1
|
Liu X, Hao Z, He H, Wang X, Wang W, Shu X, Sun B, Hu Z, Hu S, Hou X, Xiao Y, Zhou H, Liu Y, Wang J, Fu Z. Accumulation of microtubule-associated protein tau promotes hepatocellular carcinogenesis through inhibiting autophagosome-lysosome fusion. Mol Cell Biochem 2025; 480:3621-3635. [PMID: 39718681 DOI: 10.1007/s11010-024-05193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Dysregulated expression of microtubule-associated protein tau (MAPT) has been reported in a variety of human cancers. However, whether and how Tau influences hepatocellular carcinogenesis remains elusive. This study was aimed to investigate the role and the underlying mechanism of Tau in the proliferation, invasion, migration and sorafenib sensitivity of hepatocellular carcinoma (HCC) cells. An increased level of Tau was found in the primary tumor samples of HCC compared with the adjacent normal liver tissues, and the increase of Tau was positively correlated with p62 evidenced by the data obtained from The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis (GEPIA), and human samples from HCC patients. The high Tau expression was also correlated with a poorer survival in HCC patients demonstrated by using the GEPIA survival analysis and OncoLnc database. Further studies showed that Tau overexpression promoted the growth, invasion and migration and decreased sorafenib sensitivity in HepG2 and Huh7 cells; Tau also accelerated growth of xenograft tumors with blockage of autophagosome-lysosome fusion. Finally, overexpressing Tau inhibited AMPK, which contributed to Tau-induced promotion of hepatocellular carcinogenesis. In conclusion, our study provides the proof-of-concept evidence validating Tau as an attractive HCC target.
Collapse
Affiliation(s)
- Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Huanhuan He
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xuan Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Wenqi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhiyong Hu
- Department of Pathology, Renmin Hospital of Huangpi District of Jianghan University, Wuhan, 430399, China
| | - Shaobo Hu
- Liver Transplant Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoying Hou
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China.
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Jianzhi Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China.
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China.
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
2
|
Sanchez-Guerrero G, Umbaugh DS, Smith SH, Akakpo JY, Jaeschke H, Ramachandran A. Mixed lineage kinase domain-like protein deficiency exacerbates early injury in a mouse model of acetaminophen hepatotoxicity. Toxicol Sci 2025; 205:220-232. [PMID: 39985503 PMCID: PMC12038254 DOI: 10.1093/toxsci/kfaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
An overdose of acetaminophen (APAP) is the leading cause of drug-induced hepatotoxicity and acute liver failure in the United States. It is established that the predominant mode of hepatocyte cell death after an APAP overdose is through necrosis, and it is now recognized that this occurs through regulated pathways involving RIP kinases. These kinases, along with the pseudo-kinase MLKL, are central players in classical necroptotic cell death. Despite the skepticism regarding the role of necroptosis in APAP-induced liver injury, recent research demonstrating necroptosis-independent roles for MLKL led us to re-examine the role of this pseudo-kinase in APAP pathophysiology. Treatment of Mlkl-/- mice with a moderate (300 mg/kg) overdose of APAP resulted in an exacerbation of liver injury at 6- and 12-h post-APAP as evidenced by elevated plasma alanine aminotransferase activities, and extensive necrosis accompanied by diminished glutathione levels. Interestingly, these differences between Mlkl-/- and wild-type mice were negated at the 24-h mark, previously scrutinized by others. At 6 and 12 h post-APAP, Mlkl-/- mice exhibited augmented translocation of AIF and Endonuclease G without affecting JNK activation, suggesting enhanced mitochondrial permeability transition in the absence of MLKL. Lack of MLKL also impacted autophagy, the unfolded protein response and endoplasmic reticulum stress, with decreased levels of p62 and LC3B and increased expression of CHOP and GRP78 at 6 h post-APAP. In essence, our findings illuminate a noncanonical role for MLKL in the early phases of APAP-induced liver injury, warranting further exploration of its influence on APAP pathophysiology.
Collapse
Affiliation(s)
- Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sawyer H Smith
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
3
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
4
|
Tavakoli R, Maleki MH, Vakili O, Taghizadeh M, Zal F, Shafiee SM. Bilirubin, once a toxin but now an antioxidant alleviating non-alcoholic fatty liver disease in an autophagy-dependent manner in high-fat diet-induced rats: a molecular and histopathological analysis. Res Pharm Sci 2024; 19:475-488. [PMID: 39399727 PMCID: PMC11468170 DOI: 10.4103/rps.rps_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose As an endogenous antioxidant, bilirubin has surprisingly been inversely correlated with the risk of non-alcoholic fatty liver disease (NAFLD). Thereupon, the current evaluation was designed to assess the positive effects of bilirubin on the autophagy flux, as well as the other pathogenic processes and parameters involved in the expansion of NAFLD. Experimental approach Thirty adult male rats weighing 150-200 g with free access to sucrose solution (18%) were randomly subdivided into 5 groups (n = 6). Subsequently, the animals were euthanized, and their blood specimens and liver tissue samples were collected to measure serum biochemical indices, liver histopathological changes, intrahepatic triglycerides content, and tissue stereological alterations. Furthermore, the expression levels of autophagy-related genes (Atgs) were measured to assess the state of the autophagy flux. Findings/Results Fasting blood glucose, body weight, as well as liver weight, liver-specific enzyme activity, and serum lipid profile indices markedly decreased in rats that underwent a six-week bilirubin treatment compared to the control group. In addition, histopathological studies showed that hepatic steatosis, fibrosis, inflammation, and necrosis significantly decreased in the groups that received bilirubin compared to the control animals. Bilirubin also caused significant alterations in the expression levels of the Atgs, as well as the Beclin- 1 protein. Conclusion and implication Bilirubin may have potential ameliorative effects on NAFLD-associated liver damage. Moreover, the beneficial effects of bilirubin on intrahepatic lipid accumulation and steatosis were comparable with the group that did not ever receive bilirubin.
Collapse
Affiliation(s)
- Ramin Tavakoli
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Ali NAM, Abdelhamid AM, El-Sayed NM, Radwan A. Alpha-Asarone attenuates alcohol-induced hepatotoxicity in a murine model by ameliorating oxidative stress, inflammation, and modulating apoptotic-Autophagic cell death. Toxicol Appl Pharmacol 2024; 490:117041. [PMID: 39059505 DOI: 10.1016/j.taap.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver injury characterized by steatosis, inflammation, and fibrosis. This study explored the hepatoprotective mechanisms of alpha-asarone in a mouse model of chronic-binge alcohol feeding. Adult male mice were randomized into control, alcohol, and alcohol plus alpha-asarone groups. Serum aminotransferases and histopathology assessed liver injury. Oxidative stress was evaluated via malondialdehyde content, glutathione, superoxide dismutase, and catalase activities. Pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were quantified by ELISA. P53-mediated apoptosis was determined by immunohistochemistry. Key autophagy markers phospho-AMPK, AMPK, Beclin-1, LC3-I/LC3-II ratio, and LC3 were examined by immunoblotting. Alcohol administration increased serum ALT, AST and ALP, indicating hepatocellular damage. This liver dysfunction was associated with increased oxidative stress, inflammation, p53 expression and altered autophagy. Alpha-asarone treatment significantly decreased ALT, AST and ALP levels and improved histological architecture versus alcohol alone. Alpha-asarone also mitigated oxidative stress, reduced TNF-α, IL-1β and IL-6 levels, ameliorated p53 overexpression and favorably modulated autophagy markers. Our findings demonstrate that alpha-asarone confers protective effects against ALD by enhancing antioxidant defenses, suppressing hepatic inflammation, regulating apoptotic signaling, and restoring autophagic flux. This preclinical study provides compelling evidence for the therapeutic potential of alpha-asarone in attenuating alcohol-induced liver injury and warrants further evaluation as a pharmacotherapy for ALD.
Collapse
Affiliation(s)
- Nada A M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Asmaa Radwan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
6
|
Zhao J, Duan L, Li J, Yao C, Wang G, Mi J, Yu Y, Ding L, Zhao Y, Yan G, Li J, Zhao Z, Wang X, Li M. New insights into the interplay between autophagy, gut microbiota and insulin resistance in metabolic syndrome. Biomed Pharmacother 2024; 176:116807. [PMID: 38795644 DOI: 10.1016/j.biopha.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a widespread and multifactorial disorder, and the study of its pathogenesis and treatment remains challenging. Autophagy, an intracellular degradation system that maintains cellular renewal and homeostasis, is essential for maintaining antimicrobial defense, preserving epithelial barrier integrity, promoting mucosal immune response, maintaining intestinal homeostasis, and regulating gut microbiota and microbial metabolites. Dysfunctional autophagy is implicated in the pathological mechanisms of MetS, involving insulin resistance (IR), chronic inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, with IR being a predominant feature. The study of autophagy represents a valuable field of research with significant clinical implications for identifying autophagy-related signals, pathways, mechanisms, and treatment options for MetS. Given the multifactorial etiology and various potential risk factors, it is imperative to explore the interplay between autophagy and gut microbiota in MetS more thoroughly. This will facilitate the elucidation of new mechanisms underlying the crosstalk among autophagy, gut microbiota, and MetS, thereby providing new insights into the diagnosis and treatment of MetS.
