1
|
Dong H, Zhang C, Wang H, Dai Y. Causal links between plasma lipidome and ovarian cancer risk: evidence from Mendelian randomization. Discov Oncol 2025; 16:745. [PMID: 40355763 PMCID: PMC12069180 DOI: 10.1007/s12672-025-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
S. Plasma lipids in circulation are integral to the physiopathological processes of the ovary and may impact the development of various ovarian conditions, including ovarian cancer (OC). This study utilized a two-sample Mendelian randomization method to examine the causal link between changes in 179 plasma lipid groups and ovarian cancer (OC) to gain deeper insights into this association. We used the inverse variance weighted (IVW) method as the main tool for analysis. We utilized statistical data from plasma lipidomics involving 7,174 Finnish individuals and OC data from the FinnGen consortium, including 2,339 European OC patients and 222,078 European healthy controls. Our analysis revealed that elevated levels of four plasma lipids-Phosphatidylcholine (14:0_16:0, O-18:2_18:2, 16:0_20:4)-are linked to an increased risk of OC, while Sphingomyelin (d34:2) seems to act as a protective factor(all P < 0.05). We also conducted tests for heterogeneity and pleiotropy in the MR results. Additionally, reverse MR analysis indicated that OC does not affect plasma levels of these lipids. To determine whether the observed significant plasma lipids influence OC through common risk factors, we selected BMI as a confounder for multivariable Mendelian randomization (MVMR) analysis. The results showed that Sphingomyelin (d34:2) levels remained significantly associated with OC even after including BMI as an exposure factor. Furthermore, we investigated whether these four lipids mediated the effect of BMI on OC but found no evidence supporting their mediating role. In summary, our findings confirm a causal link between certain plasma lipid species and OC, providing fresh perspectives for risk evaluation and potential therapeutic strategies.
Collapse
Affiliation(s)
- Huke Dong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Zhang
- Lu'an Hospital of Traditional Chinese Medicine, Lu'an, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Ying Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Zhang H, Yang X, Xue Y, Huang Y, Mo Y, Huang Y, Zhang H, Zhang X, Zhao W, Jia B, Li N, Gao N, Yang Y, Xiang D, Wang S, Qin Gao Y, Liao J. A basigin antibody modulates MCTs to impact tumor metabolism and immunity. Cell Discov 2025; 11:44. [PMID: 40324980 PMCID: PMC12053622 DOI: 10.1038/s41421-025-00777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025] Open
Abstract
Lactate metabolism and signaling intricately intertwine in the context of cancer and immunity. Basigin, working alongside monocarboxylate transporters MCT1 and MCT4, orchestrates the movement of lactate across cell membranes. Despite their potential in treating formidable tumors, the mechanisms by which basigin antibodies affect basigin and MCTs remain unclear. Our research demonstrated that basigin positively modulates MCT activity. We subsequently developed a basigin antibody that converts basigin into a negative modulator, thereby suppressing lactate transport and enhancing anti-tumor immunity. Additionally, the antibody alters metabolic profiles in NSCLC-PDOs and T cells. Cryo-EM structural analysis and molecular dynamics simulations reveal that the extracellular Ig2 domain and transmembrane domain of basigin regulate MCT1 activity through an allosteric mechanism. The antibody decreases MCT1 transition rate by reducing the flexibility of basigin's Ig2 domain and diminishing interactions between basigin's transmembrane domain and MCT1. These findings underscore the promise of basigin antibodies in combating tumors by modulating metabolism and immunity, and the value of a common therapeutic subunit shared by multiple transporter targets.
Collapse
Affiliation(s)
- Heng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuemei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yurun Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaofei Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Jia
- Lung Cancer Department, Tianjin Cancer Hospital, Tianjin, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yue Yang
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, and Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shan Wang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Jun Liao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Alphelix Biosciences, Foshan, Guangdong, China.
| |
Collapse
|
3
|
Zhang L, Ramesh P, Atencia Taboada L, Roessler R, Zijlmans DW, Vermeulen M, Picavet-Havik DI, van der Wel NN, Vaz FM, Medema JP. UGT8 mediated sulfatide synthesis modulates BAX localization and dictates apoptosis sensitivity of colorectal cancer. Cell Death Differ 2025; 32:657-671. [PMID: 39580596 PMCID: PMC11982410 DOI: 10.1038/s41418-024-01418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Elevated de novo lipid synthesis is a remarkable adaptation of cancer cells that can be exploited for therapy. However, the role of altered lipid metabolism in the regulation of apoptosis is still poorly understood. Using thermal proteome profiling, we identified Manidipine-2HCl, targeting UGT8, a key enzyme in the synthesis of sulfatides. In agreement, lipidomic analysis indicated that sulfatides are strongly reduced in colorectal cancer cells upon treatment with Manidipine-2HCl. Intriguingly, this reduction led to severe mitochondrial swelling and a strong synergism with BH3 mimetics targeting BCL-XL, leading to the activation of mitochondria-dependent apoptosis. Mechanistically, Manidipine-2HCl enhanced mitochondrial BAX localization in a sulfatide-dependent fashion, facilitating its activation by BH3 mimetics. In conclusion, our data indicates that UGT8 mediated synthesis of sulfatides controls mitochondrial homeostasis and BAX localization, dictating apoptosis sensitivity of colorectal cancer cells.
Collapse
Affiliation(s)
- Le Zhang
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Prashanthi Ramesh
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Lidia Atencia Taboada
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Rebecca Roessler
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Dick W Zijlmans
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daisy I Picavet-Havik
- Medical Biology - MB Core Facility, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Medical Biology - MB Core Facility, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Noble JT, Bimpeh K, Pisciotta MA, Reyes Ballista JM, Hines KM, Brindley MA. Chikungunya Replication and Infection Is Dependent upon and Alters Cellular Hexosylceramide Levels in Vero Cells. Viruses 2025; 17:509. [PMID: 40284952 PMCID: PMC12031450 DOI: 10.3390/v17040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes significant global morbidity, including fever, rash, and persistent arthralgia. Utilizing untargeted lipidomics, we investigated how CHIKV infection alters host cell lipid metabolism in Vero cells. CHIKV infection induced marked catabolism of hexosylceramides, reducing their levels while increasing ceramide byproducts. Functional studies revealed a reliance on fatty acid synthesis, β-oxidation, and glycosphingolipid biosynthesis. Notably, inhibition of uridine diphosphate glycosyltransferase 8 (UGT8), essential for galactosylceramide production, significantly impaired CHIKV replication and entry in Vero cells. Sensitivity of CHIKV to UGT8 inhibition was reproduced in a disease-relevant cell line, mouse hepatocytes (Hepa1-6). CHIKV was also sensitive to evacetrapib, a cholesterol ester transfer protein (CETP) inhibitor, though the mechanism of inhibition appeared independent of CETP itself, suggesting an off-target effect. These findings highlight specific lipid pathways, particularly glycosphingolipid metabolism, as critical for CHIKV replication and further refine our understanding of how CHIKV exploits host lipid networks. This study provides new insights into CHIKV biology and suggests that targeted investigation of host lipid pathways may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Joseph Thomas Noble
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.T.N.); (M.A.P.); (J.M.R.B.)
| | - Kingsley Bimpeh
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; (K.B.); (K.M.H.)
| | - Michael Anthony Pisciotta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.T.N.); (M.A.P.); (J.M.R.B.)
| | - Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.T.N.); (M.A.P.); (J.M.R.B.)
| | - Kelly Marie Hines
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; (K.B.); (K.M.H.)
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.T.N.); (M.A.P.); (J.M.R.B.)
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Kang JS, Lee SR, Lee M, Kim E, Lee PC. A novel fluorescein sodium-based screening platform for the identification of sphingoid base-producing Wickerhamomyces ciferrii mutants. Front Bioeng Biotechnol 2025; 13:1548051. [PMID: 40078793 PMCID: PMC11897276 DOI: 10.3389/fbioe.2025.1548051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
The efficient identification of microbial strains capable of producing rare sphingoid bases, such as sphingosine and sphinganine, is critical for advancing microbial fermentation processes and addressing increasing industrial demands. Wickerhamomyces ciferrii, a non-conventional yeast, naturally overproduces tetraacetyl phytosphingosine (TAPS); however, the production of other valuable sphingoid bases, including sphingosine, sphinganine, and triacetyl sphingosine, remains a key target. In this study, we developed a novel screening method utilizing fluorescein sodium, a selective fluorescent dye that specifically reacts with non-acetylated sphingoid bases-sphinganine, sphingosine, and phytosphingosine-while exhibiting no reactivity with TAPS. A mutant library of W. ciferrii was generated via gamma-ray mutagenesis and screened using fluorescence-activated cell sorting (FACS). Mutants exhibiting high fluorescence intensity, indicative of non-acetylated or partially acetylated sphingoid base production, were isolated through three rounds of sorting and further validated via HPLC analysis. This approach successfully identified three mutant strains: P41C3 (sphingosine-producing), M01_5 (sphinganine-producing), and P41E7 (triacetyl sphingosine-producing). Among them, the P41C3 mutant achieved a sphingosine titer of 36.7 mg/L during shake-flask cultivation, accompanied by a significant reduction in TAPS production, indicating a redirection of metabolic flux. This study demonstrates the utility of fluorescein sodium as a selective screening dye for sphingoid base-producing strains and establishes an effective platform for the metabolic engineering of W. ciferrii to enhance the production of industrially significant sphingolipids.
