1
|
Liu H, Li M, Deng Y, Hou Y, Hou L, Zhang X, Zheng Z, Guo F, Sun K. The Roles of DMT1 in Inflammatory and Degenerative Diseases. Mol Neurobiol 2025; 62:6317-6332. [PMID: 39775481 DOI: 10.1007/s12035-025-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Iron homeostasis is critical for multiple physiological and pathological processes. DMT1, a core iron transporter, is expressed in almost all cells and organs and altered in response to various conditions, whereas, there is few reviews focusing on DMT1 in diseases associated with aberrant iron metabolism. Based on available knowledge, this review described a full view of DMT1 and summarized the roles of DMT1 and DMT1-mediated iron metabolism in the onset and development of inflammatory and degenerative diseases. This review also provided an overview of DMT1-related treatment in these disorders, highlighting its therapeutic potential in chronic inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Deng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Abdukarimov N, Kokabi K, Kunz J. Ferroptosis and Iron Homeostasis: Molecular Mechanisms and Neurodegenerative Disease Implications. Antioxidants (Basel) 2025; 14:527. [PMID: 40427409 DOI: 10.3390/antiox14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Iron dysregulation has emerged as a pivotal factor in neurodegenerative pathologies, especially through its capacity to promote ferroptosis, a unique form of regulated cell death driven by iron-catalyzed lipid peroxidation. This review synthesizes current evidence on the molecular underpinnings of ferroptosis, focusing on how disruptions in iron homeostasis interact with key antioxidant defenses, such as the system Xc--glutathione-GPX4 axis, to tip neurons toward lethal oxidative damage. Building on these mechanistic foundations, we explore how ferroptosis intersects with hallmark pathologies in Alzheimer's disease (AD) and Parkinson's disease (PD) and examine how iron accumulation in vulnerable brain regions may fuel disease-specific protein aggregation and neurodegeneration. We further surveyed the distinct components of ferroptosis, highlighting the role of lipid peroxidation enzymes, mitochondrial dysfunction, and recently discovered parallel pathways that either exacerbate or mitigate neuronal death. Finally, we discuss how these insights open new avenues for neuroprotective strategies, including iron chelation and lipid peroxidation inhibitors. By highlighting open questions, this review seeks to clarify the current state of knowledge and proposes directions to harness ferroptosis modulation for disease intervention.
Collapse
Affiliation(s)
- Nurzhan Abdukarimov
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kamilya Kokabi
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Jeannette Kunz
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Guo Q, Qian C, Wang X, Qian ZM. Transferrin receptors. Exp Mol Med 2025; 57:724-732. [PMID: 40263550 PMCID: PMC12045970 DOI: 10.1038/s12276-025-01436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/17/2025] [Indexed: 04/24/2025] Open
Abstract
The transferrin receptor (TfR) is one of the key proteins involved in cellular iron uptake. TfR-mediated endocytosis of transferrin-bound iron is the major pathway for iron acquisition by most cells in the body. Over the past three decades, the studies on TfR have made significant progress, and also, our knowledge on cell iron uptake has greatly been improved. Here we focus on recent advances in the studies on TfR and a brief discussion of the structures and functions of four different types of TfR, namely TfR1 (transferrin receptor 1), TfR2 (transferrin receptor 2), TfR3 (glyceraldehyde-3-phosphate dehydrogenase) and TfR4 (cubilin). These proteins work in different cells or organs and at different times, ensuring that cells and tissues get the iron they need. Their normal expression and function are fundamental to the body's iron homeostasis.
Collapse
Affiliation(s)
- Qian Guo
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, Shanghai, China.
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xinyu Wang
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, Shanghai, China
| | - Zhong-Ming Qian
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
5
|
Zacchi P, Longo F, Marconato A, Amadei M, Bonaccorsi di Patti MC, Avolio E, Li P, Fan H, Tetley TD, Zabucchi G, Borelli V. Functional Characterization of the Hephaestin Variant D568H Provides Novel Mechanistic Insights on Iron-Dependent Asbestos-Induced Carcinogenesis. Int J Mol Sci 2025; 26:2607. [PMID: 40141249 PMCID: PMC11941830 DOI: 10.3390/ijms26062607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
A local disruption of iron homeostasis leading to oxidative stress is considered one of the main mechanisms of asbestos-related genotoxicity. Another aspect contributing to the risk of developing pathological consequences upon asbestos exposure is individual genetic factors. In a previous study, we identified a coding SNP in the hephaestin gene (HEPH) that protects against developing asbestos-related thoracic cancer. Heph is a ferroxidase that promotes iron export in concert with the permease ferroportin (Fpn1). Here, we performed an in-depth functional characterization of the HephD568H variant to gain insights into the molecular basis of its protective activity. We showed that HephD568H forms a complex with Fpn1 and possesses full ferroxidase activity. Although HephD568H is more efficiently recruited to the plasma membrane, it is impaired in binding iron-deficient Tfn, whose interaction with wild-type (WT) ferroxidase emerged as a novel mechanism to perceive brain iron needs. Heph is expressed in the human lung by pericytes and fibroblasts, and lung pericytes were shown to respond to iron demand by upregulating the iron exporter pair. These results extend the paradigm of local iron regulation discovered at the blood-brain barrier to the pulmonary vasculature. Furthermore, they establish a mechanistic link between changes in iron sensing and the risk of developing asbestos-related malignancies.
Collapse
Affiliation(s)
- Paola Zacchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Francesco Longo
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Alice Marconato
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Matteo Amadei
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (M.A.); (M.C.B.d.P.)
| | | | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Level 7 Bristol Royal Infirmary, Bristol BS2 8HW, UK;
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (P.L.); (H.F.)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (P.L.); (H.F.)
| | - Teresa D. Tetley
- National Heart and Lung Institute, Imperial College London, Exhibition Road, London SW7 0HF, UK;
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| |
Collapse
|
6
|
Masison J, Mendes P. Mathematical modeling reveals ferritin as the strongest cellular driver of dietary iron transfer block in enterocytes. PLoS Comput Biol 2025; 21:e1012374. [PMID: 40053535 PMCID: PMC11918390 DOI: 10.1371/journal.pcbi.1012374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/18/2025] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Intestinal mucosal block is the transient reduction in iron absorption ability of intestinal epithelial cells (enterocytes) in response to previous iron exposures that occur at the cell scale. The block characteristics have been shown to depend both on iron exposure magnitude and temporality, and understanding block control will enable deeper understanding of how intestinal iron absorption contributes to pathological iron states. Three biochemical mechanisms implicated in driving the block behavior are divalent metal transporter 1 endocytosis, ferritin iron sequestration, and iron regulatory protein regulation of iron related protein expression. In this work, a model of enterocyte iron metabolism is built based on published experimental data that is capable of reproducing the mucosal block phenomena. The model is then used to estimate the quantitative contribution of each of the three mechanisms on the properties of the mucosal block. Analysis reveals that ferritin and iron regulatory proteins are the main intracellular mechanisms contributing to the mucosal block, findings congruent with experimental predictions. Lastly, DMT1 endocytosis is shown to play a role in limiting total iron uptake by enterocytes but does not contribute to the decrease in total iron transfer across their basal membrane seen in the mucosal block.
