1
|
Miyazaki R, Takada F, Kikuchi T, Oguro Y, Kamata M, Yukawa T, Kato K, Muto K, Yamaguchi J. 2 H-Thiazolo[4,5- d][1,2,3]triazole: synthesis, functionalization, and application in scaffold-hopping. Chem Sci 2024:d4sc03874f. [PMID: 39282646 PMCID: PMC11391401 DOI: 10.1039/d4sc03874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
This manuscript unveils the synthesis of 2H-thiazolo[4,5-d][1,2,3]triazole (ThTz), an unprecedented [5-5]-fused heteroaromatic system, and established a scalable synthetic procedure for producing large quantities of the ThTz ring bearing a sulfone group on the thiazole ring. The sulfone moiety proves to be a versatile reactive tag, facilitating diverse transformations such as SNAr reactions, metal-catalyzed couplings, and radical-based alkylations. Furthermore, functionalization of the triazole ring highlights the potential of this newly developed heteroaromatic compound as a valuable heteroaryl building block, promoting scaffold hopping strategies in medicinal chemistry.
Collapse
Affiliation(s)
- Ryuya Miyazaki
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| | - Fumito Takada
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| | - Takunari Kikuchi
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| | - Yuya Oguro
- Takeda Pharmaceutical Company Limited 2-26-1 Muraoka-Higashi Fujisawa Kanagawa 251-8555 Japan
| | - Makoto Kamata
- Takeda Pharmaceutical Company Limited 2-26-1 Muraoka-Higashi Fujisawa Kanagawa 251-8555 Japan
| | - Takafumi Yukawa
- Takeda Pharmaceutical Company Limited 2-26-1 Muraoka-Higashi Fujisawa Kanagawa 251-8555 Japan
| | - Kenta Kato
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| | - Kei Muto
- Institute of Transformative Bio-molecules, Nagoya University Furo-cho, Chikusa Nagoya 464-8601 Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| |
Collapse
|
2
|
Sofia MJ. Curing Hepatitis C with Direct‐Acting Antiviral Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2022:13-57. [DOI: 10.1002/9783527810697.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
4
|
Synthesis of Novel 2-Hetarylpyrrolidines via the Reaction of N-(4,4-diethoxybutyl)amidophosphates with C-nucleophiles. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Synthesis, biological evaluation and in silico modeling of novel pan-genotypic NS5A inhibitors. Bioorg Med Chem 2020; 28:115716. [PMID: 33069072 DOI: 10.1016/j.bmc.2020.115716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9-34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.
Collapse
|
6
|
Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: Progresses and the remaining challenges. World J Hepatol 2017; 9:1239-1252. [PMID: 29312527 PMCID: PMC5745585 DOI: 10.4254/wjh.v9.i33.1239] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/01/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
Today, with the introduction of interferon-free direct-acting antivirals and outstanding progresses in the prevention, diagnosis and treatment of hepatitis C virus (HCV) infection, the elimination of HCV infection seems more achievable. A further challenge is continued transmission of HCV infection in high-risk population specially injecting drug users (IDUs) as the major reservoir of HCV infection. Considering the fact that most of these infections remain undiagnosed, unidentified HCV-infected IDUs are potential sources for the rapid spread of HCV in the community. The continuous increase in the number of IDUs along with the rising prevalence of HCV infection among young IDUs is harbinger of a forthcoming public health dilemma, presenting a serious challenge to control transmission of HCV infection. Even the changes in HCV genotype distribution attributed to injecting drug use confirm this issue. These circumstances create a strong demand for timely diagnosis and proper treatment of HCV-infected patients through risk-based screening to mitigate the risk of HCV transmission in the IDUs community and, consequently, in the society. Meanwhile, raising general awareness of HCV infection, diagnosis and treatment through public education should be the core activity of any harm reduction intervention, as the root cause of failure in control of HCV infection has been lack of awareness among young drug takers. In addition, effective prevention, comprehensive screening programs with a specific focus on high-risk population, accessibility to the new anti-HCV treatment regimens and public education should be considered as the top priorities of any health policy decision to eliminate HCV infection.
