1
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
2
|
Kemmegne-Mbouguen JC, Tamne GB, Ngo-Ngwem MC, Toma HE, Araki K, Constantino VRL, Angnes L. Glassy carbon electrode modified with a film of tetraruthenated nickel(ii) porphyrin located in natural smectite clay's interlayer for the simultaneous sensing of dopamine, acetaminophen and tryptophan. RSC Adv 2024; 14:19592-19602. [PMID: 38895529 PMCID: PMC11184656 DOI: 10.1039/d4ra03253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
A supramolecular complex μ-meso-tetra(4-pyridyl) porphyrinate nickel(ii)tetrakis[bis(bipyridine)(chloro)ruthenium(ii)] ([NiTPyP{Ru(bipy)2Cl}4]4+) was intercalated into the interlayer space of natural smectite clay (shortened as Ba) collected in a Cameroonian deposit at Bagba hill. Physicochemical characterization of the resulting material using ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) confirmed the intercalation of the porphyrin within the interlayer space of the clay. The intercalated clay was then used to form a stable thin film onto a glassy carbon electrode (GCE) by drop casting a suspension of the hybrid material. The GCE modified with the intercalated organoclay endowed the electrode with a larger electrochemically active surface area, good stability, high selectivity, and sensitivity toward dopamine (DA), acetaminophen (AC) and tryptophan (Trp). In addition, it was observed that the modified electrodes exhibited good and pH-dependent electrocatalytic properties toward these analytes. The simultaneous determination of DA, AC and Trp at [NiTPyP{Ru(bipy)2Cl}4]4+-Ba/GCE was thus possible without the interference of one analyte on the others, and the resulting calibration curve exhibits two segments for the three analytes. For DA, AC and Trp, the detection limits were found to be 0.8 μM, 0.3 μM and 0.3 μM, respectively. The [NiTPyP{Ru(bipy)2Cl}4]4+-Ba/GCE modified electrodes were successfully applied for the determination of AC in Paracetamol, a commercial product, and Trp in real pharmaceutical formulation samples.
Collapse
Affiliation(s)
- Justin Claude Kemmegne-Mbouguen
- Laboratory of Porous Materials for Sensors and Energy, Faculty of Science, University of Yaounde 1 P.O. Box 812 Yaounde Cameroon
| | - Guy Bertrand Tamne
- Department of Chemistry, High Teacher Training College, University of Yaounde 1 P.O. Box 49 Yaounde Cameroon
| | - Marcelline Carine Ngo-Ngwem
- Laboratory of Porous Materials for Sensors and Energy, Faculty of Science, University of Yaounde 1 P.O. Box 812 Yaounde Cameroon
| | - Henrique Eisi Toma
- Universidade de São Paulo, Instituto de Química Av. Professor Lineu Prestes, 748 CEP: 05508-000-São Paulo Brazil
| | - Koiti Araki
- Universidade de São Paulo, Instituto de Química Av. Professor Lineu Prestes, 748 CEP: 05508-000-São Paulo Brazil
| | | | - Lúcio Angnes
- Universidade de São Paulo, Instituto de Química Av. Professor Lineu Prestes, 748 CEP: 05508-000-São Paulo Brazil
| |
Collapse
|
3
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Ghosh U, Sen Sarma M, Samanta A. Challenges and dilemmas in pediatric hepatic Wilson's disease. World J Hepatol 2023; 15:1109-1126. [PMID: 37970614 PMCID: PMC10642431 DOI: 10.4254/wjh.v15.i10.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Wilson disease is an autosomal recessive disorder affecting the ATP7B gene located on chromosome 13q. This leads to copper deposition in various organs, most importantly in the liver and brain. The genetic mutations are vast, well reported in the West but poorly documented in developing countries. Hence the diagnosis is made with a constellation of clinico-laboratory parameters which have significant overlap with other liver diseases and often pose a significant dilemma for clinicians. Diagnostic scoring systems are not fool-proof. The availability and affordability of chelators in developing countries impact the drug compliance of patients. While D-penicillamine is a potent drug, its side effects lead to drug discontinuation. Trientine is cost-prohibitive in developing countries. There is no single test to assess the adequacy of chelation. Exchangeable urinary copper is an essential upcoming diagnostic and prognostic tool. In the presence of cirrhosis, hypersplenism clouds the assessment of myelosuppression of drugs. Similarly, it may be difficult to distinguish disease tubulopathy from drug-induced glomerulonephritis. Neurological worsening due to chelators may appear similar to disease progression. Presentation as fulminant hepatic failure requires rapid workup. There is a limited window of opportunity to salvage these patients with the help of plasmapheresis and other liver-assisted devices. This review addresses the challenges and clinical dilemmas faced at beside in developing countries.