Collapse
Affiliation(s)
- Joseph Masison
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Pedro Mendes
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| |
Collapse
|
7
|
Amadei M, Polticelli F, Musci G, Bonaccorsi di Patti MC. The Ferroxidase-Permease System for Transport of Iron Across Membranes: From Yeast to Humans. Int J Mol Sci 2025; 26:875. [PMID: 39940646 PMCID: PMC11817551 DOI: 10.3390/ijms26030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Transport of iron across the cell membrane is a tightly controlled process carried out by specific proteins in all living cells. In yeast and in mammals, a system formed by an enzyme with ferroxidase activity coupled to a membrane transporter supports iron uptake or iron efflux, respectively. Ferroxidase belongs to the family of blue multicopper oxidases, enzymes able to couple the one-electron oxidation of substrate(s) to full reduction of molecular oxygen to water. On the other hand, the permeases are widely different and are specific to Fe3+ and Fe2+ in yeast and multicellular organisms, respectively. This review will describe the yeast and human ferroxidase-permease systems, highlighting similarities and differences in structure, function and regulation of the respective protein components.
Collapse
Affiliation(s)
- Matteo Amadei
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | | |
Collapse
|
8
|
Qiu L, Frazer DM, Hu M, Song R, Liu X, Qin X, Ma J, Zhou J, Tan Z, Ren F, Collins JF, Wang X. Mechanism and regulation of iron absorption throughout the life cycle. J Adv Res 2025:S2090-1232(25)00002-5. [PMID: 39814221 DOI: 10.1016/j.jare.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Iron plays a crucial role through various life stages of human. Iron homeostasis is primarily regulated by iron absorption which is mediated via divalent metal-ion transporter 1 (DMT1), and iron export protein ferroportin (FPN), as there is no active pathway for iron excretion from the body. Recent studies have shown that the magnitude of iron absorption changes through various life stages to meet changing iron requirements. AIM OF REVIEW This review aims to provide an overview of recent researches on the regulation of iron absorption throughout mammalian life cycle, with the potential to reveal novel molecules and pathways at special stage of life. Such insights may pave the way for new treatments for disorders associated with aberrant iron homeostasis in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first summarize the mechanism and regulation of iron absorption throughout various life stages, highlighting that regulatory mechanisms have developed to precisely align iron absorption to iron requirements. In adults, iron absorption is enhanced when body is deficient of iron, conversely, iron absorption is reduced when iron demand decreases via systemic regulator Hepcidin and cellular regulation. In the elderly, age-related inflammation, hormonal changes, and chronic diseases may affect the production of Hepcidin, affecting iron absorption. In infants, intestinal iron absorption and its regulatory mechanism are different from that in adults and there might be an alternative pathway independent of DMT1 and FPN due to high iron absorption. Unique to the fetus, iron is absorbed from maternal stores for its own use through the placenta and is regulated by maternal iron status. This review also proposes directions for further studies, offering promising avenues for developing new treatments for disorders associated with aberrant iron homeostasis.
Collapse
Affiliation(s)
- Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston 4029 Australia
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Jie Ma
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Jun Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Zidi Tan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Fazheng Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China.
| |
Collapse
|
9
|
Skrypnik K, Olejnik-Schmidt A, Mikołajczyk-Stecyna J, Schmidt M, Suliburska J. Influence of supplementation with probiotic bacteria Lactiplantibacillus plantarum and Latilactobacillus curvatus on selected parameters of duodenum iron metabolism in rats on a high-fat, iron-deficient diet. Nutrition 2025; 129:112591. [PMID: 39442381 DOI: 10.1016/j.nut.2024.112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES A high-fat, iron (Fe)-deficient Western diet induces obesity and dysregulates Fe metabolism. We compared the influence of Lactiplantibacillus plantarum and Latilactobacillus curvatus with and without Fe supplementation on duodenal Fe uptake under high-fat diet conditions. METHODS Rats were fed a high-fat diet (HF group) or high-fat, Fe-deficient diet (HFDEF group) or control diet (C group) for 8 wk. For the next 8 wk, the rats in the C and HF groups continued on the same diet, whereas the rats in the HFDEF group were divided into six groups and fed high-fat, Fe-deficient diet combinations with L. plantarum (Lp), L. curvatus (Lc), and Fe supplementation (HFDEF, HFDEFFe, HFDEFLp, HFDEFLc, HFDEFFeLp, HFDEFFeLc). Duodenum and serum samples were collected for analysis. RESULTS In the duodenum, the Fe content was higher in the HFDEFFeLp and HFDEFFeLc groups; the ferroportin level was higher in the HFDEFFeLp and HFDEFFeLc groups versus the HF group; the divalent metal transporter 1 level was higher in the HFDEFFeLc group versus the C and HF groups; and duodenal cytochrome B was higher in the HFDEFLc versus all the other groups. In addition, duodenal expression of the solute carrier family 11 member 2 gene was higher in the HFDEF group versus the C, HF, HFDEFFe, HFDEFFeLp, and HFDEFFeLc groups; that of the TFRC gene was higher in the HFDEFFeLc group versus the C, HF, HFDEF, and HFDEFFe groups; and that of the HJV gene was higher in the HFDEFFeLp group versus the C, HF, HFDEF, HFDEFFe, and HFDEFLc groups. CONCLUSIONS L. plantarum and L. curvatus supplementation shows some potential to enhance duodenal cellular Fe uptake in rats on a high-fat, Fe-deficient diet.
Collapse
Affiliation(s)
- Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
10
|
Allegra S, Comità S, Roetto A, De Francia S. Sex and Gender Differences in Iron Chelation. Biomedicines 2024; 12:2885. [PMID: 39767791 PMCID: PMC11673655 DOI: 10.3390/biomedicines12122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES In the absence of physiological mechanisms to excrete excessive iron, the administration of iron chelation therapy is necessary. Age and hormones have an impact on the absorption, distribution, metabolism, and excretion of the medications used to treat iron excess, resulting in notable sex- and gender-related variances. METHODS Here, we aimed to review the literature on sex and gender in iron overload assessment and treatment. RESULTS The development of iron chelators has shown to be a successful therapy for lowering the body's iron levels and averting the tissue damage and organ failure that follows. Numerous studies have described how individual factors can impact chelation treatment, potentially impact therapeutic response, and/or result in inadequate chelation or elevated toxicity; however, most of these data have not considered male and female patients as different groups, and particularly, the effect of hormonal variations in women have never been considered. CONCLUSIONS An effective iron chelation treatment should take into account sex and gender differences.
Collapse
Affiliation(s)
- Sarah Allegra
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Orbassano, Italy; (S.C.); (A.R.); (S.D.F.)
