1
|
He Y, Li D, Ye H, Zhu J, Chen Q, Liu R. Oxidative stress-induced CDO1 glutathionylation regulates cysteine metabolism and sustains redox homeostasis under ionizing radiation. Redox Biol 2025; 83:103656. [PMID: 40347691 DOI: 10.1016/j.redox.2025.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Oxidative stress serves as a fundamental mechanism contributing to ionizing radiation-induced damage, which has significant implications for tissue injury. Cysteine dioxygenase type 1 (CDO1) catalyzes the rate-limiting step for cysteine oxidation pathway, thereby playing a crucial role in regulating cellular cysteine availability. However, the regulation of CDO1 activity and cysteine oxidation under ionizing radiation, as well as their subsequent effects on cell viability, remains largely unexplored. In this study, we provide evidence that CDO1 activity and cysteine oxidation are inhibited following radiation exposure. Mechanistically, ionizing radiation-induced oxidative stress triggers glutathionylation of CDO1 at cysteine (C) 164, which impairs CDO1 enzymatic activity by disrupting its interaction with the substrate cysteine. Furthermore, glutathionylation at CDO1 C164 is essential for maintaining cellular redox homeostasis and supports cell viability under ionizing radiation. These findings reveal a novel mechanism through which redox modifications of CDO1 regulate cysteine metabolism and glutathione synthesis under oxidative stress, thereby underscoring its potential as a therapeutic target for addressing radiation-induced injuries.
Collapse
Affiliation(s)
- Yumin He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Dan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hongping Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Jiang Zhu
- Department of Urology, Xindu District People's Hospital of Chengdu, Chengdu, 610500, PR China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Chakraborty S, Choudhuri A, Mishra A, Sengupta R. S-nitrosylation and S-glutathionylation: Lying at the forefront of redox dichotomy or a visible synergism? Biochem Biophys Res Commun 2025; 761:151734. [PMID: 40179738 DOI: 10.1016/j.bbrc.2025.151734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/06/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
The discovery of novel oxidoreductases and their specific functional revelations as cellular disulfide reductants, S-denitrosylases, or S-deglutathionylases, alongside the well-established major redoxins/antioxidant systems comprising thioredoxin and glutaredoxin, enlarges the spectrum of redox players in the intracellular milieu as well as pushes us to stand at the crossroads concerning the choice of antioxidants that can serve the benefit of catalyzing their cognate protein/non-protein substrates with better efficiencies than the rest. The complexity is extended to exploring the redundancy amongst the redoxin systems and identifying their overlapping or unique substrate preferences to intervene with oxidative or nitrosative stress-induced reversible protein posttranslational modifications such as S-nitrosylation and S-glutathionylation. Contrary to popular expectations of reiterating the theoretical and evidence-based existence of these modifications, the current review aims to take the first leap in delineating the logical reasons behind the competing susceptibility of reactive cysteine thiols toward either or both redox modifications and their subsequent extent of stability in the presence of cellular reductants (thioredoxin, glutaredoxin, thioredoxin-like mimetic or lipoic acid, dihydrolipoic acid, and glutathione), thus rebuilding the underpinnings of a 'redox-interactome' that can further pave the way for the global mapping of ideal substrates exhibiting stringencies or synergism in the context of translational redox research.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
3
|
Rafea R, Siragusa M, Fleming I. The Ever-Expanding Influence of the Endothelial Nitric Oxide Synthase. Basic Clin Pharmacol Toxicol 2025; 136:e70029. [PMID: 40150952 PMCID: PMC11950718 DOI: 10.1111/bcpt.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Nitric oxide (NO) generated by the endothelial NO synthase (eNOS) plays an essential role in the maintenance of vascular homeostasis and the prevention of vascular inflammation. There are a myriad of mechanisms that regulate the activity of the enzyme that may prove to represent interesting therapeutic opportunities. In this regard, the kinases that phosphorylate the enzyme and regulate its activity in situations linked to vascular disease seem to be particularly promising. Although the actions of NO were initially linked mainly to the activation of the guanylyl cyclase and the generation of cyclic GMP in vascular smooth muscle cells and platelets, it is now clear that NO elicits the majority of its actions via its ability to modify redox-activated cysteine residues in a process referred to as S-nitrosylation. The more wide spread use of mass spectrometry to detect S-nitrosylated proteins has helped to identify just how large the NO sphere of influence is and just how many cellular processes are affected. It may be an old target, but the sheer impact of eNOS on vascular health really justifies a revaluation of therapeutic options to maintain and protect its activity in situations associated with a high risk of developing cardiovascular disease.
Collapse
Affiliation(s)
- Riham Rafea
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
- Partner Site RheinMainGerman Center for Cardiovascular Research (DZHK)Frankfurt am MainGermany
| |
Collapse
|
4
|
Tu T, Peng Z, Zhang L, Yang J, Guo K, Tang X, Ye J, Zhang F, Huang A, Yu J, Huang C, Zhang H, Wang D, Peng J, Jiang Y. Neuroinflammation and hypoxia promote astrocyte phenotypic transformation and propel neurovascular dysfunction in brain arteriovenous malformation. J Neuroinflammation 2025; 22:124. [PMID: 40301964 PMCID: PMC12042495 DOI: 10.1186/s12974-025-03442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
Brain arteriovenous malformation (BAVM) is a complex cerebrovascular disease characterized by an abnormal high-flow vascular network, which increases the risk of hemorrhage, particularly in young individuals. Endothelial dysfunction has traditionally been considered the primary cause, while the contributions of the microenvironment and glial cells have not been fully explored. Astrocytes, as a key component of the central nervous system, play a crucial role in regulating neurovascular function, maintaining the integrity of the blood-brain barrier, and ensuring neural homeostasis. However, under the pathological conditions of BAVM, the phenotypic changes in astrocytes and their role in disease progression remain poorly understood. In our study, we emphasized the critical role of neuroinflammation and hypoxia in the progression of BAVM within its pathological microenvironment. Specifically, reactive astrocytes undergo phenotypic changes under these pathological conditions, significantly promoting vascular instability. Moreover, nitric oxide (NO) produced by BAVM endothelial cells activates signaling pathways that stabilize HIF-1α in astrocytes, initiating a "hypoxic" gene program under normoxic conditions. Furthermore, we discovered that COX-2, a direct target gene of HIF-1α, is upregulated in the BAVM microenvironment. These changes promoted endothelial dysfunction and vascular fragility, creating a vicious cycle that exacerbates hemorrhage risk. The application of COX-2 inhibitors significantly reduced neuroinflammation, stabilized blood vessels, and decreased hemorrhage risk. Our findings highlighted the crucial interaction between the BAVM microenvironment and astrocytes in driving disease progression, suggesting that COX-2 could be a potential therapeutic target for stabilizing BAVM vessels and reducing hemorrhagic events.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Department of Neurosurgery and Shandong Key Laboratory of Brain Health and Function Remodeling, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Zhenghong Peng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jieru Yang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Kecheng Guo
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaogang Tang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiasen Ye
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - An Huang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Changren Huang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Donghai Wang
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China.
- Department of Neurosurgery and Shandong Key Laboratory of Brain Health and Function Remodeling, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China.
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou, China), Cheeloo Hospital of Shandong University, Jinan, Shandong, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China.
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China.
