1
|
Liang Z, Huang R, Zhang L. Correlation between hepatic steatosis severity diagnosed by ultrasound and metabolic indexes in elderly patients with MAFLD. Front Med (Lausanne) 2025; 11:1467773. [PMID: 39839645 PMCID: PMC11747716 DOI: 10.3389/fmed.2024.1467773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Objective To explore the connection between metabolic parameters and the severity of hepatic steatosis determined through ultrasound in elderly individuals with metabolic dysfunction-associated fatty liver disease (MAFLD). Methods 4,663 senior individuals who were 65 years of age or older were included in this research. They were examined physically at the Ninghai Street Community Health Service Center in Yantai City between June 7, 2021, and October 15, 2021. There were two categories of individuals identified: the MAFLD group (n = 2,985) and the non-MAFLD group (n = 1,678). Based on liver ultrasonography results, individuals in the MAFLD group were further separated into three groups: mild (n = 2,104), moderate (n = 766), and severe (n = 115). To identify indicators of risk for the severity of hepatic steatosis, metabolic data was contrasted between the groups employing logistic regression. Results In comparison to the non-MAFLD group, the MAFLD group showed significantly elevated levels of body mass index (BMI), blood pressure, gender, age, lipid profile, alanine transaminase (ALT), and fasting blood glucose (FBG; p < 0.05). Among individuals with MAFLD, there was a positive correlation between BMI, FBG, ALT, and aspartate transaminase (AST) levels and the severity of hepatic steatosis (p < 0.05). Logistic regression analysis indicated that BMI, female gender, FBG, ALT, triglycerides (TG), and serum uric acid (SUA) constituted risk factors for increased severity of hepatic steatosis in MAFLD. Conclusion The severity of hepatic steatosis in elderly MAFLD patients is significantly correlated with female gender, BMI, ALT, FBG, TG, and SUA.
Collapse
Affiliation(s)
| | | | - Lingyun Zhang
- General Practice Department, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
2
|
Vimalesvaran S, Vajro P, Dhawan A. Pediatric metabolic (dysfunction)-associated fatty liver disease: current insights and future perspectives. Hepatol Int 2024; 18:873-883. [PMID: 38879851 PMCID: PMC11450008 DOI: 10.1007/s12072-024-10691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/24/2024] [Indexed: 10/05/2024]
Abstract
The historical use of the term non-alcoholic fatty liver disease (NAFLD) in obese/overweight children has been controversial as to the appropriateness of this terminology in children, and lately, in adults too. Newer game-changer terminology, metabolic (dysfunction)-associated fatty liver disease (MAFLD), for this condition signifies a positive step forward that addresses the limitations of the previous definition for both adults and children. The prevalence of MAFLD has surged in tandem with the global rise in obesity rates, establishing itself as a predominant cause of chronic liver disease in both adult and pediatric populations. The adoption of the recently proposed nomenclature reflects a more encompassing comprehension of the disease and its etiology compared to its predecessor, NAFLD. Notably, the revised terminology facilitates the recognition of MAFLD as an autonomous condition while acknowledging the potential coexistence of other systemic fatty liver disorders. Particularly in children, this includes various paediatric-onset genetic and inherited metabolic disorders, necessitating thorough exclusion, especially in cases where weight loss interventions yield no improvement or in the absence of obesity. MAFLD presents as a multifaceted disorder; evidence suggests its origins lie in a complex interplay of nutritional, genetic, hormonal, and environmental factors. Despite advancements, current non-invasive diagnostic biomarkers exhibit limitations in accuracy, often necessitating imaging and histological evaluations for definitive diagnosis. While dietary and lifestyle modifications stand as cornerstone measures for MAFLD prevention and management, ongoing evaluation of therapeutic agents continues. This article provides an overview of the latest developments and emerging therapies in the realm of paediatric MAFLD.
Collapse
Affiliation(s)
- Sunitha Vimalesvaran
- Paediatric Liver, Gastroenterology and Nutrition Centres, King's College Hospital NHS Trust, London, UK
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, Baronissi, Salerno, Italy
| | - Anil Dhawan
- Paediatric Liver, Gastroenterology and Nutrition Centres, King's College Hospital NHS Trust, London, UK.