Collapse
Affiliation(s)
| | | | | | | | - Pyung Cheon Lee
- Department of Molecular Science and Technology and Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Guo J, Wang C, Li H, Ding C. Exploring the causal associations of the gut microbiota and plasma metabolites with ovarian cancer: an approach of mendelian randomization analysis combined with network pharmacology and molecular docking. J Ovarian Res 2025; 18:27. [PMID: 39948579 PMCID: PMC11823090 DOI: 10.1186/s13048-025-01610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND While increasing evidence suggests that alterations in the gut microbiota and metabolites are associated with ovarian cancer (OC) risk, whether these associations imply causation remains to be identified. METHODS We conducted a two-sample Mendelian randomization (MR) study utilizing a large-scale genome-wide association study (GWAS) to explore the causal effects of the gut microbiota of 196/220 individuals and 1,400 plasma metabolites on OC and epithelial ovarian cancer (EOC) subtypes. Data on the gut microbiota were obtained from the MiBioGen consortium of 18,340 subjects and the Dutch Microbiome Project of 7,738 volunteers. Data on plasma metabolites were derived from a GWAS of plasma metabolites in 8,299 participants. Ovarian cancer (n = 25,509) and EOC subtypes were obtained from the Ovarian Cancer Association Consortium (OCAC). Metabolites and associated targets were analyzed via network pharmacology and molecular docking. RESULTS At the genus and species levels, we identified seven risk factors for the gut microbiota: the genus Dialister (P = 0.024), genus Ruminiclostridium5 (P = 0.0004), genus Phascolarctobacterium (P = 0.0217), species Bacteroides massiliensis (P = 0.011), species Phascolarctobacterium succinatutens (P = 0.0212), species Paraprevotella clara (P = 0.0247) and species Bacteroides dorei (P = 0.0054). In addition, five gut microbes at the genus and species levels were found to be protective: genus Family XIII AD3011 group (P = 0.006), genus Butyrivibrio (P = 0.0095), genus Oscillibacter (P = 0.0206), species Roseburia hominis (P = 0.0241), and species Bifidobacterium bifidum (P = 0.0224). For plasma metabolites, we revealed five positive and four negative correlations with OC. Among these, caffeic acid and caffeine metabolites and sphingomyelin and ceramide metabolites were identified as risk factors, whereas phenylalanine metabolites, butyric acid metabolites, and some lipid metabolites were recognized as protective factors. A series of sensitivity analyses revealed no abnormalities, including pleiotropy and heterogeneity analyses. CONCLUSION Our MR analysis demonstrated that the gut microbiota and metabolites are causally associated with OC, which has significant potential for the early detection and diagnosis of OC and EOC subtypes, providing valuable insights into this area of research.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Chenhuan Ding
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Department of Traditional Chinese Medicine, School of Medicine, Pujiang Hospital, Minhang Campus of Renji Hospital, Shanghai Jiao Tong University, Shanghai, 201112, China.
| |
Collapse
|
7
|
Rufail ML, Bassi R, Giussani P. Sphingosine-1-Phosphate Metabolic Pathway in Cancer: Implications for Therapeutic Targets. Int J Mol Sci 2025; 26:1056. [PMID: 39940821 PMCID: PMC11817292 DOI: 10.3390/ijms26031056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer biology revolves around understanding how cells undergo uncontrolled proliferation leading to the formation of malignant tumors. Key aspects include self-sufficiency in growth signals, the lack of response to signals of growth inhibition, the evasion of apoptosis, sustained angiogenesis, the evasion of immune response, the capacity to invade and metastasize, and alterations in cellular metabolism. A vast amount of research, which is exponentially growing, over the past few decades highlights the role of sphingolipids in cancer. They act not only as structural membrane components but also as bioactive molecules that regulate cell fate in different physio-pathological conditions. In cancer, sphingolipid metabolism is dysregulated, contributing to tumor progression, metastasis, and drug resistance. In this review, we outline the impact of sphingosine-1-phosphate (S1P) as a key bioactive sphingolipid in cancer. We give an overview of its metabolism summarizing the role of S1P as an intracellular and extracellular mediator through specific plasma membrane receptors in different cancers. We also describe previous findings on how the disruption in the balance between S1P and ceramide (Cer) is common in cancer cells and can contribute to tumorigenesis and resistance to chemotherapy. We finally consider the potential of targeting the metabolic pathways of S1P as well as its receptors and transporters as a promising therapeutic approach in cancer treatments.
Collapse
Affiliation(s)
- Miguel L. Rufail
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| |
Collapse
|
8
|
Bűdi L, Hammer D, Varga R, Müller V, Tárnoki ÁD, Tárnoki DL, Mészáros M, Bikov A, Horváth P. Anti-ceramide antibody and sphingosine-1-phosphate as potential biomarkers of unresectable non-small cell lung cancer. Pathol Oncol Res 2025; 30:1611929. [PMID: 39835329 PMCID: PMC11742942 DOI: 10.3389/pore.2024.1611929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Objectives Spingosine-1-phosphate (S1P) and ceramides are bioactive sphingolipids that influence cancer cell fate. Anti-ceramide antibodies might inhibit the effects of ceramide. The aim of this study was to assess the potential role of circulating S1P and anti-ceramide antibody as biomarkers in non-small cell lung cancer (NSCLC). Methods We recruited 66 subjects (34 controls and 32 patients with NSCLC). Patient history and clinical variables were taken from all participants. Venous blood samples were collected to evaluate plasma biomarkers. If bronchoscopy was performed, bronchial washing fluid (BWF) was also analyzed. We measured the levels of S1P and anti-ceramide antibody with ELISA. Results S1P levels were significantly higher in the NSCLC group (3770.99 ± 762.29 ng/mL vs. 366.53 ± 249.38 ng/mL, patients with NSCLC vs. controls, respectively, p < 0.001). Anti-ceramide antibody levels were significantly elevated in the NSCLC group (278.70 ± 19.26 ng/mL vs. 178.60 ± 18 ng/mL, patients with NSCLC vs. controls, respectively, p = 0.007). Age or BMI had no significant effect on anti-ceramide antibody or S1P levels. BWF samples had higher levels of anti-ceramide antibody (155.29 ± 27.58 ng/mL vs. 105.87 ± 9.99 ng/mL, patients with NSCLC vs. controls, respectively, p < 0.001). Overall survival (OS) was 13.36 months. OS was not affected by anti-ceramide antibody or S1P levels. Conclusion Higher levels of S1P and anti-ceramide antibody were associated with active cancer. These results suggest that sphingolipid alterations might be important features of NSCLC.
Collapse
Affiliation(s)
- Lilla Bűdi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Dániel Hammer
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Rita Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | | | - Martina Mészáros
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - András Bikov
- Wythenshawe Hospital, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Péter Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Diao H, Zhao F, Wu M, Zhang Y, Tao Q, Chen S, Lin D. LncRNA Expression Profiles in C6 Ceramide Treatment Reveal lnc_025370 as a Promoter in Canine Mammary Carcinoma CHMp Cells Progression. Curr Issues Mol Biol 2024; 46:14190-14203. [PMID: 39727977 DOI: 10.3390/cimb46120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Canine mammary carcinomas (CMCs) represent the most prevalent form of cancer in female dogs, characterized by a high incidence and mortality rate. C6 ceramide is recognized for its multifaceted anti-cancer properties, yet its specific influence on CMCs remains to be elucidated. Long noncoding RNAs (lncRNAs), now recognized as functional "dark matter" in precision oncology, are particularly intriguing, with 44% of canine lncRNAs exhibiting tissue-specific expression. In this study, we performed a thorough analysis of lncRNA expression profiles to uncover the mechanisms behind C6 ceramide's anti-cancer activity in CHMp cells. Our findings reveal that C6 ceramide notably inhibits the proliferation of CHMp cells. RNA sequencing identified 4522 lncRNAs with expression changes following C6 ceramide treatment, of which 2936 were upregulated and 1586 were downregulated. Further investigation into Lnc_025370 showed that it is predominantly nuclear-localized and is significantly downregulated by C6 ceramide treatment. Functional studies discovered that overexpression of Lnc_025370 enhances the growth and metastatic capabilities of CHMp cells, which is associated with an increase in NRG1, and concurrently diminishes the anti-cancer effectiveness of C6 ceramide in vitro. Mouse xenograft models also showed that Lnc_025370 overexpression promotes tumor growth and Ki67 expression. Together, our results suggest that Lnc_025370 acts as a pivotal target mediator of C6 ceramide's anti-cancer effects, facilitating the malignant progression of CHMp cells.
Collapse
Affiliation(s)
- Hongxiu Diao
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangying Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Meijin Wu
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Zhang
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianting Tao
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shichao Chen
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Degui Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Cui C, Xu B, Liu H, Wang C, Zhang T, Jiang P, Feng L. Exploring the Role of SMPD3 in the lncRNA-miRNA-mRNA Regulatory Network in TBI Progression by Influencing Energy Metabolism. J Inflamm Res 2024; 17:10835-10848. [PMID: 39677286 PMCID: PMC11646434 DOI: 10.2147/jir.s491290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Background Traumatic brain injury (TBI) is associated with disturbances in energy metabolism. This study aimed to construct a lncRNA-miRNA-mRNA network through bioinformatics methods to explore energy metabolism-related genes in the pathogenesis of TBI. Methods Data from datasets GSE171718, GSE131695, and GSE223245 obtained from the Gene Expression Omnibus, were analyzed to identify differentially expressed (DE) genes. Regulatory relationships were investigated through miRDB, miRTarBase, and TargetScan, thereby forming a lncRNA-miRNA-mRNA network. The Molecular Signatures Database (MSigDB) was utilized to identify energy metabolism-related genes, and a protein-protein interaction (PPI) network was established through the STRING database. Functional annotation and enrichment analysis were conducted using GO and KEGG. The TBI mouse model was established to detect the expression levels of GOLGA8B, ZNF367, and SMPD3 in brain tissues. Results SMPD3 emerged as the key DE gene linked to energy metabolism in TBI, demonstrating a negative correlation with miR-218-5p and being associated with moderate unconsciousness and female patients. The PPI network revealed SMPD3 interactions with proteins associated with cell death, sphingolipid metabolism, and neurodegenerative diseases such as Alzheimer's disease. In vivo, GOLGA8B, ZNF367, and SMPD3 mRNA levels were significantly lower in TBI mice. Conclusion In summary, SMPD3 represents a crucial metabolic gene in the progression of TBI. It potentially provides a new therapeutic target for metabolic disorders caused by traumatic brain injury (TBI) and holds significant theoretical value for further research.