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Brain Science, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Li JZ, Zhan X, Sun HB, Chi C, Zhang GF, Liu DH, Zhang WX, Sun LH, Kang K. L-arginine from elder human mesenchymal stem cells induces angiogenesis and enhances therapeutic effects on ischemic heart diseases. World J Stem Cells 2025; 17:103314. [PMID: 40308887 PMCID: PMC12038462 DOI: 10.4252/wjsc.v17.i4.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapy may be a future treatment for myocardial infarction (MI). However, few studies have assessed the therapeutic efficacy of adipose tissue-derived MSCs (ADSCs) obtained from elderly patients in comparison to that of bone marrow-derived MSCs (BMSCs) from the same elderly patients. The metabolomics results revealed a significantly higher L-arginine excretion from aged ADSCs vs BMSCs in hypoxic conditions. This was hypothesized as the possible mechanism that ADSCs showed an improved angiogenic capacity and enhanced the therapeutic effect on ischemic heart diseases. AIM To investigate the role of L-arginine in enhancing angiogenesis and cardiac protection by comparing ADSCs and BMSCs in hypoxic conditions for MI therapy. METHODS Metabolomic profiling of supernatants from ADSCs and BMSCs under hypoxic conditions were performed. Then, arginine succinate lyase (ASL) overexpression and short hairpin RNA plasmid were prepared and transfected into BMSCs. Subsequently, in vitro wound healing and Matrigel tube formation assays were used to verify the proangiogenetic effects of ADSC positive control, BMSCs, BMSCs ASL short hairpin RNA, BMSCs ASL overexpressed, and BMSC negative control on cocultured human umbilical vein endothelial cells. All sample sizes, which were determined to meet the statistical requirements and be greater than 3, were established on the basis of previously established literature standards. The protein levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor, etc. were detected. In vivo, the five types of cells were transplanted into the infarcted area of MI rat models, and the therapeutic effects of the transplanted cells were evaluated by echocardiography on cardiac function and by Masson's staining/terminal-deoxynucleotidyl transferase mediated nick end labeling assay/immunofluorescence detection on the infarcted area. RESULTS Metabolomic analysis showed that L-arginine was increased. Using ASL gene transfection, we upregulated the production of L-arginine in aged patient-derived BMSCs in vitro, which in turn enhanced mitogen activated protein kinase and VEGF receptor 2 protein expression, VEGF and basic fibroblast growth factor secretion, and inductive angiogenesis to levels comparable to donor-matched ADSCs. After the cell transplantation in vivo, the modified BMSCs as well as ADSCs exhibited decreased apoptotic cells, enhanced vessel formation, reduced scar size, and improved cardiac function in the MI rat model. The therapeutic efficacy decreased by inhibiting L-arginine synthesis. CONCLUSION L-arginine is important for inducing therapeutic angiogenesis for ADSCs and BMSCs in hypoxic conditions. ADSCs have higher L-arginine secretion, which leads to better angiogenesis induction and cardiac protection. ADSC transplantation is a promising autologous cell therapy strategy in the context of the present aging society.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710014, Shaanxi Province, China
| | - Xu Zhan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hao-Bo Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chao Chi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guo-Fu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dong-Hui Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Xi Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
6
|
Chen Q, Ye L, Huang L, You H, Yu X, Wang K, Xiong S, Liao W, Wang X, Li H, Chen Y. Exosomal novel-miRNA-126 mediates vascular endothelial dysfunction by targeting AhR-NLRP3 pathway in nonalcoholic steatohepatitis. Sci Rep 2025; 15:10291. [PMID: 40133367 PMCID: PMC11937233 DOI: 10.1038/s41598-025-94917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is an increasingly prevalent liver disease associated with obesity and its complications. Recent studies have underscored a significant correlation between NASH and an elevated risk of cardiovascular diseases. However, the precise mechanisms of inter-organ communication between the liver and vascular endothelium are not fully understood. In this study, we established a NASH mouse model using a methionine-choline-deficient diet to investigate the role of liver-derived exosomes in modulating vascular endothelial dysfunction during NASH progression. Utilizing both in vivo and in vitro experimental approaches, we observed vascular dysfunction and activation of the NLRP3 inflammasome in NASH mice. Further analyses identified exosomal novel-miRNA-126 as a critical mediator influencing vascular endothelial dysfunction. This miRNA augments NLRP3 transcription and accelerates NLRP3 inflammasome activation by targeting the aryl hydrocarbon receptor (AhR). These findings offer novel insights into the mechanisms of liver-to-vascular communication and suggest new avenues for the prevention and therapeutic intervention of cardiovascular complications in NASH patients.
Collapse
Affiliation(s)
- Qiuhe Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Lifeng Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Liting Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Hongjing You
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xiaoying Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ke Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Shengtao Xiong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Weiyan Liao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xiao Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Haiyan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yang Chen
- Chinese Medicine Guangdong Laboratory, Zhuhai, 519031, Guangdong, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Batool Z, Amjad Kamal M, Shen B. Advanced treatment strategies for high-altitude pulmonary hypertension employing natural medicines: A review. J Pharm Anal 2025; 15:101129. [PMID: 40161446 PMCID: PMC11953983 DOI: 10.1016/j.jpha.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025] Open
Abstract
High-altitude pulmonary hypertension (HAPH) occurs when blood pressure in the pulmonary arteries rises due to exposure to high altitudes above 2,500 m. At these elevations, reduced atmospheric pressure leads to lower oxygen levels, triggering a series of physiological responses, including pulmonary artery constriction, which elevates blood pressure. This review explored the complex pathophysiological mechanisms of HAPH and reviewed current pharmaceutical interventions for its management. Meanwhile, this review particularly emphasized on the emerging research concerning Chinese medicinal plants as potential treatments for HAPH. Traditional Chinese medicines are rich in diverse natural ingredients that show significant promise in alleviating HAPH symptoms. We reviewed both in vitro and in vivo studies to assess the efficacy, safety, and mechanisms of these natural medicines, along with their potential adverse effects. Additionally, this review highlighted new alternative natural remedies, underscoring the need for ongoing research to expand available treatment options for HAPH.
