1
|
Miao X, Law MCY, Kumar J, Chng CP, Zeng Y, Tan YB, Wu J, Guo X, Huang L, Zhuang Y, Gao W, Huang C, Luo D, Zhao W. Saddle curvature association of nsP1 facilitates the replication complex assembly of Chikungunya virus in cells. Nat Commun 2025; 16:4282. [PMID: 40341088 PMCID: PMC12062417 DOI: 10.1038/s41467-025-59402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Positive-sense RNA viruses, including SARS-CoV-1 and -2, DENV, and CHIKV, replicate in curved membrane compartments within host cells. Non-structural proteins (nsPs) critically regulate these nanoscale membrane structures, yet their curvature-dependent assembly remains elusive due to the challenges of imaging nanoscale interaction on curved surfaces. Using vertically aligned nanostructures to generate pre-defined membrane curvatures, we here investigate the impact of curvature on nsPs assembly. Taking CHIKV as a model, we reveal that nsP1 preferentially binds and stabilizes on positively curved membranes, with stronger accumulation at radii ≤150 nm. This is driven by hydrophobic residues in the membrane association (MA) loops of individual nsP1. Molecular dynamics simulations further confirm the improved binding stability of nsP1 on curved membranes, particularly when it forms a dodecamer ring. Together, nsP1 supports a strong saddle curvature association, with flexible MA loops sensing a range of positive curvatures in the x-z plane while the rigid dodecamer stabilizing fixed negative curvature in the x-y plane - crucial for constraining the membrane spherule neck during replication progression. Moreover, CHIKV replication enriches on patterned nanoring structures, underscoring the curvature-guided assembly of the viral replication complex. Our findings highlight membrane curvature as a key regulator of viral nsPs organization, opening new avenues for studying membrane remodeling in viral replication.
Collapse
Affiliation(s)
- Xinwen Miao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Jatin Kumar
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yongpeng Zeng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Jiawei Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Lizhen Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yinyin Zhuang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Weibo Gao
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- School of Physics and Mathematical Science, Nanyang Technological University, Singapore, Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
- National Centre for Infectious Diseases, Singapore, Singapore.
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Chang H, Pan K, Zhang X, Lu Z, Wang Y, Liu D, Lin Y, Wu Y, Lin Y, Huang Q, Duan J, Sun Z, Zhao J, Shen H. Ambient PM 2.5 exposure, physical activity, and cardiovascular dysfunction: Analysis of CHARLS data and experimental study in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138377. [PMID: 40280061 DOI: 10.1016/j.jhazmat.2025.138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Previous studies have confirmed ambient fine particulate matter (PM2.5) as a major environmental risk factor for cardiovascular diseases (CVDs), yet the specific molecular pathways remain poorly understood. Furthermore, while physical activity benefits cardiovascular health, its protective effects against PM2.5-induced damage need further explored. We aimed to investigate the relationship between long-term PM2.5 exposure, physical activity, and cardiovascular health, and explore the potential molecular mechanisms. This research combined epidemiological and experimental approaches. The epidemiological study analyzed data from the China Health and Retirement Longitudinal Study (CHARLS) to investigate the associations among long-term PM2.5 exposure, physical activity, and CVDs. For the experimental study, C57BL/6 male mice were assigned to either regular physical activity or sedentary behavior, and were exposed to PM2.5 or filtered air (FA) for 2, 4, and 6 months. We observed that long-term PM2.5 exposure significantly increased cardiovascular disease risk, while physical activity exhibited protective effects and can partially mitigate the adverse impacts of PM2.5 on heart disease and dyslipidemia. In animal study, mice with long-term exposure to PM2.5 demonstrated elevated blood pressure, disrupted adipokine levels, altered lipid profiles, and mitochondrial damage. Regular physical activity partially mitigated these adverse effects. Lipidomics and proteomics analyses revealed that PM2.5 exposure disrupted lipid metabolism networks and protein regulatory pathways, while regular physical activity mitigated these perturbations through the modulation of lipid metabolism, the coagulation cascade, and immune responses. These findings underscore the importance of regular physical activity in public health strategies, while prioritizing PM2.5 reduction measures for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200030, China; Hangzhou Shangcheng District Center for Disease Control and Prevention (Hangzhou Shangcheng District Health Supervision Institution), Hangzhou 310043, PR China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yihui Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Di Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yafen Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yan Wu
- Department of Health Inspection and Quarantine, The School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200030, China.
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Obstetrics and Gynecology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen university, Xiamen 361102, China.
| |
Collapse
|
3
|
Holme S, Sapia J, Davey M, Vanni S, Conibear E. An S-acylated N-terminus and a conserved loop regulate the activity of the ABHD17 deacylase. J Cell Biol 2025; 224:e202405042. [PMID: 39951021 PMCID: PMC11827582 DOI: 10.1083/jcb.202405042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The dynamic addition and removal of long-chain fatty acids modulate protein function and localization. The α/β hydrolase domain-containing (ABHD) 17 enzymes remove acyl chains from membrane-localized proteins such as the oncoprotein NRas, but how the ABHD17 proteins are regulated is unknown. Here, we used cell-based studies and molecular dynamics simulations to show that ABHD17 activity is controlled by two mobile elements-an S-acylated N-terminal helix and a loop-that flank the putative substrate-binding pocket. Multiple S-acylation events anchor the N-terminal helix in the membrane, enabling hydrophobic residues in the loop to engage with the bilayer. This stabilizes the conformation of both helix and loop, alters the conformation of the binding pocket, and optimally positions the enzyme for substrate engagement. S-acylation may be a general feature of acyl-protein thioesterases. By providing a mechanistic understanding of how the lipid modification of a lipid-removing enzyme promotes its enzymatic activity, this work contributes to our understanding of cellular S-acylation cycles.
Collapse
Affiliation(s)
- Sydney Holme
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Božič A, Podgornik R. Increased preference for lysine over arginine in spike proteins of SARS-CoV-2 BA.2.86 variant and its daughter lineages. PLoS One 2025; 20:e0320891. [PMID: 40193474 PMCID: PMC11975073 DOI: 10.1371/journal.pone.0320891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic offered an unprecedented glimpse into the evolution of its causative virus, SARS-CoV-2. It has been estimated that since its outbreak in late 2019, the virus has explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain. Spike protein of the virus exhibits the largest sequence variation in particular, with many individual mutations impacting target recognition, cellular entry, and endosomal escape of the virus. Moreover, recent studies unveiled a significant increase in the total charge on the spike protein during the evolution of the virus in the initial period of the pandemic. While this trend has recently come to a halt, we perform a sequence-based analysis of the spike protein of 2665 SARS-CoV-2 variants which shows that mutations in ionizable amino acids continue to occur with the newly emerging variants, with notable differences between lineages from different clades. What is more, we show that within mutations of amino acids which can acquire positive charge, the spike protein of SARS-CoV-2 exhibits a prominent preference for lysine residues over arginine residues. This lysine-to-arginine ratio increased at several points during spike protein evolution, most recently with BA.2.86 and its sublineages, including the recently dominant JN.1, KP.3, and XEC variants. The increased ratio is a consequence of mutations in different structural regions of the spike protein and is now among the highest among viral species in the Coronaviridae family. The impact of high lysine-to-arginine ratio in the spike proteins of BA.2.86 and its daughter lineages on viral fitness remains unclear; we discuss several potential mechanisms that could play a role and that can serve as a starting point for further studies.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
5
|
Cheng KJ, Shastry S, Campolargo JD, Hallock MJ, Pogorelov TV. Charge, Hydrophobicity, and Lipid Type Drive Antimicrobial Peptides' Unique Perturbation Ensembles. Biochemistry 2025; 64:1484-1500. [PMID: 40105792 DOI: 10.1021/acs.biochem.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising solution to the escalating public health threat caused by multidrug-resistant bacteria. Although ongoing research efforts have established AMP's role in membrane permeabilization and leakage, the precise mechanisms driving these disruption patterns remain unclear. We leverage molecular dynamics (MD) simulations enhanced by membrane mimetic (HMMM) to systematically investigate how the physiochemical properties of magainin (+3) and pexiganan (+9) affect their localization, insertion, curvature perturbation, and membrane binding ensemble. Building on existing microbiology, NMR, circular dichroism, and fluorescence data, our analysis reveals that the lipid makeup is a key determinant in the binding dynamics and structural conformation of AMPs. We find that phospholipid type is crucial for peptide localization, demonstrated through magainin's predominant interaction with lipid tails and pexiganan's with polar headgroups in POPC/POPS membranes. The membrane curvature changes induced by pexiganan relative to magainin suggest that AMPs with larger charges have more potential in modulating bilayer bending. These insights advance our understanding of AMP-membrane interactions at the molecular level, offering guidance for the design of targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Kevin J Cheng
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shashank Shastry
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Juan David Campolargo
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael J Hallock
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputer Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. Cell 2025:S0092-8674(25)00270-3. [PMID: 40179882 DOI: 10.1016/j.cell.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PMs). Using lipidomics, we report that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared with exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA; Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, 17165 Solna, Sweden.
