1
|
Aoki K, Ishitani T. Mechanical force-driven cell competition ensures robust morphogen gradient formation. Semin Cell Dev Biol 2025; 170:103607. [PMID: 40220598 DOI: 10.1016/j.semcdb.2025.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Morphogen gradients provide positional data and maintain tissue patterns by instructing cells to adopt distinct fates. In contrast, morphogen gradient-forming tissues undergo dynamic morphogenetic movements that generate mechanical forces and can disturb morphogen signal transduction. However, the interactions between morphogen gradients and these forces remain largely unknown. In this study, we described how mechanical force-mediated cell competition corrects noisy morphogen gradients to ensure robust tissue patterns. The Wnt/β-catenin morphogen gradient-that patterns the embryonic anterior-posterior axis-generates cadherin-actomyosin interaction-mediated intercellular tension gradients-termed mechano-gradients. Naturally generated unfit cells that produce noisy Wnt/β-catenin gradients induce local deformation of the mechano-gradients. Neighboring fit cells sense this deformation, resulting in the activation of Piezo family mechanosensitive calcium channels and secretion of annexinA1, which specifically kills unfit cells to recover morphogen gradients. Therefore, mechanical force-mediated cell competition between the morphogen-receiver cells supports robust gradient formation. Additionally, we discuss the potential roles of mechanical force-driven cell competition in other contexts, including organogenesis and cancer.
Collapse
Affiliation(s)
- Kana Aoki
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Ya A, Deng C, Godek KM. Cell competition eliminates aneuploid human pluripotent stem cells. Stem Cell Reports 2025:102506. [PMID: 40409259 DOI: 10.1016/j.stemcr.2025.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/25/2025] Open
Abstract
Human pluripotent stem cells (hPSCs) maintain diploid populations for generations despite frequent mitotic errors that cause aneuploidy or chromosome imbalances. Consequently, aneuploid hPSC propagation must be prevented to sustain genome stability, but how this is achieved is unknown. Surprisingly, we find that, unlike somatic cells, uniformly aneuploid hPSC populations with heterogeneous abnormal karyotypes proliferate. Instead, in mosaic populations, cell-non-autonomous competition between neighboring diploid and aneuploid hPSCs eliminates less fit aneuploid cells, regardless of specific chromosome imbalances. Aneuploid hPSCs with lower MYC or higher p53 levels relative to diploid neighbors are outcompeted but conversely gain an advantage when MYC and p53 relative abundance switches. Thus, MYC- and p53-driven cell competition preserves hPSC genome integrity despite their low mitotic fidelity and intrinsic capacity to proliferate with an aneuploid genome. These findings have important implications for using hPSCs in regenerative medicine and for how diploid human embryos form during development despite the prevalence of aneuploidy.
Collapse
Affiliation(s)
- Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
3
|
Day NJ, Michalowska J, Kelkar M, Vallardi G, Charras G, Lowe AR. Spatial and temporal signatures of cell competition revealed by K-function analysis. Mol Biol Cell 2025; 36:ar61. [PMID: 40137871 DOI: 10.1091/mbc.e24-10-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Cell competition is often categorized into mechanical competition, during which loser cell elimination is induced by long-range mechanical effects, and biochemical competition, during which loser cell elimination results from direct cell-cell contacts. Before confluence, proliferation of winner cells has often been hypothesized to govern competition. Conversely, elimination of loser cells is thought to induce cell proliferation in its vicinity. However, causality is challenging to establish. To address this, we compute spatiotemporal signatures of competitive interactions using K-function clustering analysis. For this, we acquire long-term time lapses of two examples of mechanical (ScrKD) and biochemical (RasV12) competition. We then segment cells, track them, and detect mitoses as well as eliminations. Finally, we perform K-function clustering to highlight spatiotemporal regions in which wild-type cell proliferation is enhanced or repressed around an elimination event. Our analysis reveals striking differences between the two types of competition. In the ScrKD competition, elimination seems driven by diffuse proliferation that does not cluster near the immediate elimination site. In contrast, RasV12 cell elimination is preceded by clustered proliferation of wild-type cells in the vicinity of the eventual RasV12 extrusion. Following loser elimination, an increase in local wild-type cell proliferation is observed in both competitions, although the timing and duration of these responses vary. This study not only sheds light on the diverse mechanisms of cell competition but also underscores the complexity of cellular interactions in tissue dynamics, providing new perspectives on cellular quality control and a new quantitative approach to characterize these interactions.
Collapse
Affiliation(s)
- Nathan J Day
- Institute for the Physics of Living Systems, University College London, London, United Kingdom WC1E 6BT
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom WC1E 6BT
| | - Jasmine Michalowska
- Institute for the Physics of Living Systems, University College London, London, United Kingdom WC1E 6BT
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom WC1E 6BT
- London Centre for Nanotechnology, University College London, London, United Kingdom WC1H 0AH
| | - Manasi Kelkar
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom WC1E 6BT
- London Centre for Nanotechnology, University College London, London, United Kingdom WC1H 0AH
| | - Giulia Vallardi
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom WC1E 6BT
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6BT
| | - Guillaume Charras
- Institute for the Physics of Living Systems, University College London, London, United Kingdom WC1E 6BT
- London Centre for Nanotechnology, University College London, London, United Kingdom WC1H 0AH
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6BT
| | - Alan R Lowe
- Institute for the Physics of Living Systems, University College London, London, United Kingdom WC1E 6BT
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom WC1E 6BT
- London Centre for Nanotechnology, University College London, London, United Kingdom WC1H 0AH
- Alan Turing Institute, London, United Kingdom
| |
Collapse
|
4
|
Nair V, Demitri C, Thankam FG. Competitive signaling and cellular communications in myocardial infarction response. Mol Biol Rep 2025; 52:129. [PMID: 39820809 PMCID: PMC11739196 DOI: 10.1007/s11033-025-10236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress. The overlapping communication pathways of Wnt/β-catenin, Notch, and c-Kit exhibit the involvement of important factors in cell competition in the myocardium. Depending on the effects of these pathways on genetic expression and signal amplification, the proliferative capacities of the previously stated cells that make up the myocardium, amplify or diminish. This creates a distinct classification of "fit" and "unfit" cells. Beyond straightforward traits, the intricate metabolite interactions between neighboring cells unveil a complex battle. Strategic manipulation of these pathways holds translational promise for rapid cardiac recovery post-trauma.
Collapse
Affiliation(s)
- Vishnu Nair
- Department of Molecular, Cell, & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
5
|
Soares CC, Rizzo A, Maresma MF, Meier P. Autocrine glutamate signaling drives cell competition in Drosophila. Dev Cell 2024; 59:2974-2989.e5. [PMID: 39047739 DOI: 10.1016/j.devcel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cell competition is an evolutionarily conserved quality control process that eliminates suboptimal or potentially dangerous cells. Although differential metabolic states act as direct drivers of competition, how these are measured across tissues is not understood. Here, we demonstrate that vesicular glutamate transporter (VGlut) and autocrine glutamate signaling are required for cell competition and Myc-driven super-competition in the Drosophila epithelia. We find that the loss of glutamate-stimulated VGlut>NMDAR>CaMKII>CrebB signaling triggers loser status and cell death under competitive settings via the autocrine induction of TNF. This in turn drives TNFR>JNK activation, triggering loser cell elimination and PDK/LDH-dependent metabolic reprogramming. Inhibiting caspases or preventing loser cells from transferring lactate to their neighbors nullifies cell competition. Further, in a Drosophila model for premalignancy, Myc-overexpressing clones co-opt this signaling circuit to acquire super-competitor status. Targeting glutamate signaling converts Myc "super-competitor" clones into "losers," highlighting new therapeutic opportunities to restrict the evolution of fitter clones.