| | | | | | | |
Collapse
|
11
|
Liu Y, Zhang Z, Fang Y, Liu C, Zhang H. Ferroptosis in Osteoarthritis: Current Understanding. J Inflamm Res 2024; 17:8471-8486. [PMID: 39529997 PMCID: PMC11552513 DOI: 10.2147/jir.s493001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease in elderly people that is characterized by cartilage loss and abrasion, leading to joint pain and dysfunction. The aetiology of OA is complicated and includes abnormal mechanical stress, a mild inflammatory environment, chondrocyte senescence and apoptosis, and changes in chondrocyte metabolism. Ferroptosis is a regulated cell death modality characterized by the excessive accumulation of lipid peroxidation and mitochondrial dysfunction. The role of ferroptosis in OA pathogenesis has aroused researchers' attention in the past two years, and there is mounting evidence indicating that ferroptosis is destructive. However, the impact of ferroptosis on OA and how the regulators of ferroptosis affect OA development are unclear. Here, we reviewed the current understanding of ferroptosis in OA pathogenesis and summarized several drugs and compounds targeting ferroptosis in OA treatment. The accumulation of intracellular iron, the trigger of Fenton reaction, the excessive production of ROS, the peroxidation of PUFA-PLs, and mitochondrial and membrane damage are involved in chondrocyte ferroptosis. System Xc - and GPX4 are the most important regulators that control ferroptosis. Several compounds, such as DFO and Fer-1, have been proven effective in preventing ferroptosis and slowing OA progression on animal models. Collectively, targeting ferroptosis shows great potential in treating OA.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People’s Republic of China
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chang Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
12
|
Tian S, Wang B, Ding Y, Zhang Y, Yu P, Chang YZ, Gao G. The role of iron transporters and regulators in Alzheimer's disease and Parkinson's disease: Pathophysiological insights and therapeutic prospects. Biomed Pharmacother 2024; 179:117419. [PMID: 39245001 DOI: 10.1016/j.biopha.2024.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yiqian Ding
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
13
|
He Y, Chen J. Severe iron-deficiency anemia after short-term moderate consumption of green tea in woman: A rare case report. Heliyon 2024; 10:e36666. [PMID: 39263133 PMCID: PMC11387339 DOI: 10.1016/j.heliyon.2024.e36666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
While the mechanisms by which tea consumption hinders iron absorption are well understood, tea-related anemia usually stems from prolonged and excessive intake, which obstructs iron absorption and depletes the body's iron reserves. Consequently, it is uncommon for hemoglobin levels to plummet by 6.9 g/dl solely due to moderate tea consumption over a span of three months. We present a case of severe iron-deficiency anemia in a woman following short-term, moderate green tea consumption. After modifying her tea intake regimen, there was no recurrence of anemia. Clinicians should be mindful that even moderate tea consumption can precipitate severe iron-deficiency anemia in individuals particularly vulnerable to its effects on iron absorption.
Collapse
Affiliation(s)
- Yanlang He
- Department of Infectious Disease, Shaoyang Central Hospital, Shaoyang, China
| | - Jianyong Chen
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
14
|
Kopeć Z, Starzyński RR, Lenartowicz M, Grzesiak M, Opiela J, Smorąg Z, Gajda B, Nicpoń J, Ogłuszka M, Wang X, Mazgaj R, Stankiewicz A, Płonka W, Pirga-Niemiec N, Herman S, Lipiński P. Comparison of Molecular Potential for Iron Transfer across the Placenta in Domestic Pigs with Varied Litter Sizes and Wild Boars. Int J Mol Sci 2024; 25:9638. [PMID: 39273585 PMCID: PMC11395084 DOI: 10.3390/ijms25179638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Neonatal iron deficiency anemia is prevalent among domestic pigs but does not occur in the offspring of wild boar. The main causes of this disorder in piglets of modern pig breeds are paucity of hepatic iron stores, high birth weight, and rapid growth. Replenishment of fetal iron stores is a direct result of iron transfer efficiency across the placenta. In this study, we attempted to investigate the molecular potential of iron transfer across the placenta as a possible cause of differences between wild boar and Polish Large White (PLW) offspring. Furthermore, by analyzing placentas from PLW gilts that had litters of different sizes, we aimed to elucidate the impact of the number of fetuses on placental ability to transport iron. Using RNA sequencing, we examined the expression of iron-related genes in the placentas from wild boar and PLW gilts. We did not reveal significant differences in the expression of major iron transporters among all analyzed placentas. However, in wild boar placentas, we found higher expression of copper-dependent ferroxidases such as ceruloplasmin, zyklopen, and hephaestin, which facilitate iron export to the fetal circulation. We also determined a close co-localization of ceruloplasmin and zyklopen with ferroportin, the only iron exporter.
Collapse
Affiliation(s)
- Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Krakow, Poland
| | - Jolanta Opiela
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Zdzisław Smorąg
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Barbara Gajda
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Jakub Nicpoń
- Department of Surgery, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Xiuying Wang
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Adrian Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Wiktoria Płonka
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Natalia Pirga-Niemiec
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Sylwia Herman
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
15
|
Kao AT, Cabanlong CV, Padilla K, Xue X. Unveiling ferroptosis as a promising therapeutic avenue for colorectal cancer and colitis treatment. Acta Pharm Sin B 2024; 14:3785-3801. [PMID: 39309484 PMCID: PMC11413686 DOI: 10.1016/j.apsb.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) involving iron accumulation and lipid peroxidation. Since its discovery in 2012, various studies have shown that ferroptosis is associated with the pathogenesis of various diseases. Ferroptotic cell death has also been linked to intestinal dysfunction but can act as either a positive or negative regulator of intestinal disease, depending on the cell type and disease context. The continued investigation of mechanisms underlying ferroptosis provides a wealth of potential for developing novel treatments. Considering the growing prevalence of intestinal diseases, particularly colorectal cancer (CRC) and inflammatory bowel disease (IBD), this review article focuses on potential therapeutics targeting the ferroptotic pathway in relation to CRC and IBD.
Collapse
Affiliation(s)
| | | | - Kendra Padilla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
16
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
17
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Yan Y, Zhang W, Wang Y, Yi C, Yu B, Pang X, Li K, Li H, Dai Y. Crosstalk between intestinal flora and human iron metabolism: the role in metabolic syndrome-related comorbidities and its potential clinical application. Microbiol Res 2024; 282:127667. [PMID: 38442456 DOI: 10.1016/j.micres.2024.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.
Collapse
Affiliation(s)
- Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yulin Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoli Pang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunyang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuHu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
19
|
Correnti M, Gammella E, Cairo G, Recalcati S. Iron Absorption: Molecular and Pathophysiological Aspects. Metabolites 2024; 14:228. [PMID: 38668356 PMCID: PMC11052485 DOI: 10.3390/metabo14040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Iron is an essential nutrient for growth among all branches of life, but while iron is among the most common elements, bioavailable iron is a relatively scarce nutrient. Since iron is fundamental for several biological processes, iron deficiency can be deleterious. On the other hand, excess iron may lead to cell and tissue damage. Consequently, iron balance is strictly regulated. As iron excretion is not physiologically controlled, systemic iron homeostasis is maintained at the level of absorption, which is mainly influenced by the amount of iron stores and the level of erythropoietic activity, the major iron consumer. Here, we outline recent advances that increased our understanding of the molecular aspects of iron absorption. Moreover, we examine the impact of these recent insights on dietary strategies for maintaining iron balance.
Collapse
Affiliation(s)
| | | | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.C.); (E.G.); (S.R.)
| | | |
Collapse
|
20
|
Pereira TA, Espósito BP. Can iron chelators ameliorate viral infections? Biometals 2024; 37:289-304. [PMID: 38019378 DOI: 10.1007/s10534-023-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The redox reactivity of iron is a double-edged sword for cell functions, being either essential or harmful depending on metal concentration and location. Deregulation of iron homeostasis is associated with several clinical conditions, including viral infections. Clinical studies as well as in silico, in vitro and in vivo models show direct effects of several viruses on iron levels. There is support for the strategy of iron chelation as an alternative therapy to inhibit infection and/or viral replication, on the rationale that iron is required for the synthesis of some viral proteins and genes. In addition, abnormal iron levels can affect signaling immune response. However, other studies report different effects of viral infections on iron homeostasis, depending on the class and genotype of the virus, therefore making it difficult to predict whether iron chelation would have any benefit. This review brings general aspects of the relationship between iron homeostasis and the nonspecific immune response to viral infections, along with its relevance to the progress or inhibition of the inflammatory process, in order to elucidate situations in which the use of iron chelators could be efficient as antivirals.