Collapse
Affiliation(s)
- Reza Taherkhani
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran.
| |
Collapse
|
7
|
Jakobsen JC, Nielsen EE, Feinberg J, Katakam KK, Fobian K, Hauser G, Poropat G, Djurisic S, Weiss KH, Bjelakovic M, Bjelakovic G, Klingenberg SL, Liu JP, Nikolova D, Koretz RL, Gluud C, Cochrane Hepato‐Biliary Group. Direct-acting antivirals for chronic hepatitis C. Cochrane Database Syst Rev 2017; 9:CD012143. [PMID: 28922704 PMCID: PMC6484376 DOI: 10.1002/14651858.cd012143.pub3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Millions of people worldwide suffer from hepatitis C, which can lead to severe liver disease, liver cancer, and death. Direct-acting antivirals (DAAs), e.g. sofosbuvir, are relatively new and expensive interventions for chronic hepatitis C, and preliminary results suggest that DAAs may eradicate hepatitis C virus (HCV) from the blood (sustained virological response). Sustained virological response (SVR) is used by investigators and regulatory agencies as a surrogate outcome for morbidity and mortality, based solely on observational evidence. However, there have been no randomised trials that have validated that usage. OBJECTIVES To assess the benefits and harms of DAAs in people with chronic HCV. SEARCH METHODS We searched for all published and unpublished trials in The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, LILACS, and BIOSIS; the Chinese Biomedical Literature Database (CBM), China Network Knowledge Information (CNKI), the Chinese Science Journal Database (VIP), Google Scholar, The Turning Research into Practice (TRIP) Database, ClinicalTrials.gov, European Medicines Agency (EMA) (www.ema.europa.eu/ema/), WHO International Clinical Trials Registry Platform (www.who.int/ictrp), the Food and Drug Administration (FDA) (www.fda.gov), and pharmaceutical company sources for ongoing or unpublished trials. Searches were last run in October 2016. SELECTION CRITERIA Randomised clinical trials comparing DAAs versus no intervention or placebo, alone or with co-interventions, in adults with chronic HCV. We included trials irrespective of publication type, publication status, and language. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Our primary outcomes were hepatitis C-related morbidity, serious adverse events, and health-related quality of life. Our secondary outcomes were all-cause mortality, ascites, variceal bleeding, hepato-renal syndrome, hepatic encephalopathy, hepatocellular carcinoma, non-serious adverse events (each reported separately), and SVR. We systematically assessed risks of bias, performed Trial Sequential Analysis, and followed an eight-step procedure to assess thresholds for statistical and clinical significance. We evaluated the overall quality of the evidence, using GRADE. MAIN RESULTS We included a total of 138 trials randomising a total of 25,232 participants. The trials were generally short-term trials and designed primarily to assess the effect of treatment on SVR. The trials evaluated 51 different DAAs. Of these, 128 trials employed matching placebo in the control group. All included trials were at high risk of bias. Eighty-four trials involved DAAs on the market or under development (13,466 participants). Fifty-seven trials administered DAAs that were discontinued or withdrawn from the market. Study populations were treatment-naive in 95 trials, had been exposed to treatment in 17 trials, and comprised both treatment-naive and treatment-experienced individuals in 24 trials. The HCV genotypes were genotype 1 (119 trials), genotype 2 (eight trials), genotype 3 (six trials), genotype 4 (nine trials), and genotype 6 (one trial). We identified two ongoing trials.We could not reliably determine the effect of DAAs on the market or under development on our primary outcome of hepatitis C-related morbidity or all-cause mortality. There were no data on hepatitis C-related morbidity and only limited data on mortality from 11 trials (DAA 15/2377 (0.63%) versus control 1/617 (0.16%); OR 3.72, 95% CI 0.53 to 26.18, very low-quality evidence). We did not perform Trial Sequential Analysis on this outcome.There is very low quality evidence that DAAs on the market or under development do not influence serious adverse events (DAA 5.2% versus control 5.6%; OR 0.93, 95% CI 0.75 to 1.15 , 15,817 participants, 43 trials). The Trial Sequential Analysis showed that there was sufficient information to rule out that DAAs reduce the relative risk of a serious adverse event by 20% when compared with placebo. The only DAA that showed a lower risk of serious adverse events when meta-analysed separately was simeprevir (OR 0.62, 95% CI 0.45 to 0.86). However, Trial Sequential Analysis showed that there was not enough information to confirm or reject a relative risk reduction of 20%, and when one trial with an extreme result was excluded, the meta-analysis result showed no evidence of a difference.DAAs on the market or under development may reduce the risk of no SVR from 54.1% in untreated people to 23.8% in people treated with DAA (RR 0.44, 95% CI 0.37 to 0.52, 6886 participants, 32 trials, low quality evidence). Trial Sequential Analysis confirmed this meta-analysis