Collapse
Affiliation(s)
- Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Liyun Duan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chensi Yao
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoqiang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jia Mi
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yongjiang Yu
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yunyun Zhao
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Guanchi Yan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jing Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhixuan Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiuge Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
7
|
Zhang L, Kuang G, Gong X, Huang R, Zhao Z, Li Y, Wan J, Wang B. Piperine attenuates hepatic ischemia/reperfusion injury via suppressing the TLR4 signaling cascade in mice. Transpl Immunol 2024; 84:102033. [PMID: 38484898 DOI: 10.1016/j.trim.2024.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Piperine, the major active substance in black pepper, has been shown to have anti-inflammatory and antioxidant effects in several ischemic diseases. However, the role of piperine in hepatic ischemia/reperfusion injury (HIRI) and its underlying mechanisms remain unclear. In this study, the mice were administered piperine (30 mg/kg) intragastric administration before surgery. After 24 h of hepatic ischemia-reperfusion, liver histopathological evaluation, serum transaminase measurements, and TUNEL analysis were performed. The infiltration of inflammatory cells and production of inflammatory mediators in the liver tissue were determined by immunofluorescence and immunohistochemical staining. The protein levels of toll-like receptor 4 (TLR4) and related proteins such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-1 receptor-associated kinase 1 (IRAK1), p65, and p38 were detected by western blotting. The results showed that plasma aminotransferase (ALT), aspartate aminotransferase (AST), hepatocyte apoptosis, oxidative stress, and inflammatory cell infiltration significantly increased in HIRI mice. Piperine pretreatment notably repaired liver function, improved the histopathology and apoptosis of liver cells, alleviated oxidative stress injury, and reduced inflammatory cell infiltration. Further analysis showed that piperine attenuated tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) production and reduced TLR4 activation and phosphorylation of IRAK1, p38, and NF-κB in HIRI. Piperine has a protective effect against HIRI through the TLR4/IRAK1/NF-κB signaling pathway and may be a safer option for future clinical treatment and prevention of ischemia-related diseases.
Collapse
Affiliation(s)
- Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Rui Huang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Wei Y, Jin M, Yu H, Hou X, Zhao L, Ding L, Cheng J, Qiu J, Feng H. The Glycyrrhiza glabra L. crude extract alleviates lipid accumulation in NAFLD by activating Nrf2 and promoting autophagy. J Funct Foods 2024; 116:106143. [DOI: 10.1016/j.jff.2024.106143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
9
|
Jantaravinid J, Tirawanchai N, Ampawong S, Kengkoom K, Somkasetrin A, Nakhonsri V, Aramwit P. Transcriptomic screening of novel targets of sericin in human hepatocellular carcinoma cells. Sci Rep 2024; 14:5455. [PMID: 38443583 PMCID: PMC10914811 DOI: 10.1038/s41598-024-56179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/03/2024] [Indexed: 03/07/2024] Open
Abstract
Sericin, a natural protein derived from Bombyx mori, is known to ameliorate liver tissue damage; however, its molecular mechanism remains unclear. Herein, we aimed to identify the possible novel targets of sericin in hepatocytes and related cellular pathways. RNA sequencing analysis indicated that a low dose of sericin resulted in 18 differentially expressed genes (DEGs) being upregulated and 68 DEGs being downregulated, while 61 DEGs were upregulated and 265 DEGs were downregulated in response to a high dose of sericin (FDR ≤ 0.05, fold change > 1.50). Functional analysis revealed that a low dose of sericin regulated pathways associated with the complement and coagulation cascade, metallothionine, and histone demethylate (HDMs), whereas a high dose of sericin was associated with pathways involved in lipid metabolism, mitogen-activated protein kinase (MAPK) signaling and autophagy. The gene network analysis highlighted twelve genes, A2M, SERPINA5, MT2A, MT1G, MT1E, ARID5B, POU2F1, APOB, TRAF6, HSPA8, FGFR1, and OGT, as novel targets of sericin. Network analysis of transcription factor activity revealed that sericin affects NFE2L2, TFAP2C, STAT1, GATA3, CREB1 and CEBPA. Additionally, the protective effects of sericin depended on the counterregulation of APOB, POU2F1, OGT, TRAF6, and HSPA5. These findings suggest that sericin exerts hepatoprotective effects through diverse pathways at different doses, providing novel potential targets for the treatment of liver diseases.
Collapse
Affiliation(s)
- Jiraporn Jantaravinid
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Napatara Tirawanchai
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2, Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Kanchana Kengkoom
- Research and Academic Support Office, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170, Thailand
| | - Anchaleekorn Somkasetrin
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2, Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Vorthunju Nakhonsri
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 144 Innovation Cluster 2 Building (INC) Tower A, Thailand Science Park, Khlong Nueng, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Pornanong Aramwit
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
11
|
Abdelhady R, Mohammed OA, Doghish AS, Hamad RS, Abdel-Reheim MA, Alamri MMS, Alharthi MH, Alfaifi J, Adam MIE, Alhalafi AH, Mohammed NA, Isa AI, Abdel-Ghany S, Attia MA, Elmorsy EA, Al-Noshokaty TM, Nomier Y, El-Dakroury WA, Saber S. Linagliptin, a DPP-4 inhibitor, activates AMPK/FOXO3a and suppresses NFκB to mitigate the debilitating effects of diethylnitrosamine exposure in rat liver: Novel mechanistic insights. FASEB J 2024; 38:e23480. [PMID: 38354025 DOI: 10.1096/fj.202302461rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Aldawadmi, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Nahid A Mohammed
- Department of Physiology Unit, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Adamu Imam Isa
- Department of Physiology Unit, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | | | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-khod, Sultanate of Oman
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
12
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
13
|
Feng J, Ye S, Hai B, Lou Y, Duan M, Guo P, Lv P, Lu W, Chen Y. RNF115/BCA2 deficiency alleviated acute liver injury in mice by promoting autophagy and inhibiting inflammatory response. Cell Death Dis 2023; 14:855. [PMID: 38129372 PMCID: PMC10739886 DOI: 10.1038/s41419-023-06379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The E3 ubiquitin ligase RING finger protein 115 (RNF115), also known as breast cancer-associated gene 2 (BCA2), has been linked with the growth of some cancers and immune regulation, which is negatively correlated with prognosis. Here, it is demonstrated that the RNF115 deletion can protect mice from acute liver injury (ALI) induced by the treatment of lipopolysaccharide (LPS)/D-galactosamine (D-GalN), as evidenced by decreased levels of alanine aminotransaminase, aspartate transaminase, inflammatory cytokines (e.g., tumor necrosis factor α and interleukin-6), chemokines (e.g., MCP1/CCL2) and inflammatory cell (e.g., monocytes and neutrophils) infiltration. Moreover, it was found that the autophagy activity in Rnf115-/- livers was increased, which resulted in the removal of damaged mitochondria and hepatocyte apoptosis. However, the administration of adeno-associated virus Rnf115 or autophagy inhibitor 3-MA impaired autophagy and aggravated liver injury in Rnf115-/- mice with ALI. Further experiments proved that RNF115 interacts with LC3B, downregulates LC3B protein levels and cell autophagy. Additionally, Rnf115 deletion inhibited M1 type macrophage activation via NF-κB and Jnk signaling pathways. Elimination of macrophages narrowed the difference in liver damage between Rnf115+/+ and Rnf115-/- mice, indicating that macrophages were linked in the ALI induced by LPS/D-GalN. Collectively, for the first time, we have proved that Rnf115 inactivation ameliorated LPS/D-GalN-induced ALI in mice by promoting autophagy and attenuating inflammatory responses. This study provides new evidence for the involvement of autophagy mechanisms in the protection against acute liver injury.
Collapse
Affiliation(s)
- Jinqiu Feng
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Shufang Ye
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bao Hai
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Mengyuan Duan
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Pengli Guo
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Wenping Lu
- Department of Hepatobiliary Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
14
|
Qian H, Ding WX. SQSTM1/p62 and Hepatic Mallory-Denk Body Formation in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1415-1426. [PMID: 36906265 PMCID: PMC10642158 DOI: 10.1016/j.ajpath.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
15
|
San J, Hu J, Pang H, Zuo W, Su N, Guo Z, Wu G, Yang J. Taurine Protects against the Fatty Liver Hemorrhagic Syndrome in Laying Hens through the Regulation of Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10360. [PMID: 37373507 DOI: 10.3390/ijms241210360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease caused by fat deposition in the liver of humans and mammals, while fatty liver hemorrhagic syndrome (FLHS) is a fatty liver disease in laying hens which can increase the mortality and cause severe economic losses to the laying industry. Increasing evidence has shown a close relationship between the occurrence of fatty liver disease and the disruption of mitochondrial homeostasis. Studies have proven that taurine can regulate hepatic fat metabolism, reduce hepatic fatty deposition, inhibit oxidative stress, and alleviate mitochondrial dysfunction. However, the mechanisms by which taurine regulates mitochondrial homeostasis in hepatocytes need to be further studied. In this study, we determined the effects and mechanisms of taurine on high-energy low-protein diet-induced FLHS in laying hens and in cultured hepatocytes in free fatty acid (FFA)-induced steatosis. The liver function, lipid metabolism, antioxidant capacity, mitochondrial function, mitochondrial dynamics, autophagy, and biosynthesis were detected. The results showed impaired liver structure and function, mitochondrial damage and dysfunction, lipid accumulation, and imbalance between mitochondrial fusion and fission, mitochondrial autophagy, and biosynthesis in both FLHS hens and steatosis hepatocytes. Taurine administration can significantly inhibit the occurrence of FLHS, protect mitochondria in hepatocytes from disease induced by lipid accumulation and FFA, up-regulate the expression levels of Mfn1, Mfn2, Opa1, LC3I, LC3II, PINK1, PGC-1α, Nrf1, Nrf2, and Tfam, and down-regulate the expression levels of Fis1, Drp1, and p62. In conclusion, taurine can protect laying hens from FLHS through the regulation of mitochondrial homeostasis, including the regulation of mitochondrial dynamics, autophagy, and biosynthesis.