Collapse
Affiliation(s)
- Carmo Castilho Soares
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Alberto Rizzo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Marta Forés Maresma
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
6
|
Shimizu D, Miura A, Mori M. The perspective for next-generation lung replacement therapies: functional whole lung generation by blastocyst complementation. Curr Opin Organ Transplant 2024; 29:340-348. [PMID: 39150364 DOI: 10.1097/mot.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW Blastocyst complementation represents a promising frontier in next-generation lung replacement therapies. This review aims to elucidate the future prospects of lung blastocyst complementation within clinical settings, summarizing the latest studies on generating functional lungs through this technique. It also explores and discusses host animal selection relevant to interspecific chimera formation, a challenge integral to creating functional human lungs via blastocyst complementation. RECENT FINDINGS Various gene mutations have been utilized to create vacant lung niches, enhancing the efficacy of donor cell contribution to the complemented lungs in rodent models. By controlling the lineage to induce gene mutations, chimerism in both the lung epithelium and mesenchyme has been improved. Interspecific blastocyst complementation underscores the complexity of developmental programs across species, with several genes identified that enhance chimera formation between humans and other mammals. SUMMARY While functional lungs have been generated via intraspecies blastocyst complementation, the generation of functional interspecific lungs remains unrealized. Addressing the challenges of controlling the host lung niche and selecting host animals relevant to interspecific barriers between donor human and host cells is critical to enabling the generation of functional humanized or entire human lungs in large animals.
Collapse
Affiliation(s)
- Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Hasegawa K, Zhao Y, Garbuzov A, Corces MR, Neuhöfer P, Gillespie VM, Cheung P, Belk JA, Huang YH, Wei Y, Chen L, Chang HY, Artandi SE. Clonal inactivation of TERT impairs stem cell competition. Nature 2024; 632:201-208. [PMID: 39020172 PMCID: PMC11291281 DOI: 10.1038/s41586-024-07700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Alina Garbuzov
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Patrick Neuhöfer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria M Gillespie
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peggie Cheung
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Ya A, Deng C, Godek KM. Cell Competition Eliminates Aneuploid Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593217. [PMID: 38766106 PMCID: PMC11100710 DOI: 10.1101/2024.05.08.593217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Human pluripotent stem cells (hPSCs) maintain diploid populations for generations despite a persistently high rate of mitotic errors that cause aneuploidy, or chromosome imbalances. Consequently, to maintain genome stability, aneuploidy must inhibit hPSC proliferation, but the mechanisms are unknown. Here, we surprisingly find that homogeneous aneuploid populations of hPSCs proliferate unlike aneuploid non-transformed somatic cells. Instead, in mosaic populations, cell non-autonomous competition between neighboring diploid and aneuploid hPSCs eliminates less fit aneuploid cells. Aneuploid hPSCs with lower Myc or higher p53 levels relative to diploid neighbors are outcompeted but conversely gain a selective advantage when Myc and p53 relative abundance switches. Thus, although hPSCs frequently missegregate chromosomes and inherently tolerate aneuploidy, Myc- and p53-driven cell competition preserves their genome integrity. These findings have important implications for the use of hPSCs in regenerative medicine and for how diploid human embryos are established despite the prevalence of aneuploidy during early development.
Collapse
Affiliation(s)
- Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Lead contact
| |
Collapse
|
9
|
Li-Bao L, Díaz-Díaz C, Raiola M, Sierra R, Temiño S, Moya FJ, Rodriguez-Perales S, Santos E, Giovinazzo G, Bleckwehl T, Rada-Iglesias Á, Spitz F, Torres M. Regulation of Myc transcription by an enhancer cluster dedicated to pluripotency and early embryonic expression. Nat Commun 2024; 15:3931. [PMID: 38729993 PMCID: PMC11087473 DOI: 10.1038/s41467-024-48258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
MYC plays various roles in pluripotent stem cells, including the promotion of somatic cell reprogramming to pluripotency, the regulation of cell competition and the control of embryonic diapause. However, how Myc expression is regulated in this context remains unknown. The Myc gene lies within a ~ 3-megabase gene desert with multiple cis-regulatory elements. Here we use genomic rearrangements, transgenesis and targeted mutation to analyse Myc regulation in early mouse embryos and pluripotent stem cells. We identify a topologically-associated region that homes enhancers dedicated to Myc transcriptional regulation in stem cells of the pre-implantation and early post-implantation embryo. Within this region, we identify elements exclusively dedicated to Myc regulation in pluripotent cells, with distinct enhancers that sequentially activate during naive and formative pluripotency. Deletion of pluripotency-specific enhancers dampens embryonic stem cell competitive ability. These results identify a topologically defined enhancer cluster dedicated to early embryonic expression and uncover a modular mechanism for the regulation of Myc expression in different states of pluripotency.
Collapse
Affiliation(s)
- Lin Li-Bao
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Andaluz de Biología del Desarrollo (CABD), Sevilla, Spain
| | - Covadonga Díaz-Díaz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rocío Sierra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Elisa Santos
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Álvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Francois Spitz
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
10
|
Jiang C, Zhou Q, Yi K, Yuan Y, Xie X. Colorectal cancer initiation: Understanding early-stage disease for intervention. Cancer Lett 2024; 589:216831. [PMID: 38574882 DOI: 10.1016/j.canlet.2024.216831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
How tumors arise or the cause of precancerous lesions is a fundamental question in cancer biology. It is generally accepted that tumors originate from normal cells that undergo uncontrolled proliferation owing to genetic alterations. At the onset of adenoma formation, cancer driver mutations confer clonal growth advantage, enabling mutant cells to outcompete and eliminate the surrounding healthy cells. Hence, the development of precancerous lesions is not only attributed to the expansion of pre-malignant clones, but also relies on the relative fitness of mutated cells compared to the neighboring cells. Colorectal cancer (CRC) is an excellent model to investigate cancer origin as it follows a stereotypical process from mutant cell hyperplasia to adenoma formation and progression. Here, we review the evolving understanding of colonic tumor development, focusing on how cell intrinsic and extrinsic factors impact cell competition and the "clone war" between cancer-initiating cells and normal stem cells. We also discuss the promises and limitations of targeting cell competitiveness in cancer prevention and early intervention. The field of tumor initiation is currently in its infancy, elucidating the adenoma origin is crucial for designing effective prevention strategies and early treatments before cancer becomes incurable.
Collapse
Affiliation(s)
- Chao Jiang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Qiujing Zhou
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Ke Yi
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; Department of Medical Oncology, Cancer Institute and Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Vieira R, Mariani JN, Huynh NPT, Stephensen HJT, Solly R, Tate A, Schanz S, Cotrupi N, Mousaei M, Sporring J, Benraiss A, Goldman SA. Young glial progenitor cells competitively replace aged and diseased human glia in the adult chimeric mouse brain. Nat Biotechnol 2024; 42:719-730. [PMID: 37460676 PMCID: PMC11098747 DOI: 10.1038/s41587-023-01798-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/20/2023] [Indexed: 08/26/2023]
Abstract
Competition among adult brain cells has not been extensively researched. To investigate whether healthy glia can outcompete diseased human glia in the adult forebrain, we engrafted wild-type (WT) human glial progenitor cells (hGPCs) produced from human embryonic stem cells into the striata of adult mice that had been neonatally chimerized with mutant Huntingtin (mHTT)-expressing hGPCs. The WT hGPCs outcompeted and ultimately eliminated their human Huntington's disease (HD) counterparts, repopulating the host striata with healthy glia. Single-cell RNA sequencing revealed that WT hGPCs acquired a YAP1/MYC/E2F-defined dominant competitor phenotype upon interaction with the host HD glia. WT hGPCs also outcompeted older resident isogenic WT cells that had been transplanted neonatally, suggesting that competitive success depended primarily on the relative ages of competing populations, rather than on the presence of mHTT. These data indicate that aged and diseased human glia may be broadly replaced in adult brain by younger healthy hGPCs, suggesting a therapeutic strategy for the replacement of aged and diseased human glia.