Collapse
Affiliation(s)
- Upasana Ghosh
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| | - Arghya Samanta
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
5
|
Groba SR, Guttmann S, Niemietz C, Bernick F, Sauer V, Hachmöller O, Karst U, Zischka H, Zibert A, Schmidt HH. Downregulation of hepatic multi-drug resistance protein 1 (MDR1) after copper exposure. Metallomics 2018; 9:1279-1287. [PMID: 28805879 DOI: 10.1039/c7mt00189d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper homeostasis is strictly regulated in mammalian cells. We investigated the adaptation of hepatocytes after long-term copper exposure. Copper-resistant hepatoma HepG2 cell lines lacking ATP7B were generated. Growth, copper accumulation, gene expression, and transport were determined. Hepatocyte-like cells derived from a Wilson disease (WD) patient and the liver of a WD animal model were also studied. The rapidly gained copper resistance was found to be stable, as subculturing of cells in the absence of added copper (weaning) did not restore copper sensitivity. Intracellular copper levels and the expression of MT1 and HSP70 were increased, whereas the expression of CTR1 was reduced. However, the values normalized after weaning. In contrast, downregulation of multi-drug resistance protein 1 (MDR1), encoding P-glycoprotein (P-gp), was shown to be permanent. Calcein assays confirmed the downregulation of MDR1 in the resistant cell lines. MDR1 knockdown by siRNA resulted in increased copper resistance and decreased intracellular copper. Treatment of the resistant cells with verapamil, a known inducer of MDR1, was followed by increased copper-induced toxicity. Downregulation of MDR1 was also observed in hepatocyte-like cells derived from a WD patient after copper exposure. In addition, MDR1 was downregulated in Long-Evans Cinnamon rats when the liver copper was elevated. The results indicate that downregulation of MDR1 is an adaptation of hepatic cells after sustained copper exposure when ATP7B is non-functional. Our data add to the versatile functions of MDR1 in the hepatocyte and may have an impact on the treatment of copper-related diseases, prominently WD.
Collapse
Affiliation(s)
- Sara Reinartz Groba
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Castaño O, Gómez DM, Ocampo JM, Casanova ME. Degeneración hepatolenticular: a propósito de tres casos. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n4a07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Liu X, Ding W, Wu Y, Zeng C, Luo Z, Fu H. Penicillamine-protected Ag 20 nanoclusters and fluorescence chemosensing for trace detection of copper ions. NANOSCALE 2017; 9:3986-3994. [PMID: 28267164 DOI: 10.1039/c6nr09818e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the synthesis of penicillamine-protected Ag20 nanoclusters (NCs), with properties of high monodispersity, red fluorescence and water solubility. Full characterization of the Ag20 NCs is addressed, along with first-principles optimization calculations, revealing the chemical composition and structure of the as-prepared Ag NCs within a molecular formula [Ag20(DPA)18-H]-. Moreover, natural bond orbital (NBO) analysis demonstrates the charge-transfer interactions between the ligand and Ag atoms, and helps in understanding the origins of fluorescence of Ag20 NCs related to the ligand-to-metal charge transfer (LMCT) mechanism. Further, fluorescence chemosensing of the Ag20 NCs is demonstrated for tracing copper ions with high sensitivity and selectivity in aqueous solution.