Collapse
Affiliation(s)
- Jishuang San
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiping Pang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Zuo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Su
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zimeng Guo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
16
|
Kartal B, Alimoğulları E, Elçi P, Demir H. Adipose delivered stem cells protect liver after ischemia-reperfusion injury by controlling autophagy. Injury 2023:110839. [PMID: 37248113 DOI: 10.1016/j.injury.2023.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Ischemia-reperfusion(I/R) injury is an unavoidable side effect of liver surgery and transplantation. A potentially useful tool for cellular therapy and tissue engineering is adipose-derived stem cells (ADSCs).The process of autophagy is used by the cell to break down inappropriate molecules.The study's goal was to examine the impact of ADSCs on the autophagic pathway after rat hepatic ischemia-reperfusion injury. MATERIAL AND METHODS Thirty male rats used in our study were divided into control, ADSC, ischemia, I/R, and I/R+ ADSC groups (n = 6). Liver tissues were stained with hematoxylin-eosin and histological changes were evaluated with Suzuki scoring. Immunoexpressions of transforming growth factor (TGF-β) and autophagy markers LC3B, p62 were analyzed using the immunohistochemical method. RESULTS As a result of histological evaluation the ischemia and I/R groups displayed sinusoid congestion, vacuolization, and necrosis in liver tissues. We showed that the immunostaining of LC3B and TGF- β were elevated, and p62 decreased in the rat liver from ischemia and I/R groups when compared to the control group. CONCLUSION ADSCs reduced the excessive level of autophagy and structural damage to hepatocytes and the pathological alterations in the liver after ıschemia-reperfusion injury.
Collapse
Affiliation(s)
- Bahar Kartal
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| | - Ebru Alimoğulları
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Pınar Elçi
- Health Sciences University, Gulhane Health Sciences Institute,Stem Cell Laboratory, Ankara, Turkey
| | - Hazal Demir
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
17
|
Choi SW, Oh H, Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH, Jung TW. Adipokine gremlin-1 promotes hepatic steatosis via upregulation of ER stress by suppressing autophagy-mediated signaling. J Cell Physiol 2023; 238:966-975. [PMID: 36890751 DOI: 10.1002/jcp.30982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/10/2023]
Abstract
Gremlin-1 (GR1) is a novel adipokine that is highly expressed in human adipocytes and has been shown to inhibit the BMP2/4-TGFb signaling pathway. It has an effect on insulin sensitivity. Elevated levels of Gremlin have been shown to lead to insulin resistance in skeletal muscle, adipocytes, and hepatocytes. In this study, we investigated the effect of GR1 on hepatic lipid metabolism under hyperlipidemic conditions and explored the molecular mechanisms associated with GR1 by in vitro and in vivo studies. We found that palmitate increased GR1 expression in visceral adipocytes. Recombinant GR1 increased lipid accumulation, lipogenesis, and ER stress markers in cultured primary hepatocytes. Treatment with GR1 increased EGFR expression and mTOR phosphorylation and reduced autophagy markers. EGFR or rapamycin siRNA reduced the effects of GR1 on lipogenic lipid deposition and ER stress in cultured hepatocytes. Administration of GR1 via the tail vein induced lipogenic proteins and ER stress while suppressing autophagy in the livers of experimental mice. Suppression of GR1 by in vivo transfection reduced the effects of a high-fat diet on hepatic lipid metabolism, ER stress, and autophagy in mice. These results suggest that the adipokine GR1 promotes hepatic ER stress due to the impairment of autophagy, ultimately causing hepatic steatosis in the obese state. The current study demonstrated that targeting GR1 may be a potential therapeutic approach for treating metabolic diseases, including metabolic-associated fatty liver disease (MAFLD).
Collapse
Affiliation(s)
- Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.,Vaccine Development Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Zhu S, Wen H, Wang W, Chen Y, Han F, Cai W. Anti-hepatitis B virus activity of lithospermic acid, a polyphenol from Salvia miltiorrhiza, in vitro and in vivo by autophagy regulation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115896. [PMID: 36334815 DOI: 10.1016/j.jep.2022.115896] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza (the roots of S. miltiorrhiza Bunge, Danshen in Chinese), a traditional Chinese medicine, has been clinically used to prevent and treat various diseases, such as cardiovascular and cerebrovascular diseases, diabetes, and hepatitis B, in China and some other Asian countries. Lithospermic acid (LA), a polyphenol derived from S. miltiorrhiza, has been reported to exhibit multiple pharmacological properties, such as anti-inflammatory, anti-HIV, and anti-carbon tetrachloride-induced liver injury activities. However, little is known about the anti-hepatitis B virus (HBV) activity of LA. AIM OF THE STUDY The study was projected to investigate the anti-HBV activity of LA in vitro (HepG2.2.15 and pHBV1.3-transfected HepG2 cells) and in vivo (pAAV-HBV1.2 hydrodynamic injection [HBV-HDI] mice) and explore the potential mechanism as well. MATERIALS AND METHODS Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) contents were detected by ELISA kits. HBV DNA and hepatitis B core antigen (HBcAg) levels were evaluated by quantitative real-time polymerase chain reaction and immunohistochemistry assay, respectively. The proteins in autophagy process, lysosomal acidic function, and autophagy-related signaling pathways were examined by Western blot. Transmission electron microscopy was used to observe the number of autophagosomes and autolysosomes. Confocal microscopy was applied to analyze the autophagic flux and lysosomal acidification, using mCherry-enhanced green fluorescent protein (EGFP)-microtubule-associated protein light chain (LC)3 and lysosomal probes, respectively. RESULTS LA exhibited anti-HBV activity by inhibiting HBV DNA replication in HepG2.2.15 and pHBV-transfected HepG2 cells in dose- and time-dependent manners and hampering HBsAg and HBeAg levels in HepG2.2.15 cells to a certain extent. LA reduced HBV DNA, HBsAg/HBeAg, and HBcAg levels in the serum/liver tissues of HBV-HDI C57BL/6 mice during the 3-week treatment and suppressed the withdrawal rebound of HBV DNA and HBsAg in the mice serum. LA increased LC3-II protein expression and the number of autolysosomes/autophagosomes and promoted the degradation of sequestosome 1(p62) protein in vitro and in vivo. LA enhanced the co-localization of LC3 protein with autolysosomes, further confirming the ability of LA to induce a complete autophagy. Knockdown of autophagy-related gene (Atg) 7 or 5 in vitro and administration of 3-methyladenine (an autophagic inhibitor) in vivo disabled the inhibitory efficacy of LA on HBV DNA replication, suggesting that the anti-HBV efficacy of LA depended on its ability of inducing autophagy. LA could enhance lysosomal acidification and improve the function of lysosomes by promoting the protein expression of lysosomal-associated membrane protein (LAMP)-1, LAMP-2, and mature cathepsin D, which may contribute to the autophagic induction of LA. LA inhibited the activation of AKT and mammalian target of rapamycin (mTOR) induced by HBV, which was reversed by IGF-1 (an agonist of the PI3K/AKT/mTOR signaling pathway), indicating that LA elicited autophagy through hampering the PI3K/AKT/mTOR signaling pathway. CONCLUSION We revealed the anti-HBV activity and mechanism of LA in vitro and in vivo. This study facilitates a new understanding of the anti-HBV potent components of S. miltiorrhiza and sheds light on LA for further development as an active constituent or candidate used in the therapy against HBV infection.
Collapse
Affiliation(s)
- Shiqi Zhu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haimei Wen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Fengmei Han
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
19
|
Fan G, Li F, Wang P, Jin X, Liu R. Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases. Int J Mol Sci 2022; 23:ijms232315109. [PMID: 36499429 PMCID: PMC9739742 DOI: 10.3390/ijms232315109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy is essential for the maintenance of hepatic homeostasis, and autophagic malfunction has been linked to the pathogenesis of substantial liver diseases. As a popular source of drug discovery, natural products have been used for centuries to effectively prevent the progression of various liver diseases. Emerging evidence has suggested that autophagy regulation is a critical mechanism underlying the therapeutic effects of these natural products. In this review, relevant studies are retrieved from scientific databases published between 2011 and 2022, and a novel scoring system was established to critically evaluate the completeness and scientific significance of the reviewed literature. We observed that numerous natural products were suggested to regulate autophagic flux. Depending on the therapeutic or pathogenic role autophagy plays in different liver diseases, autophagy-regulative natural products exhibit different therapeutic effects. According to our novel scoring system, in a considerable amount of the involved studies, convincing and reasonable evidence to elucidate the regulatory effects and underlying mechanisms of natural-product-mediated autophagy regulation was missing and needed further illustration. We highlight that autophagy-regulative natural products are valuable drug candidates with promising prospects for the treatment of liver diseases and deserve more attention in the future.