| | - Jessica L Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Joseph H Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain, Avenue Mounier 73, B1.73.05, 1200 Brussels, Belgium
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
7
|
Svistunov VO, Ehrmann KJ, Lencer WI, Schmieder SS. Sorting of complex sphingolipids within the cellular endomembrane systems. Front Cell Dev Biol 2025; 12:1490870. [PMID: 40078962 PMCID: PMC11897003 DOI: 10.3389/fcell.2024.1490870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Cells contain a plethora of structurally diverse lipid species, which are unevenly distributed across the different cellular membrane compartments. Some of these lipid species require vesicular trafficking to reach their subcellular destinations. Here, we review recent advances made in the field that contribute to understanding lipid sorting during endomembrane trafficking.
Collapse
Affiliation(s)
- Victor O. Svistunov
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Kigumbi J. Ehrmann
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Digestive Diseases Center, Boston, MA, United States
| | - S. S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Vargová R, Chevreau R, Alves M, Courbin C, Terry K, Legrand P, Eliáš M, Ménétrey J, Dacks JB, Jackson CL. The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics. Nat Microbiol 2025; 10:495-508. [PMID: 39849086 DOI: 10.1038/s41564-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation. The Arf family is ubiquitous among eukaryotes, but its origins remain elusive. Here we report a group of prokaryotic GTPases, the ArfRs, which are widely present in Asgardarchaeota. Phylogenetic analyses reveal that eukaryotic Arf family proteins arose from the ArfR group. Expression of representative Asgardarchaeota ArfR proteins in yeast and X-ray crystallographic studies show that ArfR GTPases possess the mechanism of membrane binding and structural features unique to Arf family proteins. Our results indicate that Arf family GTPases originated in the archaeal ancestor of eukaryotes, consistent with aspects of the endomembrane system evolving early in eukaryogenesis.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Roxanne Chevreau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marine Alves
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Camille Courbin
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Kara Terry
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre Legrand
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, France
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Julie Ménétrey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, UK.
| | | |
Collapse
|
9
|
Johnson DH, Kou OH, White JM, Ramirez SY, Margaritakis A, Chung PJ, Jaeger VW, Zeno WF. Lipid Packing Defects are Necessary and Sufficient for Membrane Binding of α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.14.623669. [PMID: 39829920 PMCID: PMC11741239 DOI: 10.1101/2024.11.14.623669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
α-Synuclein (αSyn), an intrinsically disordered protein implicated in Parkinson's disease, is potentially thought to initiate aggregation through binding to cellular membranes. Previous studies have suggested that anionic membrane charge is necessary for this binding. However, these studies largely focus on unmodified αSyn, while nearly all αSyn in the body is N-terminally acetylated (NTA). NTA dramatically shifts the narrative by diminishing αSyn's reliance on anionic charge for membrane binding. Instead, we demonstrate that membrane packing defects are the dominant forces driving NTA-αSyn interactions, challenging the long-standing paradigm that anionic membranes are essential for αSyn binding. Using fluorescence microscopy and circular dichroism spectroscopy, we monitored the binding of NTA-αSyn to reconstituted membrane surfaces with different lipid compositions. Phosphatidylcholine and phosphatidylserine concentrations were varied to control surface charge, while phospholipid tail unsaturation and methylation were varied to control lipid packing. All-atom molecular dynamics simulations of lipid bilayers supported the observation that membrane packing defects are necessary for NTA-αSyn binding and that defect-rich membranes are sufficient for NTA-αSyn binding regardless of membrane charge. We further demonstrated that this affinity for membrane defects persisted in reconstituted, cholesterol-containing membranes that mimicked the physiological lipid composition of synaptic vesicles. Increasing phospholipid unsaturation in these mimics led to more membrane packing defects and a corresponding increase in NTA-αSyn binding. Altogether, our results point to a mechanism for the regulation of NTA-αSyn binding in biological membranes that extends beyond phospholipid charge to the structural properties of the lipids themselves.