| |
Collapse
|
3
|
Zhang Y, Zhang M, Jiang S, Hu H, Wang X, Yu F, Huang Y, Liang Y. Associations of perfluoroalkyl substances with metabolic-associated fatty liver disease and non-alcoholic fatty liver disease: NHANES 2017-2018. Cancer Causes Control 2024; 35:1271-1282. [PMID: 38764062 DOI: 10.1007/s10552-024-01865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/14/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES This study investigated the potential effects of perfluoroalkyl substance (PFAS) in serum on MAFLD, NAFLD, and liver fibrosis. METHODS Our sample included 696 participants (≥ 18 years) from the 2017-2018 NHANES study with available serum PFASs, covariates, and outcomes. Using the first quartile of PFAS as the reference group, we used weighted binary logistic regression and multiple ordered logistic regression used to analyze the relationship between PFAS and MAFLD, NAFLD, and liver fibrosis and multiple ordinal logistic regression to investigate the relationship between PFAS and MAFLD, NAFLD, and liver fibrosis and calculated the odds ratio (OR) and 95% confidence interval for each chemical. Finally, stratified analysis and sensitivity analysis were performed according to gender, age, BMI, and serum cotinine concentration. RESULTS A total of 696 study subjects were included, including 212 NAFLD patients (weighted 27.03%) and 253 MAFLD patients (weighted 32.65%). The quartile 2 of serum PFOA was positively correlated with MAFLD and NAFLD (MAFLD, OR 2.29, 95% CI 1.05-4.98; NAFLD, OR 2.37, 95% CI 1.03-5.47). PFAS were not significantly associated with liver fibrosis after adjusting for potential confounders in MAFLD and NAFLD. Stratified analysis showed that PFOA was strongly associated with MAFLD, NAFLD, and liver fibrosis in males and obese subjects. In women over 60 years old, PFHxS was also correlated with MAFLD, NAFLD, and liver fibrosis. CONCLUSION The serum PFOA was positively associated with MAFLD and NAFLD in US adults. After stratified analysis, the serum PFHxS was correlated with MFALD, NAFLD, and liver fibrosis.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Min Zhang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Shanjiamei Jiang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Heng Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xinzhi Wang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Fan Yu
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Yue'e Huang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China.
| | - Yali Liang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China.
| |
Collapse
|
4
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
5
|
Zeng J, Jin Q, Yang J, Yang RX, Zhang RN, Zhao J, Fan JG. Prevalence and incidence of MAFLD and associated anthropometric parameters among prepubertal children of the Shanghai Birth Cohort. Hepatol Int 2023; 17:1416-1428. [PMID: 37728728 DOI: 10.1007/s12072-023-10574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIM Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease in adolescent and adult population. However, the epidemiologic data of MAFLD in prepubertal children remain limited. This study aimed to investigate the prevalence and incidence of MAFLD and assess the role of anthropometric parameters in identifying and predicting MAFLD in this population. METHODS Children from the Shanghai Birth Cohort Study who underwent an 8-year follow-up with anthropometric measurements and transient elastography FibroScan-502 examination (M probe, Echosens, Paris, France) were enrolled. Some of them also completed a 5-year follow-up. Diagnosis of fatty liver disease (FLD) was based on the controlled attenuation parameter (CAP) value exceeding 248 dB/m, and MAFLD was defined as FLD combined with obesity or central obesity. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic accuracy of anthropometric parameters for MAFLD. RESULTS A total of 848 children (431 boys) from the Shanghai Birth Cohort Study were followed up for 8 years, and among them, 385 children (189 boys) also participated in the 5-year follow-up. The prevalence of FLD and MAFLD at 5 years old was 3.90% and 0.52%, respectively, while at 8 years old, the prevalence rates increased to 5.07% for FLD and 3.42% for MAFLD. The 8-year-old children with MAFLD exhibited significantly higher weight, body mass index (BMI), chest circumference, waist circumference, hip circumference, waist-to-height ratio, waist-to-hip ratio, and liver stiffness measurement compared to those without MAFLD (all p < 0.05). The incidence rates of FLD and MAFLD at 8 years old, considering the 5-year follow-up data, were 3.78% (14/370) and 3.13% (12/383), respectively. Obese or centrally obese children at 5 years old had a higher incidence of FLD and MAFLD at the 8-year follow-up. Waist circumference and BMI showed significant associations with the presence and incidence of MAFLD, respectively, with the largest AUC values in ROC curve analysis. In addition, chest circumference was significantly associated with MAFLD in obese children. CONCLUSION This study provides insights into the incidence and prevalence of MAFLD in prepubertal children. It underscores the importance of anthropometric parameters in identifying and predicting MAFLD in this population. Further research encompassing a broader age range and incorporating these indicators and additional metabolic markers is necessary to enhance the understanding and management of MAFLD in children.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Qian Jin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jing Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Rui-Xu Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Rui-Nan Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jian Zhao