Collapse
Affiliation(s)
- Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Biao Xu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Hui Liu
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Tao Zhang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
11
|
Greenwood A, Yamamoto TM, Joshi M, Hutchison K, Bitler BG. Cannabidiol promotes apoptosis and downregulation of oncogenic factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626177. [PMID: 39677720 PMCID: PMC11642769 DOI: 10.1101/2024.11.30.626177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Patients with high-grade serous carcinoma of tubo-ovarian origin (HGSC) often experience significant side effects related to their disease and treatments, such as pain, discomfort, nausea, and vomiting. Over the last two decades, the use of cannabinoids (CBD) to manage pain and anxiety has become more mainstream. However, there is limited data on how CBD interacts with HGSC tumor cells or whether CBD impacts the effect of chemotherapy. Prior preclinical data has suggested the antitumor benefits of cannabinoids; however, the mechanism and data in ovarian cancer are limited. The objectives of this proposed research are to define the endocannabinoid system milieu in ovarian cancer, determine if CBD influences the growth of ovarian cancer cells, measure the cell viability when cannabinoids such as CBD are combined with standard-of-care therapies, and identify potential molecular pathways in which cannabinoids have a therapeutic effect. We conducted publicly available database searches, in vitro proliferation and apoptotic assays, functional protein signaling via reverse phase protein array analysis of CBD-treated cells using 2D cultured cells, and immunohistological analysis of ex vivo cultured patient-derived tumor slices treated with CBD. Our data suggests that CBD is unlikely to affect the growth of cancer cells at physiologic doses but promotes apoptosis and can have growth inhibitory effects at higher concentrations. The inhibitory effects seen at high dose concentrations are likely from the upregulation of apoptotic pathways and inhibition of oncogenic pathways. Overall, physiologic CBD levels have minimal impact on cancer cell growth or chemotherapy efficacy.
Collapse
Affiliation(s)
- Ashley Greenwood
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tomomi M. Yamamoto
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Functional Genomics Facility, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kent Hutchison
- Department of Psychiatry, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G. Bitler
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Anselmi Relats JM, Roguin LP, Marder M, Cercato MC, Marino J, Blank VC. Synergistic effect of the sphingosine kinase inhibitor safingol in combination with 2'-nitroflavone in breast cancer. J Mol Med (Berl) 2024; 102:1503-1516. [PMID: 39503902 DOI: 10.1007/s00109-024-02497-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
Sphingosine kinase-1 (SPHK1), the enzyme that catalyzes the synthesis of the pro-oncogenic molecule sphingosine-1-phosphate, is commonly upregulated in breast cancer cells and has been linked with poor prognosis and progression by promoting cell transformation, proliferation, angiogenesis, and metastasis. Therefore, SPHK1-targeting drugs have been proposed for breast cancer treatment, with better antitumor results when they are combined with chemotherapy. Previously, we demonstrated that the synthetic flavonoid 2'-nitroflavone (2'NF) exerted a potent and selective antiproliferative effect in murine HER2-positive LM3 mammary tumor cells. As we found that these cells overexpress SPHK1, we decided to explore the antitumor action of the combination of SPHK inhibitors (safingol or SKI-II) with 2'NF. In vitro assays showed that the combination induced a synergistic antiproliferative effect in LM3 cells. Similar results were obtained when human HER2-positive MDA-MB-453 breast cancer cells were treated with the combination of 2'NF/safingol. We also found that safingol potentiated the 2'NF apoptotic effect in both cell lines. The synergistic antitumor effect was confirmed in vivo in an LM3 syngeneic breast cancer model. Moreover, western blot analysis of tumor lysates revealed that combined treatment increased PARP cleavage and Bax protein levels and decreased anti-apoptotic Bcl-xL and Bcl-2 protein levels. Additionally, mice treated with both compounds showed no histopathological effects on different organ tissues. In summary, these findings suggest that the combination safingol/2'NF can be proposed as a potential therapeutic strategy for HER2-positive breast cancer treatment. KEY MESSAGES: The combination safingol/2'-nitroflavone exerts a synergic antitumor action in vitro. Safingol potentiates 2'-nitroflavone apoptotic effect in breast cancer cells. Safingol enhances the 2'-nitroflavone antitumor activity in vivo in breast cancer.
Collapse
Affiliation(s)
- Juan Manuel Anselmi Relats
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina
| | - Leonor P Roguin
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina
| | - Mariel Marder
- Laboratorio de Neuro-Fito-Farmacología Medicinal, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Magalí C Cercato
- Laboratorio de Histotecnología y Cultivo Celular, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Julieta Marino
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina
| | - Viviana C Blank
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Chen Y, Dai J, Chen P, Dai Q, Chen Y, Li Y, Lu M, Qin S, Wang Q. Long non-coding RNAs-sphingolipid metabolism nexus: Potential targets for cancer treatment. Pharmacol Res 2024; 210:107539. [PMID: 39647803 DOI: 10.1016/j.phrs.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of cancer pathogenesis, influencing various cellular processes and contributing to tumorigenesis. Sphingolipid metabolism has garnered interest as a potential target for cancer therapy owing to its considerable diagnostic and prognostic value. Recent studies have demonstrated that lncRNAs regulate tumor-associated metabolic reprogramming via sphingolipid metabolism. However, the precise nature of the interactions between lncRNAs and sphingolipid metabolism remains unclear. This review summarizes the key roles of lncRNAs and sphingolipid metabolism in tumorigenesis. We emphasize that the interaction between lncRNAs and sphingolipid metabolism influences their impact on both cancer prognosis and drug resistance. These findings suggest that lncRNA-sphingolipid metabolism interaction holds great potential as a newl target for cancer treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Dai
- School of pharmacy, Chengdu Medical college, Chengdu, China.
| | - Peng Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Quan Dai
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ya Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Man Lu
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shugang Qin
- Department of Exerimental Research, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuju Wang
- Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
14
|
Rahman MM, Kraft C, Clark C, Nicholson RJ, Marchetti M, Williams E, Zhang C, Holland WL, Summers SA, Edgar BA. Bwa, an ortholog of alkaline ceramidase-ACER2, promotes intestinal stem cell proliferation through pro-inflammatory cytokine signaling in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624044. [PMID: 39651270 PMCID: PMC11623631 DOI: 10.1101/2024.11.26.624044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sphingolipids, including ceramides, are an important component of high-fat diets. These molecules can regulate fatty acid oxidation and intestinal stem cell proliferation, predisposing the gut to tumorigenesis. However, the molecular mechanisms involved in ceramide metabolism-mediated intestinal stem cell (ISC) proliferation and tumorigenesis are poorly understood. To understand how changes in sphingolipid metabolite flux affect intestinal stem cells, we manipulated the activities of each of the enzymes of the ceramide synthetic pathway using cell type-specific over-expression or depletion of the corresponding mRNAs in each intestinal cell type of the Drosophila midgut. We documented cell-autonomous and non-cell-autonomous effects, including alterations in cell size, number, differentiation, and proliferation. In our screen, the altered expression of several ceramide metabolism enzymes led to changes in ISC proliferation, cell sizes, and overall cellularity. Among other genes, over-expression of ceramidase homolog, Brain washing (bwa) in gut enteroblasts (EB) increased EB cell size and caused a non-cell-autonomous, 7-8-fold increase in ISC proliferation. Our analysis confirmed previous reports that bwa does not have ceramidase activity, and lipidomic studies indicated that bwa increases the saturation status of sphingolipids, free fatty acids, and other lipids. The pro-proliferative effects of bwa could be counter-acted by depleting a serine palmitoyltransferase, Lace , or a sphingosine acyltransferase, Schlank , which are needed for ceramide synthesis, or by co-expressing a ceramide desaturase enzyme, ifc , indicating that increased saturated ceramides were causal for ISC proliferation and the disruption of gut homeostasis. Accumulating saturated sphingolipids and fatty acids induced inflammatory signaling in the gut, and activated ISC proliferation through the pro-inflammatory cytokines, Upd3 and Upd2. We propose that saturated sphingolipids promote ISC proliferation through pro-inflammatory pathways.