Collapse
|
21
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
22
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z, Li S. Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res 2024; 202:107139. [PMID: 38484857 DOI: 10.1016/j.phrs.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Chronic kidney disease (CKD) has become a global public health problem with high morbidity and mortality. Renal fibrosis can lead to end-stage renal disease (ESRD). However, there is still no effective treatment to prevent or delay the progression of CKD into ESRD. Therefore, exploring the pathogenesis of CKD is essential for preventing and treating CKD. There are a variety of trace elements in the human body that interact with each other within a complex regulatory network. Iron and copper are both vital trace elements in the body. They are critical for maintaining bodily functions, and the dysregulation of their metabolism can cause many diseases, including kidney disease. Ferroptosis is a new form of cell death characterized by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is closely related to kidney disease. However, the role of abnormal copper metabolism in kidney disease and its relationship with ferroptosis remains unclear. Here, our current knowledge regarding copper metabolism, its regulatory mechanism, and the role of abnormal copper metabolism in kidney diseases is summarized. In addition, we discuss the relationship between abnormal copper metabolism and ferroptosis to explore the possible pathogenesis and provide a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Huang Jiayi
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Tong Ziyuan
- China Medical University, Shenyang 110122, People's Republic of China
| | - Xu Tianhua
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhang Mingyu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ma Yutong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Wang Jingyu
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhou Hongli
- Department of Nephrology, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 110004, People's Republic of China
| | - Sun Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
23
|
Li S, Xing W, Gang Y, Zhang M, Zhao Z, Wu H, Zhu S. Gum Arabic-Derived Hydroxyproline-Rich Peptides Stimulate Intestinal Nonheme Iron Absorption via HIF2α-Dependent Upregulation of Iron Transport Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3622-3632. [PMID: 38347764 DOI: 10.1021/acs.jafc.3c09588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The stimulation of host iron absorption is a promising antianemia strategy adjunctive/alternative to iron intervention. Here, gum arabic (GA) containing 3.14 ± 0.56% hydroxyproline-rich protein with repetitive X-(Pro/Hyp)n motifs was found to increase iron reduction, uptake, and transport to upregulate duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), ferroportin, and hephaestin to inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) and to stabilize HIF2α in polarized Caco-2 cell monolayers in a dose-dependent manner, and this was dependent on its protein fraction, rather than the polysaccharide fraction. Three abundant GA-derived hydroxyproline-containing dipeptides of Hyp-Hyp, Pro-Hyp, and Ser-Hyp were detected by liquid chromatography-mass spectrometry in the lysates of polarized Caco-2 cell monolayers at the maximum levels of 0.167 ± 0.021, 0.134 ± 0.017, and 0.089 ± 0.015 μg/mg of protein, respectively, and showed desirable docking affinity energy values of -7.53, - 7.91, and -7.39 kcal/mol, respectively, against human PHD3. GA-derived peptides also acutely increased duodenal HIF2α stability and Dcytb, DMT1, ferroportin, and hephaestin transcription in rats (P < 0.05). Overall, GA-derived hydroxyproline-rich peptides stimulated intestinal iron absorption via PHD inhibition, HIF2α stabilization, and subsequent upregulation of iron transport proteins.
Collapse
Affiliation(s)
- Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Wenshuo Xing
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuxin Gang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Meichao Zhang
- Weihai Institute for Food and Drug Control, Weihai 264299, China
| | - Zifang Zhao
- Hainan/Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| |
Collapse
|
24
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
25
|
Morgan MB, Williams J, Breeze B, English N, Higdon N, Onthank K, Qualley DF. Synergistic and antagonistic interactions of oxybenzone and ocean acidification: new insight into vulnerable cellular processes in non-calcifying anthozoans. Front Physiol 2024; 14:1332446. [PMID: 38274044 PMCID: PMC10808722 DOI: 10.3389/fphys.2023.1332446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Cnidarians face significant threats from ocean acidification (OA) and anthropogenic pollutants such as oxybenzone (BP-3). The convergence of threats from multiple stressors is an important area to investigate because of potential significant synergistic or antagonistic interactions. Real-time quantitative PCR was performed to characterize the expression profiles of twenty-two genes of interest (GOI) in sea anemones (Exaiptasia diaphana) exposed to one of four treatments: 1) 96 h of OA conditions followed by a 4 h exposure to 20 ppb BP-3; 2) Exposure to 4 h 20 ppb BP-3 without 96 h of OA; 3) Exposure to 96 h of OA alone; or 4) laboratory conditions with no exposure to BP-3 and/or OA. These 22 GOIs represent cellular processes associated with proton-dependent transport, sodium-dependent transport, metal cation binding/transport, extracellular matrix, amino acid metabolism/transport, immunity, and/or steroidogenesis. These 22 GOIs provide new insight into vulnerable cellular processes in non-calcifying anthozoans exposed to OA and BP-3. Expression profiles were categorized as synergistic, antagonistic, or additive of BP-3 in the presence of OA. Two GOIs were synergistic. Fifteen GOIs were antagonistic and the remaining five GOIs were additive in response to BP-3 in acidified seawater. A subset of these GOIs appear to be candidate biomarkers for future in situ investigations. In human health, proton-dependent monocarboxylate transporters (MCTs) are promising pharmacological targets and recognized as potential biomarkers. By comparison, these same MCTs appear to be targets of xenobiotic chemical pollutants in cnidarian physiology. In the presence of BP-3, a network of collagen synthesis genes are upregulated and antagonistic in their expression profiles. Cytochrome b561 is a critical protein required for collagen synthesis and in silico modeling demonstrates BP-3 binds in the pocket of cytochrome b561. Understanding the underlying molecular mechanisms of "drug-like" compounds such as BP-3 may lead to a more comprehensive interpretation of transcriptional expression profiles. The collective antagonistic responses of GOIs associated with collagen synthesis strongly suggests these GOIs should be considered candidate biomarkers of effect. GOIs with synergistic and additive responses represent candidate biomarkers of exposure. Results show the effects of OA and BP-3 are interactive with respect to their impact on cnidarians. This investigation offers mechanistic data that supports the expression profiles and underpins higher order physiological responses.
Collapse
Affiliation(s)
- Michael B. Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Barrett Breeze
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Nicholas English
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Nathaniel Higdon
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Kirt Onthank
- Department of Biology, Walla Walla University, College Place, WA, United States
| | - Dominic F. Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| |
Collapse
|
26
|
Pernin F, Kuhlmann T, Kennedy TE, Antel JP. Oligodendrocytes in multiple sclerosis. MECHANISMS OF DISEASE PATHOGENESIS IN MULTIPLE SCLEROSIS 2024:261-287. [DOI: 10.1016/b978-0-12-823848-6.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Okazaki Y. Iron from the gut: the role of divalent metal transporter 1. J Clin Biochem Nutr 2024; 74:1-8. [PMID: 38292117 PMCID: PMC10822759 DOI: 10.3164/jcbn.23-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
28
|
Jormakka M. Structural insights into ferroportin mediated iron transport. Biochem Soc Trans 2023; 51:BST20230594. [PMID: 38115725 DOI: 10.1042/bst20230594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Iron is a vital trace element for almost all organisms, and maintaining iron homeostasis is critical for human health. In mammals, the only known gatekeeper between intestinally absorbed iron and circulatory blood plasma is the membrane transporter ferroportin (Fpn). As such, dysfunction of Fpn or its regulation is a key driver of iron-related pathophysiology. This review focuses on discussing recent insights from high-resolution structural studies of the Fpn protein family. While these studies have unveiled crucial details of Fpn regulation and structural architecture, the associated functional studies have also at times provided conflicting data provoking more questions than answers. Here, we summarize key findings and illuminate important remaining questions and contradictions.