Collapse
Affiliation(s)
- Zahra Batool
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohammad Amjad Kamal
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, Tamil Nadu, 600001, India
| | - Bairong Shen
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Strohm L, Ubbens H, Mihalikova D, Czarnowski A, Stamm P, Molitor M, Finger S, Oelze M, Atzler D, Wenzel P, Lurz P, Münzel T, Weber C, Lutgens E, Daiber A, Daub S. CD40-TRAF6 inhibition suppresses cardiovascular inflammation, oxidative stress and functional complications in a mouse model of arterial hypertension. Redox Biol 2025; 80:103520. [PMID: 39899926 PMCID: PMC11840497 DOI: 10.1016/j.redox.2025.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Cardiovascular disease is the leading cause of disease burden and death worldwide and is fueled by vascular inflammation. CD40L-CD40-TRAF signaling is involved in the progression of atherosclerosis and drives the development of coronary heart disease (CHD). The present study investigates whether the CD40L-CD40-TRAF6 signaling pathway with focus on immune cells and adipocytes could be a therapeutic target in arterial hypertension. Arterial hypertension was induced in WT (C57BL6/J) and cell-specific CD40(L) knockout mice (AdipoqCre x CD40 fl/fl, CD4Cre x CD40 fl/fl, CD19Cre x CD40 fl/fl, and GP1baCre x CD40L fl/fl) via angiotensin (AT-II) infusion (1 mg/kg/d) for seven days. Hypertensive WT mice were also treated with a CD40-TRAF6 inhibitor (2.5 mg/kg/d, for 7d). The TRAF6 inhibitor treatment normalized endothelial dysfunction and reduced blood pressure in hypertensive wild type animals. Reactive oxygen species production was decreased by TRAF6 inhibition in blood, aorta, heart, kidney, and perivascular fat tissue. Additionally, FACS analysis revealed that TRAF6 inhibition prevents immune cell migration into the aortic vessel wall observed by reduced CD45+ leukocyte, Ly6G+/Ly6C+ neutrophil, and Ly6Chigh inflammatory monocyte content. The hypertensive cell type-specific CD40(L) knockout animals showed only a minor effect on endothelial function, blood pressure, and oxidative stress. Therefore, we conclude that targeting CD40 directly on adipocytes, B-cells, T-cells, or CD40L on platelets is not a promising target to prevent hypertension complications. In summary, TRAF6 inhibition but not adipocyte, B-cell, or T-cell-specific CD40 or platelet-specific CD40L deficiency reduces pathophysiological vascular inflammation in hypertensive mice, suggesting TRAF6 inhibition as a potential therapeutic target in hypertensive patients.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominika Mihalikova
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany; Walter Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Philipp Lurz
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Esther Lutgens
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany; Mayo Clinic, Dept Cardiovascular Medicine and Immunology, Rochester, MN, USA
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
| | - Steffen Daub
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
9
|
Myszko M, Bychowski J, Skrzydlewska E, Łuczaj W. The Dual Role of Oxidative Stress in Atherosclerosis and Coronary Artery Disease: Pathological Mechanisms and Diagnostic Potential. Antioxidants (Basel) 2025; 14:275. [PMID: 40227238 PMCID: PMC11939617 DOI: 10.3390/antiox14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of atherosclerosis and coronary artery disease (CAD), with both beneficial and detrimental effects on cardiovascular health. On one hand, the excessive production of reactive oxygen species (ROS) contributes to endothelial dysfunction, inflammation, and vascular remodeling, which are central to the development and progression of CAD. These pathological effects drive key processes such as atherosclerosis, plaque formation, and thrombosis. On the other hand, moderate levels of oxidative stress can have beneficial effects on cardiovascular health. These include regulating vascular tone by promoting blood vessel dilation, supporting endothelial function through nitric oxide production, and enhancing the immune response to prevent infections. Additionally, oxidative stress can stimulate cellular adaptation to stress, promote cell survival, and encourage angiogenesis, which helps form new blood vessels to improve blood flow. Oxidative stress also holds promise as a source of biomarkers that could aid in the diagnosis, prognosis, and monitoring of CAD. Specific oxidative markers, such as malondialdehyde (MDA), isoprostanes (isoP), ischemia-modified albumin, and antioxidant enzyme activity, have been identified as potential indicators of disease severity and therapeutic response. This review explores the dual nature of oxidative stress in atherosclerosis and CAD, examining its mechanisms in disease pathogenesis as well as its emerging role in clinical diagnostics and targeted therapies. The future directions for research aimed at harnessing the diagnostic and therapeutic potential of oxidative stress biomarkers are also discussed. Understanding the balance between the detrimental and beneficial effects of oxidative stress could lead to innovative approaches in the prevention and management of CAD.
Collapse
Affiliation(s)
- Marcin Myszko
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Jerzy Bychowski
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| |
Collapse
|
10
|
Penna C, Pagliaro P. Endothelial Dysfunction: Redox Imbalance, NLRP3 Inflammasome, and Inflammatory Responses in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:256. [PMID: 40227195 PMCID: PMC11939635 DOI: 10.3390/antiox14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Endothelial dysfunction (ED) is characterized by an imbalance between vasodilatory and vasoconstrictive factors, leading to impaired vascular tone, thrombosis, and inflammation. These processes are critical in the development of cardiovascular diseases (CVDs) such as atherosclerosis, hypertension and ischemia/reperfusion injury (IRI). Reduced nitric oxide (NO) production and increased oxidative stress are key contributors to ED. Aging further exacerbates ED through mitochondrial dysfunction and increased oxidative/nitrosative stress, heightening CVD risk. Antioxidant systems like superoxide-dismutase (SOD), glutathione-peroxidase (GPx), and thioredoxin/thioredoxin-reductase (Trx/TXNRD) pathways protect against oxidative stress. However, their reduced activity promotes ED, atherosclerosis, and vulnerability to IRI. Metabolic syndrome, comprising insulin resistance, obesity, and hypertension, is often accompanied by ED. Specifically, hyperglycemia worsens endothelial damage by promoting oxidative stress and inflammation. Obesity leads to chronic inflammation and changes in perivascular adipose tissue, while hypertension is associated with an increase in oxidative stress. The NLRP3 inflammasome plays a significant role in ED, being triggered by factors such as reactive oxygen and nitrogen species, ischemia, and high glucose, which contribute to inflammation, endothelial injury, and exacerbation of IRI. Treatments, such as N-acetyl-L-cysteine, SGLT2 or NLRP3 inhibitors, show promise in improving endothelial function. Yet the complexity of ED suggests that multi-targeted therapies addressing oxidative stress, inflammation, and metabolic disturbances are essential for managing CVDs associated with metabolic syndrome.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
11
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
12
|
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Ewees MG, El-Mahdy MA, Hannawi Y, Zweier JL. Tobacco cigarette smoking induces cerebrovascular dysfunction followed by oxidative neuronal injury with the onset of cognitive impairment. J Cereb Blood Flow Metab 2025; 45:48-65. [PMID: 39136181 PMCID: PMC11572251 DOI: 10.1177/0271678x241270415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 09/26/2024]
Abstract
While chronic smoking triggers cardiovascular disease, controversy remains regarding its effects on the brain and cognition. We investigated the effects of long-term cigarette smoke (CS) exposure (CSE) on cerebrovascular function, neuronal injury, and cognition in a novel mouse exposure model. Longitudinal studies were performed in CS or air-exposed mice, 2 hours/day, for up to 60 weeks. Hypertension and carotid vascular endothelial dysfunction (VED) occurred by 16 weeks of CSE, followed by reduced carotid artery blood flow, with oxidative stress detected in the carotid artery, and subsequently in the brain of CS-exposed mice with generation of reactive oxygen species (ROS) and secondary protein and DNA oxidation, microglial activation and astrocytosis. Brain small vessels exhibited decreased levels of endothelial NO synthase (eNOS), enlarged perivascular spaces with blood brain barrier (BBB) leak and decreased levels of tight-junction proteins. In the brain, amyloid-β deposition and phosphorylated-tau were detected with increases out to 60 weeks, at which time mice exhibited impaired spatial learning and memory. Thus, long-term CSE initiates a cascade of ROS generation and oxidative damage, eNOS dysfunction with cerebral hypoperfusion, as well as cerebrovascular and BBB damage with intracerebral inflammation, and neuronal degeneration, followed by the onset of impaired cognition and memory.
Collapse
Affiliation(s)
- Mohamed G Ewees
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Liu CC, Zhang Y, Kim YJ, Hamilton EJ, Xu B, Limas J, McCracken SA, Morris JM, Makris A, Hennessy A, Rasmussen HH. β3-adrenergic agonist counters oxidative stress and Na +-K + pump inhibitory S-glutathionylation of placental cells: implications for preeclampsia. Am J Physiol Cell Physiol 2025; 328:C27-C39. [PMID: 39495253 DOI: 10.1152/ajpcell.00379.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Oxidative stress from placental ischemia/reperfusion and hypoxia/reoxygenation (H/R) in preeclampsia is accompanied by Na+-K+ pump inhibition and S-glutathionylation of its β1 subunit (GSS-β1), a modification that inhibits the pump. β3-adrenergic receptor (β3-AR) agonists can reverse GSS-β1. We examined the effects of the agonist CL316,243 on GSS-β1 and sources of H/R-induced oxidative stress in immortalized first-trimester human trophoblast (HTR-8/SVneo) and freshly isolated placental explants from normal-term pregnancies. H/R increased GSS-β1 and, reflecting compromised α1/β1 subunit interaction, reduced α1/β1 pump subunit coimmunoprecipitation. H/R increased p47phox/p22phox NADPH oxidase subunit coimmunoprecipitation, reflecting membrane translocation of cytosolic p47phox that is needed to activate NADPH oxidase. Fluorescence of O2•--sensitive dihydroethidium increased in parallel. H/R increased S-glutathionylation of endothelial nitric oxide synthase (GSS-eNOS) that uncouples nitric oxide synthesis toward the synthesis of O2•- and reduced trophoblast migration. Oxidative stress induced by tumor necrosis factor α increased soluble fms-like tyrosine kinase receptor 1 (sFlt-1) trophoblast release, a marker of preeclampsia, and reduced trophoblast integration into endothelial cellular networks. CL316,243 eliminated H/R-induced GSS-β1 and decreases of α1/β1 subunit coimmunoprecipitation, eliminated NADPH oxidase activation and increases in GSS-eNOS, restored trophoblast migration, eliminated increased sFlt-1 release, and restored trophoblast integration in endothelial cell networks. H/R-induced GSS-β1, α1/β1 subunit coimmunoprecipitation, and NADPH oxidase activation of placental explants reflected effects of H/R for trophoblasts and CL316,243 eliminated these changes. We conclude a β3-AR agonist counters key pathophysiological features of preeclampsia in vitro. β3 agonists already in human use for another purpose are potential candidates for repurposing to treat preeclampsia.NEW & NOTEWORTHY H/R-induced oxidative stress and deficient NO-dependent placentation are features of preeclampsia, yet nonspecific antioxidants and NO donors are ineffective. Here, activation of the microdomain-confined signaling pathway with an agonist for the eNOS-coupled β3-AR eliminates inhibitory glutathionylation of the Na+-K+ pump's β1 subunit, uncoupling of eNOS, and activation of NADPH oxidase that are sources of H/R-induced oxidative stress. The agonist also eliminates H/R-induced inhibition of trophoblast migration and their integration into an endothelial network.