Collapse
|
15
|
Liu B, Zhou J, Jiang B, Tang B, Liu T, Lei P. The role of ACER2 in intestinal sphingolipid metabolism and gastrointestinal cancers. Front Immunol 2024; 15:1511283. [PMID: 39650647 PMCID: PMC11621088 DOI: 10.3389/fimmu.2024.1511283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Sphingolipids, particularly sphingosine-1-phosphate (S1P), are bioactive lipids involved in regulating cellular processes such as proliferation, apoptosis, inflammation, and tumor progression. Alkaline ceramidase 2 (ACER2) plays a critical role in sphingolipid metabolism by catalyzing the hydrolysis of ceramide to sphingosine, which is subsequently converted to S1P. Dysregulation of ACER2 has been implicated in various gastrointestinal cancers, including colorectal cancer, gastric cancer, and hepatocellular carcinoma. ACER2-mediated sphingolipid signaling, particularly through the SphK/S1P pathway, influences cancer development by modulating immune responses, inflammation, and the balance between cell survival and death. This review examines the physiological functions of ACER2, and its role in sphingolipid metabolism, and its contribution to the pathogenesis of gastrointestinal cancers. Understanding the mechanisms by which ACER2 regulates tumor progression and immune modulation may open new avenues for targeted therapies in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Binggang Liu
- Department of Gastrointestinal Surgery, the Central Hospital of Yongzhou, Yongzhou, China
| | | | | | | | | | | |
Collapse
|
16
|
Zhang B, Zhang B, Wang T, Huang B, Cen L, Wang Z. Integrated bulk and single-cell profiling characterize sphingolipid metabolism in pancreatic cancer. BMC Cancer 2024; 24:1347. [PMID: 39487387 PMCID: PMC11531184 DOI: 10.1186/s12885-024-13114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Abnormal sphingolipid metabolism (SM) is closely linked to the incidence of cancers. However, the role of SM in pancreatic cancer (PC) remains unclear. This study aims to explore the significance of SM in the prognosis, immune microenvironment, and treatment of PC. METHODS Single-cell and bulk transcriptome data of PC were acquired via TCGA and GEO databases. SM-related genes (SMRGs) were obtained via MSigDB database. Consensus clustering was utilized to construct SM-related molecular subtypes. LASSO and Cox regression were utilized to build SM-related prognostic signature. ESTIMATE and CIBERSORT algorithms were employed to assess the tumour immune microenvironment. OncoPredict package was used to predict drug sensitivity. CCK-8, scratch, and transwell experiments were performed to analyze the function of ANKRD22 in PC cell line PANC-1 and BxPC-3. RESULTS A total of 153 SMRGs were acquired, of which 48 were linked to PC patients' prognosis. Two SM-related subtypes (SMRGcluster A and B) were identified in PC. SMRGcluster A had a poorer outcome and more active SM process compared to SMRGcluster B. Immune analysis revealed that SMRGcluster B had higher immune and stromal scores and CD8 + T cell abundance, while SMRGcluster A had a higher tumour purity score and M0 macrophages and activated dendritic cell abundance. PC with SMRGcluster B was more susceptible to gemcitabine, paclitaxel, and oxaliplatin. Then SM-related prognostic model (including ANLN, ANKRD22, and DKK1) was built, which had a very good predictive performance. Single-cell analysis revealed that in PC microenvironment, macrophages, epithelial cells, and endothelial cells had relatively higher SM activity. ANKRD22, DKK1, and ANLN have relatively higher expression levels in epithelial cells. Cell subpopulations with high expression of ANKRD22, DKK1, and ANLN had more active SM activity. In vitro experiments showed that ANKRD22 knockdown can inhibit the proliferation, migration, and invasion of PC cells. CONCLUSION This study revealed the important significance of SM in PC and identified SM-associated molecular subtypes and prognostic model, which provided novel perspectives on the stratification, prognostic prediction, and precision treatment of PC patients.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bolin Zhang
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle- Wittenberg, University Medical Center Halle, Halle, Germany
| | - Tingxin Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bingqian Huang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Lijun Cen
- Department of Transfusion Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
- Key Laboratory of Molecular Pathology in Tumors of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
17
|
Junqueira DL, Cavalcanti AB, Sallum JMF, Yasaki E, de Andrade Jesuíno I, Stach A, Negrelli K, de Oliveira Silva L, Lopes MA, Caixeta A, Chan MY, Ching J, Carvalho VM, Faccio AT, Tsutsui J, Rizzatti E, Fonseca RA, Summers S, Fonseca HA, Rochitte CE, Krieger JE, de Carvalho LP. Plasma ceramides as biomarkers for microvascular disease and clinical outcomes in diabetes and myocardial infarction. Clin Diabetes Endocrinol 2024; 10:32. [PMID: 39285502 PMCID: PMC11406755 DOI: 10.1186/s40842-024-00186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Ceramides have recently been identified as novel biomarkers associated with diabetes mellitus (DM) and major adverse cardiac and cerebrovascular events (MACCE). This study aims to explore their utility in diagnosing microvascular disease. METHODS This study prospectively enrolled 309 patients from 2018 to 2020 into three groups: healthy controls (Group 1, N = 51), DM patients without acute myocardial infarction (AMI) (Group 2, N = 150), and DM patients with AMI (Group 3, N = 108). We assessed outcomes using stress perfusion cardiac magnetic resonance (CMR) imaging for coronary microvascular disease (CMD) (Outcome 1), retinography for retinal microvascular disease (RMD) (Outcome 2), both CMD and RMD (Outcome 3), and absence of microvascular disease (w/o MD) (outcome 4). We evaluated the classification performance of ceramides using receiver operating characteristic (ROC) analysis and multiple logistic regression. 11-ceramide panel previously identified by our research group as related to macrovascular disease were used. RESULTS Average glycated hemoglobin (HbA1c) values were 5.1% in Group 1, 8.3% in Group 2, and 7.6% in Group 3. Within the cohort, CMD was present in 59.5% of patients, RMD in 25.8%, both CMD and RMD in 18.8%, and w/o MD in 38.5%. The AUC values for the reference ceramide ratios were as follows: CMD at 0.66 (p = 0.012), RMD at 0.61 (p = 0.248), CMD & RMD at 0.64 (p = 0.282), and w/o MD at 0.67 (p = 0.010). In contrast, the AUC values using 11-ceramide panel showed significant improvement in the outcomes prediction: CMD at 0.81 (p = 0.001), RMD at 0.73 (p = 0.010), CMD & RMD at 0.73 (p = 0.04), and w/o MD at 0.83 (p = 0.010). Additionally, the plasma concentration of C14.0 was notably higher in the w/o MD group (p < 0.001). CONCLUSIONS Plasma ceramides serve as potential predictors for health status and microvascular disease phenotypes in diabetic patients.
Collapse
Affiliation(s)
- Debora Leonor Junqueira
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil.
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil.
| | | | - Juliana Maria Ferraz Sallum
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Erika Yasaki
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | | | - Alline Stach
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Karina Negrelli
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Leila de Oliveira Silva
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Marcela Almeida Lopes
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Adriano Caixeta
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Mark Yy Chan
- Yong Loo-Lin School of Medicine, Cardiac Department, National University of Singapore, NUHCS, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Jianhong Ching
- Duke-NUS Graduate Medical School, Metabolomics Research Center, 8 College Rd, Singapore, 169857, Singapore
| | | | | | - Jeane Tsutsui
- Fleury Group, Av. Santo Amaro, N° 4584, Brooklin, São Paulo, 04702-000, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Edgar Rizzatti
- Fleury Group, Av. Santo Amaro, N° 4584, Brooklin, São Paulo, 04702-000, Brazil
| | - Rafael Almeida Fonseca
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Scott Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Center, University of Utah, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Henrique Almeida Fonseca
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Carlos Eduardo Rochitte
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - José Eduardo Krieger
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Leonardo Pinto de Carvalho
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| |
Collapse
|
18
|
Li X, Tian S, Riezman I, Qin Y, Riezman H, Feng S. A sensitive, expandable AQC-based LC-MS/MS method to measure amino metabolites and sphingolipids in cell and serum samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124256. [PMID: 39094252 DOI: 10.1016/j.jchromb.2024.124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Sphingolipids are a major lipid species found in all eukaryotes. Among structurally complex and diversified lipids, sphingoid bases have been heavily linked to various metabolic diseases. However, most current LC-MS-based methods lack the sensitivity to detect low-abundant sphingoid bases. The 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization reagent, which efficiently forms covalent bonds with amino groups, has been widely used for amino acid detection. Nevertheless, the commonly used reverse-phase HPLC method for amino acid analysis is not suitable for amphipathic sphingolipids. To address this issue, we report a robust reverse-phase HPLC-MS/MS method capable of separating and detecting hydrophilic amino acids and sphingoid bases in a single run with high sensitivity. This method is also inclusive of other amino metabolites with an expandable target list. We tested this method under various conditions and samples, demonstrating its high reproducibility and sensitivity. Using this approach, we systematically analyzed human serum samples from healthy individuals, dyslipidemia, and type II diabetes mellitus (T2DM) patients, respectively. Two sphingolipids and five amino acids were identified with significant differences between the control and T2DM groups, highlighting the potential of this method in clinical studies.
Collapse
Affiliation(s)
- Xiaotian Li
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwei Tian
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71000, Shanxi, China
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Yujiao Qin
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Suihan Feng
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
19
|
Wendering DJ, Amini L, Schlickeiser S, Farrera-Sal M, Schulenberg S, Peter L, Mai M, Vollmer T, Du W, Stein M, Hamm F, Malard A, Castro C, Yang M, Ranka R, Rückert T, Durek P, Heinrich F, Gasparoni G, Salhab A, Walter J, Wagner DL, Mashreghi MF, Landwehr-Kenzel S, Polansky JK, Reinke P, Volk HD, Schmueck-Henneresse M. Effector memory-type regulatory T cells display phenotypic and functional instability. SCIENCE ADVANCES 2024; 10:eadn3470. [PMID: 39231218 PMCID: PMC11421655 DOI: 10.1126/sciadv.adn3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Regulatory T cells (Treg cells) hold promise for sustainable therapy of immune disorders. Recent advancements in chimeric antigen receptor development and genome editing aim to enhance the specificity and function of Treg cells. However, impurities and functional instability pose challenges for the development of safe gene-edited Treg cell products. Here, we examined different Treg cell subsets regarding their fate, epigenomic stability, transcriptomes, T cell receptor repertoires, and function ex vivo and after manufacturing. Each Treg cell subset displayed distinct features, including lineage stability, epigenomics, surface markers, T cell receptor diversity, and transcriptomics. Earlier-differentiated memory Treg cell populations, including a hitherto unidentified naïve-like memory Treg cell subset, outperformed late-differentiated effector memory-like Treg cells in regulatory function, proliferative capacity, and epigenomic stability. High yields of stable, functional Treg cell products could be achieved by depleting the small effector memory-like Treg cell subset before manufacturing. Considering Treg cell subset composition appears critical to maintain lineage stability in the final cell product.
Collapse
Affiliation(s)
- Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Leila Amini
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stephan Schlickeiser
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marco Mai
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Weijie Du
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Frederik Hamm
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Alisier Malard
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carla Castro
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ramon Ranka
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Rückert
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Gilles Gasparoni
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Jörn Walter
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Dimitrios Laurin Wagner
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Transfusion Medicine, Charitéplatz 1, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Department of Pediatric Pulmonology, Allergy and Neonatology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
20
|
Wofford W, Kim J, Kim D, Janneh AH, Lee HG, Atilgan FC, Oleinik N, Kassir MF, Saatci O, Chakraborty P, Tokat UM, Gencer S, Howley B, Howe P, Mehrotra S, Sahin O, Ogretmen B. Alterations of ceramide synthesis induce PD-L1 internalization and signaling to regulate tumor metastasis and immunotherapy response. Cell Rep 2024; 43:114532. [PMID: 39046874 PMCID: PMC11404065 DOI: 10.1016/j.celrep.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Programmed death ligand 1, PD-L1 (CD274), facilitates immune evasion and exerts pro-survival functions in cancer cells. Here, we report a mechanism whereby internalization of PD-L1 in response to alterations of bioactive lipid/ceramide metabolism by ceramide synthase 4 (CerS4) induces sonic hedgehog (Shh) and transforming growth factor β receptor signaling to enhance tumor metastasis in triple-negative breast cancers (TNBCs), exhibiting immunotherapy resistance. Mechanistically, data showed that internalized PD-L1 interacts with an RNA-binding protein, caprin-1, to stabilize Shh/TGFBR1/Wnt mRNAs to induce β-catenin signaling and TNBC growth/metastasis, consistent with increased infiltration of FoxP3+ regulatory T cells and resistance to immunotherapy. While mammary tumors developed in MMTV-PyMT/CerS4-/- were highly metastatic, targeting the Shh/PD-L1 axis using sonidegib and anti-PD-L1 antibody vastly decreased tumor growth and metastasis, consistent with the inhibition of PD-L1 internalization and Shh/Wnt signaling, restoring anti-tumor immune response. These data, validated in clinical samples and databases, provide a mechanism-based therapeutic strategy to improve immunotherapy responses in metastatic TNBCs.