- The Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
6
|
Gu D, Lu Y, Xu B, Tang X. Sex-Specific Contribution of Cardiometabolic Index in Predicting Metabolic Dysfunction-Associated Fatty Liver Disease: Insights from a General Population. Diabetes Metab Syndr Obes 2023; 16:3871-3883. [PMID: 38054037 PMCID: PMC10695138 DOI: 10.2147/dmso.s437413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Background and Objective Evidence suggests that cardiometabolic index (CMI) has been identified as a novel obesity-related index associated with diabetes, hypertension, and cardiovascular disease. Current evidence suggests that the differences in sex hormones and regional fat distribution in both sexes are directly correlated with metabolic dysfunction-associated fatty liver disease (MAFLD) risk. This study aimed to investigate the diagnostic value of CMI in MAFLD in both sexes. Methods This retrospective study included 6107 subjects who underwent annual health check-ups from March 2021 to January 2022. CMI was calculated by multiplying the ratio of triglycerides and high-density lipoprotein cholesterol (TG/HDL-C) by waist-to-height ratio (WHtR). Multivariable logistic regression analysis and restricted cubic spline were used to investigate the association of CMI and MAFLD risk. Receiver operating characteristic curve analysis was conducted for the exploration of the diagnostic accuracies of obesity-related indicators. Areas under the curves (AUCs) with 95% CIs were calculated. Results Prevalence of MAFLD increased with elevated quartiles of CMI in both sexes. The median (IQR) age was 46.00 (18.00) years. Multivariate logistic regression analyses showed that higher CMI was independently associated with MAFLD, in which every additional standard deviation (SD) of CMI increased the risk of MAFLD (OR=2.72, 95% CI:2.35-3.15 for males; OR=3.26, 95% CI:2.36-4.51 for females). Subjects in the fourth quartile of CMI had the highest odds of MAFLD for males (OR=15.82, 95% CI:11.84-21.14) and females (OR=22.60, 95% CI:9.52-53.65)(all P for trend<0.001). Besides, CMI had a non-linearity association with MAFLD (all P for non-linearity<0.001). Furthermore, CMI exhibited the largest AUC compared to other obesity-related indexes in terms of discriminating MAFLD in males (AUC=0.796, 95% CI:0.782-0.810) and females (AUC=0.853, 95% CI:0.834-0.872). Conclusion CMI was a convenient indicator for the screening of MAFLD among Chinese adults. Females with high CMI had a better diagnostic value for MAFLD than males.
Collapse
Affiliation(s)
- Dongxing Gu
- Health Examination Center, Huadong Sanatorium, Wuxi, People’s Republic of China
| | - Yayun Lu
- Health Examination Center, Huadong Sanatorium, Wuxi, People’s Republic of China
| | - Baiqing Xu
- Health Examination Center, Huadong Sanatorium, Wuxi, People’s Republic of China
| | - Xuefeng Tang
- Department of Health Nursing, Huadong Sanatorium, Wuxi, People’s Republic of China
| |
Collapse
|
7
|
Fouad Y. Metabolic-associated fatty liver disease: New nomenclature and approach with hot debate. World J Hepatol 2023; 15:123-128. [PMID: 36926229 PMCID: PMC10011913 DOI: 10.4254/wjh.v15.i2.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
An international panel recently proposed an update to the terminology and diagnostic criteria for fatty liver disease. The experts proposed a change in the nomenclature from non-alcoholic fatty liver disease (NAFLD) to metabolic (dysfunction)-associated fatty liver disease (MAFLD). This single-letter change, we believe, heralds the dawn of a new era in clinical practice and in clinical and basic research as well. The new nomenclature with the easily applicable approach has stimulated the enthusiasm of the researchers worldwide, resulting in a large number of publications over the past two years. Several recent studies have provided tremendous evidence of the superiority of the MAFLD criteria over the NAFLD criteria. Many studies in different geographic areas of the world including the United States, Europe, and Asia on a large number of patients proved that the utility of MAFLD criteria was higher than that of the NAFLD criteria in different aspects of fatty liver diseases. Consequently, many societies, physician and nurse groups, health stakeholders, representatives of regulatory sciences, and others endorsed the new nomenclature. Here we highlight the endorsement of the new name by different societies and groups and the outcome of different studies on the new nomenclature in addition to a short discussion of the debate by some experts.