Collapse
Affiliation(s)
- Ricardo Vieira
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Hans J T Stephensen
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Renee Solly
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Ashley Tate
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Steven Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Natasha Cotrupi
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Marzieh Mousaei
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
- Sana Biotechnology, Inc, Cambridge, MA, USA.
| |
Collapse
|
12
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
13
|
Cumming T, Levayer R. Toward a predictive understanding of epithelial cell death. Semin Cell Dev Biol 2024; 156:44-57. [PMID: 37400292 DOI: 10.1016/j.semcdb.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Epithelial cell death is highly prevalent during development and tissue homeostasis. While we have a rather good understanding of the molecular regulators of programmed cell death, especially for apoptosis, we still fail to predict when, where, how many and which specific cells will die in a tissue. This likely relies on the much more complex picture of apoptosis regulation in a tissular and epithelial context, which entails cell autonomous but also non-cell autonomous factors, diverse feedback and multiple layers of regulation of the commitment to apoptosis. In this review, we illustrate this complexity of epithelial apoptosis regulation by describing these different layers of control, all demonstrating that local cell death probability is a complex emerging feature. We first focus on non-cell autonomous factors that can locally modulate the rate of cell death, including cell competition, mechanical input and geometry as well as systemic effects. We then describe the multiple feedback mechanisms generated by cell death itself. We also outline the multiple layers of regulation of epithelial cell death, including the coordination of extrusion and regulation occurring downstream of effector caspases. Eventually, we propose a roadmap to reach a more predictive understanding of cell death regulation in an epithelial context.
Collapse
Affiliation(s)
- Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
14
|
Perez Montero S, Paul PK, di Gregorio A, Bowling S, Shepherd S, Fernandes NJ, Lima A, Pérez-Carrasco R, Rodriguez TA. Mutation of p53 increases the competitive ability of pluripotent stem cells. Development 2024; 151:dev202503. [PMID: 38131530 PMCID: PMC10820806 DOI: 10.1242/dev.202503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
During development, the rate of tissue growth is determined by the relative balance of cell division and cell death. Cell competition is a fitness quality-control mechanism that contributes to this balance by eliminating viable cells that are less fit than their neighbours. The mutations that confer cells with a competitive advantage and the dynamics of the interactions between winner and loser cells are not well understood. Here, we show that embryonic cells lacking the tumour suppressor p53 are 'super-competitors' that eliminate their wild-type neighbours through the direct induction of apoptosis. This elimination is context dependent, as it does not occur when cells are pluripotent and it is triggered by the onset of differentiation. Furthermore, by combining mathematical modelling and cell-based assays we show that the elimination of wild-type cells is not through competition for space or nutrients, but instead is mediated by short-range interactions that are dependent on the local cell neighbourhood. This highlights the importance of the local cell neighbourhood and the competitive interactions within this neighbourhood for the regulation of proliferation during early embryonic development.
Collapse
Affiliation(s)
- Salvador Perez Montero
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Pranab K. Paul
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Aida di Gregorio
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Sarah Bowling
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Solomon Shepherd
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nadia J. Fernandes
- Imperial BRC Genomics Facility, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ana Lima
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Rubén Pérez-Carrasco
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tristan A. Rodriguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
15
|
Ceresa D, Alessandrini F, Lucchini S, Marubbi D, Piaggio F, Mena Vera JM, Ceccherini I, Reverberi D, Appolloni I, Malatesta P. Early clonal extinction in glioblastoma progression revealed by genetic barcoding. Cancer Cell 2023; 41:1466-1479.e9. [PMID: 37541243 DOI: 10.1016/j.ccell.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
Glioblastoma progression in its early stages remains poorly understood. Here, we transfer PDGFB and genetic barcodes in mouse brain to initiate gliomagenesis and enable direct tracing of glioblastoma evolution from its earliest possible stage. Unexpectedly, we observe a high incidence of clonal extinction events and progressive divergence in clonal sizes, even after the acquisition of malignant phenotype. Computational modeling suggests these dynamics result from clonal-based cell-cell competition. Through bulk and single-cell transcriptome analyses, coupled with lineage tracing, we reveal that Myc transcriptional targets have the strongest correlation with clonal size imbalances. Moreover, we show that the downregulation of Myc expression is sufficient to drive competitive dynamics in intracranially transplanted gliomas. Our findings provide insights into glioblastoma evolution that are inaccessible using conventional retrospective approaches, highlighting the potential of combining clonal tracing and transcriptomic analyses in this field.
Collapse
Affiliation(s)
- Davide Ceresa
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesco Alessandrini
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Sara Lucchini
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Daniela Marubbi
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | | | - Jorge Miguel Mena Vera
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | - Irene Appolloni
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Paolo Malatesta
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.
| |
Collapse
|
16
|
Kiparaki M, Baker NE. Ribosomal protein mutations and cell competition: autonomous and nonautonomous effects on a stress response. Genetics 2023; 224:iyad080. [PMID: 37267156 PMCID: PMC10691752 DOI: 10.1093/genetics/iyad080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/16/2023] [Indexed: 06/04/2023] Open
Abstract
Ribosomal proteins (Rps) are essential for viability. Genetic mutations affecting Rp genes were first discovered in Drosophila, where they represent a major class of haploinsufficient mutations. One mutant copy gives rise to the dominant "Minute" phenotype, characterized by slow growth and small, thin bristles. Wild-type (WT) and Minute cells compete in mosaics, that is, Rp+/- are preferentially lost when their neighbors are of the wild-type genotype. Many features of Rp gene haploinsufficiency (i.e. Rp+/- phenotypes) are mediated by a transcriptional program. In Drosophila, reduced translation and slow growth are under the control of Xrp1, a bZip-domain transcription factor induced in Rp mutant cells that leads ultimately to the phosphorylation of eIF2α and consequently inhibition of most translation. Rp mutant phenotypes are also mediated transcriptionally in yeast and in mammals. In mammals, the Impaired Ribosome Biogenesis Checkpoint activates p53. Recent findings link Rp mutant phenotypes to other cellular stresses, including the DNA damage response and endoplasmic reticulum stress. We suggest that cell competition results from nonautonomous inputs to stress responses, bringing decisions between adaptive and apoptotic outcomes under the influence of nearby cells. In Drosophila, cell competition eliminates aneuploid cells in which loss of chromosome leads to Rp gene haploinsufficiency. The effects of Rp gene mutations on the whole organism, in Minute flies or in humans with Diamond-Blackfan Anemia, may be inevitable consequences of pathways that are useful in eliminating individual cells from mosaics. Alternatively, apparently deleterious whole organism phenotypes might be adaptive, preventing even more detrimental outcomes. In mammals, for example, p53 activation appears to suppress oncogenic effects of Rp gene haploinsufficiency.