Collapse
Affiliation(s)
- Wyatt Wofford
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Dosung Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - F Cansu Atilgan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Istanbul Medipol University, Health Science and Technologies Research Institute (SABİTA), Cancer Research Center, Istanbul, Turkey
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
21
|
Luo Y, Yu J, Lin Z, Wang X, Zhao J, Liu X, Qin W, Xu G. Metabolic characterization of sphere-derived prostate cancer stem cells reveals aberrant urea cycle in stemness maintenance. Int J Cancer 2024; 155:742-755. [PMID: 38647131 DOI: 10.1002/ijc.34967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Yuanyuan Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiachuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhikun Lin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Jinhui Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|
22
|
Shakeel I, Haider S, Khan S, Ahmed S, Hussain A, Alajmi MF, Chakrabarty A, Afzal M, Imtaiyaz Hassan M. Thymoquinone, artemisinin, and thymol attenuate proliferation of lung cancer cells as Sphingosine kinase 1 inhibitors. Biomed Pharmacother 2024; 177:117123. [PMID: 39004062 DOI: 10.1016/j.biopha.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
23
|
Zhu Z, McClintock TS, Bieberich E. Transcriptomics analysis reveals potential regulatory role of nSMase2 (Smpd3) in nervous system development and function of middle-aged mouse brains. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12911. [PMID: 39171374 PMCID: PMC11339599 DOI: 10.1111/gbb.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Neutral sphingomyelinase-2 (nSMase2), gene name sphingomyelin phosphodiesterase-3 (Smpd3), is a key regulatory enzyme responsible for generating the sphingolipid ceramide. The function of nSMase2 in the brain is still controversial. To better understand the functional roles of nSMase2 in the aging mouse brain, we applied RNA-seq analysis, which identified a total of 1462 differentially abundant mRNAs between +/fro and fro/fro, of which 891 were increased and 571 were decreased in nSMase2-deficient mouse brains. The most strongly enriched GO and KEGG annotation terms among transcripts increased in fro/fro mice included synaptogenesis, synapse development, synaptic signaling, axon development, and axonogenesis. Among decreased transcripts, enriched annotations included ribosome assembly and mitochondrial protein complex functions. KEGG analysis of decreased transcripts also revealed overrepresentation of annotations for Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD). Ingenuity Pathway Analysis (IPA) tools predicted lower susceptibility to these neurodegenerative disorders, as well as predictions agreeing with stronger synaptic function, learning, and memory in fro/fro mice. The IPA tools identified signaling proteins, epigenetic regulators, and microRNAs as likely upstream regulators of the broader set of genes encoding the affected transcripts. It also revealed 16 gene networks, each linked to biological processes identified as overrepresented annotations among the affected transcripts by multiple analysis methods. Therefore, the analysis of these RNA-seq data indicates that nSMase2 impacts synaptic function and neural development, and may contribute to the onset and development of neurodegenerative diseases in middle-aged mice.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Timothy S. McClintock
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Erhard Bieberich
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| |
Collapse
|
24
|
Giussani P, Brioschi L, Gjoni E, Riccitelli E, Viani P. Sphingosine 1-Phosphate Stimulates ER to Golgi Ceramide Traffic to Promote Survival in T98G Glioma Cells. Int J Mol Sci 2024; 25:8270. [PMID: 39125841 PMCID: PMC11312410 DOI: 10.3390/ijms25158270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma multiforme is the most common and fatal brain tumor among human cancers. Ceramide (Cer) and Sphingosine 1-phosphate (S1P) have emerged as bioeffector molecules that control several biological processes involved in both cancer development and resistance. Cer acts as a tumor suppressor, inhibiting cancer progression, promoting apoptosis, enhancing immunotherapy and sensitizing cells to chemotherapy. In contrast, S1P functions as an onco-promoter molecule, increasing proliferation, survival, invasiveness, and resistance to drug-induced apoptosis. The pro-survival PI3K/Akt pathway is a recognized downstream target of S1P, and we have previously demonstrated that in glioma cells it also improves Cer transport and metabolism towards complex sphingolipids in glioma cells. Here, we first examined the possibility that, in T98G glioma cells, S1P may regulate Cer metabolism through PI3K/Akt signaling. Our research showed that exogenous S1P increases the rate of vesicular trafficking of Cer from the endoplasmic reticulum (ER) to the Golgi apparatus through S1P receptor-mediated activation of the PI3K/Akt pathway. Interestingly, the effect of S1P results in cell protection against toxicity arising from Cer accumulation in the ER, highlighting the role of S1P as a survival factor to escape from the Cer-generating cell death response.
Collapse
Affiliation(s)
| | | | | | | | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy; (P.G.); (L.B.); (E.G.); (E.R.)
| |
Collapse
|
25
|
Li C, Liu Z, Wei W, Chen C, Zhang L, Wang Y, Zhou B, Liu L, Li X, Zhao C. Exploring the Regulatory Effect of LPJZ-658 on Copper Deficiency Combined with Sugar-Induced MASLD in Middle-Aged Mice Based on Multi-Omics Analysis. Nutrients 2024; 16:2010. [PMID: 38999758 PMCID: PMC11243161 DOI: 10.3390/nu16132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Globally, metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), is one of the most common liver disorders and is strongly associated with copper deficiency. To explore the potential effects and mechanisms of Lactiplantibacillus plantarum LPJZ-658, copper deficiency combined with a high-sugar diet-induced MASLD mouse model was utilized in this study. We fed 40-week-old (middle-aged) male C57BL/6 mice a copper-deficient and high-sugar diet for 16 weeks (CuDS), with supplementary LPJZ-658 for the last 6 weeks (CuDS + LPJZ-658). In this study, we measured body weight, liver weight, and serum biochemical markers. Lipid accumulation, histology, lipidomics, and sphingolipid metabolism-related enzyme expression were investigated to analyze liver function. Untargeted metabolomics was used to analyze the serum and the composition and abundance of intestinal flora. In addition, the correlation between differential liver lipid profiles, serum metabolites, and gut flora at the genus level was measured. The results show that LPJZ-658 significantly improves abnormal liver function and hepatic steatosis. The lipidomics analyses and metabolic pathway analysis identified sphingolipid, retinol, and glycerophospholipid metabolism as the most relevant metabolic pathways that characterized liver lipid dysregulation in the CuDS group. Consistently, RT-qPCR analyses revealed that the enzymes catalyzing sphingolipid metabolism that were significantly upregulated in the CuDS group were downregulated by the LPJZ-658 treatment. In addition, the serum metabolomics results indicated that the linoleic acid, taurine and hypotaurine, and ascorbate and aldarate metabolism pathways were associated with CuDS-induced MASLD. Notably, we found that treatment with LPJZ-658 partially reversed the changes in the differential serum metabolites. Finally, LPJZ-658 effectively regulated intestinal flora abnormalities and was significantly correlated with differential hepatic lipid species and serum metabolites. In conclusion, we elucidated the function and potential mechanisms of LPJZ-658 in alleviating copper deficiency combined with sugar-induced middle-aged MASLD and hope this will provide possible treatment strategies for improving MASLD.