Collapse
Affiliation(s)
- David H. Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
| | - Orianna H. Kou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90089, United States
| | - John M. White
- Department of Chemical Engineering, University of Louisville, Ernst Hall, Room 312, 216 Eastern Parkway, Louisville, Kentucky 40292, United States
| | - Stephanie Y. Ramirez
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089, United States
| | - Antonis Margaritakis
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90089, United States
| | - Peter J. Chung
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089, United States
| | - Vance W. Jaeger
- Department of Chemical Engineering, University of Louisville, Ernst Hall, Room 312, 216 Eastern Parkway, Louisville, Kentucky 40292, United States
| | - Wade F. Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
10
|
Lee S, Le Roux AL, Mors M, Vanni S, Roca‑Cusachs P, Bahmanyar S. Amphipathic helices sense the inner nuclear membrane environment through lipid packing defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623600. [PMID: 39605395 PMCID: PMC11601446 DOI: 10.1101/2024.11.14.623600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Amphipathic helices (AHs) are ubiquitous protein motifs that modulate targeting to organellar membranes by sensing differences in bulk membrane properties. However, the adaptation between membrane-targeting AHs and the nuclear membrane environment that surrounds the genome is poorly understood. Here, we computationally screened for candidate AHs in a curated list of characterized and putative human inner nuclear membrane (INM) proteins. Cell biological and in vitro experimental assays combined with computational calculations demonstrated that AHs detect lipid packing defects over electrostatics to bind to the INM, indicating that the INM is loosely packed under basal conditions. Membrane tension resulting from hypotonic shock further promoted AH binding to the INM, whereas cell-substrate stretch did not enhance recruitment of membrane tension-sensitive AHs. Together, our work demonstrates the rules driving lipid-protein interactions at the INM, and its implications in the response of the nucleus to different stimuli.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, 260 Whitney Ave, Yale Science Building 116, New Haven, CT 06511, USA
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Mira Mors
- Department of Biology, University of Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Pere Roca‑Cusachs
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, 260 Whitney Ave, Yale Science Building 116, New Haven, CT 06511, USA
| |
Collapse
|
11
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.30.551157. [PMID: 39713443 PMCID: PMC11661119 DOI: 10.1101/2023.07.30.551157] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function often include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PM). Using quantitative lipidomics, we discovered that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared to exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization. These largely overlooked aspects of membrane asymmetry represent an evolution of classic paradigms of biomembrane structure and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Biochemistry and Biophysics, Stockholm University; Science for Life Laboratory, Solna 171 65, Sweden
| | - Jessica L. Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet; 17165 Solna, Sweden
| | - Joseph H. Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain; Avenue Mounier 73, B1.73.05, B-1200 Brussels
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville; Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet; 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy; Department of Chemistry and Biochemistry, University of Delaware; Newark, DE 19716, USA
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Curtis BN, Gladfelter AS. Drivers of Morphogenesis: Curvature Sensor Self-Assembly at the Membrane. Cold Spring Harb Perspect Biol 2024; 16:a041528. [PMID: 38697653 PMCID: PMC11610757 DOI: 10.1101/cshperspect.a041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This review examines the relationships between membrane chemistry, curvature-sensing proteins, and cellular morphogenesis. Curvature-sensing proteins are often orders of magnitude smaller than the membrane curvatures they localize to. How are nanometer-scale proteins used to sense micrometer-scale membrane features? Here, we trace the journey of curvature-sensing proteins as they engage with lipid membranes through a combination of electrostatic and hydrophobic interactions. We discuss how curvature sensing hinges on membrane features like lipid charge, packing, and the directionality of membrane curvature. Once bound to the membrane, many curvature sensors undergo self-assembly (i.e., they oligomerize or form higher-order assemblies that are key for initiating and regulating cell shape transformations). Central to these discussions are the micrometer-scale curvature-sensing proteins' septins. By discussing recent literature surrounding septin membrane association, assembly, and their many functions in morphogenesis with support from other well-studied curvature sensors, we aim to synthesize possible mechanisms underlining cell shape sensing.
Collapse
Affiliation(s)
- Brandy N Curtis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
13
|
Dias Araújo AR, Bello AA, Bigay J, Franckhauser C, Gautier R, Cazareth J, Kovács D, Brau F, Fuggetta N, Čopič A, Antonny B. Surface tension-driven sorting of human perilipins on lipid droplets. J Cell Biol 2024; 223:e202403064. [PMID: 39297796 PMCID: PMC11413419 DOI: 10.1083/jcb.202403064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Perilipins (PLINs), the most abundant proteins on lipid droplets (LDs), display similar domain organization including amphipathic helices (AH). However, the five human PLINs bind different LDs, suggesting different modes of interaction. We established a minimal system whereby artificial LDs covered with defined polar lipids were transiently deformed to promote surface tension. Binding of purified PLIN3 and PLIN4 AH was strongly facilitated by tension but was poorly sensitive to phospholipid composition and to the presence of diacylglycerol. Accordingly, LD coverage by PLIN3 increased as phospholipid coverage decreased. In contrast, PLIN1 bound readily to LDs fully covered by phospholipids; PLIN2 showed an intermediate behavior between PLIN1 and PLIN3. In human adipocytes, PLIN3/4 were found in a soluble pool and relocated to LDs upon stimulation of fast triglyceride synthesis, whereas PLIN1 and PLIN2 localized to pre-existing LDs, consistent with the large difference in LD avidity observed in vitro. We conclude that the PLIN repertoire is adapted to handling LDs with different surface properties.
Collapse
Affiliation(s)
- Ana Rita Dias Araújo
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Abdoul Akim Bello
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Joëlle Bigay
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Céline Franckhauser
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Romain Gautier
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Julie Cazareth
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Dávid Kovács
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Frédéric Brau
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Nicolas Fuggetta
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Bruno Antonny
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| |
Collapse
|
14
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Weyer Y, Schwabl SI, Tang X, Purwar A, Siegmann K, Ruepp A, Dunzendorfer-Matt T, Widerin MA, Niedrist V, Mutsters NJM, Tettamanti MG, Weys S, Sarg B, Kremser L, Liedl KR, Schmidt O, Teis D. The Dsc ubiquitin ligase complex identifies transmembrane degrons to degrade orphaned proteins at the Golgi. Nat Commun 2024; 15:9257. [PMID: 39461958 PMCID: PMC11513148 DOI: 10.1038/s41467-024-53676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The Golgi apparatus is essential for protein sorting, yet its quality control mechanisms are poorly understood. Here we show that the Dsc ubiquitin ligase complex uses its rhomboid pseudo-protease subunit, Dsc2, to assess the hydrophobic length of α-helical transmembrane domains (TMDs) at the Golgi. Thereby the Dsc complex likely interacts with orphaned ER and Golgi proteins that have shorter TMDs and ubiquitinates them for targeted degradation. Some Dsc substrates will be extracted by Cdc48 for endosome and Golgi associated proteasomal degradation (EGAD), while others will undergo ESCRT dependent vacuolar degradation. Some substrates are degraded by both, EGAD- or ESCRT pathways. The accumulation of Dsc substrates entails a specific increase in glycerophospholipids with shorter and asymmetric fatty acyl chains. Hence, the Dsc complex mediates the selective degradation of orphaned proteins at the sorting center of cells, which prevents their spreading across other organelles and thereby preserves cellular membrane protein and lipid composition.
Collapse
Affiliation(s)
- Yannick Weyer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sinead I Schwabl
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Xuechen Tang
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Astha Purwar
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Konstantin Siegmann
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Ruepp
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael A Widerin
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Veronika Niedrist
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Noa J M Mutsters
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria G Tettamanti
- Department of Molecular and Cell Biology, University of Geneva, Geneva, Switzerland
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Sabine Weys
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Ma DF, Zhang S, Xu SY, Huang Z, Tao Y, Chen F, Zhang S, Li D, Chen T, Liu C, Li M, Lu Y. Self-limiting multimerization of α-synuclein on membrane and its implication in Parkinson's diseases. SCIENCE ADVANCES 2024; 10:eado4893. [PMID: 39383232 PMCID: PMC11463274 DOI: 10.1126/sciadv.ado4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
α-Synuclein (α-syn), a crucial molecule in Parkinson's disease (PD), is known for its interaction with lipid membranes, which facilitates vesicle trafficking and modulates its pathological aggregation. Deciphering the complexity of the membrane-binding behavior of α-syn is crucial to understand its functions and the pathology of PD. Here, we used single-molecule imaging to show that α-syn forms multimers on lipid membranes with huge intermultimer distances. The multimers are characterized by self-limiting growth, manifesting in concentration-dependent exchanges of monomers, which are fast at micromolar concentrations and almost stop at nanomolar concentrations. We further uncovered movement patterns of α-syn's occasional trapping on membranes, which may be attributed to sparse lipid packing defects. Mutations such as E46K and E35K may disrupt the limit on the growth, resulting in larger multimers and accelerated amyloid fibril formation. This work emphasizes sophisticated regulation of α-syn multimerization on membranes as a critical underlying factor in the PD pathology.