result.Only 1/84 trials on the market or under development assessed the effects of DAAs on health-related quality of life (SF-36 mental score and SF-36 physical score).There was insufficient evidence from trials on withdrawn or discontinued DAAs to determine their effect on hepatitis C-related morbidity and all-cause mortality (OR 0.64, 95% CI 0.23 to 1.79; 5 trials, very low-quality evidence). However, these DAAs seemed to increase the risk of serious adverse events (OR 1.45, 95% CI 1.22 to 1.73; 29 trials, very low-quality evidence). Trial Sequential Analysis confirmed this meta-analysis result.None of the 138 trials provided useful data to assess the effects of DAAs on the remaining secondary outcomes (ascites, variceal bleeding, hepato-renal syndrome, hepatic encephalopathy, and hepatocellular carcinoma). AUTHORS' CONCLUSIONS The evidence for our main outcomes of interest come from short-term trials, and we are unable to determine the effect of long-term treatment with DAAs. The rates of hepatitis C morbidity and mortality observed in the trials are relatively low and we are uncertain as to how DAAs affect this outcome. Overall, there is very low quality evidence that DAAs on the market or under development do not influence serious adverse events. There is insufficient evidence to judge if DAAs have beneficial or harmful effects on other clinical outcomes for chronic HCV. Simeprevir may have beneficial effects on risk of serious adverse event. In all remaining analyses, we could neither confirm nor reject that DAAs had any clinical effects. DAAs may reduce the number of people with detectable virus in their blood, but we do not have sufficient evidence from randomised trials that enables us to understand how SVR affects long-term clinical outcomes. SVR is still an outcome that needs proper validation in randomised clinical trials.
Collapse
Affiliation(s)
- Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenSjællandDenmarkDK‐2100
- Holbaek HospitalDepartment of CardiologyHolbaekDenmark4300
| | - Emil Eik Nielsen
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Joshua Feinberg
- Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812Blegdamsvej 9CopenhagenDenmark2100
| | - Kiran Kumar Katakam
- Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812Blegdamsvej 9CopenhagenDenmark2100
| | - Kristina Fobian
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Goran Hauser
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
| | - Goran Poropat
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
| | - Snezana Djurisic
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Karl Heinz Weiss
- Heidelberg University HospitalInternal Medicine IV: Gastroenterology, Infectious Diseases, ToxicologyIm Neuenheimer Feld 410HeidelbergGermanyD‐69120
| | - Milica Bjelakovic
- University of NisMedical FacultyBoulevard Dr Zorana Djindjica 81NisSerbia18000
| | - Goran Bjelakovic
- Medical Faculty, University of NisDepartment of Internal MedicineZorana Djindjica 81NisSerbia18000
| | - Sarah Louise Klingenberg
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenSjællandDenmarkDK‐2100
| | - Jian Ping Liu
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese Medicine11 Bei San Huan Dong Lu, Chaoyang DistrictBeijingChina100029
| | - Dimitrinka Nikolova
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenSjællandDenmarkDK‐2100
| | | | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenSjællandDenmarkDK‐2100
| | | |
Collapse
|
8
|
Jakobsen JC, Nielsen EE, Feinberg J, Katakam KK, Fobian K, Hauser G, Poropat G, Djurisic S, Weiss KH, Bjelakovic M, Bjelakovic G, Klingenberg SL, Liu JP, Nikolova D, Koretz RL, Gluud C. Direct-acting antivirals for chronic hepatitis C. Cochrane Database Syst Rev 2017; 9:CD012143. [PMID: 28922704 PMCID: PMC6484383 DOI: 10.1002/14651858.cd012143.pub2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Millions of people worldwide suffer from hepatitis C, which can lead to severe liver disease, liver cancer, and death. Direct-acting antivirals (DAAs), e.g. sofosbuvir, are relatively new and expensive interventions for chronic hepatitis C, and preliminary results suggest that DAAs may eradicate hepatitis C virus (HCV) from the blood (sustained virological response). Sustained virological response (SVR) is used by investigators and regulatory agencies as a surrogate outcome for morbidity and mortality, based solely on observational evidence. However, there have been no randomised trials that have validated that usage. OBJECTIVES To assess the benefits and harms of DAAs in people with chronic HCV. SEARCH METHODS We searched for all published and unpublished trials in The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, LILACS, and BIOSIS; the Chinese Biomedical Literature Database (CBM), China Network Knowledge Information (CNKI), the Chinese Science Journal Database (VIP), Google Scholar, The Turning Research into Practice (TRIP) Database, ClinicalTrials.gov, European Medicines Agency (EMA) (www.ema.europa.eu/ema/), WHO International Clinical Trials Registry Platform (www.who.int/ictrp), the Food and Drug Administration (FDA) (www.fda.gov), and pharmaceutical company sources for ongoing or unpublished trials. Searches were last run in October 2016. SELECTION CRITERIA Randomised clinical trials comparing DAAs versus no intervention or placebo, alone or with co-interventions, in adults with chronic HCV. We included trials irrespective of publication type, publication status, and language. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Our primary outcomes were hepatitis C-related morbidity, serious adverse events, and health-related quality of life. Our secondary outcomes were all-cause mortality, ascites, variceal bleeding, hepato-renal syndrome, hepatic encephalopathy, hepatocellular carcinoma, non-serious adverse events (each reported separately), and SVR. We systematically assessed risks of bias, performed Trial Sequential Analysis, and followed an eight-step procedure to assess thresholds for statistical and clinical significance. We evaluated the overall quality of the evidence, using GRADE. MAIN RESULTS We included a total of 138 trials randomising a total of 25,232 participants. The trials were generally short-term trials and designed primarily to assess the effect of treatment on SVR. The trials evaluated 51 different DAAs. Of these, 128 trials employed matching placebo in the control group. All included trials were at high risk of bias. Eighty-four trials involved DAAs on the market or under development (13,466 participants). Fifty-seven trials administered DAAs that were discontinued or withdrawn from the market. Study populations were treatment-naive in 95 trials, had been exposed to treatment in 17 trials, and comprised both treatment-naive and treatment-experienced individuals in 24 trials. The HCV genotypes were genotype 1 (119 trials), genotype 2 (eight trials), genotype 3 (six trials), genotype 4 (nine trials), and genotype 6 (one trial). We identified two ongoing trials.We could not reliably determine the effect of DAAs on the market or under development on our primary outcome of hepatitis C-related morbidity or all-cause mortality. There were no data on hepatitis C-related morbidity and only limited data on mortality from 11 trials (DAA 15/2377 (0.63%) versus control 1/617 (0.16%); OR 3.72, 95% CI 0.53 to 26.18, very low-quality evidence). We did not perform Trial Sequential Analysis on this outcome.There is very low quality evidence that DAAs on the market or under development do not influence serious adverse events (DAA 5.2% versus control 5.6%; OR 0.93, 95% CI 0.75 to 1.15 , 15,817 participants, 43 trials). The Trial Sequential Analysis showed that there was sufficient information to rule out that DAAs reduce the relative risk of a serious adverse event by 20% when compared with placebo. The only DAA that showed a lower risk of serious adverse events when meta-analysed separately was simeprevir (OR 0.62, 95% CI 0.45 to 0.86). However, Trial Sequential Analysis showed that there was not enough information to confirm or reject a relative risk reduction of 20%, and when one trial with an extreme result was excluded, the meta-analysis result showed no evidence of a difference.DAAs on the market or under development may reduce the risk of no SVR from 54.1% in untreated people to 23.8% in people treated with DAA (RR 0.44, 95% CI 0.37 to 0.52, 6886 participants, 32 trials, low quality evidence). Trial Sequential Analysis confirmed this meta-analysis result.Only 1/84 trials on the market or under development assessed the effects of DAAs on health-related quality of life (SF-36 mental score and SF-36 physical score).There was insufficient evidence from trials on withdrawn or discontinued DAAs to determine their effect on hepatitis C-related morbidity and all-cause mortality (OR 0.64, 95% CI 0.23 to 1.79; 5 trials, very low-quality evidence). However, these DAAs seemed to increase the risk of serious adverse events (OR 1.45, 95% CI 1.22 to 1.73; 29 trials, very low-quality evidence). Trial Sequential Analysis confirmed this meta-analysis result.None of the 138 trials provided useful data to assess the effects of DAAs on the remaining secondary outcomes (ascites, variceal bleeding, hepato-renal syndrome, hepatic encephalopathy, and hepatocellular carcinoma). AUTHORS' CONCLUSIONS The evidence for our main outcomes of interest come from short-term trials, and we are unable to determine the effect of long-term treatment with DAAs. The rates of hepatitis C morbidity and mortality observed in the trials are relatively low and we are uncertain as to how DAAs affect this outcome. Overall, there is very low quality evidence that DAAs on the market or under development do not influence serious adverse events. There is insufficient evidence to judge if DAAs have beneficial or harmful effects on other clinical outcomes for chronic HCV. Simeprevir may have beneficial effects on risk of serious adverse event. In all remaining analyses, we could neither confirm nor reject that DAAs had any clinical effects. DAAs may reduce the number of people with detectable virus in their blood, but we do not have sufficient evidence from randomised trials that enables us to understand how SVR affects long-term clinical outcomes. SVR is still an outcome that needs proper validation in randomised clinical trials.