Collapse
Affiliation(s)
- Mika Jormakka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Xu PC, Song CC, Tan XY, Zhao T, Zhong CC, Xu JJ, Song YF, Luo Z. Characterization of fifteen key genes involved in iron metabolism and their responses to dietary iron sources in yellow catfish Pelteobagrus fulvidraco. J Trace Elem Med Biol 2023; 80:127301. [PMID: 37716208 DOI: 10.1016/j.jtemb.2023.127301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Iron is an essential metal element for organisms, whose metabolism is regulated by many genes and also dietary iron sources. However, the characterization, distribution and the responses of iron metabolism-related genes to different iron sources were not clear in fish. METHODS The full-length cDNA sequences of fifteen iron metabolism-relevant genes (tf, tfr1, hp, fpn1, ho1, ho2, tfr2, hjv, hepcidin, fth, ftl, ftm, irp1, irp2 and hif2α.) were obtained via 3' and 5' RACE PCR from yellow catfish, a widely distributed freshwater teleost in China and other Asian countries. Their molecular characterizations were analyzed via the bioinformatic methods. Real-time quantitative PCR was used to explore their mRNA distribution in nine tissues. Their mRNA expression responses in four tissues (heart, brain, kidney and gill) were explored in yellow catfish fed diets with five iron sources, including ferrous sulfate (FeSO4), ferrous bisglycinate (Fe-Gly), ferrous chloride (FeCl2), ferric citrate (Fe-CA) and ferric oxide nanoparticles (Fe2O3NPs). RESULTS Compared with mammals and other teleost, these members shared similar domains. Their mRNAs were expressed in nine tested tissues, but mRNA levels varied. Yellow catfish fed the diets containing Fe-Gly and Fe2O3NPs had higher iron contents in heart, brain, kidney and gill. Meantime, different dietary iron sources addition affected their mRNA expression differentially in brain, heart, kidney and gill. It should be pointed out that only three biological replicate tanks were used in the present feeding treatment, and more biological replicate tanks (more than five) should be emphasized in further researches. CONCLUSION Taken together, our study identified fifteen iron metabolism-relevant genes, explored their mRNA expression in nine tissues, and their mRNA expression in the responses to different dietary iron sources in four tissues, indicating their important regulatory function in iron metabolism and homeostasis.
Collapse
Affiliation(s)
- Peng-Cheng Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Jie-Jie Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
30
|
Srivastava NK, Mukherjee S, Mishra VN. One advantageous reflection of iron metabolism in context of normal physiology and pathological phases. Clin Nutr ESPEN 2023; 58:277-294. [PMID: 38057018 DOI: 10.1016/j.clnesp.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE (BACKGROUND) The presented review is an updating of Iron metabolism in context of normal physiology and pathological phases. Iron is one of the vital elements in humans and associated into proteins as a component of heme (e.g. hemoglobin, myoglobin, cytochromes proteins, myeloperoxidase, nitric oxide synthetases), iron sulfur clusters (e.g. respiratory complexes I-III, coenzyme Q10, mitochondrial aconitase, DNA primase), or other functional groups (e.g. hypoxia inducible factor prolyl hydroxylases). All these entire iron-containing proteins ar e needed for vital cellular and organismal functions together with oxygen transport, mitochondrial respiration, intermediary and xenobiotic metabolism, nucleic acid replication and repair, host defense, and cell signaling. METHODS (METABOLIC STRATEGIES) Cells have developed metabolic strategies to import and employ iron safely. Regulatory process of iron uptake, storage, intracellular trafficking and utilization is vital for the maintenance of cellular iron homeostasis. Cellular iron utilization and intracellular iron trafficking pathways are not well established and very little knowledge about this. The predominant organs, which are associated in the metabolism of iron, are intestine, liver, bone marrow and spleen. Iron is conserved, recycled and stored. The reduced bioavailability of iron in humans has developed extremely efficient mechanisms for iron conservation. Prominently, the losses of iron cannot considerably enhance through physiologic mechanisms, even if iron intake and stores become excessive. Loss of iron is balanced or maintained from dietary sources. RESULTS (OUTCOMES) Numerous physiological abnormalities are associated with impaired iron metabolism. These abnormalities are appeared in the form of several diseases. There are duodenal ulcer, inflammatory bowel disease, sideroblastic anaemia, congenital dyserythropoietic anemias and low-grade myelodysplastic syndromes. Hereditary hemochromatosis and anaemia are two chronic diseases, which are responsible for disturbing the iron metabolism in various tissues, including the spleen and the intestine. Impairment in hepatic hepcidin synthesis is responsible for chronic liver disease, which is grounding from alcoholism or viral hepatitis. This condition directs to iron overload that can cause further hepatic damage. Iron has important role in several infectious diseases are tuberculosis, malaria trypanosomatid diseases and acquired immunodeficiency syndrome (AIDS). Iron is also associated with Systemic lupus erythematosus [SLE], cancer, Alzheimer's disease (AD) and post-traumatic epilepsy. CONCLUSION Recently, numerous research studies are gradually more dedicated in the field of iron metabolism, but a number of burning questions are still waiting for answer. Cellular iron utilization and intracellular iron trafficking pathways are not well established and very little knowledge about this. Increased information of the physiology of iron homeostasis will support considerate of the pathology of iron disorders and also make available the support to advance treatment.
Collapse
Affiliation(s)
- Niraj Kumar Srivastava
- School of Sciences (SOS), Indira Gandhi National Open University (IGNOU), New Delhi, 110068, India.
| | | | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, 221005, UP, India
| |
Collapse
|
31
|
Ma R, Feng L, Wu P, Liu Y, Ren HM, Li SW, Tang L, Zhong CB, Han D, Zhang WB, Tang JY, Zhou XQ, Jiang WD. A new insight on copper: Promotion of collagen synthesis and myofiber growth and development in juvenile grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:22-33. [PMID: 37771856 PMCID: PMC10522946 DOI: 10.1016/j.aninu.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 09/30/2023]
Abstract
Copper (Cu) is a trace element, essential for fish growth. In the current study, in addition to growth performance, we first explored the effects of Cu on collagen synthesis and myofiber growth and development in juvenile grass carp (Ctenopharyngodon idella). A total of 1080 fish (11.16 ± 0.01 g) were randomly divided into 6 treatments (3 replicates per treatment) to receive five doses of organic Cu, which were Cu citrate (CuCit) at 0.99 (basal diet), 2.19, 4.06, 6.15, and 8.07 mg/kg, and one dose of inorganic Cu (CuSO4·5H2O at 3.15 mg/kg), for 9 weeks. The results showed appropriate Cu level (4.06 mg/kg) enhanced growth performance, improved nutritional Cu status, and downregulated Cu-transporting ATPase 1 mRNA levels in the hepatopancreas, intestine, and muscle of juvenile grass carp. Meanwhile, collagen content in fish muscle was increased after Cu intake, which was probably due to the following pathways: (1) activating CTGF/TGF-β1/Smads signaling pathway to regulate collagen transcription; (2) upregulating of La ribonucleoprotein domain family 6 (LARP6) mRNA levels to regulate translation initiation; (3) increasing proline hydroxylase, lysine hydroxylase, and lysine oxidase activities to regulate posttranslational modifications. In addition, optimal Cu group increased myofiber diameters and the frequency of myofibers with diameter >50 μm, which might be associated with upregulation of cyclin B, cyclin D, cyclin E, proliferating cell nuclear antigen, myogenic determining factor (MyoD), myogenic factor 5, myogenin (MyoG), myogenic regulatory factor 4 and myosin heavy chain (MyHC) and downregulation of myostatin mRNA levels, increasing protein levels of MyoD, MyoG and MyHC in fish muscle. Finally, based on percentage weight gain (PWG), serum ceruloplasmin (Cp) activity and collagen content in fish muscle, Cu requirements were determined as 4.74, 4.37 and 4.62 mg/kg diet (CuCit as Cu source) of juvenile grass carp, respectively. Based on PWG and Cp activity, compared to CuSO4·5H2O, the efficacy of CuCit were 131.80% and 115.38%, respectively. Our findings provide new insights into Cu supplementation to promote muscle growth in fish, and help improve the overall productivity of aquaculture.