Collapse
Affiliation(s)
- Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Ping Wang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xuejing Jin
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| |
Collapse
|
20
|
Cheng B, Li T, Li F. Study on the multitarget mechanism of alliin activating autophagy based on network pharmacology and molecular docking. J Cell Mol Med 2022; 26:5590-5601. [PMID: 36271672 DOI: 10.1111/jcmm.17573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Due to the rapid development of bioinformatics, network pharmacology and molecular docking approaches have been successfully applied in the investigation of mechanisms of action. Here, we combined network pharmacology and molecular docking to predict the targets and reveal the molecular mechanism responsible for regulating autophagy by alliin. Based on the influence of alliin on autophagy, the targets of alliin were screened on the basis of different rules such as structural similarity by Pharmmapper, and genes associated with autophagy were collected from the GeneCards database. We focused on clarifying the biological processes and signalling pathways related to autophagy. Through the cytoHubba plug-in and a series of integrated bioinformatics analyses, the top nine hub nodes with higher degrees were obtained. And finally, through the LibDock included in Discovery Studio 2019, molecular docking method was adopted to declare the reliability of the interaction between alliin and hub targets. The results suggest that alliin-activated autophagy was possibly associated with pathways in cancer and the PI3K-AKT signalling pathway. Furthermore, the potential targets (AKT1, MAPK14, MAPK, HSPA8, EGFR, HSP90AA1, SRC HSPA1A and HSP90AB1) were swimmingly screened on the basis of this practical strategy. Molecular docking analysis indicates that alliin can bind with AKT1 and EGFR with good binding scores. This network pharmacology could be an invaluable strategy for the investigation of action mechanisms of alliin-activated autophagy. This study not only provides new and systematic insights into the underlying mechanism of alliin on autophagy, but also provides novel ideas for network approaches for autophagy-related research.
Collapse
Affiliation(s)
- Bijun Cheng
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Tianjiao Li
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Fenglin Li
- Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
21
|
Li H, Zhou Y, Xu W, Liu J, Wang S, Jiang H. The role of autophagy in calcium oxalate kidney stone: A systematic review of the literature. Front Physiol 2022; 13:1008264. [PMID: 36213233 PMCID: PMC9533137 DOI: 10.3389/fphys.2022.1008264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Calcium oxalate kidney stone is one of the common diseases in the urinary system and has a high recurrence rate. Currently, the pathogenesis of kidney stone and the methods to prevent recurrence are still being investigated. Autophagy, as an event of cellular self-repair, has received attention in the field of kidney stone in recent years. In some current studies, autophagy has shown destructiveness and protectiveness in the pathogenesis of kidney stone. The inhibition or promotion of autophagy may be a key target for future kidney stone therapy. This systematic literature review discusses the function of autophagy in kidney stone pathogenesis in the context of current research and synthesizes the evidence analysis to provide a basis for new future therapies. Method: We systematically reviewed the literature during September 2021 according to the Preferred Reporting Items for Systematic Evaluation and Meta-Analysis (PRISMA) guidelines. Articles on studying the role of autophagy in the pathogenesis of calcium oxalate kidney stone were extracted from PubMed, MEDLINE, Embase and Scopus, including in vivo versus in vitro experiments. The study topic, language and publication date were not restricted. Two authors (Li and Zhou) searched and screened the literature. Results: We screened 18 articles from the 33 collected articles, of which 6 conducted in vitro cellular studies, four conducted animal studies, eight conducted cellular studies with animal studies, and five studied human specimens. In early studies, the literature generally concluded that autophagy is deleterious in the development of kidney stone. In 2020, the idea of the protectiveness of autophagy associated with kidney stone was first proposed and focused on targeting transcription factor EB. In addition, the interaction of autophagy with other cellular events and the regulation of signaling molecules are focused on in this paper. Conclusion: This systematic review provides advances in research on the role of autophagy in renal calculi. The current studies suggest that both upregulation and downregulation of autophagy may ameliorate injury in kidney stone models. The authors prefer the upregulation of autophagy as a future research direction for kidney stone treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjian Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongyang Jiang,
| |
Collapse
|
22
|
Zhang HM, Chen XJ, Li SP, Zhang JM, Sun J, Zhou LX, Zhou GP, Cui B, Sun LY, Zhu ZJ. ILC2s expanded by exogenous IL-33 regulate CD45+CD11b+F4/80high macrophage polarization to alleviate hepatic ischemia-reperfusion injury. Front Immunol 2022; 13:869365. [PMID: 35967407 PMCID: PMC9372719 DOI: 10.3389/fimmu.2022.869365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is an adverse consequence of hepatectomy or liver transplantation. Recently, immune mechanisms involved in hepatic IRI have attracted increased attention of investigators working in this area. In specific, group 2 innate lymphoid cells (ILC2s), have been strongly implicated in mediating type 2 inflammation. However, their immune mechanisms as involved with hepatic IRI remain unclear. Here, we reported that the population of ILC2s is increased with the development of hepatic IRI as shown in a mouse model in initial stage. Moreover, M2 type CD45+CD11b+F4/80high macrophages increased and reached maximal levels at 24 h followed by a significant elevation in IL-4 levels. We injected exogenous IL-33 into the tail vein of mice as a mean to stimulate ILC2s production. This stimulation of ILC2s resulted in a protective effect upon hepatic IRI along with an increase in M2 type CD45+CD11b+F4/80high macrophages. In contrast, depletion of ILC2s as achieved with use of an anti-CD90.2 antibody substantially abolished this protective effect of exogenous IL-33 and M2 type CD45+CD11b+F4/80high macrophage polarization in hepatic IRI. Therefore, this exogenous IL-33 induced potentiation of ILC2s appears to regulate the polarization of CD45+CD11b+F4/80high macrophages to alleviate IRI. Such findings provide the foundation for the development of new targets and strategies in the treatment of hepatic IRI.
Collapse
Affiliation(s)
- Hai-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Shi-Peng Li
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Jin-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Jie Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Liu-Xin Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Bin Cui
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
- Department of Critical Liver Disease, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Li-Ying Sun, ; Zhi-Jun Zhu,
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
- *Correspondence: Li-Ying Sun, ; Zhi-Jun Zhu,
| |
Collapse
|
23
|
Zhang Y, Chen Y. Roles of organelle-specific autophagy in hepatocytes in the development and treatment of non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1673-1681. [PMID: 35950774 PMCID: PMC9509094 DOI: 10.1097/cm9.0000000000002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder of lipid metabolism. The lipotoxic intermediates of lipid metabolism cause mitochondrial dysfunction and endoplasmic reticulum stress. Organelle-specific autophagy is responsible for the removal of dysfunctional organelles to maintain intracellular homeostasis. Lipophagy contributes to lipid turnover by degrading lipid droplets. The level of autophagy changes during the course of NAFLD, and the activation of hepatocyte autophagy might represent a method of treating NAFLD.
Collapse
Affiliation(s)
- Yizhi Zhang
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| |
Collapse
|
24
|
Cell Autophagy in NASH and NASH-Related Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23147734. [PMID: 35887082 PMCID: PMC9322157 DOI: 10.3390/ijms23147734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a cellular self-digestion process, involves the degradation of targeted cell components such as damaged organelles, unfolded proteins, and intracellular pathogens by lysosomes. It is a major quality control system of the cell and plays an important role in cell differentiation, survival, development, and homeostasis. Alterations in the cell autophagic machinery have been implicated in several disease conditions, including neurodegeneration, autoimmunity, cancer, infection, inflammatory diseases, and aging. In non-alcoholic fatty liver disease, including its inflammatory form, non-alcoholic steatohepatitis (NASH), a decrease in cell autophagic activity, has been implicated in the initial development and progression of steatosis to NASH and hepatocellular carcinoma (HCC). We present an overview of autophagy as it occurs in mammalian cells with an insight into the emerging understanding of the role of autophagy in NASH and NASH-related HCC.
Collapse
|
25
|
Yao J, Yang H, Wang H, Shi H, Jiao Y, Zhang Y, Chen D, Shi H. ASPP2 Coordinates ERS-Mediated Autophagy and Apoptosis Through mTORC1 Pathway in Hepatocyte Injury Induced by TNF-α. Front Pharmacol 2022; 13:865389. [PMID: 35418864 PMCID: PMC8996113 DOI: 10.3389/fphar.2022.865389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Though ASPP2 plays an important role in regulating cell apoptosis and autophagy in case of liver injury, there remains a lack of clarity on the molecular mechanism of ASPP2 regulating autophagy and apoptosis. Methods: A hepatocyte injury model was constructed using HL7702 cell line and TNF-α. The cells were treated by ASPP2 overexpression adenovirus or short hairpin RNA lentivirus and endoplasmic reticulum stress (ERS) or the mammalian target of rapamycin (mTOR) inhibitor or agonist, respectively. The autophagy was detected by means of western blot and Green fluorescent protein-labeled- Microtubule-associated protein light chain 3 (GFP-LC3) plasmid transfection, while the apoptosis was detected through western blot, flow cytometry and TUNEL assay. Besides, the proteins related to ERS and mTOR were detected by western blot. Results: The low level of ASPP2 expression was accompanied by high-level autophagy and low-level apoptosis and vice versa in case of hepatocyte injury induce by TNF-α. By upregulating the proteins related to mTORC1 and ERS, ASPP2 induced apoptosis but inhibited autophagy. However, the effect of ASPP2 on autophagy and apoptosis can be reversed by the use of mTORC1 and ERS interfering agent, which indicates that ASPP2 regulated autophagy and apoptosis through mTORC1and ERS pathway. ERS treatment made no difference to the expression of ASPP2 and mTOR-related proteins, which suggests the possibility that the regulation of ERS on apoptosis and autophagy could occur in the downstream of ASPP2 and mTOR. Conclusion: ASPP2 could inhibit autophagy and induce apoptosis through mTORC1-ERS pathway in case of the hepatocyte injury induce by TNF-α. The role of ASPP2-mTORC1-ERS axis was verified in hepatocyte injury, which suggests the possibility that ASPP2 is an important regulatory molecule for the survival and death of hepatocyte.