Collapse
Affiliation(s)
| | - Emil Eik Nielsen
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Joshua Feinberg
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Kiran Kumar Katakam
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalBlegdamsvej 9CopenhagenDenmark2100
| | - Kristina Fobian
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Goran Hauser
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
| | - Goran Poropat
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
| | - Snezana Djurisic
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalBlegdamsvej 9CopenhagenDenmark2100
| | - Karl Heinz Weiss
- Heidelberg University HospitalInternal Medicine IV: Gastroenterology, Infectious Diseases, ToxicologyIm Neuenheimer Feld 410HeidelbergGermanyD‐69120
| | - Milica Bjelakovic
- University of NisMedical FacultyBoulevard Dr Zorana Djindjica 81NisSerbia18000
| | - Goran Bjelakovic
- Medical Faculty, University of NisDepartment of Internal MedicineZorana Djindjica 81NisSerbia18000
| | - Sarah Louise Klingenberg
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Jian Ping Liu
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese Medicine11 Bei San Huan Dong Lu, Chaoyang DistrictBeijingChina100029
| | - Dimitrinka Nikolova
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | | | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| |
Collapse
|
9
|
Gane EJ, Metivier S, Nahass R, Ryan M, Stedman CA, Svarovskaia ES, Mo H, Doehle B, Dvory-Sobol H, Hedskog C, Lin M, Brainard DM, Yang JC, McHutchison JG, Sulkowski M, Younes Z, Lawitz E. The emergence of NS5B resistance associated substitution S282T after sofosbuvir-based treatment. Hepatol Commun 2017; 1:538-549. [PMID: 29404477 PMCID: PMC5678900 DOI: 10.1002/hep4.1060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
S282T in NS5B is the primary amino acid substitution associated with resistance to sofosbuvir (SOF) but has rarely been detected in patients treated with a SOF‐based regimen. Here, the emergence and fitness of the S282T substitution in virologic failure patients administered SOF‐based regimens across the SOF and ledipasvir (LDV)/SOF phase 2 and 3 programs was evaluated. Plasma samples collected at baseline and at virologic failure were amplified and deep sequenced (1% cutoff). To date, over 12,000 patients have been treated in SOF or LDV/SOF phase 2 and 3 studies. Of these, deep sequencing was available at baseline in 8598 patients (62.4% genotype [GT] 1, 10.7% GT2, 20.9% GT3, and 6.0% GT4‐6) and at virologic failure in 901 patients. In the 8598 patients, no S282T substitution was detected at baseline; at virologic failure, 10 of the 901 (1%) patients had S282T detected. The SOF‐based regimen associated with treatment‐emergent S282T was SOF monotherapy in two patients, retreatment with LDV/SOF in prior LDV/SOF failures in three patients, LDV/SOF for 8 weeks in 1 GT1 patient, LDV/SOF for 12 weeks in 1 patient each with GT3, GT4, and GT5, and LDV/SOF + ribavirin for 12 weeks in 1 GT6 patient. Nine of 10 patients with emergent S282T received an SOF‐based retreatment regimen, eight of whom achieved sustained virologic response 12 weeks after treatment and one of whom failed retreatment. Conclusion: The emergence of S282T substitution was rare in patients who fail SOF‐based regimens. Successful retreatment of prior SOF failure patients is possible in the presence of S282T substitution with SOF in combination with various direct‐acting antiviral agents. (Hepatology Communications 2017;1:538–549)
Collapse
Affiliation(s)
| | | | | | - Michael Ryan
- Digestive and Liver Disease Specialists Norfolk VA
| | | | | | | | | | | | | | - Ming Lin
- Gilead Sciences, Inc Foster City CA
| | | | | | | | - Mark Sulkowski
- Johns Hopkins University School of Medicine Baltimore MD
| | | | - Eric Lawitz
- Texas Liver Institute University of Texas Health Science Center San Antonio TX
| |
Collapse
|
10
|