Collapse
Affiliation(s)
- Xianhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Weihua Ding
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yishi Wu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Chenghui Zeng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hongbing Fu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
9
|
Lichtmannegger J, Leitzinger C, Wimmer R, Schmitt S, Schulz S, Kabiri Y, Eberhagen C, Rieder T, Janik D, Neff F, Straub BK, Schirmacher P, DiSpirito AA, Bandow N, Baral BS, Flatley A, Kremmer E, Denk G, Reiter FP, Hohenester S, Eckardt-Schupp F, Dencher NA, Adamski J, Sauer V, Niemietz C, Schmidt HHJ, Merle U, Gotthardt DN, Kroemer G, Weiss KH, Zischka H. Methanobactin reverses acute liver failure in a rat model of Wilson disease. J Clin Invest 2016; 126:2721-35. [PMID: 27322060 DOI: 10.1172/jci85226] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
In Wilson disease (WD), functional loss of ATPase copper-transporting β (ATP7B) impairs biliary copper excretion, leading to excessive copper accumulation in the liver and fulminant hepatitis. Current US Food and Drug Administration- and European Medicines Agency-approved pharmacological treatments usually fail to restore copper homeostasis in patients with WD who have progressed to acute liver failure, leaving liver transplantation as the only viable treatment option. Here, we investigated the therapeutic utility of methanobactin (MB), a peptide produced by Methylosinus trichosporium OB3b, which has an exceptionally high affinity for copper. We demonstrated that ATP7B-deficient rats recapitulate WD-associated phenotypes, including hepatic copper accumulation, liver damage, and mitochondrial impairment. Short-term treatment of these rats with MB efficiently reversed mitochondrial impairment and liver damage in the acute stages of liver copper accumulation compared with that seen in untreated ATP7B-deficient rats. This beneficial effect was associated with depletion of copper from hepatocyte mitochondria. Moreover, MB treatment prevented hepatocyte death, subsequent liver failure, and death in the rodent model. These results suggest that MB has potential as a therapeutic agent for the treatment of acute WD.
Collapse
|
10
|
Kemmegne-Mbouguen JC, Angnes L, Mouafo-Tchinda E, Ngameni E. Electrochemical Determination of Uric Acid, Dopamine and Tryptophan at Zinc Hexacyanoferrate Clay Modified Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Zischka H, Lichtmannegger J. Pathological mitochondrial copper overload in livers of Wilson's disease patients and related animal models. Ann N Y Acad Sci 2014; 1315:6-15. [DOI: 10.1111/nyas.12347] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hans Zischka
- Institute of Molecular Toxicology and Pharmacology; Helmholtz Center Munich; German Research Center for Environmental Health; Neuherberg Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology; Helmholtz Center Munich; German Research Center for Environmental Health; Neuherberg Germany
| |
Collapse
|
12
|
Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS One 2013; 8:e73684. [PMID: 24013775 PMCID: PMC3754934 DOI: 10.1371/journal.pone.0073684] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/19/2013] [Indexed: 01/17/2023] Open
Abstract
Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4(+) T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes.