Collapse
Affiliation(s)
- Dong-Fei Ma
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Yao Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zi Huang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Yuanxiao Tao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiyang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongsheng Chen
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Lu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Brown RB. Statins in the Cause and Prevention of Cancer: Confounding by Indication and Mediation by Rhabdomyolysis and Phosphate Toxicity. J Cardiovasc Dev Dis 2024; 11:296. [PMID: 39330354 PMCID: PMC11432391 DOI: 10.3390/jcdd11090296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Statins are drugs used in cardiovascular pharmacotherapy to decrease hypercholesterolemia and lower the risk of atherosclerosis. Statins also increase the risk of rhabdomyolysis, which is often minimized in comparison with large relative risk reductions of cardiovascular disease reported in clinical trials. By contrast, absolute risk reductions of cardiovascular disease are often clinically insignificant and unreported in statin clinical trials. Additionally, cytotoxic effects of statins inhibit cancer cell proliferation and reduce cancer risk, but other studies found that statins are carcinogenic. Due to an inverse association between incidence of cancer and atherosclerosis, the indication to prescribe statins likely biases the association of statins with cancer prevention. Dietary patterns associated with atherosclerosis and cancer contain inverse amounts of cholesterol and phosphate, an essential mineral that stimulates tumorigenesis. Accordingly, lower cancer risk is associated with high dietary cholesterol intake and increased risk of atherosclerosis. Furthermore, serum is exposed to excessive inorganic phosphate that could increase cancer risk as rhabdomyolysis induced by statins releases phosphate from skeletal muscle breakdown. Increased risk of comorbid conditions associated with statins may share the mediating factor of phosphate toxicity. More research is warranted on statins in the cause and prevention of cancer.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
18
|
Giangregorio N, Tonazzi A, Pierri CL, Indiveri C. Insights into Transient Dimerisation of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis. Biomolecules 2024; 14:1158. [PMID: 39334924 PMCID: PMC11430254 DOI: 10.3390/biom14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
19
|
Tavasoli M, McMaster CR. Defects in integrin complex formation promote CHKB-mediated muscular dystrophy. Life Sci Alliance 2024; 7:e202301956. [PMID: 38749543 PMCID: PMC11096732 DOI: 10.26508/lsa.202301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in CHKB, encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known. We determine that in Chkb -/- mice there is a failure of the α7β1 integrin complex that is specific to affected muscle. We observed that in Chkb -/- hindlimb muscles there is a decrease in sarcolemma association/abundance of the PI(4,5)P2 binding integrin complex proteins vinculin, and α-actinin, and a decrease in actin association with the sarcolemma. In cells, pharmacological inhibition of choline kinase activity results in internalization of a fluorescent PI(4,5)P2 reporter from discrete plasma membrane clusters at the cell surface membrane to cytosol, this corresponds with a decreased vinculin localization at plasma membrane focal adhesions that was rescued by overexpression of CHKB.
Collapse
Affiliation(s)
- Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
20
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
21
|
Nicolella Z, Okamoto Y, Watanabe NM, Thompson GL, Umakoshi H. Significance of in situ quantitative membrane property-morphology relation (QmPMR) analysis. SOFT MATTER 2024; 20:4935-4949. [PMID: 38873752 DOI: 10.1039/d4sm00253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Deformation of the cell membrane is well understood from the viewpoint of protein interactions and free energy balance. However, the various dynamic properties of the membrane, such as lipid packing and hydrophobicity, and their relationship with cell membrane deformation are unknown. Therefore, the deformation of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid (OA) giant unilamellar vesicles (GUVs) was induced by heating and cooling cycles, and time-lapse analysis was conducted based on the membrane hydrophobicity and physical parameters of "single-parent" and "daughter" vesicles. Fluorescence ratiometric analysis by simultaneous dual-wavelength detection revealed the variation of different hydrophilic GUVs and enabled inferences of the "daughter" vesicle composition and the "parent" membrane's local composition during deformation; the "daughter" vesicle composition of OA was lower than that of the "parents", and lateral movement of OA was the primary contributor to the formation of the "daughter" vesicles. Thus, our findings and the newly developed methodology, named in situ quantitative membrane property-morphology relation (QmPMR) analysis, would provide new insights into cell deformation and accelerate research on both deformation and its related events, such as budding and birthing.
Collapse
Affiliation(s)
- Zachary Nicolella
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Gary Lee Thompson
- Rowan University, Rowan Hall, Room 333 70 Sewell St., Ste. E Glassboro, NJ 08028, USA
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
22
|
Shvarev D, König C, Susan N, Langemeyer L, Walter S, Perz A, Fröhlich F, Ungermann C, Moeller A. Structure of the endosomal CORVET tethering complex. Nat Commun 2024; 15:5227. [PMID: 38898033 PMCID: PMC11187117 DOI: 10.1038/s41467-024-49137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Caroline König
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Nicole Susan
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Angela Perz
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Florian Fröhlich
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| |
Collapse
|
23
|
Díaz M. Multifactor Analyses of Frontal Cortex Lipids in the APP/PS1 Model of Familial Alzheimer's Disease Reveal Anomalies in Responses to Dietary n-3 PUFA and Estrogenic Treatments. Genes (Basel) 2024; 15:810. [PMID: 38927745 PMCID: PMC11202691 DOI: 10.3390/genes15060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer's disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Mario Díaz
- Membrane Physiology and Biophysics, Department of Physics, School of Sciences, University of La Laguna, 38206 Tenerife, Spain; or
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
24
|
Lauritsen L, Szomek M, Hornum M, Reinholdt P, Kongsted J, Nielsen P, Brewer JR, Wüstner D. Ratiometric fluorescence nanoscopy and lifetime imaging of novel Nile Red analogs for analysis of membrane packing in living cells. Sci Rep 2024; 14:13748. [PMID: 38877068 PMCID: PMC11178856 DOI: 10.1038/s41598-024-64180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Subcellular membranes have complex lipid and protein compositions, which give rise to organelle-specific membrane packing, fluidity, and permeability. Due to its exquisite solvent sensitivity, the lipophilic fluorescence dye Nile Red has been used extensively to study membrane packing and polarity. Further improvement of Nile Red can be achieved by introducing electron-donating or withdrawing functional groups. Here, we compare the potential of derivatives of Nile Red with such functional substitutions for super-resolution fluorescence microscopy of lipid packing in model membranes and living cells. All studied Nile Red derivatives exhibit cholesterol-dependent fluorescence changes in model membranes, as shown by spectrally resolved stimulated emission depletion (STED) microscopy. STED imaging of Nile Red probes in cells reveals lower membrane packing in fibroblasts from healthy subjects compared to those from patients suffering from Niemann Pick type C1 (NPC1) disease, a lysosomal storage disorder with accumulation of cholesterol and sphingolipids in late endosomes and lysosomes. We also find small but consistent changes in the fluorescence lifetime of the Nile Red derivatives in NPC1 cells, suggesting altered hydrogen-bonding capacity in their membranes. All Nile Red derivatives are essentially non-fluorescent in water but increase their brightness in membranes, allowing for their use in MINFLUX single molecule tracking experiments. Our study uncovers the potential of Nile Red probes with functional substitutions for nanoscopic membrane imaging.
Collapse
Affiliation(s)
- Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
25
|
Shinoda S, Sakai Y, Matsui T, Uematsu M, Koyama-Honda I, Sakamaki JI, Yamamoto H, Mizushima N. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 2024; 12:RP92189. [PMID: 38831696 PMCID: PMC11152571 DOI: 10.7554/elife.92189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.
Collapse
Affiliation(s)
- Saori Shinoda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Masaaki Uematsu
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
26
|
Duan M, Plemel RL, Takenaka T, Lin A, Delgado BM, Nattermann U, Nickerson DP, Mima J, Miller EA, Merz AJ. SNARE chaperone Sly1 directly mediates close-range vesicle tethering. J Cell Biol 2024; 223:e202001032. [PMID: 38478018 PMCID: PMC10943277 DOI: 10.1083/jcb.202001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.