Collapse
Affiliation(s)
- Rui Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Dong Han
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wen-Bing Zhang
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Jia-Yong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| |
Collapse
|
32
|
Abstract
Iron accumulation in the CNS occurs in many neurological disorders. It can contribute to neuropathology as iron is a redox-active metal that can generate free radicals. The reasons for the iron buildup in these conditions are varied and depend on which aspects of iron influx, efflux, or sequestration that help maintain iron homeostasis are dysregulated. Iron was shown recently to induce cell death and damage via lipid peroxidation under conditions in which there is deficient glutathione-dependent antioxidant defense. This form of cell death is called ferroptosis. Iron chelation has had limited success in the treatment of neurological disease. There is therefore much interest in ferroptosis as it potentially offers new drugs that could be more effective in reducing iron-mediated lipid peroxidation within the lipid-rich environment of the CNS. In this review, we focus on the molecular mechanisms that induce ferroptosis. We also address how iron enters and leaves the CNS, as well as the evidence for ferroptosis in several neurological disorders. Finally, we highlight biomarkers of ferroptosis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
33
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
34
|
Sangkhae V, Fisher AL, Ganz T, Nemeth E. Iron Homeostasis During Pregnancy: Maternal, Placental, and Fetal Regulatory Mechanisms. Annu Rev Nutr 2023; 43:279-300. [PMID: 37253681 PMCID: PMC10723031 DOI: 10.1146/annurev-nutr-061021-030404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pregnancy entails a large negative balance of iron, an essential micronutrient. During pregnancy, iron requirements increase substantially to support both maternal red blood cell expansion and the development of the placenta and fetus. As insufficient iron has long been linked to adverse pregnancy outcomes, universal iron supplementation is common practice before and during pregnancy. However, in high-resource countries with iron fortification of staple foods and increased red meat consumption, the effects of too much iron supplementation during pregnancy have become a concern because iron excess has also been linked to adverse pregnancy outcomes. In this review, we address physiologic iron homeostasis of the mother, placenta, and fetus and discuss perturbations in iron homeostasis that result in pathological pregnancy. As many mechanistic regulatory systems have been deduced from animal models, we also discuss the principles learned from these models and how these may apply to human pregnancy.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Allison L Fisher
- Endocrine Unit and Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Ganz
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
35
|
Ginzburg Y, An X, Rivella S, Goldfarb A. Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. eLife 2023; 12:e90189. [PMID: 37578340 PMCID: PMC10425177 DOI: 10.7554/elife.90189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yelena Ginzburg
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Xiuli An
- LFKRI, New York Blood CenterNew YorkUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology affinity group (CAMB), University of PennsylvaniaPhiladelphiaUnited States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Center for Musculoskeletal Disorders at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at University of PennsylvaniaPhiladelphiaUnited States
- RNA Institute at University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Goldfarb
- Department of Pathology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
36
|
Tokumoto M, Lee JY, Fujiwara Y, Satoh M. Long-Term Exposure to Cadmium Causes Hepatic Iron Deficiency through the Suppression of Iron-Transport-Related Gene Expression in the Proximal Duodenum. TOXICS 2023; 11:641. [PMID: 37505606 PMCID: PMC10386400 DOI: 10.3390/toxics11070641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that damages various tissues. Cd may cause a depletion of iron stores and subsequently an iron deficiency state in the liver. However, the molecular mechanism of decreased iron accumulation in the liver induced by long-term exposure to Cd is unknown. In this study, we investigated the hepatic accumulation of iron and the proximal duodenal expression of the genes involved in iron transport using mice chronically exposed to Cd. Five-week-old female C57BL/6J mice were fed a diet containing 300 ppm Cd for 12, 15, 19 and 21 months. The iron concentration in the liver was markedly decreased by Cd. Among iron-transport-related genes in the proximal duodenum, the gene expression of HCP1 and Cybrd1 was significantly decreased by Cd. HCP1 is an influx transporter of heme iron. Cybrd1 is a reductase that allows non-heme iron to enter cells. The expression of iron-transport-related genes on the duodenal basolateral membrane side was hardly altered by Cd. These results suggest that long-term exposure to Cd suppresses the expression of HCP1 and Cybrd1 in the proximal duodenum, resulting in reduced iron absorption and iron accumulation in the liver.
Collapse
Affiliation(s)
- Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| |
Collapse
|
37
|
Anderson BD, Lee T, Bell B, Song Y, Dunaief JL. Low ceruloplasmin levels exacerbate retinal degeneration in a hereditary hemochromatosis model. Dis Model Mech 2023; 16:dmm050226. [PMID: 37439255 PMCID: PMC10354715 DOI: 10.1242/dmm.050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 07/14/2023] Open
Abstract
In a previous report, a 39-year-old patient with high serum iron levels from hereditary hemochromatosis (HH) was diagnosed with a form of retinal degeneration called bull's eye maculopathy. This is atypical for patients with HH, so it was theorized that the low serum levels of ferroxidase ceruloplasmin (CP) of this patient coupled with the high iron levels led to the retinal degeneration. CP, by oxidizing iron from its ferrous to ferric form, helps prevent the oxidative damage caused by ferrous iron. To test this, a hepcidin knockout (KO) mouse model of HH was combined with Cp KO to test whether the combination would lead to more severe retinal degeneration. Monthly in vivo retinal images were acquired and, after 11 months, mice were euthanized for further analyses. Both heterozygous and homozygous Cp KO increased the rate and severity of retinal degeneration. These results demonstrate the protective role of CP, which is most likely owing to its ferroxidase activity. The findings suggest that CP levels may influence the severity of retinal degeneration, especially in individuals with high serum iron.