Collapse
|
13
|
Mazloum-Ardakani M, Sheikh-Mohseni MA, Mirjalili BF. Selective and Simultaneous Voltammetric Determination of Glutathione, Uric Acid and Penicillamine by a Modified Carbon Nanotube Paste Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201300151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Summer KH, Lichtmannegger J, Bandow N, Choi DW, DiSpirito AA, Michalke B. The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson disease. J Trace Elem Med Biol 2011; 25:36-41. [PMID: 21242075 DOI: 10.1016/j.jtemb.2010.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/28/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023]
Abstract
Copper is an essential redox-active metal ion which in excess becomes toxic due to the formation of reactive oxygen species. In Wilson disease the elevated copper level in liver leads to chronic oxidative stress and subsequent hepatitis. This study was designed to evaluate the copper chelating efficiency of the bacterial methanobactin (MB) in a rat model for Wilson disease. Methanobactin is a small peptide produced by the methanotrophic bacterium Methylosinus trichosporium OB3b and has an extremely high affinity for copper. Methanobactin treatment of the rats was started at high liver copper and serum aspartate aminotransferase (AST) levels. Two dosing schedules with either 6 or 13 intraperitoneal doses of 200mg methanobactin per kg body weight were applied. Methanobactin treatment led to a return of serum AST values to basal levels and a normalization of liver histopathology. Concomitantly, copper levels declined to 45% and 24% of untreated animals after 6 and 13 doses, respectively. Intravenous application of methanobactin led to a prompt release of copper from liver into bile and the copper was shown to be associated with methanobactin. In vitro experiments with liver cytosol high in copper metallothionein demonstrated that methanobactin removes copper from metallothionein confirming the potent copper chelating activity of methanobactin.
Collapse
Affiliation(s)
- Karl H Summer
- Institute of Toxicology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Mazloum-Ardakani M, Beitollahi H, Taleat Z, Naeimi H, Taghavinia N. Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.02.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Marquez-Quiñones A, Čipak A, Žarkovic K, Fattel-Fazenda S, Villa-Treviño S, Waeg G, Žarkovic N, Guéraud F. HNE-protein adducts formation in different pre-carcinogenic stages of hepatitis in LEC rats. Free Radic Res 2009; 44:119-27. [DOI: 10.3109/10715760903338071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
|
18
|
Homogeneous electrocatalytic oxidation of d-penicillamine with ferrocyanide at a carbon paste electrode: application to voltammetric determination. J APPL ELECTROCHEM 2008. [DOI: 10.1007/s10800-008-9724-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Marquez-Quiñones A, Paris A, Roussel B, Perez-Carreon J, Le Berre V, François JM, Villa-Treviño S, Guéraud F. Proteasome activity deregulation in LEC rat hepatitis: following the insights of transcriptomic analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2008; 11:367-84. [PMID: 18092909 DOI: 10.1089/omi.2007.0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
LEC rats show spontaneous hepatitis and hepatocarcinoma development related to oxidative stress due to abnormal copper accumulation in the liver. We used DNA microarrays bearing 22,012 genes to investigate at the transcriptomic level the progression of the hepatitis in LEC rats in comparison to a control obtained from LEC rats treated with D-penicillamine, a copper chelating agent known to block hepatitis development. Multivariate statistical analyses as partial least square (PLS) regression between transcriptomic data and hepatitis markers in plasma led us to select 483 genes related to hepatitis development in these rats. After a complementary discriminant analysis (PLS-DA), 239 important genes for the separation between the different rat groups were selected. Gene ontology classification revealed an overrepresentation of genes involved in protein metabolism-related functions. More importantly, some genes implicated in proteasome pathway were upregulated. However, analysis of 20S proteasome activity showed that trypsin-like and peptidylglutamyl peptide hydrolase activities were diminished during hepatitis. Because oxidative stress is known to promote the inactivation of the proteasome complex, we propose the deregulation of the proteasome genes expression as a result of oxidative inactivation of proteasome activity during hepatitis in LEC rats. These results bring new insights in the hepatitis and the hepatocarcinogenesis development.
Collapse
|
20
|
Zischka H, Lichtmannegger J, Jägemann N, Jennen L, Hamöller D, Huber E, Walch A, Summer KH, Göttlicher M. Isolation of highly pure rat liver mitochondria with the aid of zone-electrophoresis in a free flow device (ZE-FFE). Methods Mol Biol 2008; 424:333-348. [PMID: 18369873 DOI: 10.1007/978-1-60327-064-9_26] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This protocol describes the purification of mitochondria from rat liver with the aid of zone electrophoresis in a free flow device (ZE-FFE). Starting from liver homogenate, cell debris and nuclei are removed by low speed centrifugation. A crude mitochondrial fraction is obtained by medium speed centrifugation and is further purified by washing followed by a Nycodenz gradient centrifugation. Lysosomes and microsomes are located at the upper parts of the gradient, whereas mitochondria are found in the medium part of the gradient. A subsequent purification step with ZE-FFE efficiently removes remaining lysosomes and microsomes and, importantly, damaged mitochondrial structures. The resulting purified mitochondria can be concentrated by centrifugation and used for further experiments. Finally, possible modifications of this protocol with respect to the isolation of pure lysosomes are discussed.
