1
|
Abdelaziz G, Abdelghany IY, Mostafa NF. Evaluation of New-Modelled Recombinant Human Insulin (rh-Insulin) Analog Expressed in E. coli Using Radioiodination Technique Followed by In Vivo Biodistribution in Diabetes-Induced Mice. J Labelled Comp Radiopharm 2025; 68:e4134. [PMID: 39994896 DOI: 10.1002/jlcr.4134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Biologists have significantly improved various techniques for confirming the physiological and pharmacological activity of new proteins produced by recombinant DNA technology, such as Western blotting, ELISA, and flow cytometry. Although these methods are costly and comparatively low in efficiency, our study focuses on developing a real-time approach to investigate the physiological activity of our new recombinant human insulin (rh-Insulin), which is expressed in Escherichia coli. An in vivo biodistribution study of radioiodinated rh-Insulin (125I-rh-Insulin) was conducted in diabetic-induced mice, exploiting the capability of tyrosine residues in protein molecules to undergo electrophilic substitution of hydrogen atoms with traceable 125I atoms. We studied many factors to optimize the conditions for the iodination reaction, including the amount of substrate, the amount of chloramine-T, pH, temperature, and reaction time. A high radiochemical yield of 99.01 ± 0.2% was achieved. The in vivo step involved the administration of 125I-rh-Insulin intravenously (I.V.) in previously induced diabetic mice to study the pharmacokinetics of the new insulin analog. Results show a homogeneous distribution of insulin molecules throughout the body organs, correlating with organ mass, size, and functionality, with no accumulation in distinct organs. The clearance of insulin from the body occurs via both renal and hepatic routes due to the aqueous nature of insulin. Additionally, a parallel experiment was conducted on diabetic mice using only rh-Insulin, resulting in a significant reduction in glucose levels in the mice's blood, thereby exploring the physiological activity of insulin and confirming the ability of our new construct to lower blood glucose levels in diabetic mice. Consequently, this method appears to be much more rapid and effective for the evaluation of biological molecules in vivo using radioactive tracing techniques.
Collapse
Affiliation(s)
- Gamal Abdelaziz
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Inshas, Egypt
| | - Ibrahim Y Abdelghany
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Inshas, Egypt
| | - Nasser F Mostafa
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Inshas, Egypt
| |
Collapse
|
2
|
Mohammed ER, Abdel Fattah Ezzat M, Seif EM, Essa BM, Abdel-Aziz HA, Sakr TM, Ibrahim HS. Synthesis of S-alkylated oxadiazole bearing imidazo[2,1-b]thiazole derivatives targeting breast cancer: In vitro cytotoxic evaluation and in vivo radioactive tracing studies. Bioorg Chem 2024; 153:107935. [PMID: 39504637 DOI: 10.1016/j.bioorg.2024.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Breast cancer is the most common invasive cancer diagnosed in women, accounting for most cancer-related fatalities globally. Numerous investigations have revealed that breast cancer is characterized by abnormal expression and maintenance of EGFR levels. In terms of structural study and optimization of several EGFR inhibitors, two series of oxadiazole bearing imidazo[2,1-b]thiazole derivatives were designed and synthesized as potential EGFR inhibitors and assessed for their antitumor activity at NCI-USA. Four derivatives 3b, 3c, 3d and 3e elicited remarkable GI% against MDA-MB-468, T-47D and MCF-7 breast cancer cell lines. Thereafter, MTT assay was performed to reveal that compounds 3b (IC50 = 2.27 µM) and 3d (IC50 = 1.46 µM) showed promising cytotoxic activity against MCF-7 and MDA-MB-468 cell lines, respectively, compared to their reference drugs. Compounds 3b, 3d and 3e revealed good selectivity toward tumor cells with reasonable safety profile when tested against the normal cell line MCF-10a. In vitro EGFR inhibitory assay demonstrated that compounds 3b (IC50 = 0.099 µM) and 3d (IC50 = 0.086 µM) exhibited comparable inhibitory activity to the standard drug erlotinib (IC50 = 0.046 µM). A flow cytometric analysis demonstrated that derivatives 3b and 3d arrested the cell cycle at the S phase in MCF-7 and MDB-MB-468, respectively. Furthermore, the most active derivative 3d was subjected to in vivo radioactive studies. In-vivo biodistribution of 99mTc-3d complex showed a notable elevated accumulation in the targeted sarcoma muscle, indicating the targeting capacity of compound 3d in the tumor of sarcoma mice model. The binding mode of compounds 3b and 3d with EGFR was studied by molecular docking and was further inspected by molecular dynamic simulations. Both compounds were shown to be stable during the course of simulation and demonstrated a plausible interaction pattern with the EGFR binding pocket.