Collapse
Affiliation(s)
- Yasser Fouad
- Department of Gastroenterology and Endemic Medicine, Minia University, Minia 19111, Egypt.
| |
Collapse
|
8
|
Méndez-Sánchez N, Fan JG, El-Kassas M, Girala M. MAFLD: A quick fact check. Liver Int 2022; 42:2903-2906. [PMID: 36082586 DOI: 10.1111/liv.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease has taken importance during the last two years, given the new criteria for diagnosis compared to the previous criteria used to define non-alcoholic fatty liver disease. Multiple studies have also shown that this definition better adjusts to the pathogenesis and patient characteristics with fatty liver.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Marcos Girala
- Departamento de Gastroenterología y Endoscopia Digestiva, Hospital de Clínicas, Universidad Nacional de Asunción, Asunción, Paraguay
| |
Collapse
|
9
|
van der Meer D, Gurholt TP, Sønderby IE, Shadrin AA, Hindley G, Rahman Z, de Lange AMG, Frei O, Leinhard OD, Linge J, Simon R, Beck D, Westlye LT, Halvorsen S, Dale AM, Karlsen TH, Kaufmann T, Andreassen OA. The link between liver fat and cardiometabolic diseases is highlighted by genome-wide association study of MRI-derived measures of body composition. Commun Biol 2022; 5:1271. [PMID: 36402844 PMCID: PMC9675774 DOI: 10.1038/s42003-022-04237-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Obesity and associated morbidities, metabolic associated fatty liver disease (MAFLD) included, constitute some of the largest public health threats worldwide. Body composition and related risk factors are known to be heritable and identification of their genetic determinants may aid in the development of better prevention and treatment strategies. Recently, large-scale whole-body MRI data has become available, providing more specific measures of body composition than anthropometrics such as body mass index. Here, we aimed to elucidate the genetic architecture of body composition, by conducting genome-wide association studies (GWAS) of these MRI-derived measures. We ran both univariate and multivariate GWAS on fourteen MRI-derived measurements of adipose and muscle tissue distribution, derived from scans from 33,588 White European UK Biobank participants (mean age of 64.5 years, 51.4% female). Through multivariate analysis, we discovered 100 loci with distributed effects across the body composition measures and 241 significant genes primarily involved in immune system functioning. Liver fat stood out, with a highly discoverable and oligogenic architecture and the strongest genetic associations. Comparison with 21 common cardiometabolic traits revealed both shared and specific genetic influences, with higher mean heritability for the MRI measures (h2 = .25 vs. .13, p = 1.8x10-7). We found substantial genetic correlations between the body composition measures and a range of cardiometabolic diseases, with the strongest correlation between liver fat and type 2 diabetes (rg = .49, p = 2.7x10-22). These findings show that MRI-derived body composition measures complement conventional body anthropometrics and other biomarkers of cardiometabolic health, highlighting the central role of liver fat, and improving our knowledge of the genetic architecture of body composition and related diseases.
Collapse
Affiliation(s)
- Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy Hindley
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Zillur Rahman
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- LREN, Centre for Research in Neurosciences, Dept. of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Dept. of Psychiatry, University of Oxford, Oxford, UK
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olof D Leinhard
- AMRA Medical, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Jennifer Linge
- AMRA Medical, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rozalyn Simon
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Dani Beck
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital Ullevål, and University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Tom H Karlsen
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Duan S, Yang D, Xia H, Ren Z, Chen J, Yao S. Cardiometabolic index: A new predictor for metabolic associated fatty liver disease in Chinese adults. Front Endocrinol (Lausanne) 2022; 13:1004855. [PMID: 36187093 PMCID: PMC9523727 DOI: 10.3389/fendo.2022.1004855] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Cardiometabolic index (CMI) is a well promising indicator for predicting obesity-related diseases, but its predictive value for metabolic associated fatty liver disease (MAFLD) is unclear. This study aimed to investigate the relationship between CMI and MAFLD and to evaluate the predictive value of CMI for MAFLD. METHODS A total of 943 subjects were enrolled in this cross-sectional study. CMI was calculated by multiplying the ratio of triglycerides and high-density lipoprotein cholesterol (TG/HDL-C) by waist-to-height ratio (WHtR). Multivariate logistic regression analysis was used to systematically evaluate the relationship between CMI and MAFLD. Receiver operating characteristic (ROC) curves were used to assess the predictive power of CMI for MAFLD and to determine the optimal cutoff value. The diagnostic performance of high CMI for MAFLD was validated in 131 subjects with magnetic resonance imaging diagnosis. RESULTS Subjects with higher CMI exhibited a significantly increased risk of MAFLD. The odds ratio for a 1-standard-deviation increase in CMI was 3.180 (2.102-4.809) after adjusting for various confounding factors. Further subgroup analysis showed that there were significant additive interactions between CMI and MAFLD risk in gender, age, and BMI (P for interaction < 0.05), and the area under the ROC curve(AUC) of CMI for predicting MAFLD were significantly higher in female, young, and nonobese subgroups than that in male, middle-aged and elderly, and obese subgroups (all P < 0.05). Moreover, among nonobese subjects, the AUC of CMI was significantly higher than that of waist circumference, BMI, TG/HDL-C, and TG (all P < 0.05). The best cutoff values of CMI to diagnose MAFLD in males and females were 0.6085 and 0.4319, respectively, and the accuracy, sensitivity, and specificity of high CMI for diagnosing MAFLD in the validation set were 85.5%, 87.5%, and 80%, respectively. CONCLUSIONS CMI was strongly and positively associated with the risk of MAFLD and can be a reference predictor for MAFLD. High CMI had excellent diagnostic performance for MALFD, which can enable important clinical value for early identification and screening of MAFLD.