Collapse
Affiliation(s)
- Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Ziqi Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Chen Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Lichun Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Bo Zhou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Xiao Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| |
Collapse
|
26
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
27
|
Yadav P, Rana K, Chakraborty R, Khan A, Mehta D, Jain D, Aggarwal B, Jha SK, Dasgupta U, Bajaj A. Engineered nanomicelles targeting proliferation and angiogenesis inhibit tumour progression by impairing the synthesis of ceramide-1-phosphate. NANOSCALE 2024; 16:10350-10365. [PMID: 38739006 DOI: 10.1039/d3nr04806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Bharti Aggarwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
28
|
Ma L, Li J, Zhang X, Zhang W, Jiang C, Yang B, Yang H. Chinese botanical drugs targeting mitophagy to alleviate diabetic kidney disease, a comprehensive review. Front Pharmacol 2024; 15:1360179. [PMID: 38803440 PMCID: PMC11128677 DOI: 10.3389/fphar.2024.1360179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the chronic microvascular complications caused by diabetes, which is characterized by persistent albuminuria and/or progressive decline of estimated glomerular filtration rate (eGFR), and has been the major cause of dialysis around the world. At present, although the treatments for DKD including lifestyle modification, glycemic control and even using of Sodium-glucose cotransporter 2 (SGLT2) inhibitors can relieve kidney damage caused to a certain extent, there is still a lack of effective treatment schemes that can prevent DKD progressing to ESRD. It is urgent to find new complementary and effective therapeutic agents. Growing animal researches have shown that mitophagy makes a great difference to the pathogenesis of DKD, therefore, exploration of new drugs that target the restoration of mitophagy maybe a potential perspective treatment for DKD. The use of Chinese botanical drugs (CBD) has been identified to be an effective treatment option for DKD. There is growing concern on the molecular mechanism of CBD for treatment of DKD by regulating mitophagy. In this review, we highlight the current findings regarding the function of mitophagy in the pathological damages and progression of DKD and summarize the contributions of CBD that ameliorate renal injuries in DKD by interfering with mitophagy, which will help us further explain the mechanism of CBD in treatment for DKD and explore potential therapeutic strategies for DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
29
|
Uranbileg B, Isago H, Sakai E, Kubota M, Saito Y, Kurano M. Alzheimer's disease manifests abnormal sphingolipid metabolism. Front Aging Neurosci 2024; 16:1368839. [PMID: 38774265 PMCID: PMC11106446 DOI: 10.3389/fnagi.2024.1368839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/10/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is associated with disturbed metabolism, prompting investigations into specific metabolic pathways that may contribute to its pathogenesis and pathology. Sphingolipids have garnered attention due to their known physiological impact on various diseases. Methods We conducted comprehensive profiling of sphingolipids to understand their possible role in AD. Sphingolipid levels were measured in AD brains, Cerad score B brains, and controls, as well as in induced pluripotent stem (iPS) cells (AD, PS, and control), using liquid chromatography mass spectrometry. Results AD brains exhibited higher levels of sphingosine (Sph), total ceramide 1-phosphate (Cer1P), and total ceramide (Cer) compared to control and Cerad-B brains. Deoxy-ceramide (Deoxy-Cer) was elevated in Cerad-B and AD brains compared to controls, with increased sphingomyelin (SM) levels exclusively in Cerad-B brains. Analysis of cell lysates revealed elevated dihydroceramide (dhSph), total Cer1P, and total SM in AD and PS cells versus controls. Multivariate analysis highlighted the relevance of Sph, Cer, Cer1P, and SM in AD pathology. Machine learning identified Sph, Cer, and Cer1P as key contributors to AD. Discussion Our findings suggest the potential importance of Sph, Cer1P, Cer, and SM in the context of AD pathology. This underscores the significance of sphingolipid metabolism in understanding and potentially targeting mechanisms underlying AD.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Gao Z, Janakiraman H, Xiao Y, Kang SW, Dong J, Choi J, Ogretmen B, Lee HS, Camp ER. Sphingosine-1-Phosphate Inhibition Increases Endoplasmic Reticulum Stress to Enhance Oxaliplatin Sensitivity in Pancreatic Cancer. World J Oncol 2024; 15:169-180. [PMID: 38545484 PMCID: PMC10965266 DOI: 10.14740/wjon1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer resistant to current therapies, including oxaliplatin (Oxa). Growing evidence supports the ability of cancers to harness sphingolipid metabolism for survival. Sphingosine-1-phosphate (S1P) is an anti-apoptotic, pro-survival mediator that can influence cellular functions such as endoplasmic reticulum (ER) stress. We hypothesize that PDAC drives dysregulated sphingolipid metabolism and that S1P inhibition can enhance ER stress to improve therapeutic response to Oxa in PDAC. Methods RNA sequencing data of sphingolipid mediators from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) datasets were analyzed. Murine and human PDAC cell lines were treated with small interfering RNA (siRNA) against sphingosine kinase-2 (SPHK2) or ABC294640 (ABC) and incubated with combinations of vehicle control or Oxa. In an orthotopic syngeneic KPC PDAC model, tumors were treated with either vehicle control, Oxa, ABC, or combination therapy. Results RNA sequencing analysis revealed multiple significantly differentially expressed sphingolipid mediators (P < 0.05). In vitro, both siRNA knockdown of SPHK2 and ABC sensitized cells to Oxa therapy (P < 0.05), and induced eukaryotic initiation factor 2α (eIF2α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) phosphorylation, hallmarks of ER stress. In vitro therapy also increased extracellular high mobility group box 1 (HMGB1) release (P < 0.05), necessary for immunogenic cell death (ICD). In vivo combination therapy increased apoptotic markers as well as the intensity of HMGB1 staining compared to control (P < 0.05). Conclusions Our evidence suggests that sphingolipid metabolism is dysregulated in PDAC. Furthermore, S1P inhibition can sensitize PDAC to Oxa therapy through increasing ER stress and can potentiate ICD induction. This highlights a potential therapeutic target for chemosensitizing PDAC as well as an adjunct for future chemoimmunotherapy strategies.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yang Xiao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiangling Dong
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jasmine Choi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ernest Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Chen Z, Chang J, Wang S, Fang H, Zhang T, Gong Y, Yang J, Liu G, Gu Y, Hua X. Environmental Evaluation on Toxicity, Toxic Mechanism, and Hydrolysis Behavior of Potential Acethydrazide Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5636-5644. [PMID: 38457784 DOI: 10.1021/acs.jafc.3c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The evaluation of toxicity and environmental behavior of bioactive lead molecules is helpful in providing theoretical support for the development of agrochemicals, in line with the sustainable development of the ecological environment. In previous work, some acethydrazide structures have been demonstrated to exhibit excellent and broad-spectrum fungicidal activity; however, its environmental compatibility needs to be further elucidated if it is to be identified as a potential fungicide. In this project, the toxicity of fungicidal acethydrazide lead compounds F51, F58, F72, and F75 to zebrafish was determined at 10 μg mL-1 and 1 μg mL-1. Subsequently, the toxic mechanism of compound F58 was preliminarily explored by histologic section and TEM observations, which revealed that the gallbladder volume of common carp treated with compound F58 increased, accompanied by a deepened bile color, damaged plasma membrane, and atrophied mitochondria in gallbladder cells. Approximately, F58-treated hepatocytes exhibited cytoplasmic heterogeneity, with partial cellular vacuolation and mitochondrial membrane rupture. Metabolomics analysis further indicated that differential metabolites were enriched in the bile formation-associated steroid biosynthesis, primary bile acid biosynthesis, and taurine and hypotaurine metabolism pathways, as well as in the membrane function-related glycerophospholipid metabolism, linolenic acid metabolism, α-linolenic acid metabolism, and arachidonic acid metabolism pathways, suggesting that the acethydrazide F58 may have acute liver toxicity to common carp. Finally, the hydrolysis dynamics of F58 was investigated, with the obtained half-life of 5.82 days. The above results provide important guiding significance for the development of new green fungicides.
Collapse
Affiliation(s)
- Zhanfang Chen
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jing Chang
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Shuo Wang
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hongbin Fang
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Tiancheng Zhang
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yufei Gong
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jiayi Yang
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Guiqin Liu
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yucheng Gu
- Jealott's Hill International Research Centre, Syngenta Ltd., Bracknell RG42 6EY, United Kingdom
| | - Xuewen Hua
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| |
Collapse
|
32
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
33
|
Pulliam AN, Pybus AF, Gaul DA, Moore SG, Wood LB, Fernández FM, LaPlaca MC. Integrative Analysis of Cytokine and Lipidomics Datasets Following Mild Traumatic Brain Injury in Rats. Metabolites 2024; 14:133. [PMID: 38535293 PMCID: PMC10972386 DOI: 10.3390/metabo14030133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 01/04/2025] Open
Abstract
Traumatic brain injury (TBI) is a significant source of disability in the United States and around the world and may lead to long-lasting cognitive deficits and a decreased quality of life for patients across injury severities. Following the primary injury phase, TBI is characterized by complex secondary cascades that involve altered homeostasis and metabolism, faulty signaling, neuroinflammation, and lipid dysfunction. The objectives of the present study were to (1) assess potential correlations between lipidome and cytokine changes after closed-head mild TBI (mTBI), and (2) examine the reproducibility of our acute lipidomic profiles following TBI. Cortices from 54 Sprague Dawley male and female rats were analyzed by ultra-high-performance liquid chromatography mass spectrometry (LC-MS) in both positive and negative ionization modes and multiplex cytokine analysis after single (smTBI) or repetitive (rmTBI) closed-head impacts, or sham conditions. Tissue age was a variable, given that two cohorts (n = 26 and n = 28) were initially run a year-and-a-half apart, creating inter-batch variations. We annotated the lipidome datasets using an in-house data dictionary based on exact masses of precursor and fragment ions and removed features with statistically significant differences between sham control batches. Our results indicate that lipids with high-fold change between injury groups moderately correlate with the cytokines eotaxin, IP-10, and TNF-α. Additionally, we show a significant decrease in the pro-inflammatory markers IL-1β and IP-10, TNF-α, and RANTES in the rmTBI samples relative to the sham control. We discuss the major challenges in correlating high dimensional lipidomic data with functional cytokine profiles and the implications for understanding the biological significance of two related but disparate analysis modes in the study of TBI, an inherently heterogeneous neurological disorder.
Collapse
Affiliation(s)
- Alexis N. Pulliam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA (A.F.P.); (L.B.W.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alyssa F. Pybus
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA (A.F.P.); (L.B.W.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A. Gaul
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Levi B. Wood
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA (A.F.P.); (L.B.W.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA (A.F.P.); (L.B.W.)