Collapse
Affiliation(s)
- Chia-Chi Liu
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Vascular Immunology Research Laboratory, The Heart Research Institute, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Yunjia Zhang
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Yeon Jae Kim
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Elisha J Hamilton
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Bei Xu
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
| | - Jane Limas
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Division of Perinatal Research, Northern Sydney Local Health District, New South Wales, Australia
| | - Sharon A McCracken
- Division of Perinatal Research, Northern Sydney Local Health District, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Jonathan M Morris
- Division of Perinatal Research, Northern Sydney Local Health District, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Angela Makris
- Vascular Immunology Research Laboratory, The Heart Research Institute, New South Wales, Australia
- School of Medicine, Western Sydney University, New South Wales, Australia
- Renal Unit, Liverpool Hospital, New South Wales, Australia
| | - Annemarie Hennessy
- Vascular Immunology Research Laboratory, The Heart Research Institute, New South Wales, Australia
- School of Medicine, Western Sydney University, New South Wales, Australia
- Campbelltown Hospital, South Western Sydney Local Health District, New South Wales, Australia
| | - Helge H Rasmussen
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
- Department of Cardiology, Royal North Shore Hospital, New South Wales, Australia
| |
Collapse
|
15
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
16
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
18
|
Hu J, Chen Y, Lin M, Duan K, Xu M, Li T, Zhao Y, Lee BH, Deng H. Arginine-loaded globular BSAMA/fibrous GelMA biohybrid cryogels with multifunctional features and enhanced healing for soft gingival tissue regeneration. Int J Biol Macromol 2024; 278:134932. [PMID: 39179087 DOI: 10.1016/j.ijbiomac.2024.134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Mucogingival surgery has been widely used in soft gingival tissue augmentation in which autografts are predominantly employed. However, the autografts face grand challenges, such as scarcity of palatal donor tissue and postoperative discomfort. Therefore, development of alternative soft tissue substitutes has been an imperative need. Here, we engineered an interconnected porous bovine serum albumin methacryloyl (BSAMA: B, as a drug carrier and antioxidant)/gelatin methacryloyl (GelMA: G, as a biocompatible collagen-like component)-based cryogel with L-Arginine (Arg) loaded as an angiogenic molecule, which could serve as a promising gingival tissue biohybrid scaffold. BG@Arg cryogels featured macroporous architecture, biodegradation, sponge-like properties, suturability, and sustained Arg release. Moreover, BG@Arg cryogels promoted vessel formation and collagen deposition which play an important role in tissue regeneration. Most interestingly, BG@Arg cryogels were found to enhance antioxidant effects. Finally, the therapeutic effect of BG@Arg on promoting tissue regeneration was confirmed in rat full-thickness skin and oral gingival defect models. In vivo results revealed that BG@Arg2 could promote better angiogenesis, more collagen production, and better modulation of inflammation, as compared to a commercial collagen membrane. These advantages might render BG@Arg cryogels a promising alternative to commercial collagen membrane products and possibly autografts for soft gingival tissue regeneration.
Collapse
Affiliation(s)
- Jiajun Hu
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuan Chen
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Kairui Duan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mengdie Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Tingting Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yueming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bae Hoon Lee
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
19
|
Craige SM, Kaur G, Bond JM, Caliz AD, Kant S, Keaney JF. Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. Antioxid Redox Signal 2024. [PMID: 39213161 DOI: 10.1089/ars.2024.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.
Collapse
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Gaganpreet Kaur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Bond
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, Virginia, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Qian S, Chen G, Li R, Ma Y, Pan L, Wang X, Wang X. Disulfide stress and its role in cardiovascular diseases. Redox Biol 2024; 75:103297. [PMID: 39127015 PMCID: PMC11364009 DOI: 10.1016/j.redox.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds. The genesis of disulfide stress is usually induced by extrinsic pathological factors that disrupt the thiol-dependent antioxidant system, manifesting as sustained glutathionylation of proteins, formation of abnormal intermolecular disulfide bonds between cysteine-rich proteins, or irreversible oxidation of thiol groups to sulfenic and sulfonic acids. Disulfide stress not only precipitates the collapse of the antioxidant system and the accumulation of reactive oxygen species, exacerbating oxidative stress, but may also initiate cellular inflammation, autophagy, and apoptosis through a cascade of signaling pathways. Furthermore, this review explores the detrimental effects of disulfide stress on the progression of various CVDs including atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. This review also proposes several potential therapeutic avenues to improve the future treatment of CVDs.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Guanyu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinghua Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lin Pan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaoping Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
21
|
Pandian K, Huang L, Junaid A, Harms A, van Zonneveld AJ, Hankemeier T. Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessels-on-chip model. FASEB J 2024; 38:e70005. [PMID: 39171967 DOI: 10.1096/fj.202400553r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.