Current therapy for chronic hepatitis C: The role of direct-acting antivirals. Antiviral Res 2017; 142:83-122. [PMID: 28238877 PMCID: PMC7172984 DOI: 10.1016/j.antiviral.2017.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/07/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
One of the most exciting developments in antiviral research has been the discovery of the direct-acting antivirals (DAAs) that effectively cure chronic hepatitis C virus (HCV) infections. Based on more than 100 clinical trials and real-world studies, we provide a comprehensive overview of FDA-approved therapies and newly discovered anti-HCV agents with a special focus on drug efficacy, mechanisms of action, and safety. We show that HCV drug development has advanced in multiple aspects: (i) interferon-based regimens were replaced by interferon-free regimens; (ii) genotype-specific drugs evolved to drugs for all HCV genotypes; (iii) therapies based upon multiple pills per day were simplified to a single pill per day; (iv) drug potency increased from moderate (∼60%) to high (>90%) levels of sustained virologic responses; (v) treatment durations were shortened from 48 to 12 or 8 weeks; and (vi) therapies could be administered orally regardless of prior treatment history and cirrhotic status. However, despite these remarkable achievements made in HCV drug discovery, challenges remain in the management of difficult-to-treat patients.
HCV genotype-specific drugs evolve to pan-genotypic drugs. Drug potency increases from moderate (∼60%) to high (>90%) levels of sustained virologic response. Treatment durations are shortened from a 48-week to 12-week or 8-week period. HCV therapies based upon multiple pills per day are simplified to a single pill per day. HCV therapies are administered orally regardless of prior treatment history and cirrhotic status.
Collapse
|
11
|
Heil EL, Hynicka LM, Kottilil S, Tang L. What does the pharmacological future of treating chronic hepatitis C look like? Expert Rev Clin Pharmacol 2015; 8:605-22. [PMID: 26289223 DOI: 10.1586/17512433.2015.1074859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Development of direct acting antivirals has revolutionized the standard of care for the treatment of hepatitis C virus. New interferon-free regimens provide sustained virologic response rates of >90% in many genotype 1 patients with only 12 weeks of oral therapy. This review will provide a brief overview of current standards of care with a summary of the evidence supporting the recommended combinations of direct acting antivirals. We will discuss the direction of future therapies, with strategies for shorter durations of therapy and new all-oral combinations in the pipeline.
Collapse
Affiliation(s)
- Emily L Heil
- a 1 Department of Pharmacy, University of Maryland Medical Center, 29 S. Greene St, Room 400, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The hepatitis C virus remains a global health issue, and the established standard of care has consisted of pegylated interferon alpha in conjunction with ribavirin. However, this regimen is associated with significant side-effects and poor sustained virological responses. The aim of this review is to assess the effects of the direct-acting antivirals upon hepatitis C genotypes 2-6 from publications from the past 18 months. RECENT FINDINGS The impact of direct-acting antivirals has already substantially improved treatments for genotypes 2-6, with the size of improvement much less marked for genotype 3. Although still responsive to these agents, genotype 3 has inherent resistance to treatments possibly owing to its effects on host metabolic pathways. These treatments have moved sustained virological responses to the threshold of 90%, with reduced side-effects and shortened courses of treatment and some options for interferon-free therapy. These newer medications are transforming clinical guidelines at a rapid rate, but this will have to be balanced with the impact it places on global health budgets. SUMMARY Although direct-acting antivirals are transforming the treatment of all hepatitis C genotypes, ongoing studies will optimize treatment duration and provide interferon-free alternatives.