Collapse
Affiliation(s)
- Brandon D. Anderson
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Timothy Lee
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brent Bell
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ying Song
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Ianiro G, Rosa L, Bonaccorsi di Patti MC, Valenti P, Musci G, Cutone A. Lactoferrin: from the structure to the functional orchestration of iron homeostasis. Biometals 2023; 36:391-416. [PMID: 36214975 DOI: 10.1007/s10534-022-00453-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
Abstract
Iron is by far the most widespread and essential transition metal, possessing crucial biological functions for living systems. Despite chemical advantages, iron biology has forced organisms to face with some issues: ferric iron insolubility and ferrous-driven formation of toxic radicals. For these reasons, acquisition and transport of iron constitutes a formidable challenge for cells and organisms, which need to maintain adequate iron concentrations within a narrow range, allowing biological processes without triggering toxic effects. Higher organisms have evolved extracellular carrier proteins to acquire, transport and manage iron. In recent years, a renewed interest in iron biology has highlighted the role of iron-proteins dysregulation in the onset and/or exacerbation of different pathological conditions. However, to date, no resolutive therapy for iron disorders has been found. In this review, we outline the efficacy of Lactoferrin, a member of the transferrin family mainly secreted by exocrine glands and neutrophils, as a new emerging orchestrator of iron metabolism and homeostasis, able to counteract iron disorders associated to different pathologies, including iron deficiency and anemia of inflammation in blood, Parkinson and Alzheimer diseases in the brain and cystic fibrosis in the lung.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy.
| |
Collapse
|
39
|
Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF, Chen H, Vulpe CD, Anderson GJ, Frazer DM. The biology of mammalian multi-copper ferroxidases. Biometals 2023; 36:263-281. [PMID: 35167013 PMCID: PMC9376197 DOI: 10.1007/s10534-022-00370-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jie Zhou
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Brie K Fuqua
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
- Mucosal Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainsville, FL, USA
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
40
|
Ginzburg YZ. Hepcidin and its multiple partners: Complex regulation of iron metabolism in health and disease. VITAMINS AND HORMONES 2023; 123:249-284. [PMID: 37717987 DOI: 10.1016/bs.vh.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The peptide hormone hepcidin is central to the regulation of iron metabolism, influencing the movement of iron into the circulation and determining total body iron stores. Its effect on a cellular level involves binding ferroportin, the main iron export protein, preventing iron egress and leading to iron sequestration within ferroportin-expressing cells. Hepcidin expression is enhanced by iron loading and inflammation and suppressed by erythropoietic stimulation. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis as occurs in anemia of chronic inflammation. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload such as hereditary hemochromatosis and iron loading anemias. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we assess the complex regulation of hepcidin, delineate the many binding partners involved in its regulation, and present an update on the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United Sates.
| |
Collapse
|
41
|
Cheng Z, Chu H, Zhu Q, Yang L. Ferroptosis in non-alcoholic liver disease: Molecular mechanisms and therapeutic implications. Front Nutr 2023; 10:1090338. [PMID: 36992907 PMCID: PMC10040549 DOI: 10.3389/fnut.2023.1090338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis refers to a novel modality of regulated cell death characterized by excessive iron accumulation and overwhelming lipid peroxidation, which takes an important part in multiple pathological processes associated with cell death. Considering the crucial roles of the liver in iron and lipid metabolism and its predisposition to oxidative insults, more and more studies have been conducted to explore the relationship between ferroptosis and various liver disorders, including non-alcoholic fatty liver disease (NAFLD). With increased morbidity and high mortality rates, NAFLD has currently emerged as a global public health issue. However, the etiology of NAFLD is not fully understood. In recent years, an accumulating body of evidence have suggested that ferroptosis plays a pivotal role in the pathogenesis of NAFLD, but the precise mechanisms underlying how ferroptosis affects NAFLD still remain obscure. Here, we summarize the molecular mechanisms of ferroptosis and its complicated regulation systems, delineate the different effects that ferroptosis exerts in different stages of NAFLD, and discuss some potential effective therapies targeting ferroptosis for NAFLD treatment, which putatively points out a novel direction for NAFLD treatment.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingjing Zhu
- Jinyintan Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qingjing Zhu,
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ling Yang, ,
| |
Collapse
|
42
|
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, Remião F, Silva R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 2023; 244:108373. [PMID: 36894028 DOI: 10.1016/j.pharmthera.2023.108373] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting glutathione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, α-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors. Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other studies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors. Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Vera Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
43
|
Aslan ES, Aydın H, Tekin YK, Keleş S, White KN, Hekim N. Association between iron metabolism and SARS-COV-2 infection, determined by ferritin, hephaestin and hypoxia-induced factor-1 alpha levels in COVID-19 patients. Mol Biol Rep 2023; 50:2471-2478. [PMID: 36600108 PMCID: PMC9812738 DOI: 10.1007/s11033-022-08221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Due to the growing evidence of the importance of iron status in immune responses, the biomarkers of iron metabolism are of interest in novel Coronavirus Disease 2019 (COVID-19). The present prospective study was carried out to compare iron status indicated by levels of ferritin with the levels of two novel biomarkers related to iron homeostasis, hephaestin and hypoxia-inducible factors-1 (HIF-1α) in the serum of patients with COVID-19 in comparison with a control group. METHODS AND RESULTS Blood samples from 34 COVID-19 patients and from 43 healthy volunteers were collected and the levels of HEPH and HIF-1α were measured by ELISA and compared with levels of serum ferritin. COVID-19 patients had higher serum levels of ferritin than those levels in control group (P < 0.0001). Conversely levels of HIF-1α and HEPH in the COVID-19 group were significantly lower than those of control group (P < 0.0001 for both). An inverse correlation between hephaestin and ferritin as well as between HIF-1α and ferritin was found among all subjects (P < 0.0001), and among COVID-19 patients, but not to statistical significance. CONCLUSION Levels of hephaestin and HIF-1α were found to be inversely related levels of ferritin across all participants in the study, and to our knowledge this is the first report of hephaestin and HIF-1α as potential markers of iron status. Further studies are needed to corroborate the findings, utilizing a broader range of markers to monitor inflammatory as well as iron status.
Collapse
Affiliation(s)
- Elif Sibel Aslan
- Molecular Biology and Genetic Department, Faculty of Engineering and Natural Sciences, Biruni University, 10. Yıl Street. Protokol Road, Topkapı, Istanbul, Turkey.
| | - Hüseyin Aydın
- Medical Biochemistry, Department of Basic Medical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Kenan Tekin
- Medical Biochemistry, Department of Basic Medical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sami Keleş
- Ahenk Medical Diagnosis and Research Laboratory, Yeditepe University, Istanbul, Turkey
| | - Kenneth N White
- Molecular Systems for Health Research Group, School of Human Sciences, London Metropolitan University, London, UK
| | - Nezih Hekim
- Molecular Biology and Genetic Department, Faculty of Engineering and Natural Sciences, Biruni University, 10. Yıl Street. Protokol Road, Topkapı, Istanbul, Turkey
| |
Collapse
|
44
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
45
|
Ogawa C, Tsuchiya K, Maeda K. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors and Iron Metabolism. Int J Mol Sci 2023; 24:ijms24033037. [PMID: 36769359 PMCID: PMC9917929 DOI: 10.3390/ijms24033037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The production of erythropoietin (EPO), the main regulator of erythroid differentiation, is regulated by hypoxia-inducible factor (HIF). HIF2α seems to be the principal regulator of EPO transcription, but HIF1α and 3α also may have additional influences on erythroid maturation. HIF is also involved in the regulation of iron, an essential component in erythropoiesis. Iron is essential for the organism but is also highly toxic, so its absorption and retention are strictly controlled. HIF also induces the synthesis of proteins involved in iron regulation, thereby ensuring the availability of iron necessary for hematopoiesis. Iron is a major component of hemoglobin and is also involved in erythrocyte differentiation and proliferation and in the regulation of HIF. Renal anemia is a condition in which there is a lack of stimulation of EPO synthesis due to decreased HIF expression. HIF prolyl hydroxylase inhibitors (HIF-PHIs) stabilize HIF and thereby allow it to be potent under normoxic conditions. Therefore, unlike erythropoiesis-stimulating agents, HIF-PHI may enhance iron absorption from the intestinal tract and iron supply from reticuloendothelial macrophages and hepatocytes into the plasma, thus facilitating the availability of iron for hematopoiesis. The only HIF-PHI currently on the market worldwide is roxadustat, but in Japan, five products are available. Clinical studies to date in Japan have also shown that HIF-PHIs not only promote hematopoiesis, but also decrease hepcidin, the main regulator of iron metabolism, and increase the total iron-binding capacity (TIBC), which indicates the iron transport capacity. However, concerns about the systemic effects of HIF-PHIs have not been completely dispelled, warranting further careful monitoring.