Collapse
Affiliation(s)
- Kanchana Pandian
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Luojiao Huang
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Abidemi Junaid
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Amy Harms
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| |
Collapse
|
22
|
Federici L, Masulli M, De Laurenzi V, Allocati N. The Role of S-Glutathionylation in Health and Disease: A Bird's Eye View. Nutrients 2024; 16:2753. [PMID: 39203889 PMCID: PMC11357436 DOI: 10.3390/nu16162753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Protein glutathionylation is a reversible post-translational modification that involves the attachment of glutathione to cysteine residues. It plays a role in the regulation of several cellular processes and protection against oxidative damage. Glutathionylation (GS-ylation) modulates protein function, inhibits or enhances enzymatic activity, maintains redox homeostasis, and shields several proteins from irreversible oxidative stress. Aberrant GS-ylation patterns are thus implicated in various diseases, particularly those associated with oxidative stress and inflammation, such as cardiovascular diseases, neurodegenerative disorders, cancer, and many others. Research in the recent years has highlighted the potential to manipulate protein GS-ylation for therapeutic purposes with strategies that imply both its enhancement and inhibition according to different cases. Moreover, it has become increasingly evident that monitoring the GS-ylation status of selected proteins offers diagnostic potential in different diseases. In this review, we try to summarize recent research in the field with a focus on our current understanding of the molecular mechanisms related to aberrant protein GS-ylation.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| |
Collapse
|
23
|
Mo C, Li H, Yan M, Xu S, Wu J, Li J, Yang X, Li Y, Yang J, Su X, Liu J, Wu C, Wang Y, Dong H, Chen L, Dai L, Zhang M, Pu Q, Yang L, Ye T, Cao Z, Ding BS. Dopaminylation of endothelial TPI1 suppresses ferroptotic angiocrine signals to promote lung regeneration over fibrosis. Cell Metab 2024; 36:1839-1857.e12. [PMID: 39111287 DOI: 10.1016/j.cmet.2024.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 03/17/2025]
Abstract
Lungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis. A chemoproteomic approach shows that dopamine blocks ferroptosis in endothelial cells (ECs) via dopaminylating triosephosphate isomerase 1 (TPI1). Suppressing TPI1 dopaminylation in ECs triggers ferroptotic angiocrine signaling to aberrantly activate fibroblasts, leading to a transition from lung regeneration to fibrosis. Mechanistically, dopaminylation of glutamine (Q) 65 residue in TPI1 directionally enhances TPI1's activity to convert dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP), directing ether phospholipid synthesis to glucose metabolism in regenerating lung ECs. This metabolic shift attenuates lipid peroxidation and blocks ferroptosis. Restoring TPI1 Q65 dopaminylation in an injured endothelial niche overturns ferroptosis to normalize pro-regenerative angiocrine function and alleviate lung fibrosis. Overall, dopaminylation of TPI1 balances lipid/glucose metabolism and suppresses pro-fibrotic ferroptosis in regenerating lungs.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengli Yan
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiyu Xu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiachen Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinchun Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingping Su
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuan Wang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haohao Dong
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Pu
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Tinghong Ye
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China; Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhongwei Cao
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Bi-Sen Ding
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Luo Y, Zhang Z, Zheng W, Zeng Z, Fan L, Zhao Y, Huang Y, Cao S, Yu S, Shen L. Molecular Mechanisms of Plant Extracts in Protecting Aging Blood Vessels. Nutrients 2024; 16:2357. [PMID: 39064801 PMCID: PMC11279783 DOI: 10.3390/nu16142357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Plant Extracts (PE) are natural substances extracted from plants, rich in various bioactive components. Exploring the molecular mechanisms and interactions involved in the vascular protective effects of PE is beneficial for the development of further strategies to protect aging blood vessels. For this review, the content was obtained from scientific databases such as PubMed, China National Knowledge Infrastructure (CNKI), and Google Scholar up to July 2024, using the search terms "Plant extracts", "oxidative stress", "vascular aging", "endothelial dysfunction", "ROS", and "inflammation". This review highlighted the effects of PE in protecting aging blood vessels. Through pathways such as scavenging reactive oxygen species, activating antioxidant signaling pathways, enhancing respiratory chain complex activity, inhibiting mitochondrial-reactive oxygen species generation, improving nitric oxide bioavailability, downregulating the secretion of inflammatory factors, and activating sirtuins 1 and Nrf2 signaling pathways, it can improve vascular structural and functional changes caused by age-related oxidative stress, mitochondrial dysfunction, and inflammation due to aging, thereby reducing the incidence of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| |
Collapse
|
25
|
Sha X, Zou X, Liu S, Guan C, Shi W, Gao J, Zhong X, Jiang X. Forkhead box O1 in metabolic dysfunction-associated fatty liver disease: molecular mechanisms and drug research. Front Nutr 2024; 11:1426780. [PMID: 39021599 PMCID: PMC11253077 DOI: 10.3389/fnut.2024.1426780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that progresses from hepatic steatosis to non-alcoholic steatohepatitis, cirrhosis, and liver cancer, posing a huge burden on human health. Existing research has confirmed that forkhead box O1 (FOXO1), as a member of the FOXO transcription factor family, is upregulated in MAFLD. Its activity is closely related to nuclear-cytoplasmic shuttling and various post-translational modifications including phosphorylation, acetylation, and methylation. FOXO1 mediates the progression of MAFLD by regulating glucose metabolism, lipid metabolism, insulin resistance, oxidative stress, hepatic fibrosis, hepatocyte autophagy, apoptosis, and immune inflammation. This article elaborates on the regulatory role of FOXO1 in MAFLD, providing a summary and new insights for the current status of drug research and targeted therapies for MAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zhong
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
27
|
Münzel T, Molitor M, Kuntic M, Hahad O, Röösli M, Engelmann N, Basner M, Daiber A, Sørensen M. Transportation Noise Pollution and Cardiovascular Health. Circ Res 2024; 134:1113-1135. [PMID: 38662856 DOI: 10.1161/circresaha.123.323584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epidemiological studies have found that transportation noise increases the risk for cardiovascular morbidity and mortality, with solid evidence for ischemic heart disease, heart failure, and stroke. According to the World Health Organization, at least 1.6 million healthy life years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular (endothelial) dysfunction, inflammation, and arterial hypertension, thus elevating cardiovascular risk. The present review focusses on the indirect, nonauditory cardiovascular health effects of noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, and mechanistic insights based on the latest clinical and experimental studies and propose new risk markers to address noise-induced cardiovascular effects in the general population. We will discuss the potential effects of noise on vascular dysfunction, oxidative stress, and inflammation in humans and animals. We will elaborately explain the underlying pathomechanisms by alterations of gene networks, epigenetic pathways, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, and metabolism. We will describe current and future noise mitigation strategies. Finally, we will conduct an overall evaluation of the status of the current evidence of noise as a significant cardiovascular risk factor.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Michael Molitor
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Nicole Engelmann
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (M.B.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Mette Sørensen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark (M.S.)
- Department of Natural Science and Environment, Roskilde University, Denmark (M.S.)
| |
Collapse
|
28
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
29
|
Clark GC, Lai A, Agarwal A, Liu Z, Wang XY. Biopterin metabolism and nitric oxide recoupling in cancer. Front Oncol 2024; 13:1321326. [PMID: 38469569 PMCID: PMC10925643 DOI: 10.3389/fonc.2023.1321326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 03/13/2024] Open
Abstract
Tetrahydrobiopterin is a cofactor necessary for the activity of several enzymes, the most studied of which is nitric oxide synthase. The role of this cofactor-enzyme relationship in vascular biology is well established. Recently, tetrahydrobiopterin metabolism has received increasing attention in the field of cancer immunology and immunotherapy due to its involvement in the cytotoxic T cell response. Past research has demonstrated that when the availability of BH4 is low, as it is in chronic inflammatory conditions and tumors, electron transfer in the active site of nitric oxide synthase becomes uncoupled from the oxidation of arginine. This results in the production of radical species that are capable of a direct attack on tetrahydrobiopterin, further depleting its local availability. This feedforward loop may act like a molecular switch, reinforcing low tetrahydrobiopterin levels leading to altered NO signaling, restrained immune effector activity, and perpetual vascular inflammation within the tumor microenvironment. In this review, we discuss the evidence for this underappreciated mechanism in different aspects of tumor progression and therapeutic responses. Furthermore, we discuss the preclinical evidence supporting a clinical role for tetrahydrobiopterin supplementation to enhance immunotherapy and radiotherapy for solid tumors and the potential safety concerns.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alan Lai
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Zheng Liu
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
30
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
31
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
32
|
Saravi B, Goebel U, Hassenzahl LO, Jung C, David S, Feldheiser A, Stopfkuchen-Evans M, Wollborn J. Capillary leak and endothelial permeability in critically ill patients: a current overview. Intensive Care Med Exp 2023; 11:96. [PMID: 38117435 PMCID: PMC10733291 DOI: 10.1186/s40635-023-00582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Capillary leak syndrome (CLS) represents a phenotype of increased fluid extravasation, resulting in intravascular hypovolemia, extravascular edema formation and ultimately hypoperfusion. While endothelial permeability is an evolutionary preserved physiological process needed to sustain life, excessive fluid leak-often caused by systemic inflammation-can have detrimental effects on patients' outcomes. This article delves into the current understanding of CLS pathophysiology, diagnosis and potential treatments. Systemic inflammation leading to a compromise of endothelial cell interactions through various signaling cues (e.g., the angiopoietin-Tie2 pathway), and shedding of the glycocalyx collectively contribute to the manifestation of CLS. Capillary permeability subsequently leads to the seepage of protein-rich fluid into the interstitial space. Recent insights into the importance of the sub-glycocalyx space and preserving lymphatic flow are highlighted for an in-depth understanding. While no established diagnostic criteria exist and CLS is frequently diagnosed by clinical characteristics only, we highlight more objective serological and (non)-invasive measurements that hint towards a CLS phenotype. While currently available treatment options are limited, we further review understanding of fluid resuscitation and experimental approaches to target endothelial permeability. Despite the improved understanding of CLS pathophysiology, efforts are needed to develop uniform diagnostic criteria, associate clinical consequences to these criteria, and delineate treatment options.