Collapse
Affiliation(s)
- Shaojie Duan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Deshuang Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Hui Xia
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiying Ren
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jialiang Chen
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Shrestha A, Dassanayake AS, Anirvan P, Mahtab MA, Singh SP, Butt AS, Shaikh BA. NAFLD vs MAFLD: South Asian NAFLD Patients don\'t Favor Name Change. Euroasian J Hepatogastroenterol 2022; 12:S1-S4. [DOI: 10.5005/jp-journals-10018-1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Farahat TM, Ungan M, Vilaseca J, Ponzo J, Gupta PP, Schreiner AD, Al Sharief W, Casler K, Abdelkader T, Abenavoli L, Alami FZM, Ekstedt M, Jabir MS, Armstrong MJ, Osman MH, Wiegand J, Attia D, Verhoeven V, Amir AAQ, Hegazy NN, Tsochatzis EA, Fouad Y, Cortez-Pinto H. The paradigm shift from NAFLD to MAFLD: A global primary care viewpoint. Liver Int 2022; 42:1259-1267. [PMID: 35129258 DOI: 10.1111/liv.15188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/09/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Taghreed M Farahat
- The Egyptian Family Medicine Association (EFMA), WONCA East Mediterranean, Department of Public Health and Community Medicines, Menoufia University, Menoufia, Egypt
| | - Mehmet Ungan
- The Turkish Association of Family Physicians (TAHUD), WONCA Europe, Department of Family Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Josep Vilaseca
- Barcelona Esquerra Primary Health Care Consortium, Barcelona, Spain
- WONCA Europe, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Faculty of MedicineUniversity of Vic - Central University of Catalonia, Vic, Barcelona, Spain
| | - Jacqueline Ponzo
- WONCA Iberoamericana, Departamento de Montevideo, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pramendra Prasad Gupta
- WONCA South Asia, Department of General Practice and Emergency Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Andrew D Schreiner
- Departments of Medicine Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wadeia Al Sharief
- President Emirates Family Medicine Society, President Family Medicine Scientific Council in Arab Board for Medical Specialization Council, Director Medical Education & Research Department, Dubai, UAE
| | - Kelly Casler
- Director of Family Nurse Practitioner Program, The Ohio State University College of Nursing, Columbus, Ohio, USA
| | - Tafat Abdelkader
- Algerian Society of General Medicine/Societe Algerienne De Medecine Generale (SAMG), Algeria
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | | | - Mattias Ekstedt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Matthew J Armstrong
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mona H Osman
- Department of Family Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Dina Attia
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Veronique Verhoeven
- Department of FAMPOP (Family Medicine and Population Health), University of Antwerp, Antwerpen, Belgium
| | | | - Nagwa N Hegazy
- The Egyptian Family Medicine Association (EFMA), WONCA East Mediterranean, Department of Public Health and Community Medicines, Menoufia University, Menoufia, Egypt
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya, Egypt
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Rui F, Yang H, Hu X, Xue Q, Xu Y, Shi J, Li J. Renaming NAFLD to MAFLD: Advantages and Potential Changes in Diagnosis, Pathophysiology, Treatment, and Management. INFECTIOUS MICROBES AND DISEASES 2022; 4:49-55. [DOI: 10.1097/im9.0000000000000089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/12/2022] [Indexed: 01/03/2025]
Abstract
Abstract
In recent years, with the increasing incidence of obesity and other metabolic diseases, the prevalence of non-alcoholic fatty liver disease (NAFLD) has increased and it has become a major health problem affecting more than one quarter of the world's population. Recently, experts reached a consensus that NAFLD does not reflect the current knowledge, and metabolic dysfunction-associated fatty liver disease (MAFLD) was suggested as a more appropriate term. MAFLD is not just a simple renaming of NAFLD. The definition of MAFLD allows a patient to have dual (or more) etiologies for their liver disease, which will help to exclude more heterogeneous patients. In this review, we introduce the significant differences between the definitions of NAFLD and MAFLD. In addition, we also describe the advantages of the term MAFLD in the pathophysiology, therapy, and patient management.