Collapse
Affiliation(s)
- Jia Yao
- Gastroenterology Department, General Surgery Department and Gastroenterology Department, ShanxiBethuneHospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Department of Nephrology, Army Medical Center, Army Medical University, Chongqing, China
| | - Han Wang
- Gastroenterology Department, General Surgery Department and Gastroenterology Department, ShanxiBethuneHospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Yan Jiao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Ying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Hongbo Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| |
Collapse
|
26
|
Zabady S, Mahran N, Soltan MA, Alaa Eldeen M, Eid RA, Albogami S, Fayad E, Matboli M, Habib EK, Hasanin AH, A. Ali M, Mesbah NM, Abo-Elmatty DM, Abdel-Hamed AR. Cyanidin-3-Glucoside Modulates hsa_circ_0001345/miRNA106b/ATG16L1 Axis Expression as a Potential Protective Mechanism against Hepatocellular Carcinoma. Curr Issues Mol Biol 2022; 44:1677-1687. [PMID: 35723373 PMCID: PMC9164082 DOI: 10.3390/cimb44040115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of malignancy in the liver. Autophagy was found to have a significant effect in controlling HCC. Anthocyanins, which are naturally occurring pigments in a variety of fruits and vegetables, have been thoroughly documented to be involved in a variety of bioactive activities and are widely employed for their antioxidant capabilities. Cyanidin-3-glucoside (C3G) extracted from Morus alba L. has promising antioxidant and anti-tumour activities. The current study aims to examine the protective action of C3G against hepatocellular carcinoma through the investigation of the autophagy protein ATG16L1 expression along with its related RNA molecules (hsa_circ_0001345 and miRNA106b) in Wistar rats. In vivo precancerous lesions (PCL) were induced using diethylnitrosamine (DEN) and acetamidofluorene (2-AAF). Rats were treated with C3G (10, 15, and 20 mg/kg; 4 times weekly) for 112 days (16 weeks). Liver function tests, alfa fetoprotein, ATG16L1 expression, hsa_circ_0001345, and miRNA106b differential expression were examined. Liver sections were examined by histological and immunohistochemical approaches. The current study's findings indicated that C3G administration protects against the negative effects of DEN-2-AAF on liver functions and liver histopathological sections, which nominated C3G as a potential prophylactic agent against HCC.
Collapse
Affiliation(s)
- Shaimaa Zabady
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Ismailia 16020, Egypt;
| | - Nievin Mahran
- Department of Biochemistry, Faculty of Dentistry, Sinai University, Ismailia 16020, Egypt;
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 16020, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia 44519, Egypt
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 12573, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Eman K. Habib
- Faculty of Medicine, Galala University, Galala City 43511, Egypt;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Amany H. Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Mahmoud A. Ali
- Department of Molecular Microbiology, Faculty of Medicine, Armed Forces College, Cairo 11566, Egypt;
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| |
Collapse
|
27
|
Mastoridou EM, Goussia AC, Glantzounis GK, Kanavaros P, Charchanti AV. Autophagy and Exosomes: Cross-Regulated Pathways Playing Major Roles in Hepatic Stellate Cells Activation and Liver Fibrosis. Front Physiol 2022; 12:801340. [PMID: 35185602 PMCID: PMC8850693 DOI: 10.3389/fphys.2021.801340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic liver injury, regardless of the underlying disease, results in gradual alteration of the physiological hepatic architecture and in excessive production of extracellular matrix, eventually leading to cirrhosis Liver cellular architecture consists of different cell populations, among which hepatic stellate cells (HSCs) have been found to play a major role in the fibrotic process. Under normal conditions, HSCs serve as the main storage site for vitamin A, however, pathological stimuli lead to their transdifferentiation into myofibroblast cells, with autophagy being the key regulator of their activation, through lipophagy of their lipid droplets. Nevertheless, the role of autophagy in liver fibrosis is multifaceted, as increased autophagic levels have been associated with alleviation of the fibrotic process. In addition, it has been found that HSCs receive paracrine stimuli from neighboring cells, such as injured hepatocytes, Kupffer cells, sinusoidal endothelial cells, which promote liver fibrosis. These stimuli have been found to be transmitted via exosomes, which are incorporated by HSCs and can either be degraded through lysosomes or be secreted back into the extracellular space via fusion with the plasma membrane. Furthermore, it has been demonstrated that autophagy and exosomes may be concomitantly or reciprocally regulated, depending on the cellular conditions. Given that increased levels of autophagy are required to activate HSCs, it is important to investigate whether autophagy levels decrease at later stages of hepatic stellate cell activation, leading to increased release of exosomes and further propagation of hepatic fibrosis.
Collapse
Affiliation(s)
- Eleftheria M. Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Anna C. Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios K. Glantzounis
- Hepato-Pancreatico-Biliary Unit, Department of Surgery, University General Hospital of Ioannina and School of Medicine, University of Ioannina, Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Antonia V. Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- *Correspondence: Antonia V. Charchanti,
| |
Collapse
|
28
|
The Role of Macroautophagy and Chaperone-Mediated Autophagy in the Pathogenesis and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14030760. [PMID: 35159028 PMCID: PMC8833636 DOI: 10.3390/cancers14030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a major health problem with the second highest mortality among all cancers and a continuous increase worldwide. HCC is highly resistant to available chemotherapeutic agents, leaving patients with no effective therapeutic option and a poor prognosis. Although an increasing number of studies have elucidated the potential role of autophagy underlying HCC, the complete regulation is far from understood. The different forms of autophagy constitute important cell survival mechanisms that could prevent hepatocarcinogenesis by limiting hepatocyte death and the associated hepatitis and fibrosis at early stages of chronic liver diseases. On the other hand, at late stages of hepatocarcinogenesis, they could support the malignant transformation of (pre)neoplastic cells by facilitating their survival. Abstract Hepatocarcinogenesis is a long process with a complex pathophysiology. The current therapeutic options for HCC management, during the advanced stage, provide short-term survival ranging from 10–14 months. Autophagy acts as a double-edged sword during this process. Recently, two main autophagic pathways have emerged to play critical roles during hepatic oncogenesis, macroautophagy and chaperone-mediated autophagy. Mounting evidence suggests that upregulation of macroautophagy plays a crucial role during the early stages of carcinogenesis as a tumor suppressor mechanism; however, it has been also implicated in later stages promoting survival of cancer cells. Nonetheless, chaperone-mediated autophagy has been elucidated as a tumor-promoting mechanism contributing to cancer cell survival. Moreover, the autophagy pathway seems to have a complex role during the metastatic stage, while induction of autophagy has been implicated as a potential mechanism of chemoresistance of HCC cells. The present review provides an update on the role of autophagy pathways in the development of HCC and data on how the modulation of the autophagic pathway could contribute to the most effective management of HCC.
Collapse
|
29
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Chao X, Wang S, Hlobik M, Ballabio A, Ni HM, Ding WX. Loss of Hepatic Transcription Factor EB Attenuates Alcohol-Associated Liver Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:87-103. [PMID: 34717896 PMCID: PMC8747011 DOI: 10.1016/j.ajpath.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
Alcohol is a well-known risk factor for hepatocellular carcinoma. Autophagy plays a dual role in liver cancer, as it suppresses tumor initiation and promotes tumor progression. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy, which is impaired in alcohol-related liver disease. However, the role of TFEB in alcohol-associated liver carcinogenesis is unknown. Liver-specific Tfeb knockout (KO) mice and their matched wild-type (WT) littermates were injected with the carcinogen diethylnitrosamine (DEN), followed by chronic ethanol feeding. The numbers of both total and larger tumors increased significantly in DEN-treated mice fed ethanol diet than in mice fed control diet. Although the number of tumors was not different between WT and L-Tfeb KO mice fed either control or ethanol diet, the number of larger tumors was less in L-Tfeb KO mice than in WT mice. No differences were observed in liver injury, steatosis, inflammation, ductular reaction, fibrosis, and tumor cell proliferation in DEN-treated mice fed ethanol. However, the levels of glypican 3, a marker of malignant hepatocellular carcinoma, markedly decreased in DEN-treated L-Tfeb KO mice fed ethanol in comparison to the WT mice. These findings indicate that chronic ethanol feeding promotes DEN-initiated liver tumor development, which is attenuated by genetic deletion of hepatic TFEB.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shaogui Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Madeline Hlobik
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
31
|
Sun J, Li Y, Yang X, Dong W, Yang J, Hu Q, Zhang C, Fang H, Liu A. Growth differentiation factor 11 accelerates liver senescence through the inhibition of autophagy. Aging Cell 2022; 21:e13532. [PMID: 34905649 PMCID: PMC8761011 DOI: 10.1111/acel.13532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The “rejuvenating” effect of growth differentiation factor 11 (GDF11) is called into question recently, and its role, as well as plausible signaling mechanisms in liver senescence, is unclear. To overexpress or knockdown GDF11, aged male mice are injected with a single dose of adeno‐associated viruses‐GDF11 or adenovirus‐small hairpin RNA‐GDF11, respectively. GDF11 overexpression significantly accelerates liver senescence in aged mice, whereas GDF11 knockdown has opposite effects. Concomitantly, autophagic flux is impaired in livers from GDF11 overexpression mice. Conversely, GDF11 knockdown increases autophagic flux. Moreover, rapamycin successfully restores the impaired autophagic flux and alleviates liver senescence in GDF11 overexpression mice, while the GDF11 knockdown‐mediated benefits are abolished by the autophagy inhibitor bafilomycin A1. GDF11 leads to a drop in lysosomal biogenesis resulting in defective autophagic flux at autophagosome clearance step. Mechanistically, GDF11 significantly activates mammalian target of rapamycin complex 1 (mTORC1) and subsequently represses transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. Inhibition of mTORC1 or TFEB overexpression rescues the GDF11‐impaired autophagic flux and cellular senescence. Hepatocyte‐specific deletion of GDF11 does not alter serum GDF11 levels and liver senescence. Collectively, suppression of autophagic activity via mTORC1/TFEB signaling may be a critical molecular mechanism by which GDF11 exacerbates liver senescence. Rather than a “rejuvenating” agent, GDF11 may have a detrimental effect on liver senescence.