Collapse
Affiliation(s)
- Babak Saravi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center, University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, St. Franziskus-Hospital, Muenster, Germany
| | - Lars O Hassenzahl
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Aarne Feldheiser
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Evang. Kliniken Essen-Mitte, Huyssens-Stiftung/Knappschaft, University of Essen, Essen, Germany
| | - Matthias Stopfkuchen-Evans
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jakob Wollborn
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Edgar KS, Cunning C, Gardiner TA, McDonald DM. BH4 supplementation reduces retinal cell death in ischaemic retinopathy. Sci Rep 2023; 13:21292. [PMID: 38042898 PMCID: PMC10693630 DOI: 10.1038/s41598-023-48167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Dysregulation of nitric oxide (NO) production can cause ischaemic retinal injury and result in blindness. How this dysregulation occurs is poorly understood but thought to be due to an impairment in NO synthase function (NOS) and nitro-oxidative stress. Here we investigated the possibility of correcting this defective NOS activity by supplementation with the cofactor tetrahydrobiopterin, BH4. Retinal ischaemia was examined using the oxygen-induced retinopathy model and BH4 deficient Hph-1 mice used to establish the relationship between NOS activity and BH4. Mice were treated with the stable BH4 precursor sepiapterin at the onset of hypoxia and their retinas assessed 48 h later. HPLC analysis confirmed elevated BH4 levels in all sepiapterin supplemented groups and increased NOS activity. Sepiapterin treatment caused a significant decrease in neuronal cell death in the inner nuclear layer that was most notable in WT animals and was associated with significantly diminished superoxide and local peroxynitrite formation. Interestingly, sepiapterin also increased inflammatory cytokine levels but not microglia cell number. BH4 supplementation by sepiapterin improved both redox state and neuronal survival during retinal ischaemia, in spite of a paradoxical increase in inflammatory cytokines. This implicates nitro-oxidative stress in retinal neurones as the cytotoxic element in ischaemia, rather than enhanced pro-inflammatory signalling.
Collapse
Affiliation(s)
- Kevin S Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Ciara Cunning
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Tom A Gardiner
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Biomedical Sciences Education, Queen's University Belfast, Belfast, UK
| | - Denise M McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK.
| |
Collapse
|
34
|
Evans CJF, Glastras SJ, Tang O, Figtree GA. Therapeutic Potential for Beta-3 Adrenoreceptor Agonists in Peripheral Arterial Disease and Diabetic Foot Ulcers. Biomedicines 2023; 11:3187. [PMID: 38137408 PMCID: PMC10740412 DOI: 10.3390/biomedicines11123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Annually, peripheral arterial disease is estimated to cost over USD 21 billion and diabetic foot disease an estimated at USD 9-13 billion. Mirabegron is a TGA-approved beta-3 adrenoreceptor agonist, shown to be safe and effective in the treatment of overactive bladder syndrome by stimulating bladder smooth muscle relaxation. In this review, we discuss the potential use of beta-3 adrenoreceptor agonists as therapeutic agents repurposed for peripheral arterial disease and diabetic foot ulcers. The development of both conditions is underpinned by the upregulation of oxidative stress pathways and consequential inflammation and hypoxia. In oxidative stress, there is an imbalance of reactive oxygen species and nitric oxide. Endothelial nitric oxide synthase becomes uncoupled in disease states, producing superoxide and worsening oxidative stress. Agonist stimulation of the beta-3 adrenoreceptor recouples and activates endothelial nitric oxide synthase, increasing the production of nitric oxide. This reduces circulating reactive oxygen species, thus decreasing redox modification and dysregulation of cellular proteins, causing downstream smooth muscle relaxation, improved endothelial function and increased angiogenesis. These mechanisms lead to endothelial repair in peripheral arterial disease and an enhanced perfusion in hypoxic tissue, which will likely improve the healing of chronic ulcers.
Collapse
Affiliation(s)
- Cameron J. F. Evans
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah J. Glastras
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| | - Owen Tang
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
35
|
Silva M, Faustino P. From Stress to Sick(le) and Back Again-Oxidative/Antioxidant Mechanisms, Genetic Modulation, and Cerebrovascular Disease in Children with Sickle Cell Anemia. Antioxidants (Basel) 2023; 12:1977. [PMID: 38001830 PMCID: PMC10669666 DOI: 10.3390/antiox12111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
36
|
Elftmaoui Z, Bignon E. Robust AMBER Force Field Parameters for Glutathionylated Cysteines. Int J Mol Sci 2023; 24:15022. [PMID: 37834470 PMCID: PMC10573104 DOI: 10.3390/ijms241915022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
S-glutathionylation is an oxidative post-translational modification, which is involved in the regulation of many cell signaling pathways. Increasing amounts of studies show that it is crucial in cell homeostasis and deregulated in several pathologies. However, the effect of S-glutathionylation on proteins' structure and activity is poorly understood, and a drastic lack of structural information at the atomic scale remains. Studies based on the use of molecular dynamics simulations, which can provide important information about modification-induced modulation of proteins' structure and function, are also sparse, and there is no benchmarked force field parameters for this modified cysteine. In this contribution, we provide robust AMBER parameters for S-glutathionylation, which we tested extensively against experimental data through a total of 33 μs molecular dynamics simulations. We show that our parameter set efficiently describes the global and local structural properties of S-glutathionylated proteins. These data provide the community with an important tool to foster new investigations into the effect of S-glutathionylation on protein dynamics and function, in a common effort to unravel the structural mechanisms underlying its critical role in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuelle Bignon
- UMR 7019 LPCT, Université de Lorraine and CNRS, F-54000 Nancy, France
| |
Collapse
|
37
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
38
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
39
|
Hossain MS, Yao A, Qiao X, Shi W, Xie T, Chen C, Zhang YQ. Gbb glutathionylation promotes its proteasome-mediated degradation to inhibit synapse growth. J Cell Biol 2023; 222:e202202068. [PMID: 37389657 PMCID: PMC10316630 DOI: 10.1083/jcb.202202068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Luo JY, Cheng CK, Gou L, He L, Zhao L, Zhang Y, Wang L, Lau CW, Xu A, Chen AF, Huang Y. Induction of KLF2 by Exercise Activates eNOS to Improve Vasodilatation in Diabetic Mice. Diabetes 2023; 72:1330-1342. [PMID: 37347764 DOI: 10.2337/db23-0070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Diabetic endothelial dysfunction associated with diminished endothelial nitric oxide (NO) synthase (eNOS) activity accelerates the development of atherosclerosis and cardiomyopathy. However, the approaches to restore eNOS activity and endothelial function in diabetes remain limited. The current study shows that enhanced expression of Krüppel-like factor 2 (KLF2), a shear stress-inducible transcription factor, effectively improves endothelial function through increasing NO bioavailability. KLF2 expression is suppressed in diabetic mouse aortic endothelium. Running exercise and simvastatin treatment induce endothelial KLF2 expression in db/db mice. Adenovirus-mediated endothelium-specific KLF2 overexpression enhances both endothelium-dependent relaxation and flow-mediated dilatation, while it attenuates oxidative stress in diabetic mouse arteries. KLF2 overexpression increases the phosphorylation of eNOS at serine 1177 and eNOS dimerization. RNA-sequencing analysis reveals that KLF2 transcriptionally upregulates genes that are enriched in the cyclic guanosine monophosphate-protein kinase G-signaling pathway, cAMP-signaling pathway, and insulin-signaling pathway, all of which are the upstream regulators of eNOS activity. Activation of the phosphoinositide 3-kinase-Akt pathway and Hsp90 contributes to KLF2-induced increase of eNOS activity. The present results suggest that approaches inducing KLF2 activation, such as physical exercise, are effective to restore eNOS activity against diabetic endothelial dysfunction. ARTICLE HIGHLIGHTS Exercise and statins restore the endothelial expression of Krüppel-like factor 2 (KLF2), which is diminished in diabetic db/db mice. Endothelium-specific overexpression of KLF2 improves endothelium-dependent relaxation and flow-mediated dilation through increasing nitric oxide bioavailability. KLF2 promotes endothelial nitric oxide synthase (eNOS) coupling and phosphorylation in addition to its known role in eNOS transcription. KLF2 upregulates the expression of several panels of genes that regulate eNOS activity.