Collapse
Affiliation(s)
- Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, Shandong, China
| | - Xinyu Hu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, Shandong, China
| | - Qi Xue
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, Shandong, China
| | - Yayun Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, Shandong, China
| | - Junping Shi
- Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Baars T, Gieseler RK, Patsalis PC, Canbay A. Towards harnessing the value of organokine crosstalk to predict the risk for cardiovascular disease in non-alcoholic fatty liver disease. Metabolism 2022; 130:155179. [PMID: 35283187 DOI: 10.1016/j.metabol.2022.155179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Importantly, NAFLD increases the risk for cardiovascular disease (CVD). A causal relationship has been substantiated. Given the pandemic proportions of NAFLD, a reliable scoring system for predicting the risk of NAFLD-associated CVD is an urgent medical need. We here review cumulative evidence suggesting that systemically released organokines - especially certain adipokines, hepatokines, and cardiokines - may serve this purpose. The underlying rationale is that these signalers directly communicate between white adipose tissue, liver, and heart as key players in the pathogenesis of NAFLD and resultant CVD events. Moreover, evidence suggests that these organ-specific cytokines are secreted in a biologically predetermined, cascade-like pattern. Consequently, upon pinpointing organokines of relevance, we sketch requirements to establish an algorithm predictive of the CVD risk in patients with NAFLD. Such an algorithm, as to be consolidated in the form of an applicable equation, may be improved continuously by machine learning. To the best of our knowledge, such an option has not yet been considered. Establishing and implementing a reliable algorithm for determining the NAFLD-associated CVD risk has the potential to save many NAFLD patients from life-threatening CVD events.
Collapse
Affiliation(s)
- Theodor Baars
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Section of Metabolic and Preventive Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Robert K Gieseler
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Laboratory of Immunology and Molecular Biology, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Polykarpos C Patsalis
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Section of Cardiology and Internal Emergency Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Section of Hepatology and Gastroenterology, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany.
| |
Collapse
|
16
|
Alharthi J, Gastaldelli A, Cua IH, Ghazinian H, Eslam M. Metabolic dysfunction-associated fatty liver disease: a year in review. Curr Opin Gastroenterol 2022; 38:251-260. [PMID: 35143431 DOI: 10.1097/mog.0000000000000823] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In 2020, a novel comprehensive redefinition of fatty liver disease was proposed by an international panel of experts. This review aims to explore current evidence regarding the impact of this new definition on the current understanding of the epidemiology, pathogenesis, diagnosis, and clinical trials for fatty liver disease. RECENT FINDINGS The effectiveness of metabolic dysfunction-associated fatty liver disease (MAFLD) was compared to the existing criteria for nonalcoholic fatty liver disease (NAFLD). Recent data robustly suggest the superior utility of MAFLD in identifying patients at high risk for metabolic dysfunction, the hepatic and extra-hepatic complications, as well as those who would benefit from genetic testing, including patients with concomitant liver diseases. This change in name and criteria also appears to have improved disease awareness among patients and physicians. SUMMARY The transformation in name and definition from NAFLD to MAFLD represents an important milestone, which indicates significant tangible progress towards a more inclusive, equitable, and patient-centred approach to addressing the profound challenges of this disease. Growing evidence has illustrated the broader and specific contexts that have tremendous potential for positively influencing the diagnosis and treatment. In addition, the momentum accompanying this name change has included widespread public attention to the unique burden of this previously underappreciated disease.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | | | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Hasmik Ghazinian
- Hepatology Department, National Centre of Infectious Diseases, Yerevan, Armenia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
17
|
Fouad Y, Dufour JF, Zheng MH, Bollipo S, Desalegn H, Grønbaek H, Gish RG. The NAFLD-MAFLD debate: Is there a Consensus-on-Consensus methodology? Liver Int 2022; 42:742-748. [PMID: 35182007 DOI: 10.1111/liv.15197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Polarizing opinions have recently arisen in hepatology on the name and redefinition of fatty liver disease associated with metabolic dysfunction. In spite of growing and robust evidence of the superior utility of the term metabolic (dysfunction) associated fatty liver disease (MAFLD) definition for clinical and academic practice, controversy abounds. It should therefore come, as no surprise that the most common arguments used in contrarian op-eds is that there are no consensus on any name change. In this context, we suggest that discourse on an accurate understanding of what scientific consensus means, the various methods of achieving consensus, as well as other alternative models for reaching agreement is pivotal for the field. In this opinion piece, we provide an overview of these aspects as it applies to the case of fatty liver disease. We provide evidence that consensus on a change from non-alcoholic fatty liver disease (NAFLD) to MAFLD has already been achieved. We believe that the time has come for redirecting stakeholder focus and energy on capitalizing on the momentum generated by the debate to improve the lives of people at its centre, our patients.