Collapse
Affiliation(s)
- Jian Sun
- Department of Biliopancreatic Surgery Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
| | - Ying Li
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Xiao Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Wei Dong
- Hepatic Surgery Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary Diseases Hubei Clinical Medicine Research Center of Hepatic Surgery Wuhan, Hubei China
- Key Laboratory of Organ Transplantation,Ministry of Education;NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan, Hubei China
| | - Jiankun Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Qi Hu
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Cuntai Zhang
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Haoshu Fang
- Department of Pathophysiology Anhui Medical University Hefei, Anhui China
| | - Anding Liu
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| |
Collapse
|
32
|
Hypothyroidism-Associated Dyslipidemia: Potential Molecular Mechanisms Leading to NAFLD. Int J Mol Sci 2021; 22:ijms222312797. [PMID: 34884625 PMCID: PMC8657790 DOI: 10.3390/ijms222312797] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones control lipid metabolism by exhibiting specific effects on the liver and adipose tissue in a coordinated manner. Different diseases of the thyroid gland can result in hypothyroidism. Hypothyroidism is frequently associated with dyslipidemia. Hypothyroidism-associated dyslipidemia subsequently results in intrahepatic accumulation of fat, leading to nonalcoholic fatty liver disease (NAFLD), which leads to the development of hepatic insulin resistance. The prevalence of NAFLD in the western world is increasing, and evidence of its association with hypothyroidism is accumulating. Since hypothyroidism has been identified as a modifiable risk factor of NAFLD and recent data provides evidence that selective thyroid hormone receptor β (THR-β) agonists are effective in the treatment of dyslipidemia and NAFLD, interest in potential therapeutic options for NAFLD targeting these receptors is growing. In this review, we summarize current knowledge regarding clinical and molecular data exploring the association of hypothyroidism, dyslipidemia and NAFLD.
Collapse
|
33
|
Yang SC. A New Perspective on Fish Oil: The Prevention of Alcoholic Liver Disease. J Oleo Sci 2021; 70:1531-1538. [PMID: 34732632 DOI: 10.5650/jos.ess21216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanisms of alcoholic liver diseases (ALD) are very complex and interrelated, including abnormal lipid metabolism, oxidative stress, and gut-derived endotoxin pathway. On the other hand, fish oil is rich in n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which decrease blood triglyceride concentration in hypertriglycemia patients and show protective effects against fatty liver. However, there is limited evidence from studies of the relationship between fish oil and ALD based on the viewpoint of the intestinal integrity and microflora. Therefore, this review discusses the mechanism of amelioration for ALD by fish oil. Based on our previous studies, partial replacement of olive oil by fish oil in alcohol-containing liquid diet ameliorated the liver damage including fatty liver and inflammation in rats. Based on these results, the mechanisms of hepatoprotective effects due to fish oil substitution were discussed in three parts, such as regulating lipid metabolism, decreasing oxidative stress and maintaining intestinal health. First of all, we found that fish oil substitution increased plasma adiponectin levels, and then increasing MCAD and CPT-1 mRNA levels to accelerate fatty acid oxidation in liver, then further prevent ethanol-induced hepatosteatosis in rats with chronic alcohol-feeding. Fish oil replacement also enhanced hepatic autophagy flux, which enhanced lipid degradation, then inhibited lipid accumulation in liver. Secondly, the appreciable proportion of fish oil decreased lipid peroxidation by reducing the protein expression of cytochrome p450 2E1 in chronic alcohol-feeding rats. We also speculated that the appropriate proportion of n-6 and n-3 PUFAs is very important for preventing alcoholic liver disease. At last, substituting fish oil for olive oil normalized the intestinal permeability and fecal microbiota composition, thus providing a low plasma endotoxin level and inflammatory responses, which exert ameliorative effects on ethanol-induced liver injuries in rats.
Collapse
Affiliation(s)
- Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University.,Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University.,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University.,School of Gerontology Health Management, College of Nursing, Taipei Medical University.,Nutrition Research Center, Taipei Medical University Hospital
| |
Collapse
|
34
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
35
|
Luo P, Yan H, Du J, Chen X, Shao J, Zhang Y, Xu Z, Jin Y, Lin N, Yang B, He Q. PLK1 (polo like kinase 1)-dependent autophagy facilitates gefitinib-induced hepatotoxicity by degrading COX6A1 (cytochrome c oxidase subunit 6A1). Autophagy 2021; 17:3221-3237. [PMID: 33315519 PMCID: PMC8526032 DOI: 10.1080/15548627.2020.1851492] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
Liver dysfunction is an outstanding dose-limiting toxicity of gefitinib, an EGFR (epidermal growth factor receptor)-tyrosine kinase inhibitor (TKI), in the treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). We aimed to elucidate the mechanisms underlying gefitinib-induced hepatotoxicity, and provide potentially effective intervention strategy. We discovered that gefitinib could sequentially activate macroautophagy/autophagy and apoptosis in hepatocytes. The inhibition of autophagy alleviated gefitinib-induced apoptosis, whereas the suppression of apoptosis failed to lessen gefitinib-induced autophagy. Moreover, liver-specific Atg7+/- heterozygous mice showed less severe liver injury than vehicle, suggesting that autophagy is involved in the gefitinib-promoted hepatotoxicity. Mechanistically, gefitinib selectively degrades the important anti-apoptosis factor COX6A1 (cytochrome c oxidase subunit 6A1) in the autophagy-lysosome pathway. The gefitinib-induced COX6A1 reduction impairs mitochondrial respiratory chain complex IV (RCC IV) function, which in turn activates apoptosis, hence causing liver injury. Notably, this autophagy-promoted apoptosis is dependent on PLK1 (polo like kinase 1). Both AAV8-mediated Plk1 knockdown and PLK1 inhibitor BI-2536 could mitigate the gefitinib-induced hepatotoxicity in vivo by abrogating the autophagic degradation of the COX6A1 protein. In addition, PLK1 inhibition could not compromise the anti-cancer activity of gefitinib. In conclusion, our findings reveal the gefitinib-hepatotoxicity pathway, wherein autophagy promotes apoptosis through COX6A1 degradation, and highlight pharmacological inhibition of PLK1 as an attractive therapeutic approach toward improving the safety of gefitinib-based cancer therapy.Abbreviations: 3-MA: 3-methyladenine; AAV8: adeno-associated virus serotype 8; ATG5: autophagy related 5; ATG7: autophagy related 7; B2M: beta-2-microglobulin; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CHX: cycloheximide; COX6A1: cytochrome c oxidase subunit 6A1; c-PARP: cleaved poly(ADP-ribose) polymerase; CQ: chloroquine; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; HBSS: Hanks´ balanced salt solution; H&E: hematoxylin and eosin; MAP1LC3/LC3: microtubule associated proteins 1 light chain 3; PLK1: polo like kinase 1; RCC IV: respiratory chain complex IV; ROS: reactive oxygen species; TUBB8: tubulin beta 8 class VIII.