Collapse
Affiliation(s)
- Hans Zischka
- GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang X, Yuan H, Wang C, Su X, Hu L, Xiao D. Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection. J Pharm Biomed Anal 2007; 45:362-6. [PMID: 17606355 DOI: 10.1016/j.jpba.2007.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/18/2007] [Accepted: 05/20/2007] [Indexed: 10/23/2022]
Abstract
In this paper, a capillary electrophoresis (CE) system with in-column fiber optics light-emitting diode (LED) induced fluorescence detection was developed for the determination of penicillamine (PA). The influence of buffer concentration, buffer pH, applied voltage and injection time was systematically investigated. Optimum separation conditions were obtained with 10 mM borate buffer at pH 9.1, applied voltage 20 kV and 8 s hydrodynamic injection at 30 mbar. The detection system displayed linear dynamic range from 3.2 x 10(-7) to 4.8 x 10(-5) mol L(-1) with a correlation coefficient of 0.9991 and good repeatability (R.S.D.=2.46%). The method was applied to the determination of PA in commercial tablets and human plasma, which the recoveries of standard PA added to tablets and human plasma sample were found to be in the range of 96.26-102.68 and 91.10-99.35%, respectively. The proposed method is cheap, rapid, easy, and accurate, and can be successfully applied to the formulation analysis and bioanalysis.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Marquez A, Villa-Treviño S, Guéraud F. The LEC rat: a useful model for studying liver carcinogenesis related to oxidative stress and inflammation. Redox Rep 2007; 12:35-9. [PMID: 17263906 DOI: 10.1179/135100007x162220] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Growing evidence indicates oxidative stress as a mechanism of several diseases including cancer. Oxidative stress can be defined as the imbalance between cellular oxidant species production and antioxidant capability shifted towards the former. Lipid peroxidation is one of the processes that takes place during oxidative stress. Lipid peroxidation products, such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE), are closely related to carcinogenesis as they are potent mutagens and they have been suggested as modulators of signal pathways related to proliferation and apoptosis, two processes implicated in cancer development. Mechanisms by which oxidative stress leads to tumor formation are still under investigation. The need of suitable in vivo models that could reflect that inflammation-related human carcinogenesis is evident. In this regard, the mutant strain Long Evans Cinnamon-like (LEC) rat provides a promising model for investigation of the relationship between hepatitis induced by oxidative stress and hepatocarcinogenesis because it has been demonstrated to develop spontaneous liver tumor formation related to copper accumulation and oxidative stress. In this review, the findings regarding oxidative stress and its relation with liver pathologies in LEC rats are discussed; we focus on the mechanisms proposed for HNE carcinogenesis.
Collapse
Affiliation(s)
- Adriana Marquez
- Institut National de la Recherche Agronomique, UMR 1089-Xenobiotiques, Toulouse, France
| | | | | |
Collapse
|
23
|
Schlief ML, Gitlin JD. Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 2006; 33:81-90. [PMID: 16603790 DOI: 10.1385/mn:33:2:81] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 11/30/1999] [Accepted: 06/30/2005] [Indexed: 10/24/2022]
Abstract
Copper is an essential nutrient that plays a fundamental role in the biochemistry of the central nervous system, as evidenced by patients with Menkes disease, a fatal neurodegenerative disorder of childhood resulting from the loss-of-function of a copper-transporting P-type adenosine triphosphatase (ATPase). Despite clinical and experimental data indicating a role for copper in brain function, the mechanisms and timing of the critical events affected by copper remain poorly understood. A novel role for the Menkes ATPase has been identified in the availability of an N-methyl-D-aspartate (NMDA) receptor-dependent, releasable pool of copper in hippocampal neurons, suggesting a unique mechanism linking copper homeostasis and neuronal activation within the central nervous system. This article explores the evidence that copper acts as a modulator of neuronal transmission, and that the release of endogenous copper from neurons may regulate NMDA receptor activity. The relationship between impaired copper homeostasis and neuropathophysiology suggests that impairment of copper efflux could alter neuronal function and thus contribute to rapid neuronal degeneration.