Collapse
Affiliation(s)
- Mengtong Duan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachael L. Plemel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Ariel Lin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Biology, California State University, San Bernardino, CA, USA
| | | | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Biophysics, Structure, and Design Graduate Program, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Joji Mima
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Alexey J. Merz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Osetrova M, Tkachev A, Mair W, Guijarro Larraz P, Efimova O, Kurochkin I, Stekolshchikova E, Anikanov N, Foo JC, Cazenave-Gassiot A, Mitina A, Ogurtsova P, Guo S, Potashnikova DM, Gulin AA, Vasin AA, Sarycheva A, Vladimirov G, Fedorova M, Kostyukevich Y, Nikolaev E, Wenk MR, Khrameeva EE, Khaitovich P. Lipidome atlas of the adult human brain. Nat Commun 2024; 15:4455. [PMID: 38796479 PMCID: PMC11127996 DOI: 10.1038/s41467-024-48734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.
Collapse
Affiliation(s)
- Maria Osetrova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Tkachev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Waltraud Mair
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ilia Kurochkin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Juat Chin Foo
- Singapore Lipidomics Incubator, Life Sciences Institute and Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute and Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore, Singapore, Singapore
| | | | | | - Song Guo
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria M Potashnikova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A Gulin
- N. N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Vasin
- N. N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Gleb Vladimirov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Evgeny Nikolaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute and Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore, Singapore, Singapore.
| | | | | |
Collapse
|
28
|
Santinho A, Carpentier M, Lopes Sampaio J, Omrane M, Thiam AR. Giant organelle vesicles to uncover intracellular membrane mechanics and plasticity. Nat Commun 2024; 15:3767. [PMID: 38704407 PMCID: PMC11069511 DOI: 10.1038/s41467-024-48086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.
Collapse
Affiliation(s)
- Alexandre Santinho
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Maxime Carpentier
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Julio Lopes Sampaio
- Institut Curie, PSL Research University, Plateforme de Métabolomique et Lipidomique, 26 rue d'Ulm, Paris, France
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
29
|
Muth LT, Van Bogaert INA. Let it stick: Strategies and applications for intracellular plasma membrane targeting of proteins in Saccharomyces cerevisiae. Yeast 2024; 41:315-329. [PMID: 38444057 DOI: 10.1002/yea.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Lipid binding domains and protein lipidations are essential features to recruit proteins to intracellular membranes, enabling them to function at specific sites within the cell. Membrane association can also be exploited to answer fundamental and applied research questions, from obtaining insights into the understanding of lipid metabolism to employing them for metabolic engineering to redirect fluxes. This review presents a broad catalog of membrane binding strategies focusing on the plasma membrane of Saccharomyces cerevisiae. Both lipid binding domains (pleckstrin homology, discoidin-type C2, kinase associated-1, basic-rich and bacterial phosphoinositide-binding domains) and co- and post-translational lipidations (prenylation, myristoylation and palmitoylation) are introduced as tools to target the plasma membrane. To provide a toolset of membrane targeting modules, respective candidates that facilitate plasma membrane targeting are showcased including their in vitro and in vivo properties. The relevance and versatility of plasma membrane targeting modules are further highlighted by presenting a selected set of use cases.
Collapse
Affiliation(s)
- Liv Teresa Muth
- Department of Biotechnology, Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
30
|
Tian Q, Chung H, Wen D. The role of lipids in genome integrity and pluripotency. Biochem Soc Trans 2024; 52:639-650. [PMID: 38506536 PMCID: PMC11088914 DOI: 10.1042/bst20230479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Pluripotent stem cells (PSCs), comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), offer immense potential for regenerative medicine due to their ability to differentiate into all cell types of the adult body. A critical aspect of harnessing this potential is understanding their metabolic requirements during derivation, maintenance, and differentiation in vitro. Traditional culture methods using fetal bovine serum often lead to issues such as heterogeneous cell populations and diminished pluripotency. Although the chemically-defined 2i/LIF medium has provided solutions to some of these challenges, prolonged culturing of these cells, especially female ESCs, raises concerns related to genome integrity. This review discusses the pivotal role of lipids in genome stability and pluripotency of stem cells. Notably, the introduction of lipid-rich albumin, AlbuMAX, into the 2i/LIF culture medium offers a promising avenue for enhancing the genomic stability and pluripotency of cultured ESCs. We further explore the unique characteristics of lipid-induced pluripotent stem cells (LIP-ESCs), emphasizing their potential in regenerative medicine and pluripotency research.
Collapse
Affiliation(s)
- Qiyu Tian
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Hoyoung Chung
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| |
Collapse
|
31
|
Yang S, Shi Z. Quantification of membrane geometry and protein sorting on cell membrane protrusions using fluorescence microscopy. Methods Enzymol 2024; 700:385-411. [PMID: 38971608 DOI: 10.1016/bs.mie.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.
Collapse
Affiliation(s)
- Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
32
|
Kerr D, Suwatthee T, Maltseva S, Lee KYC. Binding equations for the lipid composition dependence of peripheral membrane-binding proteins. Biophys J 2024; 123:885-900. [PMID: 38433448 PMCID: PMC10995427 DOI: 10.1016/j.bpj.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
The specific recognition of peripheral membrane-binding proteins for their target membranes is mediated by a complex constellation of various lipid contacts. Despite the inherent complexities of the heterogeneous protein-membrane interface, the binding dependence of such proteins is, surprisingly, often reliably described by simple models such as the Langmuir Adsorption Isotherm or the Hill equation. However, these models were not developed to describe associations with two-dimensional, highly concentrated heterogeneous ligands such as lipid membranes. In particular, these models fail to capture the dependence on the lipid composition, a significant determinant of binding that distinguishes target from non-target membranes. In this work, we present a model that describes the dependence of peripheral proteins on lipid composition through an analytic expression for their association. The resulting membrane-binding equation retains the features of these simple models but completely describes the binding dependence on multiple relevant variables in addition to the lipid composition, such as protein and vesicle concentration. Implicit in this lipid composition dependence is a new form of membrane-based cooperativity that significantly differs from traditional solution-based cooperativity. We introduce the Membrane-Hill number as a measure of this cooperativity and describe its unique properties. We illustrate the utility and interpretational power of our model by analyzing previously published data on two peripheral proteins that associate with phosphatidylserine-containing membranes: The transmembrane immunoglobulin and mucin domain-containing protein 3 (TIM3) that employs calcium in its association, and milk fat globulin epidermal growth factor VIII (MFG-E8) which is completely insensitive to calcium. We also provide binding equations for systems that exhibit more complexity in their membrane-binding.