Collapse
Affiliation(s)
- Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiangxia Du
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xueqin Chen
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People´s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjin Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhifei Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Jin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Laboratory of Clinical Pharmacology, Affiliated Hangzhou First People´s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
耿 梦, 王 李, 章 尧, 裴 文, 漆 梦, 杨 梦, 许 家, 梁 洋, 吕 坤, 何 春, 高 家. [Lysosomal membrane protein Sidt2 deletion impairs autophagy in human hepatocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1207-1213. [PMID: 34549712 PMCID: PMC8527224 DOI: 10.12122/j.issn.1673-4254.2021.08.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the effect of lysosomal membrane protein Sidt2 deletion on autophagy in human hepatocytes. METHODS Crispr-Cas9 technology was used to construct a human hepatocyte (HL7702) model of Sidt2 knockout (Sidt2-/-), and the expression levels of the key autophagy proteins LC3II/I, P62 and autophagy-related proteins Atg5, Atg7, and Atg12 were detected.The co-localization of LC3B and P62 in the cells were analyzed with immunofluorescence assay to assess the identification and storage of P62 cargo proteins by the autophagosomes and the degradation of the autophagolysosomes.The co-localization of LC3B and LAMP1 was also determined with immunofluorescence assay to detect the fusion of the autophagosomes with the lysosomes, and LysoTracker was used to trace the acidic lysosomes. RESULTS We successfully constructed a HL7702 cell model of Sidt2+/+ and Sidt2-/-, and compared with Sidt2+/+ cells, the Sidt2-/- cell model showed significantly increased expressions of LC3-II/I and P62 (P < 0.01).Immunofluorescence assay showed a significant increase of LC3B and P62 expressions (P < 0.001) and obviously lowered expressions of Atg5, Atg7, and Atg12 in Sidt2-/- cells (P < 0.05).The co-localization of LC3B and P62 and that of LC3B and LAMP1 were both reduced and the number of acidic lysosomes was significantly lowered in Sidt2-/- cells (P < 0.05). CONCLUSION Sidt2 gene deletion disturbs the recognition and sequestration of P62 cargo protein by autophagosomes in human hepatocytes.At the same time, the decreased number of acidic lysosomes and the dysfunction of autophagosome and lysosome fusion cause the block of the autophagy-lysosome pathway, leading eventually to LC3B and P62 accumulation and impaired autophagy in the hepatocytes.
Collapse
Affiliation(s)
- 梦雅 耿
- 皖南医学院弋矶山医院内分泌科, 安徽 芜湖 241002Department of Endocrinology and Genetic Metabolism, Wannan Medical College, Wuhu 241002, China
- 皖南医学院弋矶山医院内分泌糖尿病研究所, 安徽 芜湖 241002Institute of Endocrine and Metabolic Diseases, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 李卓 王
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
- 皖南医学院基础医学院生化教研室, 安徽 芜湖 241002Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China
| | - 尧 章
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
- 皖南医学院基础医学院生化教研室, 安徽 芜湖 241002Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China
| | - 文俊 裴
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
| | - 梦湘 漆
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 梦 杨
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 家豪 许
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 洋洋 梁
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 坤 吕
- 皖南医学院中心实验室, 安徽 芜湖 241002Central Laboratory, Wannan Medical College, Wuhu 241002, China
- 皖南医学院重大疾病非编码RNA转化研究安徽普通高校重点实验室, 安徽 芜湖 241002Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu 241002, China
| | - 春玲 何
- 皖南医学院弋矶山医院内分泌科, 安徽 芜湖 241002Department of Endocrinology and Genetic Metabolism, Wannan Medical College, Wuhu 241002, China
| | - 家林 高
- 皖南医学院弋矶山医院内分泌科, 安徽 芜湖 241002Department of Endocrinology and Genetic Metabolism, Wannan Medical College, Wuhu 241002, China
- 皖南医学院弋矶山医院内分泌糖尿病研究所, 安徽 芜湖 241002Institute of Endocrine and Metabolic Diseases, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
37
|
Xiong Y, Huang J. Anti-malarial drug: the emerging role of artemisinin and its derivatives in liver disease treatment. Chin Med 2021; 16:80. [PMID: 34407830 PMCID: PMC8371597 DOI: 10.1186/s13020-021-00489-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Artemisinin and its derivatives belong to a family of drugs approved for the treatment of malaria with known clinical safety and efficacy. In addition to its anti-malarial effect, artemisinin displays anti-viral, anti-inflammatory, and anti-cancer effects in vivo and in vitro. Recently, much attention has been paid to the therapeutic role of artemisinin in liver diseases. Several studies suggest that artemisinin and its derivatives can protect the liver through different mechanisms, such as those pertaining to inflammation, proliferation, invasion, metastasis, and induction of apoptosis and autophagy. In this review, we provide a comprehensive discussion of the underlying molecular mechanisms and signaling pathways of artemisinin and its derivatives in treating liver diseases. Further pharmacological research will aid in determining whether artemisinin and its derivatives may serve as promising medicines for the treatment of liver diseases in the future. ![]()
Collapse
Affiliation(s)
- Ye Xiong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jianrong Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
38
|
Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells 2021; 10:cells10071764. [PMID: 34359934 PMCID: PMC8305108 DOI: 10.3390/cells10071764] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.
Collapse
|
39
|
PPAR γ Plays an Important Role in Acute Hepatic Ischemia-Reperfusion Injury via AMPK/mTOR Pathway. PPAR Res 2021; 2021:6626295. [PMID: 34285690 PMCID: PMC8275421 DOI: 10.1155/2021/6626295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hepatic ischemia-reperfusion (IR) injury is one of the severe complications associated with liver surgery and leads to liver dysfunction. PPARγ is always linked with various physiologic pathways, and it can alleviate liver damage in IR injury. Aim In this study, we explored the potential mechanism of PPARγ in the pathogenesis of hepatic IR injury by mice model. Methods After treated with si-PPARγ or rosiglitazone, mice were subjected to hepatic ischemia-reperfusion. Liver tissue and blood samples were collected to evaluate liver injury and detected relative mRNA and protein expressions. Results The expression of PPARγ was increased after reperfusion. And the alleviation of PPARγ aggravated the liver damage in IR; at the same time, upregulation of the expression of PPARγ released the liver damage. And these effects of PPARγ in IR were related to the AMPK/mTOR/autophagy signaling pathway. Conclusion PPARγ plays an important role in hepatic IR injury at least partly via the AMPK/mTOR/autophagy pathway.
Collapse
|
40
|
Qian H, Chao X, Williams J, Fulte S, Li T, Yang L, Ding WX. Autophagy in liver diseases: A review. Mol Aspects Med 2021; 82:100973. [PMID: 34120768 DOI: 10.1016/j.mam.2021.100973] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The liver is a highly dynamic metabolic organ that plays critical roles in plasma protein synthesis, gluconeogenesis and glycogen storage, cholesterol metabolism and bile acid synthesis as well as drug/xenobiotic metabolism and detoxification. Research from the past decades indicate that autophagy, the cellular catabolic process mediated by lysosomes, plays an important role in maintaining cellular and metabolic homeostasis in the liver. Hepatic autophagy fluctuates with hormonal cues and the availability of nutrients that respond to fed and fasting states as well as circadian activities. Dysfunction of autophagy in liver parenchymal and non-parenchymal cells can lead to various liver diseases including non-alcoholic fatty liver diseases, alcohol associated liver disease, drug-induced liver injury, cholestasis, viral hepatitis and hepatocellular carcinoma. Therefore, targeting autophagy may be a potential strategy for treating these various liver diseases. In this review, we will discuss the current progress on the understanding of autophagy in liver physiology. We will also discuss several forms of selective autophagy in the liver and the molecular signaling pathways in regulating autophagy of different cell types and their implications in various liver diseases.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Jessica Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Sam Fulte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
41
|
Zhang YP, Yang XQ, Yu DK, Xiao HY, Du JR. Nrf2 signalling pathway and autophagy impact on the preventive effect of green tea extract against alcohol-induced liver injury. J Pharm Pharmacol 2021; 73:986-995. [PMID: 33877365 DOI: 10.1093/jpp/rgab027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To explore the potential molecular mechanism underlying the effect of green tea extract (TE), rich in tea polyphenols (TPs), on improving alcohol-induced liver injury. METHODS Mice were intragastrically treated with 50% (v/v) alcohol administration (15 ml/kg BW) with or without three doses of TE (50, 120 and 300 mg TPs/kg BW) daily for 4 weeks, and biological changes were tested. KEY FINDINGS The TE improved the functional and histological situations in the liver of the mice accepted alcohol administration, including enzymes for alcohol metabolism, oxidative stress and lipid accumulation. Interestingly, the TE increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), with the decreasing expression of kelch-like ECH-associated protein 1 (Keap1), indicating the association between the effect of TE with Nrf2-mediated antioxidant signalling. Moreover, the TE restored the activity of autophagy, showing as lifted Beclin-1 expression, LC3B-II/LC3B-I ratio, and decreased p62 expression. Importantly, all these effects were dose-dependent. CONCLUSIONS These findings provide a new notion for the first time that the TE preventing against alcohol-induced liver injury is closely related to accelerated metabolism of alcohol and relieved oxidative stress, which is associated with Nrf2 signalling activation and autophagy restoration, thus the reduction of lipid accumulation in liver.