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Visual Sciences and Ophthalmology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Cuesta-Gomez N, Verhoeff K, Dadheech N, Dang T, Jasra IT, de Leon MB, Pawlick R, Marfil-Garza B, Anwar P, Razavy H, Zapata-Morin PA, Jickling G, Thiesen A, O'Gorman D, Kallos MS, Shapiro AMJ. Suspension culture improves iPSC expansion and pluripotency phenotype. Stem Cell Res Ther 2023; 14:154. [PMID: 37280707 DOI: 10.1186/s13287-023-03382-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) offer potential to revolutionize regenerative medicine as a renewable source for islets, dopaminergic neurons, retinal cells, and cardiomyocytes. However, translation of these regenerative cell therapies requires cost-efficient mass manufacturing of high-quality human iPSCs. This study presents an improved three-dimensional Vertical-Wheel® bioreactor (3D suspension) cell expansion protocol with comparison to a two-dimensional (2D planar) protocol. METHODS Sendai virus transfection of human peripheral blood mononuclear cells was used to establish mycoplasma and virus free iPSC lines without common genetic duplications or deletions. iPSCs were then expanded under 2D planar and 3D suspension culture conditions. We comparatively evaluated cell expansion capacity, genetic integrity, pluripotency phenotype, and in vitro and in vivo pluripotency potential of iPSCs. RESULTS Expansion of iPSCs using Vertical-Wheel® bioreactors achieved 93.8-fold (IQR 30.2) growth compared to 19.1 (IQR 4.0) in 2D (p < 0.0022), the largest expansion potential reported to date over 5 days. 0.5 L Vertical-Wheel® bioreactors achieved similar expansion and further reduced iPSC production cost. 3D suspension expanded cells had increased proliferation, measured as Ki67+ expression using flow cytometry (3D: 69.4% [IQR 5.5%] vs. 2D: 57.4% [IQR 10.9%], p = 0.0022), and had a higher frequency of pluripotency marker (Oct4+Nanog+Sox2+) expression (3D: 94.3 [IQR 1.4] vs. 2D: 52.5% [IQR 5.6], p = 0.0079). q-PCR genetic analysis demonstrated a lack of duplications or deletions at the 8 most commonly mutated regions within iPSC lines after long-term passaging (> 25). 2D-cultured cells displayed a primed pluripotency phenotype, which transitioned to naïve after 3D-culture. Both 2D and 3D cells were capable of trilineage differentiation and following teratoma, 2D-expanded cells generated predominantly solid teratomas, while 3D-expanded cells produced more mature and predominantly cystic teratomas with lower Ki67+ expression within teratomas (3D: 16.7% [IQR 3.2%] vs.. 2D: 45.3% [IQR 3.0%], p = 0.002) in keeping with a naïve phenotype. CONCLUSION This study demonstrates nearly 100-fold iPSC expansion over 5-days using our 3D suspension culture protocol in Vertical-Wheel® bioreactors, the largest cell growth reported to date. 3D expanded cells showed enhanced in vitro and in vivo pluripotency phenotype that may support more efficient scale-up strategies and safer clinical implementation.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
| | - Tiffany Dang
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Mario Bermudez de Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, 14080, Mexico City, Mexico
- CHRISTUS-LatAm Hub - Excellence and Innovation Center, 66260, Monterrey, Mexico
| | - Perveen Anwar
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Haide Razavy
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Patricio Adrián Zapata-Morin
- Laboratory of Mycology and Phytopathology, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - Glen Jickling
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada.
| |
Collapse
|
18
|
Yusupova M, Fuchs Y. To not love thy neighbor: mechanisms of cell competition in stem cells and beyond. Cell Death Differ 2023; 30:979-991. [PMID: 36813919 PMCID: PMC10070350 DOI: 10.1038/s41418-023-01114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cell competition describes the process in which cells of greater fitness are capable of sensing and instructing elimination of lesser fit mutant cells. Since its discovery in Drosophila, cell competition has been established as a critical regulator of organismal development, homeostasis, and disease progression. It is therefore unsurprising that stem cells (SCs), which are central to these processes, harness cell competition to remove aberrant cells and preserve tissue integrity. Here, we describe pioneering studies of cell competition across a variety of cellular contexts and organisms, with the ultimate goal of better understanding competition in mammalian SCs. Furthermore, we explore the modes through which SC competition takes place and how this facilitates normal cellular function or contributes to pathological states. Finally, we discuss how understanding of this critical phenomenon will enable targeting of SC-driven processes, including regeneration and tumor progression.
Collapse
Affiliation(s)
- Marianna Yusupova
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel.
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel.
- Augmanity, Rehovot, Israel.
| |
Collapse
|
19
|
Abstract
Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.
Collapse
|
20
|
Sarmah H, Sawada A, Hwang Y, Miura A, Shimamura Y, Tanaka J, Yamada K, Mori M. Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Front Cell Dev Biol 2023; 11:1070560. [PMID: 36743411 PMCID: PMC9893295 DOI: 10.3389/fcell.2023.1070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.
Collapse
Affiliation(s)
- Hemanta Sarmah
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Anri Sawada
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Youngmin Hwang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Akihiro Miura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Munemasa Mori
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
21
|
Panyutin IV, Wakim PG, Maass-Moreno R, Pritchard WF, Neumann RD, Panyutin IG. Effect of exposure to ionizing radiation on competitive proliferation and differentiation of hESC. Int J Radiat Biol 2022; 99:760-768. [PMID: 36352506 DOI: 10.1080/09553002.2023.2146231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE We studied the effects of computed tomography (CT) scan irradiation on proliferation and differentiation of human embryonic stem cells (hESCs). It was reported that hESC is extremely radiosensitive; exposure of hESC in cultures to 1 Gy of ionizing radiation (IR) results in massive apoptosis of the damaged cells and, thus, they are eliminated from the cultures. However, after recovery the surviving cells proliferate and differentiate normally. We hypothesized that IR-exposed hESC may still have growth rate disadvantage when they proliferate or differentiate in the presence of non-irradiated hESC, as has been shown for mouse hematopoietic stem cells in vivo. MATERIALS AND METHODS To study such competitive proliferation and differentiation, we obtained cells of H9 hESC line that stably express green fluorescent protein (H9GFP). Irradiated with 50 mGy or 500 mGy H9GFP and non-irradiated H9 cells (or vice versa) were mixed and allowed to grow under pluripotency maintaining conditions or under conditions of directed differentiation into neuronal lineage for several passages. The ratio of H9GFP to H9 cells was measured after every passage or approximately every week. RESULTS We observed competition of H9 and H9GFP cells; we found that the ratio of H9GFP to H9 cells increased with time in both proliferation and differentiation conditions regardless of irradiation, i.e. the H9GFP cells in general grew faster than H9 cells in the mixtures. However, we did not observe any consistent changes in the relative growth rate of irradiated versus non-irradiated hESC. CONCLUSIONS We conclude that population of pluripotent hESC is very resilient; while damaged cells are eliminated from colonies, the surviving cells retain their pluripotency, ability to differentiate, and compete with non-irradiated isogenic cells. These findings are consistent with the results of our previous studies, and with the concept that early in pregnancy omnipotent cells injured by IR can be replaced by non-damaged cells with no impact on embryo development.
Collapse
Affiliation(s)
- Irina V. Panyutin
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Paul G. Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Roberto Maass-Moreno
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - William F. Pritchard
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Ronald D. Neumann
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Igor G. Panyutin
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| |
Collapse
|
22
|
Nichols J, Lima A, Rodríguez TA. Cell competition and the regulative nature of early mammalian development. Cell Stem Cell 2022; 29:1018-1030. [PMID: 35803224 DOI: 10.1016/j.stem.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian embryo exhibits a remarkable plasticity that allows it to correct for the presence of aberrant cells, adjust its growth so that its size is in accordance with its developmental stage, or integrate cells of another species to form fully functional organs. Here, we will discuss the contribution that cell competition, a quality control that eliminates viable cells that are less fit than their neighbors, makes to this plasticity. We will do this by reviewing the roles that cell competition plays in the early mammalian embryo and how they contribute to ensure normal development of the embryo.