Collapse
Affiliation(s)
- Daniel Kerr
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Tiffany Suwatthee
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Sofiya Maltseva
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Ka Yee C Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
33
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
34
|
Wüstner D, Egebjerg JM, Lauritsen L. Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes. SENSORS (BASEL, SWITZERLAND) 2024; 24:2096. [PMID: 38610307 PMCID: PMC11013970 DOI: 10.3390/s24072096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
An analysis of the membrane organization and intracellular trafficking of lipids often relies on multiphoton (MP) and super-resolution microscopy of fluorescent lipid probes. A disadvantage of particularly intrinsically fluorescent lipid probes, such as the cholesterol and ergosterol analogue, dehydroergosterol (DHE), is their low MP absorption cross-section, resulting in a low signal-to-noise ratio (SNR) in live-cell imaging. Stimulated emission depletion (STED) microscopy of membrane probes like Nile Red enables one to resolve membrane features beyond the diffraction limit but exposes the sample to a lot of excitation light and suffers from a low SNR and photobleaching. Here, dynamic mode decomposition (DMD) and its variant, higher-order DMD (HoDMD), are applied to efficiently reconstruct and denoise the MP and STED microscopy data of lipid probes, allowing for an improved visualization of the membranes in cells. HoDMD also allows us to decompose and reconstruct two-photon polarimetry images of TopFluor-cholesterol in model and cellular membranes. Finally, DMD is shown to not only reconstruct and denoise 3D-STED image stacks of Nile Red-labeled cells but also to predict unseen image frames, thereby allowing for interpolation images along the optical axis. This important feature of DMD can be used to reduce the number of image acquisitions, thereby minimizing the light exposure of biological samples without compromising image quality. Thus, DMD as a computational tool enables gentler live-cell imaging of fluorescent probes in cellular membranes by MP and STED microscopy.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (J.M.E.); (L.L.)
| | | | | |
Collapse
|
35
|
Ye Y, Liang X, Wang G, Bewley MC, Hamamoto K, Liu X, Flanagan JM, Wang HG, Takahashi Y, Tian F. Identification of membrane curvature sensing motifs essential for VPS37A phagophore recruitment and autophagosome closure. Commun Biol 2024; 7:334. [PMID: 38491121 PMCID: PMC10942982 DOI: 10.1038/s42003-024-06026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.
Collapse
Affiliation(s)
- Yansheng Ye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| | - Xinwen Liang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guifang Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Maria C Bewley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Kouta Hamamoto
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xiaoming Liu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
36
|
Fuggetta N, Rigolli N, Magdeleine M, Hamaï A, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange coupled to PI4P metabolism. Proc Natl Acad Sci U S A 2024; 121:e2315493121. [PMID: 38408242 PMCID: PMC10927502 DOI: 10.1073/pnas.2315493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Oxysterol-binding protein-related proteins (ORPs) play key roles in the distribution of lipids in eukaryotic cells by exchanging sterol or phosphatidylserine for PI4P between the endoplasmic reticulum (ER) and other cell regions. However, it is unclear how their exchange capacity is coupled to PI4P metabolism. To address this question quantitatively, we analyze the activity of a representative ORP, Osh4p, in an ER/Golgi interface reconstituted with ER- and Golgi-mimetic membranes functionalized with PI4P phosphatase Sac1p and phosphatidylinositol (PI) 4-kinase, respectively. Using real-time assays, we demonstrate that upon adenosine triphosphate (ATP) addition, Osh4p creates a sterol gradient between these membranes, relying on the spatially distant synthesis and hydrolysis of PI4P, and quantify how much PI4P is needed for this process. Then, we develop a quantitatively accurate kinetic model, validated by our data, and extrapolate this to estimate to what extent PI4P metabolism can drive ORP-mediated sterol transfer in cells. Finally, we show that Sec14p can support PI4P metabolism and Osh4p activity by transferring PI between membranes. This study establishes that PI4P synthesis drives ORP-mediated lipid exchange and that ATP energy is needed to generate intermembrane lipid gradients. Furthermore, it defines to what extent ORPs can distribute lipids in the cell and reassesses the role of PI-transfer proteins in PI4P metabolism.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Nicola Rigolli
- Department of Physics, École Normale Supérieure (LPENS), Paris75005, France
| | - Maud Magdeleine
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Amazigh Hamaï
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa16145, Italy
| | - Guillaume Drin
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| |
Collapse
|
37
|
Wölk C, Shen C, Hause G, Surya W, Torres J, Harvey RD, Bello G. Membrane Condensation and Curvature Induced by SARS-CoV-2 Envelope Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2646-2655. [PMID: 38258382 PMCID: PMC10851660 DOI: 10.1021/acs.langmuir.3c03079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The envelope (E) protein of SARS-CoV-2 participates in virion encapsulation and budding at the membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC). The positively curved membrane topology required to fit an 80 nm viral particle is energetically unfavorable; therefore, viral proteins must facilitate ERGIC membrane curvature alteration. To study the possible role of the E protein in this mechanism, we examined the structural modification of the host lipid membrane by the SARS-CoV-2 E protein using synchrotron-based X-ray methods. Our reflectometry results on solid-supported planar bilayers show that E protein markedly condenses the surrounding lipid bilayer. For vesicles, this condensation effect differs between the two leaflets such that the membrane becomes asymmetric and increases its curvature. The formation of such a curved and condensed membrane is consistent with the requirements to stably encapsulate a viral core and supports a role for E protein in budding during SARS-CoV-2 virion assembly.
Collapse
Affiliation(s)
- Christian Wölk
- Pharmaceutical
Technology, Medical Faculty, University
Leipzig, Eilenburger
Straße 15a, 04317 Leipzig, Germany
| | - Chen Shen
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Wahyu Surya
- School
of Biological Sciences, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jaume Torres
- School
of Biological Sciences, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Richard D. Harvey
- Division
of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, UZA 2, Vienna 1090, Austria
| | - Gianluca Bello
- Division
of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, UZA 2, Vienna 1090, Austria
| |
Collapse
|
38
|
Banerjee P, Qu K, Briggs JAG, Voth GA. Molecular dynamics simulations of HIV-1 matrix-membrane interactions at different stages of viral maturation. Biophys J 2024; 123:389-406. [PMID: 38196190 PMCID: PMC10870173 DOI: 10.1016/j.bpj.2024.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Although the structural rearrangement of the membrane-bound matrix (MA) protein trimers upon HIV-1 maturation has been reported, the consequences of MA maturation on the MA-lipid interactions are not well understood. Long-timescale molecular dynamics simulations of the MA multimeric assemblies of immature and mature virus particles with our realistic asymmetric membrane model have explored MA-lipid interactions and lateral organization of lipids around MA complexes. The number of stable MA-phosphatidylserine and MA-phosphatidylinositol 4,5-bisphosphate (PIP2) interactions at the trimeric interface of the mature MA complex is observed to be greater compared to that of the immature MA complex. Our simulations identified an alternative PIP2-binding site in the immature MA complex where the multivalent headgroup of a PIP2 lipid with a greater negative charge binds to multiple basic amino acid residues such as ARG3 residues of both the MA monomers at the trimeric interface and highly basic region (HBR) residues (LYS29, LYS31) of one of the MA monomers. Our enhanced sampling simulations have explored the conformational space of phospholipids at different binding sites of the trimer-trimer interface of MA complexes that are not accessible by conventional unbiased molecular dynamics. Unlike the immature MA complex, the 2' acyl tail of two PIP2 lipids at the trimeric interface of the mature MA complex is observed to sample stable binding pockets of MA consisting of helix-4 residues. Together, our results provide molecular-level insights into the interactions of MA trimeric complexes with membrane and different lipid conformations at the specific binding sites of MA protein before and after viral maturation.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Kun Qu
- Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Planegg, Germany
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
39
|
Li S, Zhi Y, Mu W, Li M, Lv G. Exploring the effects of epigallocatechin gallate on lipid metabolism in the rat steatotic liver during normothermic machine perfusion: Insights from lipidomics and RNA sequencing. Eur J Pharmacol 2024; 964:176300. [PMID: 38141939 DOI: 10.1016/j.ejphar.2023.176300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Hepatic steatosis is the leading cause of discarded liver grafts. Defatting steatotic liver grafts using drug combinations during ex vivo normothermic machine perfusion (NMP) has been reported. However, the effectiveness of NMP in reducing fat content using epigallocatechin gallate (EGCG) as a single defatting agent and its effect on lipid metabolism are poorly investigated. METHODS In this study, an NMP system was set up to perfuse a steatotic liver from a rat model with 10 mM EGCG. Livers without EGCG served as NMP controls, whereas static cold-preserved livers in the University of Wisconsin medium were used as static cold storage controls. Liver enzyme, reactive oxygen species (ROS), histology, and lipid content assessments were conducted post-perfusion, complemented by lipidomics, RNA sequencing, and western blotting to determine the lipid metabolism changes. RESULTS EGCG during NMP reduced hepatocellular injury markers and defatted steatotic liver grafts. Additionally, we observed a significant increase in triglyceride (TG) content in the perfusate post-NMP in the NMP + EGCG group, suggesting TG output from the liver. Furthermore, lipidomics analysis revealed that EGCG primarily affected metabolites involved in glycerophospholipid (GP) and glycerolipid (GL) metabolism. Further, the RNA sequencing indicated the modulation of these metabolic pathways via ECGC, which was associated with the downregulated Lpin1 and Gpat3 expression. CONCLUSIONS EGCG defats steatotic livers as a single defatting agent during NMP by promoting GL and GP metabolism via decreasing Lpin1 and Agpat9 levels.