Collapse
|
13
|
De Clercq E. Development of antiviral drugs for the treatment of hepatitis C at an accelerating pace. Rev Med Virol 2015; 25:254-67. [DOI: 10.1002/rmv.1842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| |
Collapse
|
14
|
Elbaz T, El-Kassas M, Esmat G. New era for management of chronic hepatitis C virus using direct antiviral agents: A review. J Adv Res 2015; 6:301-310. [PMID: 26257927 PMCID: PMC4522579 DOI: 10.1016/j.jare.2014.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022] Open
Abstract
The pegylated interferon regimen has long been the lone effective management of chronic hepatitis C with modest response. The first appearance of protease inhibitors included boceprevir and telaprevir. However, their efficacy was limited to genotype 1. Recently, direct antiviral agents opened the gate for a real effective management of HCV, certainly after FDA approval of some compounds that further paved the way for the appearance of enormous potent direct antiviral agents that may achieve successful eradication of HCV.
Collapse
Affiliation(s)
- Tamer Elbaz
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Egypt
| | - Mohamed El-Kassas
- Hepatology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Gamal Esmat
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
15
|
Bourlière M, Benali S, Ansaldi C, Le Folgoc G, Riso A, Lecomte L. Optimal therapy of genotype-2 chronic hepatitis C: what's new? Liver Int 2015; 35 Suppl 1:21-6. [PMID: 25529084 DOI: 10.1111/liv.12711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The standard of care (SOC) for the treatment of HCV genotype 2 (HCV-2) was pegylated interferon alpha plus ribavirin (PEG-IFN/RBV) at weight-based doses for a response-guided duration. The launches of sofosbuvir and daclatasvir in 2014 have resulted in new, better tolerated and shorter treatment. The combination of sofosbuvir and RBV for 12 weeks appears to be the new SOC in both European and American guidelines. The cost and therefore the access to this treatment remains a problem in many countries because of major economic constraints. For the few more difficult-to-treat patients, a combination of direct acting antivirals may be suitable and is being studied in ongoing trials. Because of rapidly changing treatment recommendations, the decision to treat HCV-2 patients with currently approved drugs or to wait until a better option is available in the future, must be made according to the stage of fibrosis.
Collapse
Affiliation(s)
- Marc Bourlière
- Department of Hepato-Gastroenterology, Hospital Saint Joseph, Marseilles, France
| | | | | | | | | | | |
Collapse
|
16
|
Stirnimann G. Ombitasvir (ABT-267), a novel NS5A inhibitor for the treatment of hepatitis C. Expert Opin Pharmacother 2014; 15:2609-22. [PMID: 25347030 DOI: 10.1517/14656566.2014.972364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic hepatitis C infection is a global disease with 160 million people infected worldwide. Until recently, therapy was characterized by long duration, suboptimal success rates and significant adverse drug reactions. The development of direct-acting antivirals initiated a dramatic change in the treatment of hepatitis C. AREAS COVERED This review covers the development of the novel NS5A inhibitor ombitasvir (ABT-267) and its clinical evaluation in Phase I to III trials as monotherapy and in combination with the NS3/4A inhibitor ABT-450/r and the non-nucleoside NS5B inhibitor dasabuvir (ABT-333) ± ribavirin. EXPERT OPINION Ombitasvir (ABT-267) is a potent inhibitor of the hepatitis C virus protein NS5A, has favorable pharmacokinetic characteristics and is active in the picomolar range against genotype 1 - 6. In patients with genotype 1 and 4, 12-week combination treatment with ombitasvir, dasabuvir and ABT-450/r plus ribavirin was highly effective and resulted in 12-week sustained virological response rates higher than 95% in treatment-naöve and treatment-experienced patients. In liver transplant recipients with genotype 1 hepatitis C, success rates in the same range can be expected after 24 weeks of treatment according to preliminary trial results. Genotype 1a patients with compensated cirrhosis who were prior nonresponders benefit from a treatment duration of 24 weeks.