Collapse
Affiliation(s)
- Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Ana Lima
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Tristan A Rodríguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
23
|
Maheden K, Zhang VW, Shakiba N. The Field of Cell Competition Comes of Age: Semantics and Technological Synergy. Front Cell Dev Biol 2022; 10:891569. [PMID: 35646896 PMCID: PMC9132545 DOI: 10.3389/fcell.2022.891569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells experience many selective pressures which shape their cellular populations, potentially pushing them to skew towards dominance of a few break-through clones. An evolutionarily conserved answer to curb these aberrant selective pressures is cell competition, the elimination of a subset of cells by their neighbours in a seemingly homogenous population. Cell competition in mammalian systems is a relatively recent discovery that has now been observed across many tissue systems, such as embryonic, haematopoietic, intestinal, and epithelial compartments. With this rapidly growing field, there is a need to revisit and standardize the terminology used, much of which has been co-opted from evolutionary biology. Further, the implications of cell competition across biological scales in organisms have been difficult to capture. In this review, we make three key points. One, we propose new nomenclature to standardize concepts across dispersed studies of different types of competition, each of which currently use the same terminology to describe different phenomena. Second, we highlight the challenges in capturing information flow across biological scales. Third, we challenge the field to incorporate next generation technologies into the cell competition toolkit to bridge these gaps. As the field of cell competition matures, synergy between cutting edge tools will help elucidate the molecular events which shape cellular growth and death dynamics, allowing a deeper examination of this evolutionarily conserved mechanism at the core of multicellularity.
Collapse
Affiliation(s)
| | | | - Nika Shakiba
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Fort L, Gama V, Macara IG. Stem cell conversion to the cardiac lineage requires nucleotide signalling from apoptosing cells. Nat Cell Biol 2022; 24:434-447. [PMID: 35414019 PMCID: PMC9054036 DOI: 10.1038/s41556-022-00888-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells can be driven by manipulation of Wnt signalling through a series of states similar to those that occur during early embryonic development, transitioning from an epithelial phenotype into the cardiogenic-mesoderm lineage and ultimately into functional cardiomyocytes. Strikingly, we observed that initiation of differentiation in induced pluripotent stem cells (iPSCs) and embryonic stem cells triggers widespread apoptosis, followed by a synchronous epithelial-mesenchymal transition (EMT). Apoptosis is caused by the absence of bFGF in the differentiation medium. EMT requires induction of the transcription factors SNAI1 and SNAI2 downstream of MESP1 expression, and double knockout of SNAI1 and SNAI2 or loss of MESP1 in iPSCs blocks EMT and prevents cardiac differentiation. Remarkably, blockade of early apoptosis, either chemically or by ablation of pro-apoptotic genes, also completely prevents EMT, suppressing even the earliest events in mesoderm conversion, including T/BRA, TBX6 and MESP1 induction. Conditioned medium from WNT-activated wild-type iPSCs overcomes the block to EMT by cells incapable of apoptosis, suggesting involvement of soluble factors from apoptotic cells in mesoderm conversion. Knockout of the PANX1 channel blocked EMT, whereas treatment with a purinergic P2-receptor inhibitor or addition of apyrase demonstrated a requirement for nucleotide triphosphate signalling. ATP and/or UTP was sufficient to induce a partial EMT in apoptosis-incapable cells treated with WNT activator. Notably, knockout of the ATP/UTP-specific P2Y2 receptor blocked EMT and mesoderm induction. We conclude that in addition to acting as chemo-attractants for clearance of apoptotic cells, nucleotides can function as essential paracrine signals that, with WNT signalling, create a logical AND gate for mesoderm specification.
Collapse
Affiliation(s)
- Loic Fort
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
25
|
Molugu K, Battistini GA, Heaster TM, Rouw J, Guzman EC, Skala MC, Saha K. Label-Free Imaging to Track Reprogramming of Human Somatic Cells. GEN BIOTECHNOLOGY 2022; 1:176-191. [PMID: 35586336 PMCID: PMC9092522 DOI: 10.1089/genbio.2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
The process of reprogramming patient samples to human-induced pluripotent stem cells (iPSCs) is stochastic, asynchronous, and inefficient, leading to a heterogeneous population of cells. In this study, we track the reprogramming status of patient-derived erythroid progenitor cells (EPCs) at the single-cell level during reprogramming with label-free live-cell imaging of cellular metabolism and nuclear morphometry to identify high-quality iPSCs. EPCs isolated from human peripheral blood of three donors were used for our proof-of-principle study. We found distinct patterns of autofluorescence lifetime for the reduced form of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide during reprogramming. Random forest models classified iPSCs with ∼95% accuracy, which enabled the successful isolation of iPSC lines from reprogramming cultures. Reprogramming trajectories resolved at the single-cell level indicated significant reprogramming heterogeneity along different branches of cell states. This combination of micropatterning, autofluorescence imaging, and machine learning provides a unique, real-time, and nondestructive method to assess the quality of iPSCs in a biomanufacturing process, which could have downstream impacts in regenerative medicine, cell/gene therapy, and disease modeling.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
| | - Giovanni A. Battistini
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
| | - Tiffany M. Heaster
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Jacob Rouw
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
| | | | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
| |
Collapse
|
26
|
Savatier P, Aksoy I. [Interspecies systemic chimeras]. Med Sci (Paris) 2021; 37:863-872. [PMID: 34647874 DOI: 10.1051/medsci/2021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inter-species chimeras are both fantastic and monstrous creatures from Greek or Egyptian mythology, and a long-established research tool. Recent advances in the field of pluripotent stem cells have made it possible to extend the repertoire of inter-species chimeras to "systemic" chimeras, in which the mixing of cells from both species involves all organs including the germline. These chimeric embryos and fetuses open up new research avenues and potential medical applications. We will review the latest advances in the field. We will discuss the concepts of developmental complementation and developmental equivalence. We will discuss the methodological hurdles to be unlocked, as well as the biological and ethical limits of these new technologies.
Collapse
Affiliation(s)
- Pierre Savatier
- Université Lyon 1, unité Inserm 1208, Cellules souches et cerveau (Stem Cell and Brain Research Institute, SBRI), 18 avenue Doyen Lépine, 69500 Bron, France
| | - Irène Aksoy
- Université Lyon 1, unité Inserm 1208, Cellules souches et cerveau (Stem Cell and Brain Research Institute, SBRI), 18 avenue Doyen Lépine, 69500 Bron, France
| |
Collapse
|
27
|
Maruyama T, Fujita Y. Cell competition in vertebrates - a key machinery for tissue homeostasis. Curr Opin Genet Dev 2021; 72:15-21. [PMID: 34634592 DOI: 10.1016/j.gde.2021.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Cell competition is a process by which cells with different properties compete with each other for survival and space, and consequently suboptimal/abnormal cells are often eliminated from, in particular, epithelial tissues. In the last few years, cell competition studies have been developing at an explosive speed, and the molecular mechanisms of cell competition have been considerably revealed. For instance, upon cell competition, loser cells are eliminated from tissues via a variety of loser phenotypes, including apoptosis, cell differentiation, and cell death-independent extrusion. In addition, upstream regulatory mechanisms for the induction of these phenotypes have been elucidated. Furthermore, it has become evident that cell competition is involved in various physiological and pathological processes and thus is a crucial and indispensable homeostatic machinery that is required for embryonic development and prevention of diseases and ageing. Moreover, cell competition now has a profound impact on other research fields such as regenerative medicine. In this review, we will summarize the development of these recent studies, especially focusing on cell competition in vertebrates.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Waseda Institute for Advanced Study, Waseda University, Tokyo 162-8480, Japan.