Collapse
Affiliation(s)
- Jiang-Yun Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Sciences and Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Health Care Hospital, Jiangsu, China
| | - Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lei Zhao
- School of Biomedical Sciences and Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi Wai Lau
- School of Biomedical Sciences and Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
41
|
Li H, Zhang Q. Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals (Basel) 2023; 16:1201. [PMID: 37765009 PMCID: PMC10534649 DOI: 10.3390/ph16091201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium, as the guardian of vascular homeostasis, is closely related to the occurrence and development of cardiovascular diseases (CVDs). As an early marker of the development of a series of vascular diseases, endothelial dysfunction is often accompanied by oxidative stress and inflammatory response. Natural flavonoids in fruits, vegetables, and Chinese herbal medicines have been shown to induce and regulate endothelial cells and exert anti-inflammatory, anti-oxidative stress, and anti-aging effects in a large number of in vitro models and in vivo experiments so as to achieve the prevention and improvement of cardiovascular disease. Focusing on endothelial mediation, this paper introduces the signaling pathways involved in the improvement of endothelial dysfunction by common dietary and flavonoids in traditional Chinese medicine and describes them based on their metabolism in the human body and their relationship with the intestinal flora. The aim of this paper is to demonstrate the broad pharmacological activity and target development potential of flavonoids as food supplements and drug components in regulating endothelial function and thus in the prevention and treatment of cardiovascular diseases. This paper also introduces the application of some new nanoparticle carriers in order to improve their bioavailability in the human body and play a broader role in vascular protection.
Collapse
Affiliation(s)
| | - Qi Zhang
- The Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| |
Collapse
|
42
|
Granada-Gómez M, Velásquez-Berrío M, Molina CR, Martín SS, Escudero C, Alvarez AM, Cadavid AP. Modulation of the activation of endothelial nitric oxide synthase and nitrosative stress biomarkers by aspirin triggered lipoxins: A possible mechanism of action of aspirin in the antiphospholipid syndrome. Am J Reprod Immunol 2023; 90:e13753. [PMID: 37491919 DOI: 10.1111/aji.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM Antiphospholipid syndrome (APS) is characterized by the clinical manifestation of vascular thrombosis (VT) or pregnancy morbidity (PM) and antiphospholipid antibodies (aPL) that can modify the nitric oxide production. Low-dose aspirin is used in the prevention and treatment of diverse alterations of pregnancy. One of the mechanisms of action of aspirin is to induce the production of aspirin-triggered-lipoxins (ATL). The aim of this study was to evaluate the modulatory effect of ATL over the activation of endothelial nitric oxide synthase (eNOS) and nitrosative stress biomarkers induced by aPL. METHODS We used polyclonal IgG and sera from women with aPL and PM/VT or VT only, and from women with PM only and positive for non-criteria aPL (SN-OAPS). In these sera, biomarkers of nitrosative stress (nitrites and nitrotyrosine) were measured. The protein expression of nitrotyrosine and the phosphorylation of eNOS (at Ser1177) were estimated in human umbilical vein endothelial cells (HUVECs) stimulated with polyclonal IgG with or without ATL. RESULTS Women with SN-OAPS showed increased circulating levels of nitrites and nitrotyrosine. Likewise, polyclonal IgG from either SN-OAPS or VT patients stimulated nitrotyrosine expression in HUVECs. ATL decreased the nitrotyrosine expression induced by polyclonal IgG from the SN-OAPS group. ATL also recovered the reduced eNOS phosphorylation at Ser1177 in HUVECs stimulated with polyclonal IgG from women with PM/VT or SN-OAPS. CONCLUSIONS Increased nitrosative stress present in serum of women with SN-OAPS is associated with IgG-mediated impaired endothelial NO synthesis in endothelial cells. ATL prevent these cellular changes.
Collapse
Affiliation(s)
- Manuel Granada-Gómez
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Manuela Velásquez-Berrío
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Carolina Rúa Molina
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Sebastián San Martín
- Biomedical Research Center School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Basic Sciences Department, Faculty of Sciences, Universidad del Bio-Bio, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
- Red Iberoamericana de Alteraciones Vasculares Asociadas a TRanstornos del EMbarazo (RIVATREM)
| | - Angela M Alvarez
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Angela P Cadavid
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Red Iberoamericana de Alteraciones Vasculares Asociadas a TRanstornos del EMbarazo (RIVATREM)
| |
Collapse
|
43
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
44
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
45
|
Shen Y, Dong Z, Fan F, Li K, Zhu S, Dai R, Huang J, Xie N, He L, Gong Z, Yang X, Tan J, Liu L, Yu F, Tang Y, You Z, Xi J, Wang Y, Kong W, Zhang Y, Fu Y. Targeting cytokine-like protein FAM3D lowers blood pressure in hypertension. Cell Rep Med 2023:101072. [PMID: 37301198 DOI: 10.1016/j.xcrm.2023.101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Current antihypertensive options still incompletely control blood pressure, suggesting the existence of uncovered pathogenic mechanisms. Here, whether cytokine-like protein family with sequence similarity 3, member D (FAM3D) is involved in hypertension etiology is evaluated. A case-control study exhibits that FAM3D is elevated in patients with hypertension, with a positive association with odds of hypertension. FAM3D deficiency significantly ameliorates angiotensin II (AngII)-induced hypertension in mice. Mechanistically, FAM3D directly causes endothelial nitric oxide synthase (eNOS) uncoupling and impairs endothelium-dependent vasorelaxation, whereas 2,4-diamino-6-hydroxypyrimidine to induce eNOS uncoupling abolishes the protective effect of FAM3D deficiency against AngII-induced hypertension. Furthermore, antagonism of formyl peptide receptor 1 (FPR1) and FPR2 or the suppression of oxidative stress blunts FAM3D-induced eNOS uncoupling. Translationally, targeting endothelial FAM3D by adeno-associated virus or intraperitoneal injection of FAM3D-neutralizing antibodies markedly ameliorates AngII- or deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Conclusively, FAM3D causes eNOS uncoupling through FPR1- and FPR2-mediated oxidative stress, thereby exacerbating the development of hypertension. FAM3D may be a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fangfang Fan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Kaiyin Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Shirong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Rongbo Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518057, China
| | - Li He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaai Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yida Tang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing 100871, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China.