Collapse
Affiliation(s)
- Chie Ogawa
- Maeda Institute of Renal Research, Kawasaki 211-0063, Japan
- Biomarker Society, INC, Kawasaki 211-0063, Japan
- Correspondence: ; Tel.: +81-44-711-3221
| | - Ken Tsuchiya
- Biomarker Society, INC, Kawasaki 211-0063, Japan
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Kunimi Maeda
- Maeda Institute of Renal Research, Kawasaki 211-0063, Japan
- Biomarker Society, INC, Kawasaki 211-0063, Japan
| |
Collapse
|
46
|
Abuga KM, Nairz M, MacLennan CA, Atkinson SH. Severe anaemia, iron deficiency, and susceptibility to invasive bacterial infections. Wellcome Open Res 2023; 8:48. [PMID: 37600584 PMCID: PMC10439361 DOI: 10.12688/wellcomeopenres.18829.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 08/22/2023] Open
Abstract
Severe anaemia and invasive bacterial infections remain important causes of hospitalization and death among young African children. The emergence and spread of antimicrobial resistance demand better understanding of bacteraemia risk factors to inform prevention strategies. Epidemiological studies have reported an association between severe anaemia and bacteraemia. In this review, we explore evidence that severe anaemia is associated with increased risk of invasive bacterial infections in young children. We describe mechanisms of iron dysregulation in severe anaemia that might contribute to increased risk and pathogenesis of invasive bacteria, recent advances in knowledge of how iron deficiency and severe anaemia impair immune responses to bacterial infections and vaccines, and the gaps in our understanding of mechanisms underlying severe anaemia, iron deficiency, and the risk of invasive bacterial infections.
Collapse
Affiliation(s)
- Kelvin M. Abuga
- Kenya Medical Research Institute (KEMRI) Centre for Geographical Medicine Research-Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- Open University, KEMRI-Wellcome Trust Research Programme – Accredited Research Centre, Kilifi, 80108, Kenya
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Centre for Geographical Medicine Research-Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
47
|
Atiya HI, Frisbie L, Goldfeld E, Orellana T, Donnellan N, Modugno F, Calderon M, Watkins S, Zhang R, Elishaev E, Soong TR, Vlad A, Coffman L. Endometriosis-Associated Mesenchymal Stem Cells Support Ovarian Clear Cell Carcinoma through Iron Regulation. Cancer Res 2022; 82:4680-4693. [PMID: 36219681 PMCID: PMC9755968 DOI: 10.1158/0008-5472.can-22-1294] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Ovarian clear cell carcinoma (OCCC) is a deadly and treatment-resistant cancer, which arises within the unique microenvironment of endometriosis. In this study, we identified a subset of endometriosis-derived mesenchymal stem cells (enMSC) characterized by loss of CD10 expression that specifically support OCCC growth. RNA sequencing identified alterations in iron export in CD10-negative enMSCs and reciprocal changes in metal transport in cocultured OCCC cells. CD10-negative enMSCs exhibited elevated expression of iron export proteins hephaestin and ferroportin and donate iron to associated OCCCs, functionally increasing the levels of labile intracellular iron. Iron is necessary for OCCC growth, and CD10-negative enMSCs prevented the growth inhibitory effects of iron chelation. In addition, enMSC-mediated increases in OCCC iron resulted in a unique sensitivity to ferroptosis. In vitro and in vivo, treatment with the ferroptosis inducer erastin resulted in significant death of cancer cells grown with CD10-negative enMSCs. Collectively, this work describes a novel mechanism of stromal-mediated tumor support via iron donation. This work also defines an important role of endometriosis-associated MSCs in supporting OCCC growth and identifies a critical therapeutic vulnerability of OCCC to ferroptosis based on stromal phenotype. SIGNIFICANCE Endometriosis-derived mesenchymal stem cells support ovarian clear cell carcinoma via iron donation necessary for cancer growth, which also confers sensitivity to ferroptosis-inducing therapy.
Collapse
Affiliation(s)
- Huda I. Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ester Goldfeld
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor Orellana
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicole Donnellan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Calderon
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thing Rinda Soong
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anda Vlad
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Corresponding Author: Lan Coffman, Department of Medicine, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213. E-mail:
| |
Collapse
|
48
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
49
|
Arita A, Kita I, Shinoda S. Internalization and Decrease of Duodenal DMT1 Involved in Transient Suppression of Iron Uptake in Short-Acting Mucosal Block. Biol Trace Elem Res 2022; 200:4795-4806. [PMID: 34997531 DOI: 10.1007/s12011-021-03053-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022]
Abstract
Mucosal block (MB) is induced by the oral administration of excess iron (10 mg) and suppresses intestinal iron absorption for 3-72 h. The inhibition of iron absorption is accompanied by the downregulation of molecules associated with intestinal iron absorption. Recently, we found that a smaller amount of iron (1 mg) also induced a transient suppression of iron uptake without affecting gene expression levels (short-acting mucosal block, SAMB), which is specific to iron-deficient rats. In this study, we investigated how the nonheme iron transporters divalent metal transporter 1 (DMT1) and ferroportin (FPN) are involved in the transient suppression of iron uptake in SAMB. To induce SAMB, a test solution containing 1 mg iron was infused into the duodenum loop in iron-sufficient and iron-deficient rats. Total duodenal DMT1 and DMT1-IRE expression were increased during iron deficiency. After 15 min of 1 mg iron loading, the fluorescence intensity of duodenal DMT1 in iron-deficient rats was decreased and was comparable to that in iron-sufficient rats. Internalized DMT1-IRE as puncta was observed at 15 and 60 min after 1 mg iron loading, and the number of punctas was significantly increased after 60 min compared with control. There was no effect of 1 mg iron loading on the intracellular distribution of duodenal FPN. Our results suggest that the decrease and internalization of DMT1-IRE protein may be related, at least in part, to iron uptake suppression in SAMB.
Collapse
Affiliation(s)
- Anna Arita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
- Institute of Food, Nutrition, and Health, Jumonji University, Niiza, Saitama, Japan.
| | - Ichiro Kita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Shoko Shinoda
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
50
|
Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103937. [PMID: 35882309 PMCID: PMC9307469 DOI: 10.1016/j.etap.2022.103937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/14/2023]
Abstract
In severe COVID-19, the levels of iron (Fe), copper (Cu), zinc (Zn) and selenium (Se), do not only regulate host immune responses, but modify the viral genome, as well. While low serum Fe concentration is an independent risk factor for the increased death rate, Zn controls oxidative stress, synthesis of inflammatory cytokines and viral replication. Therefore, Zn deficiency associates with a worse prognosis. Although Cu exposure inactivates the viral genome and exhibits spike protein dispersal, increase in Cu/Zn due to high serum Cu levels, are correlated with enhanced risk of infections. Se levels are significantly higher in surviving COVID-19 patients. Meanwhile, both Zn and Se suppress the replication of SARS-CoV-2. Since the balance between the deficiency and oversupply of these metals due to a reciprocal relationship, has decisive effect on the prognosis of the SARS-CoV-2 infection, monitoring their concentrations may facilitate improved outcomes for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|