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
28
|
Parker TM, Gupta K, Palma AM, Yekelchyk M, Fisher PB, Grossman SR, Won KJ, Madan E, Moreno E, Gogna R. Cell competition in intratumoral and tumor microenvironment interactions. EMBO J 2021; 40:e107271. [PMID: 34368984 DOI: 10.15252/embj.2020107271] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Tumors are complex cellular and acellular environments within which cancer clones are under continuous selection pressures. Cancer cells are in a permanent mode of interaction and competition with each other as well as with the immediate microenvironment. In the course of these competitive interactions, cells share information regarding their general state of fitness, with less-fit cells being typically eliminated via apoptosis at the hands of those cells with greater cellular fitness. Competitive interactions involving exchange of cell fitness information have implications for tumor growth, metastasis, and therapy outcomes. Recent research has highlighted sophisticated pathways such as Flower, Hippo, Myc, and p53 signaling, which are employed by cancer cells and the surrounding microenvironment cells to achieve their evolutionary goals by means of cell competition mechanisms. In this review, we discuss these recent findings and explain their importance and role in evolution, growth, and treatment of cancer. We further consider potential physiological conditions, such as hypoxia and chemotherapy, that can function as selective pressures under which cell competition mechanisms may evolve differently or synergistically to confer oncogenic advantages to cancer.
Collapse
Affiliation(s)
- Taylor M Parker
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kartik Gupta
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Michail Yekelchyk
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Steven R Grossman
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen North, Denmark.,Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen North, Denmark
| | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Rajan Gogna
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen North, Denmark.,Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen North, Denmark
| |
Collapse
|
29
|
Wu J, Barbaric I. Fitness selection in human pluripotent stem cells and interspecies chimeras: Implications for human development and regenerative medicine. Dev Biol 2021; 476:209-217. [PMID: 33891964 PMCID: PMC8209287 DOI: 10.1016/j.ydbio.2021.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
A small number of pluripotent cells within early embryo gives rise to all cells in the adult body, including germ cells. Hence, any mutations occurring in the pluripotent cell population are at risk of being propagated to their daughter cells and could lead to congenital defects or embryonic lethality and pose a risk of being transmitted to future generations. The observation that genetic errors are relatively common in preimplantation embryos, but their levels reduce as development progresses, suggests the existence of mechanisms for clearance of aberrant, unfit or damaged cells. Although early human embryogenesis is largely experimentally inaccessible, pluripotent stem cell (PSC) lines can be derived either from the inner cell mass (ICM) of a blastocyst or by reprogramming somatic cells into an embryonic stem cell-like state. PSCs retain the ability to differentiate into any cell type in vitro and, hence, they represent a unique and powerful tool for studying otherwise intractable stages of human development. The advent of PSCs has also opened up a possibility of developing regenerative medicine therapies, either through PSC differentiation in vitro or by creating interspecies chimeras for organ replacement. Here, we discuss the emerging evidence of cell selection in human PSC populations in vivo and in vitro and we highlight the implications of understanding this phenomenon for human development and regenerative medicine.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
30
|
Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA. Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab 2021; 3:1091-1108. [PMID: 34253906 PMCID: PMC7611553 DOI: 10.1038/s42255-021-00422-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Cell competition is emerging as a quality-control mechanism that eliminates unfit cells in a wide range of settings from development to the adult. However, the nature of the cells normally eliminated by cell competition and what triggers their elimination remains poorly understood. In mice, 35% of epiblast cells are eliminated before gastrulation. Here we show that cells with mitochondrial defects are eliminated by cell competition during early mouse development. Using single-cell transcriptional profiling of eliminated mouse epiblast cells, we identify hallmarks of cell competition and mitochondrial defects. We demonstrate that mitochondrial defects are common to a range of different loser cell types and that manipulating mitochondrial function triggers cell competition. Moreover, we show that in the mouse embryo, cell competition eliminates cells with sequence changes in mt-Rnr1 and mt-Rnr2, and that even non-pathological changes in mitochondrial DNA sequences can induce cell competition. Our results suggest that cell competition is a purifying selection that optimizes mitochondrial performance before gastrulation.
Collapse
Affiliation(s)
- Ana Lima
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
| | - Gabriele Lubatti
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Di Hu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alistair P Green
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College London, London, UK
| | - Aida Di Gregorio
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tamzin Zawadzki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Barbara Pernaute
- National Heart and Lung Institute, Imperial College London, London, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Marian Dore
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
| | - Juan Miguel Sanchez
- National Heart and Lung Institute, Imperial College London, London, UK
- Orchard Therapeutics, London, UK
| | - Sarah Bowling
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Margarida Sancho
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Thomas Kolbe
- Biomodels Austria (Biat), University of Veterinary Medicine Vienna, Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
| | - Nick Jones
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College London, London, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany.
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| | | |
Collapse
|
31
|
Maheden K, Bashth OS, Shakiba N. Evening the playing field: microenvironmental control over stem cell competition during fate programming. Curr Opin Genet Dev 2021; 70:66-75. [PMID: 34153929 DOI: 10.1016/j.gde.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/26/2022]
Abstract
Recent advancements in cellular engineering, including reprogramming of somatic cells into pluripotent stem cells, have opened the door to a new era of regenerative medicine. Given that cellular decisions are guided by microenvironmental cues, such as secreted factors and interactions with neighbouring cells, reproducible cell manufacturing requires robust control over cell-cell interactions. Cell competition has recently emerged as a previously unknown interaction that plays a significant role in shaping the growth and death dynamics of multicellular stem cell populations, both in vivo and in vitro. Although recent studies have largely focused on exploring how the differential expression of key genes mediate the competitive elimination of some cells, little is known about the impact of the microenvironment on cell competition, despite its critical role in shaping cell fate outcomes. Here, we explore recent findings that have brought cell competition into the spotlight, while dissecting the role of microenvironmental factors for controlling competition in cell fate programming applications.
Collapse
Affiliation(s)
- Kieran Maheden
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Biomedical Research Centre, 2222 Health Sciences Mall, V6T 1Z3, Vancouver, Canada
| | - Omar S Bashth
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Biomedical Research Centre, 2222 Health Sciences Mall, V6T 1Z3, Vancouver, Canada
| | - Nika Shakiba
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Biomedical Research Centre, 2222 Health Sciences Mall, V6T 1Z3, Vancouver, Canada.
| |
Collapse
|
32
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Gradeci D, Bove A, Vallardi G, Lowe AR, Banerjee S, Charras G. Cell-scale biophysical determinants of cell competition in epithelia. eLife 2021; 10:e61011. [PMID: 34014166 PMCID: PMC8137148 DOI: 10.7554/elife.61011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
How cells with different genetic makeups compete in tissues is an outstanding question in developmental biology and cancer research. Studies in recent years have revealed that cell competition can either be driven by short-range biochemical signalling or by long-range mechanical stresses in the tissue. To date, cell competition has generally been characterised at the population scale, leaving the single-cell-level mechanisms of competition elusive. Here, we use high time-resolution experimental data to construct a multi-scale agent-based model for epithelial cell competition and use it to gain a conceptual understanding of the cellular factors that governs competition in cell populations within tissues. We find that a key determinant of mechanical competition is the difference in homeostatic density between winners and losers, while differences in growth rates and tissue organisation do not affect competition end result. In contrast, the outcome and kinetics of biochemical competition is strongly influenced by local tissue organisation. Indeed, when loser cells are homogenously mixed with winners at the onset of competition, they are eradicated; however, when they are spatially separated, winner and loser cells coexist for long times. These findings suggest distinct biophysical origins for mechanical and biochemical modes of cell competition.