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
34
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
35
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Zhang Z, Luo W, Chen G, Chen J, Lin S, Ren T, Lin Z, Zhao C, Wen H, Nie Q, Meng X, Zhang X. Chicken muscle antibody array reveals the regulations of LDHA on myoblast differentiation through energy metabolism. Int J Biol Macromol 2024; 254:127629. [PMID: 37890747 DOI: 10.1016/j.ijbiomac.2023.127629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Myoblast proliferation and differentiation are highly dynamic and regulated processes in skeletal muscle development. Given that proteins serve as the executors for the majority of biological processes, exploring key regulatory factors and mechanisms at the protein level offers substantial opportunities for understanding the skeletal muscle development. In this study, a total of 607 differentially expressed proteins between proliferation and differentiation in myoblasts were screened out using our chicken muscle antibody array. Biological function analysis revealed the importance of energy production processes and compound metabolic processes in myogenesis. Our antibody array specifically identified an upregulation of LDHA during differentiation, which was associated with the energy metabolism. Subsequent investigation demonstrated that LDHA promoted the glycolysis and TCA cycle, thereby enhancing myoblasts differentiation. Mechanistically, LDHA promotes the glycolysis and TCA cycle but inhibits the ETC oxidative phosphorylation through enhancing the NADH cycle, providing the intermediate metabolites that improve the myoblasts differentiation. Additionally, increased glycolytic ATP by LDHA induces Akt phosphorylation and activate the PI3K-Akt pathway, which might also contribute to the promotion of myoblasts differentiation. Our studies not only present a powerful tool for exploring myogenic regulatory factors in chicken muscle, but also identify a novel role for LDHA in modulating myoblast differentiation through its regulation of cellular NAD+ levels and subsequent downstream effects on mitochondrial function.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Orthaepedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zetong Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Wen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xun Meng
- School of Life Sciences, Northwest University, Xi'an 710069, China; Abmart, 333 Guiping Road, Shanghai 200033, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
37
|
Chen Y, Hao T, Wang J, Chen Y, Wang X, Wei W, Zhao J, Qian Y. A Near-Infrared Fluorogenic Probe for Rapid, Specific, and Ultrasensitive Detection of Sphingosine in Living Cells and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307598. [PMID: 38032131 PMCID: PMC10787105 DOI: 10.1002/advs.202307598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Sphingosine (Sph) plays important roles in various complex biological processes. Abnormalities in Sph metabolism can result in various diseases, including neurodegenerative disorders. However, due to the lack of rapid and accurate detection methods, understanding sph metabolic in related diseases is limited. Herein, a series of near-infrared fluorogenic probes DMS-X (X = 2F, F, Cl, Br, and I) are designed and synthesized. The fast oxazolidinone ring formation enables the DMS-2F to detect Sph selectively and ultrasensitively, and the detection limit reaches 9.33 ± 0.41 nm. Moreover, it is demonstrated that DMS-2F exhibited a dose- and time-dependent response to Sph and can detect sph in living cells. Importantly, for the first time, the changes in Sph levels induced by Aβ42 oligomers and H2 O2 are assessed through a fluorescent imaging approach, and further validated the physiological processes by which Aβ42 oligomers and reactive oxygen species (ROS)-induce changes in intracellular Sph levels. Additionally, the distribution of Sph in living zebrafish is successfully mapped by in vivo imaging of a zebrafish model. This work provides a simple and efficient method for probing Sph in living cells and in vivo, which will facilitate investigation into the metabolic process of Sph and the connection between Sph and disease pathologies.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Tingting Hao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jing Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yiming Chen
- School of EngineeringVanderbilt UniversityNashville37235USA
| | - Xiuxiu Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Wei Wei
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
| | - Jing Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
38
|
Aseeri M, Abad JL, Delgado A, Fabriàs G, Triola G, Casas J. High-throughput discovery of novel small-molecule inhibitors of acid Ceramidase. J Enzyme Inhib Med Chem 2023; 38:343-348. [PMID: 36519337 PMCID: PMC9762759 DOI: 10.1080/14756366.2022.2150183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ceramide has a key role in the regulation of cellular senescence and apoptosis. As Ceramide levels are lowered by the action of acid ceramidase (AC), abnormally expressed in various cancers, the identification of AC inhibitors has attracted increasing interest. However, this finding has been mainly hampered by the lack of formats suitable for the screening of large libraries. We have overcome this drawback by adapting a fluorogenic assay to a 384-well plate format. The performance of this optimised platform has been proven by the screening a library of 4100 compounds. Our results show that the miniaturised platform is well suited for screening purposes and it led to the identification of several hits, that belong to different chemical classes and display potency ranges of 2-25 µM. The inhibitors also show selectivity over neutral ceramidase and retain activity in cells and can therefore serve as a basis for further chemical optimisation.
Collapse
Affiliation(s)
- Mazen Aseeri
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - José Luis Abad
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Antonio Delgado
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Gemma Fabriàs
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, Madrid, Spain
| | - Gemma Triola
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,CONTACT Gemma Triola
| | - Josefina Casas
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, Madrid, Spain,Josefina Casas Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, Barcelona, 08034, Spain
| |
Collapse
|
39
|
Thim EA, Fox T, Deering T, Vass LR, Sheybani ND, Kester M, Price RJ. Solid tumor treatment via augmentation of bioactive C6 ceramide levels with thermally ablative focused ultrasound. Drug Deliv Transl Res 2023; 13:3145-3153. [PMID: 37335416 PMCID: PMC11423265 DOI: 10.1007/s13346-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Sparse scan partial thermal ablation (TA) with focused ultrasound (FUS) may be deployed to treat solid tumors and increase delivery of systemically administered therapeutics. Furthermore, C6-ceramide-loaded nanoliposomes (CNLs), which rely upon the enhanced-permeation and retention (EPR) effect for delivery, have shown promise for treating solid tumors and are being tested in clinical trials. Here, our objective was to determine whether CNLs synergize with TA in the control of 4T1 breast tumors. CNL monotherapy of 4T1 tumors yielded significant intratumoral bioactive C6 accumulation by the EPR effect, but tumor growth was not controlled. TA increased bioactive C6 accumulation by ~ 12.5-fold over the EPR effect. In addition, TA + CNL caused shifts in long-chain to very-long-chain ceramide ratios (i.e., C16/24 and C18/C24) that could potentially contribute to tumor control. Nonetheless, these changes in intratumoral ceramide levels were still insufficient to confer tumor growth control beyond that achieved when combining with TA with control "ghost" nanoliposomes (GNL). While this lack of synergy could be due to increased "pro-tumor" sphingosine-1-phosphate (S1P) levels, this is unlikely because S1P levels exhibited only a moderate and statistically insignificant increase with TA + CNL. In vitro studies showed that 4T1 cells are highly resistant to C6, offering the most likely explanation for the inability of TA to synergize with CNL. Thus, while our results show that sparse scan TA is a powerful approach for markedly enhancing CNL delivery and generating "anti-tumor" shifts in long-chain to very-long-chain ceramide ratios, resistance of the tumor to C6 can still be a rate-limiting factor for some solid tumor types.
Collapse
Affiliation(s)
- E Andrew Thim
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Todd Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Tye Deering
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Luke R Vass
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Mark Kester
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
| |
Collapse
|
40
|
Li H, Zhang L, Yang F, Feng X, Fu R, Zhao R, Li X, Li H. Lipid-lowering drugs affect lung cancer risk via sphingolipid metabolism: a drug-target Mendelian randomization study. Front Genet 2023; 14:1269291. [PMID: 38034491 PMCID: PMC10687161 DOI: 10.3389/fgene.2023.1269291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Background: The causal relationship between lipid-lowering drug (LLD) use and lung cancer risk is controversial, and the role of sphingolipid metabolism in this effect remains unclear. Methods: Genome-wide association study data on low-density lipoprotein (LDL), apolipoprotein B (ApoB), and triglycerides (TG) were used to develop genetic instrumental variables (IVs) for LLDs. Two-step Mendelian randomization analyses were performed to examine the causal relationship between LLDs and lung cancer risk. The effects of ceramide, sphingosine-1-phosphate (S1P), and ceramidases on lung cancer risk were explored, and the proportions of the effects of LLDs on lung cancer risk mediated by sphingolipid metabolism were calculated. Results: APOB inhibition decreased the lung cancer risk in ever-smokers via ApoB (odds ratio [OR] 0.81, 95% confidence interval [CI] 0.70-0.92, p = 0.010), LDL (OR 0.82, 95% CI 0.71-0.96, p = 0.040), and TG (OR 0.63, 95% CI 0.46-0.83, p = 0.015) reduction by 1 standard deviation (SD), decreased small-cell lung cancer (SCLC) risk via LDL reduction by 1 SD (OR 0.71, 95% CI 0.56-0.90, p = 0.016), and decreased the plasma ceramide level and increased the neutral ceramidase level. APOC3 inhibition decreased the lung adenocarcinoma (LUAD) risk (OR 0.60, 95% CI 0.43-0.84, p = 0.039) but increased SCLC risk (OR 2.18, 95% CI 1.17-4.09, p = 0.029) via ApoB reduction by 1 SD. HMGCR inhibition increased SCLC risk via ApoB reduction by 1 SD (OR 3.04, 95% CI 1.38-6.70, p = 0.014). The LPL agonist decreased SCLC risk via ApoB (OR 0.20, 95% CI 0.07-0.58, p = 0.012) and TG reduction (OR 0.58, 95% CI 0.43-0.77, p = 0.003) while increased the plasma S1P level. PCSK9 inhibition decreased the ceramide level. Neutral ceramidase mediated 8.1% and 9.5% of the reduced lung cancer risk in ever-smokers via ApoB and TG reduction by APOB inhibition, respectively, and mediated 8.7% of the reduced LUAD risk via ApoB reduction by APOC3 inhibition. Conclusion: We elucidated the intricate interplay between LLDs, sphingolipid metabolites, and lung cancer risk. Associations of APOB, APOC3, and HMGCR inhibition and LPL agonist with distinct lung cancer risks underscore the multifaceted nature of these relationships. The observed mediation effects highlight the considerable influence of neutral ceramidase on the lung cancer risk reduction achieved by APOB and APOC3 inhibition.
Collapse
Affiliation(s)
- Honglin Li
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lei Zhang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feiran Yang
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoteng Feng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Fu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiurong Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huijie Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
41
|
Yoo S, Choi S, Kim I, Kim IS. Hypoxic regulation of extracellular vesicles: Implications for cancer therapy. J Control Release 2023; 363:201-220. [PMID: 37739015 DOI: 10.1016/j.jconrel.2023.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Extracellular vesicles (EVs) play a pivotal role in intercellular communication and have been implicated in cancer progression. Hypoxia, a pervasive hallmark of cancer, is known to regulate EV biogenesis and function. Hypoxic EVs contain a specific set of proteins, nucleic acids, lipids, and metabolites, capable of reprogramming the biology and fate of recipient cells. Enhancing the intrinsic therapeutic efficacy of EVs can be achieved by strategically modifying their structure and contents. Moreover, the use of EVs as drug delivery vehicles holds great promise for cancer treatment. However, various hurdles must be overcome to enable their clinical application as cancer therapeutics. In this review, we aim to discuss the current knowledge on the hypoxic regulation of EVs. Additionally, we will describe the underlying mechanisms by which EVs contribute to cancer progression in hypoxia and outline the progress and limitations of hypoxia-related EV therapeutics for cancer.
Collapse
Affiliation(s)
- Seongkyeong Yoo
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Sanga Choi
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
42
|
Bassi R, Dei Cas M, Tringali C, Compostella F, Paroni R, Giussani P. Ceramide Is Involved in Temozolomide Resistance in Human Glioblastoma U87MG Overexpressing EGFR. Int J Mol Sci 2023; 24:15394. [PMID: 37895074 PMCID: PMC10607229 DOI: 10.3390/ijms242015394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and deadly brain tumor. Many sphingolipids are crucial players in the regulation of glioma cell growth as well as in the response to different chemotherapeutic drugs. In particular, ceramide (Cer) is a tumor suppressor lipid, able to induce antiproliferative and apoptotic responses in different types of tumors including GBM, most of which overexpress the epidermal growth factor receptor variant III (EGFRvIII). In this paper, we investigated whether Cer metabolism is altered in the U87MG human glioma cell line overexpressing EGFRvIII (EGFR+ cells) to elucidate their possible interplay in the mechanisms regulating GBM survival properties and the response to the alkylating agent temozolomide (TMZ). Notably, we demonstrated that a low dose of TMZ significantly increases Cer levels in U87MG cells but slightly in EGFR+ cells (sensitive and resistant to TMZ, respectively). Moreover, the inhibition of the synthesis of complex sphingolipids made EGFR+ cells sensitive to TMZ, thus involving Cer accumulation/removal in TMZ resistance of GBM cells. This suggests that the enhanced resistance of EGFR+ cells to TMZ is dependent on Cer metabolism. Altogether, our results indicate that EGFRvIII expression confers a TMZ-resistance phenotype to U87MG glioma cells by counteracting Cer increase.