Collapse
Affiliation(s)
- Shuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
40
|
Li Z, Zhang L, Wang Z, Kang X, Jin H, Zhao W, Zhang J, Su H. Quantification of Phosphatidylserine Molecules on the Surface of Individual Cells Using Single-Molecule Force Spectroscopy. Anal Chem 2024; 96:676-684. [PMID: 38173079 DOI: 10.1021/acs.analchem.3c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Identification of the phosphatidylserine (PS) discrepancies occurring on the cellular membrane during apoptotic processes is of the utmost importance. However, monitoring the quantity of PS molecules in real-time at a single-cell level currently remains a challenging task. Here, we demonstrate this objective by leveraging the specific binding and reversible interaction exhibited by the zinc(II) dipyridinamine complex (ZnDPA) with PS. Lipoic acid-functionalized ZnDPA (LP-ZnDPA) was subsequently immobilized onto the surface of an atomic force microscopy cantilever to form a force probe, ALP-ZnDPA, enabling a PS-specific dynamic imaging and detection mode. By utilizing this technique, we can not only create a heat map of the expression level of PS with submicron resolution but also quantify the number of molecules present on a single cell's surface with a detection limit of 1.86 × 104 molecules. The feasibility of the proposed method is demonstrated through the analysis of PS expression levels in different cancer cell lines and at various stages of paclitaxel-induced apoptosis. This study represents the first application of a force probe to quantify PS molecules on the surface of individual cells, providing insight into dynamic changes in PS content during apoptosis at the molecular level and introducing a novel dimension to current detection methodologies.
Collapse
Affiliation(s)
- Zhirong Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Lulu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhanzhong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Xiongli Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Huiying Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Wenjie Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Jun Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Haiquan Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
41
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
42
|
Hoffmann C, Milovanovic D. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes. J Cell Sci 2023; 136:jcs261413. [PMID: 38149872 PMCID: PMC10785658 DOI: 10.1242/jcs.261413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Liquid-liquid phase separation is a major mechanism for organizing macromolecules, particularly proteins with intrinsically disordered regions, in compartments not limited by a membrane or a scaffold. The cell can therefore be perceived as a complex emulsion containing many of these membraneless organelles, also referred to as biomolecular condensates, together with numerous membrane-bound organelles. It is currently unclear how such a complex concoction operates to allow for intracellular trafficking, signaling and metabolic processes to occur with high spatiotemporal precision. Based on experimental observations of synaptic vesicle condensates - a membraneless organelle that is in fact packed with membranes - we present here the framework of dipping contacts: a novel type of contact site between membraneless organelles and membranes. In this Hypothesis, we propose that our framework of dipping contacts can serve as a foundation to investigate the interface that couples the diffusion and material properties of condensates to biochemical processes occurring in membranes. The identity and regulation of this interface is especially critical in the case of neurodegenerative diseases, where aberrant inclusions of misfolded proteins and damaged organelles underlie cellular pathology.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, CA 94720, USA
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
43
|
Xie P, Zhang H, Qin Y, Xiong H, Shi C, Zhou Z. Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules 2023; 13:1772. [PMID: 38136643 PMCID: PMC10741411 DOI: 10.3390/biom13121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of various diseases often involves an intricate interplay between membrane proteins and membrane curvature. Understanding the underlying mechanisms of this interaction could offer novel perspectives on disease treatment. In this review, we provide an introduction to membrane curvature and its association with membrane proteins. Furthermore, we delve into the impact and potential implications of this interaction in the context of disease treatment. Lastly, we discuss the prospects and challenges associated with harnessing these interactions for effective disease management, aiming to provide fresh insights into therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China; (P.X.); (H.Z.); (Y.Q.); (H.X.); (C.S.)
| |
Collapse
|
44
|
Wyżga B, Skóra M, Wybraniec S, Hąc-Wydro K. Study on the effect of blackcurrant extract - based preservative on model membranes and pathogenic bacteria. Arch Biochem Biophys 2023; 750:109806. [PMID: 37913854 DOI: 10.1016/j.abb.2023.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
In this work the cosmetic preservative based on a Ribes Nigrum (blackcurrant) plant extract (PhytoCide Black Currant Powder abbr. BCE) was investigated to evaluate its antibacterial effect and to gain an insight into its mechanism of action. The influence of this commercially available formulation on model Escherichia coli and Staphylococcus aureus lipid membranes was studied to analyze its interactions with membrane lipids at a molecular level. The mixed lipid monolayers and one component bacteria lipid films were used to investigate the effect of BCE on condensation and morphology of model systems and to study the ability of BCE components to penetrate into the lipid environment. The in vitro tests were also done on different bacteria species (E. coli, Enterococcus faecalis, S. aureus, Salmonella enterica, Pseudomonas aeruginosa) to compare antimicrobial potency of the studied formulation. As evidenced the in vitro studies BCE formulation exerts very similar antibacterial activity against E. coli and S. aureus. Moreover, based on the collected data it is impossible to indicate which bacteria: Gram-positive or Gram-negative are more susceptible to this formulation. Model membrane experiments evidenced that the studied preservative affects organization of both E. coli and S. aureus model system by decreasing their condensation and altering their morphology. BCE components are able to penetrate into the lipid systems. However, all these effects depend on the lipid composition and monolayer organization. The collected results were analyzed from the point of view of the mechanism of action of blackcurrant extract and the factors, which may determine the activity of this formulation.