Collapse
Affiliation(s)
- Daniel Gradeci
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
| | - Anna Bove
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Giulia Vallardi
- Institute for Structural and Molecular Biology, University College LondonLondonUnited Kingdom
| | - Alan R Lowe
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Institute for Structural and Molecular Biology, University College LondonLondonUnited Kingdom
- Institute for the Physics of Living Systems, University College LondonLondonUnited Kingdom
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
- Institute for the Physics of Living Systems, University College LondonLondonUnited Kingdom
- Department of Physics, Carnegie Mellon UniversityPittsburghUnited States
| | - Guillaume Charras
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- Institute for the Physics of Living Systems, University College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
Permissive selection followed by affinity-based proliferation of GC light zone B cells dictates cell fate and ensures clonal breadth. Proc Natl Acad Sci U S A 2021; 118:2016425118. [PMID: 33419925 PMCID: PMC7812803 DOI: 10.1073/pnas.2016425118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Affinity maturation depends on how efficiently germinal centers (GCs) positively select B cells in the light zone (LZ). Positively selected GC B cells recirculate between LZs and dark zones (DZs) and ultimately differentiate into plasmablasts (PBs) and memory B cells (MBCs). Current understanding of the GC reaction presumes that cMyc-dependent positive selection of LZ B cells is a competitive affinity-dependent process; however, this cannot explain the production of GC-derived lower-affinity MBCs or retention of GC B cells with varied affinities. Here, by combining single-cell/bulk RNA sequencing and flow cytometry, we identified and characterized temporally and functionally distinct positively selected cMyc+ GC B cell subpopulations. cMyc+ LZ B cell subpopulations enriched with either higher- or lower-affinity cells diverged soon after permissive positive selection. The former subpopulation contained PB precursors, whereas the latter comprised less proliferative MBC precursors and future DZ entrants. The overall affinity of future DZ entrants was enhanced in the LZ through preferential proliferation of higher-affinity cells. Concurrently, lower-affinity cells were retained in GCs and protected from apoptosis. These findings redefine positive selection as a dynamic process generating three distinct B cell fates and elucidate how positive selection ensures clonal diversity for broad protection.
Collapse
|
35
|
Cambra JM, Martinez EA, Rodriguez-Martinez H, Gil MA, Cuello C. Transcriptional Profiling of Porcine Blastocysts Produced In Vitro in a Chemically Defined Culture Medium. Animals (Basel) 2021; 11:ani11051414. [PMID: 34069238 PMCID: PMC8156047 DOI: 10.3390/ani11051414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.
Collapse
Affiliation(s)
- Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
- Correspondence:
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
36
|
Orietti LC, Rosa VS, Antonica F, Kyprianou C, Mansfield W, Marques-Souza H, Shahbazi MN, Zernicka-Goetz M. Embryo size regulates the timing and mechanism of pluripotent tissue morphogenesis. Stem Cell Reports 2021; 16:1182-1196. [PMID: 33035465 PMCID: PMC8185375 DOI: 10.1016/j.stemcr.2020.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
Mammalian embryogenesis is a paradigm of regulative development as mouse embryos show plasticity in the regulation of cell fate, cell number, and tissue morphogenesis. However, the mechanisms behind embryo plasticity remain largely unknown. Here, we determine how mouse embryos respond to an increase in cell numbers to regulate the timing and mechanism of embryonic morphogenesis, leading to the formation of the pro-amniotic cavity. Using embryos and embryonic stem cell aggregates of different size, we show that while pro-amniotic cavity formation in normal-sized embryos is achieved through basement membrane-induced polarization and exocytosis, cavity formation of increased-size embryos is delayed and achieved through apoptosis of cells that lack contact with the basement membrane. Importantly, blocking apoptosis, both genetically and pharmacologically, alters pro-amniotic cavity formation but does not affect size regulation in enlarged embryos. We conclude that the regulation of embryonic size and morphogenesis, albeit concomitant, have distinct molecular underpinnings.
Collapse
Affiliation(s)
- Lorenzo C Orietti
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Viviane Souza Rosa
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK; Department of Biochemistry and Tissue Biology, State University of Campinas, CP 6109, 13083-970 Campinas, SP, Brazil
| | - Francesco Antonica
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Christos Kyprianou
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - William Mansfield
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, State University of Campinas, CP 6109, 13083-970 Campinas, SP, Brazil
| | - Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; California Institute of Technology (Caltech), Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| |
Collapse
|
37
|
Paraskevopoulos M, McGuigan AP. Application of CRISPR screens to investigate mammalian cell competition. Brief Funct Genomics 2021; 20:135-147. [PMID: 33782689 DOI: 10.1093/bfgp/elab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.
Collapse
|
38
|
Cell competition-induced apical elimination of transformed cells, EDAC, orchestrates the cellular homeostasis. Dev Biol 2021; 476:112-116. [PMID: 33774012 DOI: 10.1016/j.ydbio.2021.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Newly emerging transformed cells are often eliminated from the epithelium via cell competition with the surrounding normal cells. A number of recent studies using mammalian cell competition systems have demonstrated that cells with various types of oncogenic insults are extruded from the tissue in a cell death-dependent or -independent manner. Cell competition-mediated elimination of transformed cells, called EDAC (epithelial defense against cancer), represents an intrinsic anti-tumor activity within the epithelial cell society to reduce the risk of oncogenesis. Here we delineate roles and molecular mechanisms of this homeostatic process, especially focusing on mammalian models.
Collapse
|
39
|
Abstract
Micropatterning is a process to precisely deposit molecules, typically proteins, onto a substrate of choice with micrometer resolution. Watson et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202009063) describe an innovative yet accessible strategy to enable the reproducible micropatterning of virtually any protein while maintaining its biological activity.
Collapse
Affiliation(s)
- Simon Latour
- University of Toronto, Institute of Biomedical Engineering, Toronto, Canada
| | - Alison P. McGuigan
- University of Toronto, Institute of Biomedical Engineering, Toronto, Canada
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, Canada
| |
Collapse
|
40
|
Pecori F, Yokota I, Hanamatsu H, Miura T, Ogura C, Ota H, Furukawa JI, Oki S, Yamamoto K, Yoshie O, Nishihara S. A defined glycosylation regulatory network modulates total glycome dynamics during pluripotency state transition. Sci Rep 2021; 11:1276. [PMID: 33446700 PMCID: PMC7809059 DOI: 10.1038/s41598-020-79666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process. Collectively, our findings provide novel insights into the naïve-to-primed pluripotent state transition and advance the understanding of glycosylation complex regulation during early mouse embryonic development.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Chika Ogura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Hayato Ota
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Izumi, Sendai, Miyagi, 981-3205, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
- Glycan and Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
41
|
Fields C, Levin M. Why isn't sex optional? Stem-cell competition, loss of regenerative capacity, and cancer in metazoan evolution. Commun Integr Biol 2020; 13:170-183. [PMID: 33403054 PMCID: PMC7746248 DOI: 10.1080/19420889.2020.1838809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Animals that can reproduce vegetatively by fission or budding and also sexually via specialized gametes are found in all five primary animal lineages (Bilateria, Cnidaria, Ctenophora, Placozoa, Porifera). Many bilaterian lineages, including roundworms, insects, and most chordates, have lost the capability of vegetative reproduction and are obligately gametic. We suggest a developmental explanation for this evolutionary phenomenon: obligate gametic reproduction is the result of germline stem cells winning a winner-take-all competition with non-germline stem cells for control of reproduction and hence lineage survival. We develop this suggestion by extending Hamilton's rule, which factors the relatedness between parties into the cost/benefit analysis that underpins cooperative behaviors, to include similarity of cellular state. We show how coercive or deceptive cell-cell signaling can be used to make costly cooperative behaviors appear less costly to the cooperating party. We then show how competition between stem-cell lineages can render an ancestral combination of vegetative reproduction with facultative sex unstable, with one or the other process driven to extinction. The increased susceptibility to cancer observed in obligately-sexual lineages is, we suggest, a side-effect of deceptive signaling that is exacerbated by the loss of whole-body regenerative abilities. We suggest a variety of experimental approaches for testing our predictions.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| |
Collapse
|
42