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| |
Collapse
|
46
|
Daiber A, Kuntic M, Oelze M, Hahad O, Münzel T. E-cigarette effects on vascular function in animals and humans. Pflugers Arch 2023:10.1007/s00424-023-02813-z. [PMID: 37084087 DOI: 10.1007/s00424-023-02813-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Smoking tobacco cigarettes is a significant (cardiovascular) health risk factor. Although the number of tobacco cigarette users declined over the last decades, shisha smoking and e-cigarette vaping partially compensated for this health benefit. E-cigarettes may create highly addicted dual users (vaping and smoking). E-cigarettes seem not to represent a healthier alternative to tobacco smoking, although they may be less harmful. E-cigarette vaping causes oxidative stress, inflammation, endothelial dysfunction, and associated cardiovascular sequelae. This is primarily due to a significant overlap of toxic compounds in the vapor compared to tobacco smoke and, accordingly, a substantial overlap of pathomechanistic features between vaping and smoking. Whereas the main toxins in vapor are reactive aldehydes such as formaldehyde and acrolein, the toxic mixture in smoke is more complex, comprising particulate matter, reactive gases, transition metals, volatile organic compounds, and N-nitrosamines. However, it seems that both lifestyle drugs impair endothelial function to a quite similar extent, which may be due to the role of oxidative stress as the central pathomechanism to mediate endothelial dysfunction and vascular damage. Finally, the main selling argument for e-cigarette use that they help to quit smoking and get rid of nicotine addiction may be false because it seems that e-cigarettes instead trigger the opposite-younger entrance age and more frequent use. With our review, we summarize the adverse health impact of tobacco cigarettes and e-cigarettes, emphasizing the detrimental effects on endothelial function and cardiovascular health.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
| |
Collapse
|
47
|
Han W, Zhang F, Mo D, Zhang X, Chen B, Ding X, Guo H, Li F, Guo C. Involvement of HIF1 stabilization and VEGF signaling modulated by Grx-1 in murine model of bronchopulmonary dysplasia. Cell Biol Int 2023; 47:796-807. [PMID: 36640422 DOI: 10.1002/cbin.11985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Hypoxia inducible factor (HIF)-1α could be stabilized by Grx1 deletion, which is implicated critical in the pathogenesis of bronchopulmonary dysplasia (BPD). Until now, the stabilization of HIF-1α by glutathionylation to regulate the pulmonary microcirculation in BPD is not well addressed. In this study, we investigated whether the HIF-1α stabilization modulated by Grx1 ablation could ameliorate the pathological changes in the mouse model of BPD, including angiogenesis and alveolar formation. We found that depletion of Grx1 increased levels of GSH-protein adducts, which was associated with the improvement in the numbers of alveoli, the capillary density in the pulmonary microcirculation and the survival rate in the littermates with hyperoxic exposure. Grx1 ablation could promote HIF-1α glutathionylation by increasing GSH adducts to stabilize HIF-1α and to induce VEGF-A production in the lung tissue. The above phenotype of capillary density and VEGF-A production was removed by the pharmacological administration of YC-1, the HIF-1α inhibitor, suggesting the HIF-1α dependent manner for pulmonary microcirculatory perfusion. These data indicate that HIF-1α stabilization plays an critical role in modification pulmonary microcirculatory perfusion, which is associated with the pathological damage under hyperoxic conditions, suggesting that targeting with HIF-1α stabilization should be a potential clinical and therapeutic strategy for BPD treatment.
Collapse
Affiliation(s)
- Wenli Han
- School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China.,Department of Animal Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Animal Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Mo
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China.,Department of Animal Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Zhang
- Department of Animal Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Chen
- Department of General Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xionghui Ding
- Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjie Guo
- Department of Animal Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Li
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China.,Department of Pediatrics, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China
| | - Chunbao Guo
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China.,Department of Pediatrics, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
49
|
Martini S, Aceti A, Della Gatta AN, Beghetti I, Marsico C, Pilu G, Corvaglia L. Antenatal and Postnatal Sequelae of Oxidative Stress in Preterm Infants: A Narrative Review Targeting Pathophysiological Mechanisms. Antioxidants (Basel) 2023; 12:422. [PMID: 36829980 PMCID: PMC9952227 DOI: 10.3390/antiox12020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The detrimental effects of oxidative stress (OS) can start as early as after conception. A growing body of evidence has shown the pivotal role of OS in the development of several pathological conditions during the neonatal period, which have been therefore defined as OS-related neonatal diseases. Due to the physiological immaturity of their antioxidant defenses and to the enhanced antenatal and postnatal exposure to free radicals, preterm infants are particularly susceptible to oxidative damage, and several pathophysiological cascades involved in the development of prematurity-related complications are tightly related to OS. This narrative review aims to provide a detailed overview of the OS-related pathophysiological mechanisms that contribute to the main OS-related diseases during pregnancy and in the early postnatal period in the preterm population. Particularly, focus has been placed on pregnancy disorders typically associated with iatrogenic or spontaneous preterm birth, such as intrauterine growth restriction, pre-eclampsia, gestational diabetes, chorioamnionitis, and on specific postnatal complications for which the role of OS has been largely ascertained (e.g., respiratory distress, bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, necrotizing enterocolitis, neonatal sepsis). Knowledge of the underlying pathophysiological mechanisms may increase awareness on potential strategies aimed at preventing the development of these conditions or at reducing the ensuing clinical burden.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Arianna Aceti
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Anna Nunzia Della Gatta
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| | - Isadora Beghetti
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Concetta Marsico
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| | - Gianluigi Pilu
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| |
Collapse
|
50
|
Zhong A, Cai Y, Zhou Y, Ding N, Yang G, Chai X. Identification and Analysis of Hub Genes and Immune Cells Associated with the Formation of Acute Aortic Dissection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:8072369. [PMID: 36818541 PMCID: PMC9936456 DOI: 10.1155/2023/8072369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
Background Acute type A aortic dissection (AAD) is a catastrophic disease with high mortality, but the pathogenesis has not been fully elucidated. This study is aimed at identifying hub genes and immune cells associated with the pathogenesis of AAD. Methods The datasets were downloaded from Gene Expression Omnibus (GEO). Gene Set Enrichment Analysis (GSEA), gene set variation analysis (GSVA), and differential analysis were performed. The differentially expressed genes (DEGs) were intersected with specific genes collected from MSigDB. The gene function and pathway enrichment analysis were also performed on intersecting genes. The key modules were selected by weighted gene coexpression network analysis (WGCNA). Hub genes were identified by least absolute shrinkage and selection operator (LASSO) analysis and were verified in the metadataset. The immune cell infiltration was analyzed by CIBERSORT, and the relationship between hub genes and immune cells was performed by Pearson's correlation analysis. The single-cell RNA sequencing (scRNA-seq) dataset was used to verify the differences in DNA damage and repair signaling pathways and hub genes in different cell types. Results The results of GSEA and GSVA indicated that DNA damage and repair processes were activated in the occurrence of AAD. The gene function and pathway enrichment analysis on differentially expressed DNA damage- and repair-related genes showed that these genes were mainly involved in the regulation of the cell cycle process, cellular response to DNA damage stimulus, response to wounding, p53 signaling pathway, and cellular senescence. Three key modules were identified by WGCNA. Five genes were screened as hub genes, including CDK2, EIF4A1, GLRX, NNMT, and SLCO2A1. Naive B cells and Gamma delta T cells (γδ T cells) were decreased in AAD, but monocytes and M0 macrophages were increased. scRNA-seq analysis included that DNA damage and repair processes were activated in smooth muscle cells (SMCs), tissue stem cells, and monocytes in the aortic wall of patients with AAD. Conclusions Our results suggested that DNA damage- and repair-related genes may be involved in the occurrence of AAD by regulating many biological processes. The hub genes and immune cells reported in this study also increase the understanding of AAD.
Collapse
Affiliation(s)
- Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhong Cai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Ding
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|