Collapse
Affiliation(s)
- Yu-Pei Zhang
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xue-Qin Yang
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dong-Ke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Heng-Yi Xiao
- Laboratory of Aging Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Rong Du
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Hepatoprotective effect of anemoside B4 against sepsis-induced acute liver injury through modulating the mTOR/p70S6K-mediated autophagy. Chem Biol Interact 2021; 345:109534. [PMID: 34051206 DOI: 10.1016/j.cbi.2021.109534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Sepsis triggers liver dysfunction with high morbidity and mortality. Here, we elucidated the effect of anemoside B4 on sepsis in cecal ligation and puncture (CLP)-induced mouse model and LPS-induced primary hepatocytes. Following CLP surgery, septic mice were intraperitoneally injected with anemoside B4 (50 or 100 mg/kg). Anemoside B4 improved septic mouse survival rate, decreased serum AST and ALT levels and attenuated liver histopathologic damages. Western blot analysis showed that anemoside B4 elevated the expression of Beclin-1, LC3II/LC3I, Atg3, Atg5, and Atg7, and reduced p62, suggesting the restoration of autophagy flux in liver. More autophagic vesicles were observed in liver after anemoside B4 treatment using transmission electron microscopy. Using ELISA and commercial enzyme kits, we found that anemoside B4 decreased serum TNF-α, IL-6, and IL-1β levels and increased CAT, SOD and GSH activities. TUNEL staining and western blot revealed that anemoside B4 suppressed cell apoptosis, along with decreased Bax, leaved caspase-3, cleaved PARP, but increased Bcl-2. Consistent with in vivo findings, anemoside B4 inhibited apoptosis, inflammatory response, and oxidative stress and enhanced autophagy in LPS-induced primary hepatocytes. Importantly, these cellular processes were possibly mediated by mTOR/p70S6K signaling, as reflected by the offset of 3-MA in the immunosuppression of anemoside B4.
Collapse
|
43
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
44
|
Wu S, Lu H, Wang W, Song L, Liu M, Cao Y, Qi X, Sun J, Gong L. Prevention of D-GalN/LPS-induced ALI by 18β-glycyrrhetinic acid through PXR-mediated inhibition of autophagy degradation. Cell Death Dis 2021; 12:480. [PMID: 33986260 PMCID: PMC8119493 DOI: 10.1038/s41419-021-03768-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Acute liver injury (ALI) has multiple causes and results in liver dysfunction. Severe or persistent liver injury eventually leads to liver failure and even death. Pregnane X receptor (PXR)-null mice present more severe liver damage and lower rates of autophagy. 18β-glycyrrhetinic acid (GA) has been proposed as a promising hepatoprotective agent. We hypothesized that GA significantly alleivates D-GalN/LPS-induced ALI, which involved in PXR-mediated autophagy and lysosome biogenesis. We found that GA can significantly decrease hepatocyte apoptosis and increase the hepatic autophagy marker LC3-B. Ad-mCherry-GFP-LC3 tandem fluorescence, RNA-seq and real-time PCR indicated that GA may stabilize autophagosomes and lysosomes and inhibit autophagosome-lysosome fusion. Simultaneously, GA markedly activates PXR, even reversing the D-GalN/LPS-induced reduction of PXR and its downstream genes. In contrast, GA has a weak protective effect in pharmacological inhibition of PXR and PXR-null mice, which significantly affected apoptosis- and autophagy-related genes. PXR knockout interferes with the stability of autophagosomes and lysosomes, preventing GA reducing the expression of lysosomal genes such as Cst B and TPP1, and suppressing autophagy flow. Therefore, we believe that GA increases autophagy by inhibiting autophagosome-lysosome fusion and blocked autophagy flux via activation of PXR. In conclusion, our results show that GA activates PXR to regulate autophagy and lysosome biogenesis, represented by inhibiting autophagosome-lysosome fusion and stabilization of lysosome. These results identify a new mechanism by which GA-dependent PXR activation reduces D-GalN/LPS-induced acute liver injury.
Collapse
Affiliation(s)
- Shouyan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Henglei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjie Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Pharmacology, Fudan University, Shanghai, 201203, China
| | - Luyao Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Branch, the Institute of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
45
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Qiu Y, Wang J, Li H, Yang B, Wang J, He Q, Weng Q. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease. Autophagy 2021; 18:73-85. [PMID: 33783320 DOI: 10.1080/15548627.2021.1908722] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a highly conserved process in eukaryotic cells. It plays a critical role in cellular homeostasis by delivering cytoplasmic cargos to lysosomes for selective degradation. OPTN (optineurin), a well-recognized autophagy receptor, has received considerable attention due to its multiple roles in the autophagic process. OPTN is associated with many human disorders that are closely related to autophagy, such as rheumatoid arthritis, osteoporosis, and nephropathy. Here, we review the function of OPTN as an autophagy receptor at different stages of autophagy, focusing on cargo recognition, autophagosome formation, autophagosome maturation, and lysosomal quality control. OPTN tends to be protective in most autophagy associated diseases, though the molecular mechanism of OPTN regulation in these diseases is not well understood. A comprehensive review of the function of OPTN in autophagy provides valuable insight into the pathogenesis of human diseases related to OPTN and facilitates the discovery of potential key regulators and novel therapeutic targets for disease intervention in patients with autophagic diseases.Abbreviations: ATG: autophagy-related; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; HACE1: HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; MYO6: myosin VI; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: IκB kinase; LIR: LC3-interacting region; LZ: leucine zipper; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NFKB/NF-κB: nuclear factor kappa B subunit; OPTN: optineurin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RTECs: renal tubular epithelial cells; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TOM1: target of myb1 membrane trafficking protein; UBD: ubiquitin-binding domain; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; ZF: zinc finger.
Collapse
Affiliation(s)
- Yueping Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Zhu W, Li J, Zhang Y, Zhu Z, Liu H, Lin Y, Hu A, Zhou J, Ren H, Shi X. Inhibition of HMGB1 Suppresses Hepatocellular Carcinoma Progression via HIPK2-Mediated Autophagic Degradation of ZEB1. Front Oncol 2021; 11:599124. [PMID: 33747917 PMCID: PMC7969871 DOI: 10.3389/fonc.2021.599124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Autophagy is a conserved catabolic process maintaining cellular homeostasis and reportedly plays a critical role in tumor progression. Accumulating data show that autophagic activity is inhibited in hepatocellular carcinoma. However, the underlying molecular basis of impaired autophagy in HCC remains unclear. In this study, we revealed that autophagic activity was suppressed by HMGB1 in a HIPK2-dependent way. Targeting HMGB1 could inhibit the degradation of HIPK2, as a result of which, autophagic degradation of ZEB1 was enhanced by reprogramming glucose metabolism/AMPK/mTOR axis. Moreover, we demonstrated that selectively degradation of ZEB1 was responsible for HCC growth inhibition in HMGB1 deficient cells. Lastly, we found the combination therapy of HMGB1 inhibitor and rapamycin achieved a better anti-HCC effect. These results demonstrate that impaired autophagy is controlled by HMGB1 and targeting HMGB1 could suppress HCC progression via HIPK2-mediated autophagic degradation of ZEB1.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuheng Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanyi Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yunzhen Lin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Anyin Hu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingchao Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
48
|
Zhao M, Ying L, Wang R, Yao J, Zhu L, Zheng M, Chen Z, Yang Z. DHX15 Inhibits Autophagy and the Proliferation of Hepatoma Cells. Front Med (Lausanne) 2021; 7:591736. [PMID: 33644083 PMCID: PMC7904900 DOI: 10.3389/fmed.2020.591736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly conserved process by which superfluous or harmful components in eukaryotic cells are degraded by autophagosomes. This cytoprotective mechanism is strongly related to various human diseases, such as cancer, autoimmune diseases, and diabetes. DEAH-box helicase 15 (DHX15), a member of the DEAH box family, is mainly involved in RNA splicing and ribosome maturation. Recently, DHX15 was identified as a tumor-related factor. Although both autophagy and DHX15 are involved in cellular metabolism and cancer progression, their exact relationship and mechanism remain elusive. In this study, we discovered a non-classic function of DHX15 and identified DHX15 as a suppressive protein in autophagy for the first time. We further found that mTORC1 is involved in DHX15-mediated regulation of autophagy and that DHX15 inhibits proliferation of hepatocellular carcinoma (HCC) cells by suppressing autophagy. In conclusion, our study demonstrates a non-classical function of DHX15 as a negative regulator of autophagy related to the mTORC1 pathway and reveals that DHX15-related autophagy dysfunction promotes HCC cell proliferation, indicating that DHX15 may be a target for liver cancer treatment.
Collapse
Affiliation(s)
- Miaomiao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lixiong Ying
- Pathology Department, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Rusha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liming Zhu
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhi Chen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
49
|
Han B, He C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol Res 2021; 166:105428. [PMID: 33540047 DOI: 10.1016/j.phrs.2021.105428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Autophagy is a ubiquitous mechanism for maintaining cellular homeostasis through the degradation of long-lived proteins, insoluble protein aggregates, and superfluous or damaged organelles. Dysfunctional autophagy is observed in a variety of human diseases. With advanced research into the role that autophagy plays in physiological and pathological conditions, targeting autophagy is becoming a novel tactic for disease management. Saponins are naturally occurring glycosides containing triterpenoids or steroidal sapogenins as aglycones, and some saponins are reported to modulate autophagy. Research suggests that saponins may have therapeutic and preventive efficacy against many autophagy-related diseases. Therefore, this review comprehensively summarizes and discusses the reported saponins that exhibit autophagy regulating activities. In addition, the relevant signaling pathways that the mechanisms involved in regulating autophagy and the targeted diseases were also discussed. By regulating autophagy and related pathways, saponins exhibit bioactivities against cancer, neurodegenerative diseases, atherosclerosis and other cardiac diseases, kidney diseases, liver diseases, acute pancreatitis, and osteoporosis. This review provides an overview of the autophagy-regulating activity of saponins, the underlying mechanisms and potential applications for managing various diseases.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|
50
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|