Collapse
Affiliation(s)
- Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Michele Dei Cas
- Department of Scienze della Salute, Università degli Studi di Milano, Via di Rudini, 8, 20142 Milan, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Rita Paroni
- Department of Scienze della Salute, Università degli Studi di Milano, Via di Rudini, 8, 20142 Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| |
Collapse
|
43
|
Coant N, Bickel JD, Rahaim R, Otsuka Y, Choi YM, Xu R, Simoes M, Cariello C, Mao C, Saied EM, Arenz C, Spicer TP, Bannister TD, Tonge PJ, Airola MV, Scampavia L, Hannun YA, Rizzo RC, Haley JD. Neutral ceramidase-active site inhibitor chemotypes and binding modes. Bioorg Chem 2023; 139:106747. [PMID: 37531819 PMCID: PMC10681040 DOI: 10.1016/j.bioorg.2023.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.
Collapse
Affiliation(s)
- Nicolas Coant
- Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - John D Bickel
- Department of Applied Mathematics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ronald Rahaim
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Yuka Otsuka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Yong-Mi Choi
- Department of Biochemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ruijuan Xu
- Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Simoes
- Renaissance School of Medicine, Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chris Cariello
- Renaissance School of Medicine, Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Cungui Mao
- Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Christoph Arenz
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Thomas D Bannister
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Biochemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Yusuf A Hannun
- Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Robert C Rizzo
- Department of Applied Mathematics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - John D Haley
- Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Renaissance School of Medicine, Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
44
|
Du W, He L, Wang Z, Dong Y, He X, Hu J, Zhang M. Serum lipidomics-based study of electroacupuncture for skin wound repair in rats. J Cell Mol Med 2023; 27:3127-3146. [PMID: 37517065 PMCID: PMC10568671 DOI: 10.1111/jcmm.17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023] Open
Abstract
Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with six rats in each group. After the intervention, orbital venous blood was collected for lipid metabolomics analysis, wound perfusion was detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 11 differential metabolites in the model versus sham-operated group. There were 115 differential metabolites in the model versus electro-acupuncture group. 117 differential metabolites in the electro-acupuncture versus sham-operated group. There were two differential metabolites common to all three groups. Mainly cholesteryl esters and sphingolipids were elevated after electroacupuncture and triglycerides were largely decreased after electroacupuncture. The electroacupuncture group recovered faster than the model group in terms of blood perfusion and wound healing (p < 0.05). Electroacupuncture may promote rat skin wound repair by improving lipid metabolism and improving local perfusion.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Lihong He
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Zhenwei Wang
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Yi Dong
- Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchZhejiang Chinese Medical University, The Third Clinical Medical CollegeZhejiangChina
| | - Jintao Hu
- Orthopaedics and Traumatology DepartmentHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Min Zhang
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| |
Collapse
|
45
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
46
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
47
|
Hwang BY, Seo JW, Muftuoglu C, Mert U, Guldaval F, Asadi M, Karakus HS, Goksel T, Veral A, Caner A, Moon MH. Salivary Lipids of Patients with Non-Small Cell Lung Cancer Show Perturbation with Respect to Plasma. Int J Mol Sci 2023; 24:14264. [PMID: 37762567 PMCID: PMC10531690 DOI: 10.3390/ijms241814264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A comprehensive lipid profile was analyzed in patients with non-small cell lung cancer (NSCLC) using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. This study investigated 297 and 202 lipids in saliva and plasma samples, respectively, comparing NSCLC patients to healthy controls. Lipids with significant changes (>2-fold, p < 0.05) were further analyzed in each sample type. Both saliva and plasma exhibited similar lipid alteration patterns in NSCLC, but saliva showed more pronounced changes. Total triglycerides (TGs) increased (>2-3-fold) in plasma and saliva samples. Three specific TGs (50:2, 52:5, and 54:6) were significantly increased in NSCLC for both sample types. A common ceramide species (d18:1/24:0) and phosphatidylinositol 38:4 decreased in both plasma and saliva by approximately two-fold. Phosphatidylserine 36:1 was selectively detected in saliva and showed a subsequent decrease, making it a potential biomarker for predicting lung cancer. We identified 27 salivary and 10 plasma lipids as candidate markers for NSCLC through statistical evaluations. Moreover, this study highlights the potential of saliva in understanding changes in lipid metabolism associated with NSCLC.
Collapse
Affiliation(s)
- Bo Young Hwang
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| | - Jae Won Seo
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| | - Can Muftuoglu
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
| | - Ufuk Mert
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Ataturk Health Care Vocational School, Ege University, Izmir 35040, Turkey
| | - Filiz Guldaval
- Chest Disease Department, Izmir Dr. Suat Seren Chest Disease and Surgery Training and Research Hospital, Izmir 35170, Turkey;
| | - Milad Asadi
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
| | | | - Tuncay Goksel
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Izmir 35040, Turkey;
| | - Ali Veral
- Department of Pathology, Faculty of Medicine, Ege University, Izmir 35040, Turkey;
| | - Ayse Caner
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| |
Collapse
|
48
|
Lee SE, Lim ES, Yoon JW, Park HJ, Kim SH, Lee HB, Han DH, Kim EY, Park SP. Cell starvation regulates ceramide-induced autophagy in mouse preimplantation embryo development. Cells Dev 2023; 175:203859. [PMID: 37271244 DOI: 10.1016/j.cdev.2023.203859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Ceramide induces autophagy upon starvation via downregulation of nutrient transporters. To elucidate the mechanism by which starvation regulates autophagy in mouse embryos, the present study investigated nutrient transporter expression and the effect of C2-ceramide on in vitro embryo development, apoptosis, and autophagy. The transcript levels of the glucose transporters Glut1 and Glut3 were high at the 1- and 2-cell stages, and gradually decreased at the morula and blastocyst (BL) stages. Similarly, expression of the amino acid transporters L-type amino transporter-1 (LAT-1) and 4F2 heavy chain (4F2hc) gradually decreased from the zygote to the BL stage. Upon ceramide treatment, expression of Glut1, Glut3, LAT-1, and 4F2hc was significantly reduced at the BL stage, while expression of the autophagy-related genes Atg5, LC3, and Gabarap and synthesis of LC3 were significantly induced. Ceramide-treated embryos exhibited significantly reduced developmental rates and total cell numbers per blastocyst, and increased levels of apoptosis and expression of Bcl2l1 and Casp3 at the BL stage. Ceramide treatment significantly decreased the average mitochondrial DNA copy number and mitochondrial area at the BL stage. In addition, ceramide treatment significantly decreased mTOR expression. These results suggest that ceramide-induced autophagy promotes apoptosis by following downregulation of nutrient transporters during mouse embryogenesis.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul 04795, Republic of Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul 04795, Republic of Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
49
|
Xu F, Li Q, Wang S, Dong M, Xiao G, Bai J, Wang J, Sun X. The efficacy of prevention for colon cancer based on the microbiota therapy and the antitumor mechanisms with intervention of dietary Lactobacillus. Microbiol Spectr 2023; 11:e0018923. [PMID: 37655887 PMCID: PMC10581183 DOI: 10.1128/spectrum.00189-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/08/2023] [Indexed: 09/02/2023] Open
Abstract
Gut microbiota and their secreted metabolites have an influence on the initiation and progression of colon cancer. Probiotics are extensively perceived as a potential microbiota-modulation strategy to promote the health of the host, while the effectiveness of preventing colon cancer based on microbiota therapy has not been confirmed, and antitumor mechanisms influenced by microbiota and their metabolites with the intervention of probiotics remain to be further investigated. In vitro, Lactobacillus (JY300-8 and JMR-01) significantly inhibited the proliferation of CT26, HT29, and HCT116 cells. Moreover, we studied the prevention and therapy efficiency of Lactobacillus and its underlying antitumor mechanism through the alteration of gut microbiota and their metabolites regulated by Lactobacillus in colon cancer models in mice. We demonstrated that the pre-administration of Lactobacillus (JY300-8 and JMR-01) for 20 days before establishing tumor models resulted in an 86.21% reduction in tumor formation rate compared to tumor control group. Subsequently, continuous oral administration of living Lactobacillus significantly suppresses tumor growth, and tumor volumes decrease by 65.2%. Microbiome and metabolome analyses reveal that Lactobacillus suppresses colonic tumorigenesis and progression through the modulation of gut microbiota homeostasis and metabolites, including the down-regulation of secondary bile acids, sphingosine 1-phosphate (S1P), and pyrimidine metabolism, as well as the production of anticarcinogenic compounds in tumor-bearing mice. Additionally, metabolome analyses of Lactobacillus (JY300-8 and JMR-01) indicate that living Lactobacillus could reduce the relative abundance of alanine and L-serine to suppress tumor progression by regulating the tumor microenvironment, including down-regulation of pyrimidine metabolism and S1P signaling in cancer. These findings provide a potential prevention strategy and therapeutic target for colon cancer through the intervention of dietary Lactobacillus. IMPORTANCE The modulation of gut microbiota and metabolites has a significant influence on the progression of colon cancer. Our research indicated that the intervention of probiotics is a potentially feasible strategy for preventing colon cancer. We have also revealed the underlying antitumor mechanism through the alteration of gut microbiota and their metabolites, which could lead to broader biomedical impacts on the prevention and therapy of colon cancer with microbiota-based therapy regulated by probiotics.
Collapse
Affiliation(s)
- Fuqiang Xu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoqiao Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Miaoyin Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqing Xiao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Bai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Junkai Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Xisi Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|