Collapse
Affiliation(s)
- Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jean-François Dufour
- Centre des Maladies Digestives, Lausanne, Switzerland
- Swiss NASH Foundation, Bern, Switzerland
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- The Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Steven Bollipo
- Department of Gastroenterology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | | | - Henning Grønbaek
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Robert G Gish
- Division of Gastroenterology and Hepatology, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
18
|
Singh SP, Anirvan P, Khandelwal R, Satapathy SK. Nonalcoholic Fatty Liver Disease (NAFLD) Name Change: Requiem or Reveille? J Clin Transl Hepatol 2021; 9:931-938. [PMID: 34966656 PMCID: PMC8666378 DOI: 10.14218/jcth.2021.00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects about a quarter of the world's population and poses a major health and economic burden globally. Recently, there have been hasty attempts to rename NAFLD to metabolic-associated fatty liver disease (MAFLD) despite the fact that there is no scientific rationale for this. Quest for a "positive criterion" to diagnose the disease and destigmatizing the disease have been the main reasons put forth for the name change. A close scrutiny of the pathogenesis of NAFLD would make it clear that NAFLD is a heterogeneous disorder, involving different pathogenic mechanisms of which metabolic dysfunction-driven hepatic steatosis is only one. Replacing NAFLD with MAFLD would neither enhance the legitimacy of clinical practice and clinical trials, nor improve clinical care or move NAFLD research forward. Rather than changing the nomenclature without a strong scientific backing to support such a change, efforts should be directed at understanding NAFLD pathogenesis across diverse populations and ethnicities which could potentially help develop newer therapeutic options.
Collapse
Affiliation(s)
- Shivaram P. Singh
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College, Cuttack, Odisha, India
| | - Prajna Anirvan
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College, Cuttack, Odisha, India
| | - Reshu Khandelwal
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College, Cuttack, Odisha, India
| | - Sanjaya K. Satapathy
- Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
19
|
Eslam M, Alkhouri N, Vajro P, Baumann U, Weiss R, Socha P, Marcus C, Lee WS, Kelly D, Porta G, El-Guindi MA, Alisi A, Mann JP, Mouane N, Baur LA, Dhawan A, George J. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: an international expert consensus statement. Lancet Gastroenterol Hepatol 2021; 6:864-873. [PMID: 34364544 DOI: 10.1016/s2468-1253(21)00183-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The term non-alcoholic fatty liver disease (NAFLD), and its definition, have limitations for both adults and children. The definition is most problematic for children, for whom alcohol consumption is usually not a concern. This problematic definition has prompted a consensus to rename and redefine adult NAFLD associated with metabolic dysregulation to metabolic (dysfunction)-associated fatty liver disease (MAFLD). Similarities, distinctions, and differences exist in the causes, natural history, and prognosis of fatty liver diseases in children compared with adults. In this Viewpoint we, an international panel, propose an overarching framework for paediatric fatty liver diseases and an age-appropriate MAFLD definition based on sex and age percentiles. The framework recognises the possibility of other coexisting systemic fatty liver diseases in children. The new MAFLD diagnostic criteria provide paediatricians with a conceptual scaffold for disease diagnosis, risk stratification, and improved clinical and multidisciplinary care, and they align with a definition that is valid across the lifespan.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ, USA
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ram Weiss
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Medical Center, Technion School of Medicine, Haifa, Israel
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Deirdre Kelly
- The Liver Unit, Birmingham Women's & Children's Hospital, University of Birmingham, Birmingham, UK
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, San Paulo, Brazil
| | - Mohamed A El-Guindi
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Anna Alisi
- Research Unit of Molecular Genetics and Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jake P Mann
- Metabolic Research Laboratories, Institute of Metabolic Science, and Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Nezha Mouane
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Academic Children's Hospital, Mohammed V University, Rabat, Morocco; Department of Pediatric Hepatology, Gastroenterology and Nutrition, Children's Hospital of Rabat, Rabat, Morocco
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, and MowatLabs, King's College Hospital, London, UK
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Mantovani A. MAFLD vs NAFLD: Where are we? Dig Liver Dis 2021; 53:1368-1372. [PMID: 34108096 DOI: 10.1016/j.dld.2021.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.
| |
Collapse
|
21
|
Gaber Y, AbdAllah M, Salama A, Sayed M, Abdel Alem S, Nafady S. Metabolic-associated fatty liver disease and autoimmune hepatitis: an overlooked interaction. Expert Rev Gastroenterol Hepatol 2021; 15:1181-1189. [PMID: 34263707 DOI: 10.1080/17474124.2021.1952867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Metabolic-associated fatty liver disease (MAFLD) is the most common liver disease globally, and affects about a quarter of the general population. Autoimmune hepatitis (AIH) is a severe (sometimes fatal) liver disease that affects children and adults, with a rising prevalence. Thus, not surprisingly, both conditions can frequently coexist, with potential synergistic impact on the course of the disease and response to therapy of both entities. AREAS COVERED In this work, the authors aimed to provide a narrative updated review on this interaction, diagnosis, and management of MAFLD/AIH and the current challenges. EXPERT OPINION Clarifying the nature of the complex interaction between the two diseases was hampered by a myriad of factors, particularly the previous diagnosis of exclusion for fatty liver disease associated with metabolic dysfunction. The recent redefinition of fatty liver disease that led to the development of positive diagnostic criteria for MAFLD has the premise to help in circumventing some of these challenges.