Collapse
Affiliation(s)
- Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine, Inselspital, Hepatology , Bern , Switzerland +41 31 632 47 13 ; +41 31 632 74 89 ;
| |
Collapse
|
17
|
Ivachtchenko AV, Mitkin OD, Yamanushkin PM, Kuznetsova IV, Bulanova EA, Shevkun NA, Koryakova AG, Karapetian RN, Bichko VV, Trifelenkov AS, Kravchenko DV, Vostokova NV, Veselov MS, Chufarova NV, Ivanenkov YA. Discovery of novel highly potent hepatitis C virus NS5A inhibitor (AV4025). J Med Chem 2014; 57:7716-30. [PMID: 25148100 DOI: 10.1021/jm500951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of next in class small-molecule hepatitis C virus (HCV) NS5A inhibitors with picomolar potency containing 2-pyrrolidin-2-yl-5-{4-[4-(2-pyrrolidin-2-yl-1H-imidazol-5-yl)buta-1,3-diynyl]phenyl}-1H-imidazole cores was designed based on the SAR studies available for the reported NS5A inhibitors. Compound 13a (AV4025), with (S,S,S,S)-stereochemistry (EC50 = 3.4 ± 0.2 pM, HCV replicon genotype 1b), was dramatically more active than were the compounds with two (S)- and two (R)-chiral centers. Human serum did not significantly reduce the antiviral activity (<4-fold). Relatively favorable pharmacokinetic features and good oral bioavailability were observed during animal studies. Compound 13a was well tolerated in rodents (in mice, LD50 = 2326 mg/kg or higher), providing a relatively high therapeutic index. During safety, pharmacology and subchronic toxicity studies in rats and dogs, it was not associated with any significant pathological or clinical findings. This compound is currently being evaluated in phase I/II clinical trials for the treatment of HCV infection.
Collapse
Affiliation(s)
- Alexandre V Ivachtchenko
- Alla Chem LLC , 1835 East Hallandale Beach Boulevard 442, Hallandale Beach, Florida 33009, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
In vitro activity and resistance profile of samatasvir, a novel NS5A replication inhibitor of hepatitis C virus. Antimicrob Agents Chemother 2014; 58:4431-42. [PMID: 24867983 DOI: 10.1128/aac.02777-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein is a clinically validated target for drugs designed to treat chronic HCV infection. This study evaluated the in vitro activity, selectivity, and resistance profile of a novel anti-HCV compound, samatasvir (IDX719), alone and in combination with other antiviral agents. Samatasvir was effective and selective against infectious HCV and replicons, with 50% effective concentrations (EC50s) falling within a tight range of 2 to 24 pM in genotype 1 through 5 replicons and with a 10-fold EC50 shift in the presence of 40% human serum in the genotype 1b replicon. The EC90/EC50 ratio was low (2.6). A 50% cytotoxic concentration (CC50) of >100 μM provided a selectivity index of >5 × 10(7). Resistance selection experiments (with genotype 1a replicons) and testing against replicons bearing site-directed mutations (with genotype 1a and 1b replicons) identified NS5A amino acids 28, 30, 31, 32, and 93 as potential resistance loci, suggesting that samatasvir affects NS5A function. Samatasvir demonstrated an overall additive effect when combined with interferon alfa (IFN-α), ribavirin, representative HCV protease, and nonnucleoside polymerase inhibitors or the nucleotide prodrug IDX184. Samatasvir retained full activity in the presence of HIV and hepatitis B virus (HBV) antivirals and was not cross-resistant with HCV protease, nucleotide, and nonnucleoside polymerase inhibitor classes. Thus, samatasvir is a selective low-picomolar inhibitor of HCV replication in vitro and is a promising candidate for future combination therapies with other direct-acting antiviral drugs in HCV-infected patients.
Collapse
|
19
|
Belema M, Lopez OD, Bender JA, Romine JL, St Laurent DR, Langley DR, Lemm JA, O'Boyle DR, Sun JH, Wang C, Fridell RA, Meanwell NA. Discovery and development of hepatitis C virus NS5A replication complex inhibitors. J Med Chem 2014; 57:1643-72. [PMID: 24621191 DOI: 10.1021/jm401793m] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lead inhibitors that target the function of the hepatitis C virus (HCV) nonstructural 5A (NS5A) protein have been identified by phenotypic screening campaigns using HCV subgenomic replicons. The demonstration of antiviral activity in HCV-infected subjects by the HCV NS5A replication complex inhibitor (RCI) daclatasvir (1) spawned considerable interest in this mechanistic approach. In this Perspective, we summarize the medicinal chemistry studies that led to the discovery of 1 and other chemotypes for which resistance maps to the NS5A protein and provide synopses of the profiles of many of the compounds currently in clinical trials. We also summarize what is currently known about the NS5A protein and the studies using NS5A RCIs and labeled analogues that are helping to illuminate aspects of both protein function and inhibitor interaction. We conclude with a synopsis of the results of notable clinical trials with HCV NS5A RCIs.
Collapse
Affiliation(s)
- Makonen Belema
- Department of Discovery Chemistry, ‡Department of Virology Discovery, and §Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|