fresh research directions that, once actualized, gain mutual benefits from both.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yilin Dai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| |
Collapse
|