Collapse
Affiliation(s)
- Michelle L Schlief
- Edward Mallickrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
24
|
Mandigers P, Ingh T, Bode P, Rothuizen J. Improvement in Liver Pathology after 4 Months of D-Penicillamine in 5 Doberman Pinschers with Subclinical Hepatitis. J Vet Intern Med 2005. [DOI: 10.1111/j.1939-1676.2005.tb02656.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. Since daily copper intake exceeds the body's requirements, effective means of excreting excess copper are essential. These are accomplished by ATP7B, a new member of the cation-transporting p-type ATPase family, which is mainly expressed in the liver and mediates both copper secretion into plasma (coupled with ceruloplasmin synthesis) and its excretion into bile. Thus far, more than 200 mutations of the WD gene have been detected, causing impairment of ATP7B function and, ultimately, copper accumulation. Excess copper, however, induces free-radical reactions and lipid peroxidation. Resultant liver damage leads to steatosis, inflammation, cirrhosis, and, occasionally, fulminant liver failure. The diagnosis of WD is commonly made on the basis of typical clinical and laboratory findings, including low serum ceruloplasmin, increased urinary copper excretion, and increased hepatic copper content. Since liver morphology is non-specific, and copper histochemistry may lead to both false-negative and false-positive results, the pathologist usually only suspects the disease or assists in its confirmation. Although the value of molecular genetic testing is limited due to the high number of possible gene mutations, polymerase chain reaction may be useful for the evaluation of family members of homozygous index patients.
Collapse
Affiliation(s)
- Cord Langner
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
| | | |
Collapse
|
26
|
Klein D, Arora U, Lichtmannegger J, Finckh M, Heinzmann U, Summer KH. Tetrathiomolybdate in the treatment of acute hepatitis in an animal model for Wilson disease. J Hepatol 2004; 40:409-16. [PMID: 15123354 DOI: 10.1016/j.jhep.2003.11.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 09/11/2003] [Accepted: 11/20/2003] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS Tetrathiomolybdate (TTM) is a potent copper-chelating agent that has been shown to be effective in Wilson disease patients with neurological symptoms. Here, we investigate the potential use of TTM in treating the acute hepatic copper toxicosis in Long-Evans Cinnamon (LEC) rats, an authentic model for Wilson disease. METHODS After the onset of acute hepatitis, LEC rats were treated once with 10 mg TTM/kg. After 1 and 4 days, parameters of liver toxicity and the subcellular distribution and binding of copper and iron were studied. RESULTS In 11 out of 12 rats TTM rapidly improved acute hepatitis. Hepatic copper decreased through removal from cytosolic metallothionein and lysosomal metallothionein polymers. The remaining lysosomal copper forms a metallothionein-copper-TTM complex. In an almost moribund rat, however, TTM caused severe hepatotoxicity with fatal outcome. CONCLUSIONS TTM is effective in treating acute hepatitis in LEC rats when applied before the animals become moribund. TTM appears to act by removing the presumable reactive copper associated to lysosomal metallothionein polymers. The remaining lysosomal copper seems to be inactivated by forming a complex with TTM. Moreover, TTM removes copper from cytosolic copper-containing metallothionein. As a consequence, metallothionein is degraded and the uptake of copper-metallothionein into the lysosomes and the formation of the metallothionein polymer associated copper is reduced.