|
Marongiu F, Laconi E. Cell competition in liver carcinogenesis. World J Hepatol 2020; 12:475-484. [PMID: 32952874 PMCID: PMC7475782 DOI: 10.4254/wjh.v12.i8.475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/22/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cell competition is now a well-established quality control strategy to optimize cell and tissue fitness in multicellular organisms. While pursuing this goal, it is also effective in selecting against altered/defective cells with putative (pre)-neoplastic potential, thereby edging the risk of cancer development. The flip side of the coin is that the molecular machinery driving cell competition can also be co-opted by neoplastic cell populations to expand unchecked, outside the boundaries of tissue homeostatic control. This review will focus on information that begins to emerge regarding the role of cell competition in liver physiology and pathology. Liver repopulation by normal transplanted hepatocytes is an interesting field of investigation in this regard. The biological coordinates of this process share many features suggesting that cell competition is a driving force for the clearance of endogenous damaged hepatocytes by normal donor-derived cells, as previously proposed. Intriguing analogies between liver repopulation and carcinogenesis will be briefly discussed and the potential dual role of cell competition, as a barrier or a spur to neoplastic development, will be considered. Cell competition is in essence a cooperative strategy organized at tissue level. One facet of such cooperative attitude is expressed in the elimination of altered cells which may represent a threat to the organismal community. On the other hand, the society of cells can be disrupted by the emergence of selfish clones, exploiting the molecular bar codes of cell competition, thereby paving their way to uncontrolled growth.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari 09124, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
43
|
Khadirnaikar S, Chatterjee A, Kumar P, Shukla S. A Greedy Algorithm-Based Stem Cell LncRNA Signature Identifies a Novel Subgroup of Lung Adenocarcinoma Patients With Poor Prognosis. Front Oncol 2020; 10:1203. [PMID: 32850350 PMCID: PMC7431877 DOI: 10.3389/fonc.2020.01203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells play an essential role in therapy response and aggressiveness of various cancers, including lung adenocarcinoma (LUAD). Interestingly it also shares many features of embryonic stem cells (ESCs). Recently, long non-coding RNAs (lncRNAs) have emerged as a critical regulator of cell physiology. Here, we used expression data of ESCs, LUAD, and normal lung to identify 198 long non-coding hESC-associated lncRNAs (hESC-lncRNAs). Intriguingly, K-means clustering of hESC-associated lncRNAs identified a subgroup of LUAD patients [undifferentiated LUAD (uLUAD)] with high stem cell-like characteristic, decreased differentiation genes expression, and poor survival. We also observed that the uLUAD patients had overexpression of proteins associated with cell proliferation. Interestingly, uLUAD patients were highly enriched with the stemness-related gene sets, and had higher mutation load. A notable result observed was high infiltration of T cells and a higher level of neopeptides in uLUAD patients, making these patients an optimal candidate for immunotherapy. Further, feature selection using greedy algorithm identified 17-hESC-lncRNAs signature, which showed significant consistency with 198 hESC-lncRNAs-based classification, and identified a group of patients with high stem cell-like characteristic in the 10 most common cancer types and CCLE cell lines. These results suggest the conventional role of hESC-lncRNAs in stem cell biology. In summary, we identified a novel subgroup of LUAD patients (uLUAD) using a set of hESC-lncRNAs. The uLUAD patients had high stem cell-like characteristic and reduced survival rate and may be referred for immunotherapy. Furthermore, our analysis also showed the importance of lncRNAs in cancer and cancer stem cells.
Collapse
Affiliation(s)
- Seema Khadirnaikar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
- Department of Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Annesha Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|
44
|
Abstract
The growth and survival of cells within tissues can be affected by 'cell competition' between different cell clones. This phenomenon was initially recognized between wild-type cells and cells with mutations in ribosomal protein (Rp) genes in Drosophila melanogaster. However, competition also affects D. melanogaster cells with mutations in epithelial polarity genes, and wild-type cells exposed to 'super-competitor' cells with mutation in the Salvador-Warts-Hippo tumour suppressor pathway or expressing elevated levels of Myc. More recently, cell competition and super-competition were recognized in mammalian development, organ homeostasis and cancer. Genetic and cell biological studies have revealed that mechanisms underlying cell competition include the molecular recognition of 'different' cells, signalling imbalances between distinct cell populations and the mechanical consequences of differential growth rates; these mechanisms may also involve innate immune proteins, p53 and changes in translation.
Collapse
|
45
|
Hashimoto M, Sasaki H. Cell competition controls differentiation in mouse embryos and stem cells. Curr Opin Cell Biol 2020; 67:1-8. [PMID: 32763500 DOI: 10.1016/j.ceb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Cell competition is a short-range intercellular communication, in which cells compare their fitness with that of their neighbors and eliminate the cells with relatively lower fitness. It is considered important for the formation and maintenance of healthy tissues; however, its exact role during development, especially in mammals, has been obscure. Recent studies in mouse embryonic epiblast and skin tissues revealed that cell differentiation in early embryos and stem cell proliferation tends to produce suboptimal cells, especially during early developmental stages. Cell competition occurs at multiple stages and via multiple mechanisms during development to ensure elimination of such low-quality cells. Thus, quality control via cell competition supports correct development by overcoming the heterogeneity produced during cell differentiation and stem cell proliferation.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
46
|
Destefanis F, Manara V, Bellosta P. Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer. Int J Mol Sci 2020; 21:ijms21114037. [PMID: 32516899 PMCID: PMC7312820 DOI: 10.3390/ijms21114037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth-processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc's role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc's control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
47
|
Single-cell approaches to cell competition: High-throughput imaging, machine learning and simulations. Semin Cancer Biol 2020; 63:60-68. [DOI: 10.1016/j.semcancer.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
|
48
|
Picking Winners and Losers: Cell Competition in Tissue Development and Homeostasis. Trends Genet 2020; 36:490-498. [PMID: 32418713 DOI: 10.1016/j.tig.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Viable cells with reduced fitness are often eliminated by neighboring cells with greater fitness. This phenomenon, called cell competition, is an important mechanism for maintaining a high-quality population of cells in tissues. Foundational studies characterizing cellular competition and its molecular underpinnings were first carried out utilizing Drosophila as a model system. More recently, competitive behavior studies have extended into mammalian cell types. In this review, we highlight recent advances in the field, focusing on new insights into the molecular mechanisms regulating competitive behavior in various cellular contexts and in cancer. Throughout the review, we highlight new avenues to expand our understanding of the molecular underpinnings of cell competition and its role in tissue development and homeostasis.
Collapse
|
49
|
McKinley KL, Castillo-Azofeifa D, Klein OD. Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell 2020; 26:632-656. [PMID: 32386555 PMCID: PMC7250495 DOI: 10.1016/j.stem.2020.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defining the mechanisms that generate specialized cell types and coordinate their functions is critical for understanding organ development and renewal. New tools and discoveries are challenging and refining our definitions of a cell type. A rapidly growing toolkit for single-cell analyses has expanded the number of markers that can be assigned to a cell simultaneously, revealing heterogeneity within cell types that were previously regarded as homogeneous populations. Additionally, cell types defined by specific molecular markers can exhibit distinct, context-dependent functions; for example, between tissues in homeostasis and those responding to damage. Here we review the current technologies used to identify and characterize cells, and we discuss how experimental and pathological perturbations are adding increasing complexity to our definitions of cell identity.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
50
|
Royer C, Srinivas S. Hippo Enters the Competition. Dev Cell 2020; 50:127-128. [PMID: 31336094 DOI: 10.1016/j.devcel.2019.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this issue of Developmental Cell, Hashimoto and Sasaki (2019) explore the role of the Hippo pathway in the establishment of naive pluripotency and cell competition in the epiblast. Their work gives insight into how the mouse embryo selects cells with the highest future potential, through the activity of YAP/TEAD.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| |
Collapse
|