Collapse
Affiliation(s)
- Beata Wyżga
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Magdalena Skóra
- Jagiellonian University Medical College, Chair of Microbiology, Department of Infections Control and Mycology, Czysta 18, 31-121, Kraków, Poland
| | - Sławomir Wybraniec
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
45
|
Lira RB, Hammond JCF, Cavalcanti RRM, Rous M, Riske KA, Roos WH. The underlying mechanical properties of membranes tune their ability to fuse. J Biol Chem 2023; 299:105430. [PMID: 37926280 PMCID: PMC10716014 DOI: 10.1016/j.jbc.2023.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Membrane fusion is a ubiquitous process associated with a multitude of biological events. Although it has long been appreciated that membrane mechanics plays an important role in membrane fusion, the molecular interplay between mechanics and fusion has remained elusive. For example, although different lipids modulate membrane mechanics differently, depending on their composition, molar ratio, and complex interactions, differing lipid compositions may lead to similar mechanical properties. This raises the question of whether (i) the specific lipid composition or (ii) the average mesoscale mechanics of membranes acts as the determining factor for cellular function. Furthermore, little is known about the potential consequences of fusion on membrane disruption. Here, we use a combination of confocal microscopy, time-resolved imaging, and electroporation to shed light onto the underlying mechanical properties of membranes that regulate membrane fusion. Fusion efficiency follows a nearly universal behavior that depends on membrane fluidity parameters, such as membrane viscosity and bending rigidity, rather than on specific lipid composition. This helps explaining why the charged and fluid membranes of the inner leaflet of the plasma membrane are more fusogenic than their outer counterparts. Importantly, we show that physiological levels of cholesterol, a key component of biological membranes, has a mild effect on fusion but significantly enhances membrane mechanical stability against pore formation, suggesting that its high cellular levels buffer the membrane against disruption. The ability of membranes to efficiently fuse while preserving their integrity may have given evolutionary advantages to cells by enabling their function while preserving membrane stability.
Collapse
Affiliation(s)
- Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| | - Jayna C F Hammond
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Madelief Rous
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| |
Collapse
|
46
|
Aftahy K, Arrasate P, Bashkirov PV, Kuzmin PI, Maurizot V, Huc I, Frolov VA. Molecular Sensing and Manipulation of Protein Oligomerization in Membrane Nanotubes with Bolaamphiphilic Foldamers. J Am Chem Soc 2023; 145:25150-25159. [PMID: 37948300 PMCID: PMC10682987 DOI: 10.1021/jacs.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Adaptive and reversible self-assembly of supramolecular protein structures is a fundamental characteristic of dynamic living matter. However, the quantitative detection and assessment of the emergence of mesoscale protein complexes from small and dynamic oligomeric precursors remains highly challenging. Here, we present a novel approach utilizing a short membrane nanotube (sNT) pulled from a planar membrane reservoir as nanotemplates for molecular reconstruction, manipulation, and sensing of protein oligomerization and self-assembly at the mesoscale. The sNT reports changes in membrane shape and rigidity caused by membrane-bound proteins as variations of the ionic conductivity of the sNT lumen. To confine oligomerization to the sNT, we have designed and synthesized rigid oligoamide foldamer tapes (ROFTs). Charged ROFTs incorporate into the planar and sNT membranes, mediate protein binding to the membranes, and, driven by the luminal electric field, shuttle the bound proteins between the sNT and planar membranes. Using Annexin-V (AnV) as a prototype, we show that the sNT detects AnV oligomers shuttled into the nanotube by ROFTs. Accumulation of AnV on the sNT induces its self-assembly into a curved lattice, restricting the sNT geometry and inhibiting the material uptake from the reservoir during the sNT extension, leading to the sNT fission. By comparing the spontaneous and ROFT-mediated entry of AnV into the sNT, we reveal how intricate membrane curvature sensing by small AnV oligomers controls the lattice self-assembly. These results establish sNT-ROFT as a powerful tool for molecular reconstruction and functional analyses of protein oligomerization and self-assembly, with broad application to various membrane processes.
Collapse
Affiliation(s)
- Kathrin Aftahy
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - Pedro Arrasate
- Biofisika
Institute (CSIC, UPV/EHU), University of
the Basque Country, Leioa 48940, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country, Leioa 48940, Spain
| | - Pavel V. Bashkirov
- Research
Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Petr I. Kuzmin
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow 119071, Russia
| | - Victor Maurizot
- Univ. Bordeaux,
CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Pessac 33600, France
| | - Ivan Huc
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - Vadim A. Frolov
- Biofisika
Institute (CSIC, UPV/EHU), University of
the Basque Country, Leioa 48940, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
47
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
48
|
Al Mamun MA, Reza MA, Islam MS. Identification of novel proteins regulating lipid droplet biogenesis in filamentous fungi. Mol Microbiol 2023; 120:702-722. [PMID: 37748926 DOI: 10.1111/mmi.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Lipid droplets (LDs) are storage organelles for neutral lipids which are critical for lipid homeostasis. Current knowledge of fungal LD biogenesis is largely limited to budding yeast, while LD regulation in multinucleated filamentous fungi which exhibit considerable metabolic activity remains unexplored. In this study, 19 LD-associated proteins were identified in the multinucleated species Aspergillus oryzae using a colocalization screening of a previously established enhanced green fluorescent protein (EGFP) fusion library. Functional screening identified 12 lipid droplet-regulating (LDR) proteins whose loss of function resulted in irregular LD biogenesis, particularly in terms of LD number and size. Bioinformatics analysis, targeted mutagenesis, and microscopy revealed four LDR proteins that localize to LD via the putative amphipathic helices (AHs). Further analysis revealed that LdrA with an Opi1 domain is essential for cytoplasmic and nuclear LD biogenesis involving a novel AH. Phylogenetic analysis demonstrated that the patterns of gene evolution were predominantly based on gene duplication. Our study identified a set of novel proteins involved in the regulation of LD biogenesis, providing unique molecular and evolutionary insights into fungal lipid storage.
Collapse
Affiliation(s)
- Md Abdulla Al Mamun
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - M Abu Reza
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | |
Collapse
|
49
|
Abstract
The sorting and trafficking of lipids between organelles gives rise to a dichotomy of bulk membrane properties between organelles of the secretory and endolysosome networks, giving rise to two "membrane territories" based on differences in lipid-packing density, net membrane charge, and bilayer leaflet asymmetries. The cellular organelle membrane dichotomy emerges from ER-to-PM anterograde membrane trafficking and the synthesis of sphingolipids and cholesterol flux at the trans-Golgi network, which constitutes the interface between the two membrane territories. Organelle homeostasis is maintained by vesicle-mediated retrieval of bulk membrane from the distal organelles of each territory to the endoplasmic reticulum or plasma membrane and by soluble lipid transfer proteins that traffic particular lipids. The concept of cellular membrane territories emphasizes the contrasting features of organelle membranes of the secretory and endolysosome networks and the essential roles of lipid-sorting pathways that maintain organelle function.
Collapse
Affiliation(s)
- Yeongho Kim
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
50
|
Juckel D, Desmarets L, Danneels A, Rouillé Y, Dubuisson J, Belouzard S. MERS-CoV and SARS-CoV-2 membrane proteins are modified with polylactosamine chains. J Gen Virol 2023; 104. [PMID: 37800895 DOI: 10.1099/jgv.0.001900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Coronaviruses are positive-stranded RNA enveloped viruses. The helical nucleocapsid is surrounded by a lipid bilayer in which are anchored three viral proteins: the spike (S), membrane (M) and envelope (E) proteins. The M protein is the major component of the viral envelope and is believed to be its building block. The M protein of Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a short N-terminal domain with an N-glycosylation site. We investigated their N-glycosylation and show that polylactosamine chains are conjugated to SARS-CoV-2 and MERS-CoV M proteins in transfected and infected cells. Acidic residues present in the first transmembrane segments of the proteins are required for their glycosylation. No specific signal to specify polylactosamine conjugation could be identified and high mannose-conjugated protein was incorporated into virus-like particles.
Collapse
Affiliation(s)
- Dylan Juckel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|