Collapse
Affiliation(s)
- Dominik Klein
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Copper deficiency and excess have been recognized as potential health problems for infants and children worldwide. Clinical manifestations of copper deficiency and excess are well characterized but the precise sequence by which high copper intake interacts with genetic control systems, leading to liver damage in infants, is unknown. The possibility that genetic mutations or epigenetic factors related to the functional development of copper homeostasis, could make otherwise normal infants on normal copper intake more susceptible to copper toxicity has been an issue of concern. In January 2001 a group of pediatricians and researchers interested in this area met at Tegernsee, Bavaria, Germany, to reviewing the state of knowledge on the topic. They addressed six main issues: 1) The relevance of copper deficit and excess as health problems. 2) The appropriate biomarkers to identify and characterize copper status 3) The genetic variability in copper metabolism 4) The mechanisms of whole body copper homeostasis in early life and their changes with age 5) The development of experimental and animal models to address research questions on copper homeostasis in infants. 6) The safe upper and lower limits of copper intake/exposure from water and food. We present here the highlights of the discussions and the main conclusions of the meeting.
Collapse
Affiliation(s)
- Magdalena Araya
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
28
|
Xu H, Sakakibara S, Morifuji M, Salamatulla Q, Aoyama Y. Excess dietary histidine decreases the liver copper level and serum alanine aminotransferase activity in Long-Evans Cinnamon rats. Br J Nutr 2003; 90:573-9. [PMID: 13129463 DOI: 10.1079/bjn2003939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Long-Evans Cinnamon (LEC) rats spontaneously develop fulminant hepatitis, associated with excess Cu accumulation in the liver: thus, they are considered an animal model of Wilson's disease. In the present study, we investigated the ability of excess dietary histidine to reduce the excess accumulation of liver Cu in LEC rats by comparing them with Fischer rats. The results clearly showed that the excess-histidine diet markedly stimulated the Cu excretion in urine, and significantly decreased the liver Cu content in LEC rats by 47.5%. The serum Cu content in LEC rats was not influenced by excess dietary histidine. We also compared the effects of excess dietary histidine on some liver antioxidant enzyme activities, liver and serum lipid levels and serum alanine aminotransferase activity of LEC and Fischer rats. Dietary histidine decreased the activities of total and Cu,Zn-superoxide dismutase in the liver of both strains. In LEC rats, the liver cholesterol content decreased, and serum cholesterol and phospholipids levels increased on feeding the excess-histidine diet. When fed on the basal diet, the serum alanine aminotransferase activity was higher in LEC rats than in Fischer rats, but a significant decrease in serum alanine aminotransferase activity of LEC rats was observed on feeding the excess-histidine diet. These results suggest that excess dietary histidine is effective in removing Cu ions from the liver of LEC rats. Thus, it may be of benefit in the prevention or treatment of liver injury in LEC rats and in patients with Wilson's disease.
Collapse
Affiliation(s)
- Hong Xu
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
29
|
Rodrigues LEA, Carvalho AAVF, Azevedo ALM, Cruz CBBV, Maia AWC. Odontologic use of copper/aluminum alloys: mitochondrial respiration as sensitive parameter of biocompatibility. Braz Dent J 2003; 14:32-6. [PMID: 12656462 DOI: 10.1590/s0103-64402003000100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Copper/aluminum alloys are largely utilized in odontological restorations because they are less expensive than gold or platinum. However, tarnishing and important corrosion in intrabuccal prostheses made with copper/aluminum alloys after 28 days of use have been reported. Several kinds of food and beverage may attack and corrode these alloys. Copper is an essential component of several important enzymes directly involved in mitochondrial respiratory metabolism. Aluminum, in contrast, is very toxic and, when absorbed, plasma values as small as 1.65 to 21.55 microg/dl can cause severe lesions to the nervous system, kidneys, and bone marrow. Because mitochondria are extremely sensitive to minimal variation of cellular physiology, the direct relationship between the mitocondrial respiratory chain and cell lesions has been used as a sensitive parameter to evaluate cellular aggression by external agents. This work consisted in the polarographic study of mitochondrial respiratory metabolism of livers and kidneys of rabbits with femoral implants of titanium or copper/aluminum alloy screws. The experimental results obtained did not show physiological modifications of hepatic or renal mitochondria isolated from animals of the three experimental groups, which indicate good biocompatibility of copper/ aluminum alloys and suggest their odontological use.