Collapse
Affiliation(s)
- Yasmine Gaber
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed AbdAllah
- Medical Research Division, National Research Center, Giza, Egypt
| | - Asmaa Salama
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, Beni-suef, Egypt
| | - Manar Sayed
- Tropical Medicine Department, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Shereen Abdel Alem
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shaymaa Nafady
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, Beni-suef, Egypt
| |
Collapse
|
22
|
Eslam M, George J. MAFLD: Now is the time to capitalize on the momentum. J Hepatol 2021; 74:1262-1263. [PMID: 33587953 DOI: 10.1016/j.jhep.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
23
|
Fouad Y, Lazarus JV, Negro F, Peck-Radosavljevic M, Sarin SK, Ferenci P, Esmat G, Ghazinian H, Nakajima A, Silva M, Lee S, Colombo M. MAFLD considerations as a part of the global hepatitis C elimination effort: an international perspective. Aliment Pharmacol Ther 2021; 53:1080-1089. [PMID: 33751604 DOI: 10.1111/apt.16346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The World Health Organization (WHO) set a goal to eliminate hepatitis C (HCV) infection globally by 2030, with specific targets to reduce new viral hepatitis infections by 80% and reduce related deaths by 65%. However, an overlooked aspect that may hinder these efforts is the impact other liver diseases could have by continuing to drive liver disease progression and offset the beneficial impact of DAAs on end-stage liver disease and hepatocellular carcinoma (HCC). In particular, the decrease in HCV prevalence has been countered by a marked increase in the prevalence of metabolic-associated fatty liver disease (MAFLD). AIMS To review the potential interaction of HCV and MAFLD. METHODS We have reviewed the literature relating to an arrange of interaction of HCV, metabolic dysfunction and MAFLD. RESULTS In this viewpoint, international experts suggest a holistic and multidisciplinary approach for the management of the growing number of treated HCV patients who achieved SVR, taking into consideration the overlooked impact of MAFLD for reducing morbidity and mortality in people who have had HCV. CONCLUSIONS This will strengthen and improve the continuum of care cascade for patients with liver disease(s) and holds the potential to alleviate the cost burden of disease; and increase quality of life for patients following DAAs treatment.
Collapse
|
24
|
Di Sessa A, Guarino S, Umano GR, Arenella M, Alfiero S, Quaranta G, Miraglia del Giudice E, Marzuillo P. MAFLD in Obese Children: A Challenging Definition. CHILDREN (BASEL, SWITZERLAND) 2021; 8:247. [PMID: 33806784 PMCID: PMC8005020 DOI: 10.3390/children8030247] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recently, the new definition of Metabolic (dysfunction) associated fatty liver disease (MAFLD) has gained remarkable scientific interest. We aimed to evaluate the effectiveness of MAFLD definition in selecting obese children at higher cardiovascular risk. METHODS A total of 954 obese children and adolescents was retrospectively enrolled. Clinical, biochemical, and metabolic evaluations were performed. Hepatic steatosis was assessed by liver ultrasound. According to the metabolic status, the population was divided in three groups. Group 1 included obese patients without both non-alcoholic fatty liver disease (NAFLD) and metabolic dysregulation; group 2 included patients with obesity and NAFLD (then encompassing one MAFLD criterion); group 3 included patients with obesity, NAFLD and evidence of metabolic dysregulation (then encompassing more than 1 MAFLD criteria). RESULTS Patients of Group 3 showed a worse cardiometabolic profile, as also proven by the higher percentage of prediabetes (defined as the presence of impaired fasting glucose or impaired glucose tolerance) compared to other groups (p = 0.001). CONCLUSIONS MAFLD criteria in obese children seem to be less accurate in identifying patients having an intrinsic higher cardiometabolic risk. This suggests the need for a more accurate definition in the context of pediatric obesity.
Collapse
Affiliation(s)
| | | | - Giuseppina Rosaria Umano
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Napoli, Italy; (A.D.S.); (S.G.); (M.A.); (S.A.); (G.Q.); (E.M.d.G.); (P.M.)
| | | | | | | | | | | |
Collapse
|