Collapse
Affiliation(s)
- Luiz Erlon A Rodrigues
- Laboratory of Basic Research, EBMSP, Foundation for Science Development, Salvador, BA, Brazil.
| | | | | | | | | |
Collapse
|
30
|
George GN, Pickering IJ, Harris HH, Gailer J, Klein D, Lichtmannegger J, Summer KH. Tetrathiomolybdate causes formation of hepatic copper-molybdenum clusters in an animal model of Wilson's disease. J Am Chem Soc 2003; 125:1704-5. [PMID: 12580588 DOI: 10.1021/ja029054u] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wilson's disease is an autosomal recessive human illness in which large quantities of copper accumulate in various organs, including the brain and the liver. If left untreated, it results in hepatitis, neurological complications, and death. Long-Evans Cinnamon (LEC) rats have a homologous mutation to Wilson's disease and thus provide an animal model. Liver lysosomes from tetrathiomolybdate-treated LEC rats were isolated and analyzed by Cu and Mo K-edge X-ray absorption spectroscopy. The lysosomes contained a Cu-Mo-S cluster in which the Mo is coordinated by four sulfurs at 2.24 A with approximately three copper neighbors at 2.70 A. Each Cu is coordinated to 3-4 sulfurs at 2.28 A with approximately one Mo neighbor at 2.70 A. These results indicate the formation of a biologically novel molybdenum-copper-sulfur cluster.
Collapse
Affiliation(s)
- Graham N George
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, 2575 Sand Hill Road, MS 69, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Durand F, Bernuau J, Giostra E, Mentha G, Shouval D, Degott C, Benhamou JP, Valla D. Wilson's disease with severe hepatic insufficiency: beneficial effects of early administration of D-penicillamine. Gut 2001; 48:849-52. [PMID: 11358907 PMCID: PMC1728316 DOI: 10.1136/gut.48.6.849] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Wilson's disease, heralded by severe hepatic insufficiency, is a rare disorder for which emergency liver transplantation is considered to be the only effective therapy. AIMS To report the features of Wilson's disease with severe hepatic insufficiency in a series of 17 patients and, during the second period of the study, to assess the efficacy of a policy consisting of early administration of D-penicillamine. PATIENTS Seventeen consecutive patients with Wilson's disease were studied. During the first period of the study (up to 1979), none of the patients received D-penicillamine. During the second period (after 1979), all patients without encephalopathy at admission received D-penicillamine. RESULTS The four patients observed during the first period who did not have encephalopathy at admission and did not receive D-penicillamine progressed to encephalopathy and died. Among the 13 consecutive patients observed during the second period, two patients with encephalopathy at admission did not receive D-penicillamine and were transplanted. The 11 remaining patients all received D-penicillamine. Ten of these patients survived without the need for transplantation and returned to compensated liver disease without liver insufficiency. In one patient, liver insufficiency progressed and transplantation had to be performed. CONCLUSIONS In most patients with Wilson's disease heralded by severe hepatic insufficiency and without encephalopathy at admission, early administration of D-penicillamine was associated with survival without transplantation. These results suggest the importance of early diagnosis of this form of Wilson's disease before the onset of encephalopathy, and favour early administration of D-penicillamine which could avoid the need for transplantation in most cases.
Collapse
Affiliation(s)
- F Durand
- Service d'Hépatologie, Hôpital Beaujon, Clichy, France.
| | | | | | | | | | | | | | | |
Collapse
|