Collapse
Affiliation(s)
- Eman R Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Manal Abdel Fattah Ezzat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Emad M Seif
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Dept., Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza P.O. Box 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, 21648, Alexandria, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Dept., Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759, Cairo, Egypt.
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
3
|
Cristani M, Citarella A, Carnamucio F, Micale N. Nano-Formulations of Natural Antioxidants for the Treatment of Liver Cancer. Biomolecules 2024; 14:1031. [PMID: 39199418 PMCID: PMC11352298 DOI: 10.3390/biom14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is a key factor in the pathological processes that trigger various chronic liver diseases, and significantly contributes to the development of hepatocarcinogenesis. Natural antioxidants reduce oxidative stress by neutralizing free radicals and play a crucial role in the treatment of free-radical-induced liver diseases. However, their efficacy is often limited by poor bioavailability and metabolic stability. To address these limitations, recent advances have focused on developing nano-drug delivery systems that protect them from degradation and enhance their therapeutic potential. Among the several critical benefits, they showed to be able to improve bioavailability and targeted delivery, thereby reducing off-target effects by specifically directing the antioxidant to the liver tumor site. Moreover, these nanosystems led to sustained release, prolonging the therapeutic effect over time. Some of them also exhibited synergistic effects when combined with other therapeutic agents, allowing for improved overall efficacy. This review aims to discuss recent scientific advances in nano-formulations containing natural antioxidant molecules, highlighting their potential as promising therapeutic approaches for the treatment of liver cancer. The novelty of this review lies in its comprehensive focus on the latest developments in nano-formulations of natural antioxidants for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy;
| | - Federica Carnamucio
- Center of Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
4
|
Swidan MM, Essa BM, Sakr TM. Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Nanomedicine offers great potentials for theranostic studies via providing higher efficacy and safety levels. This work aimed to develop and evaluate a new nanoplatform as a tumor theranostic probe.
Results
Carboxyl-functionalized graphene oxide nanosheets (FGO) was well synthesized from graphite powder and then conjugated with folic acid to act as a targeted nano-probe. Full characterization and in vitro cytotoxicity evaluation were conducted; besides, in vivo bio-evaluation was attained via intrinsic radioiodination approach in both normal and tumor-bearing Albino mice. The results indicated that FGO as well as conjugated graphene oxide nanosheets (CGO) are comparatively non-toxic to normal cells even at higher concentrations. Pharmacokinetics of FGO and CGO showed intensive and selective uptake in the tumor sites where CGO showed high T/NT of 7.27 that was 4 folds of FGO at 1 h post injection. Additionally, radioiodinated-CGO (ICGO) had declared a superior prominence over the previously published tumor targeted GO radiotracers regarding the physicochemical properties pertaining ability and tumor accumulation behavior.
Conclusions
In conclusion, ICGO can be used as a selective tumor targeting agent for cancer theranosis with aid of I-131 that has a maximum beta and gamma energies of 606.3 and 364.5 keV, respectively.
Collapse
|
5
|
Ali FE, Abd El-Aziz MK, Sharab EI, Bakr AG. Therapeutic interventions of acute and chronic liver disorders: A comprehensive review. World J Hepatol 2023; 15:19-40. [PMID: 36744165 PMCID: PMC9896501 DOI: 10.4254/wjh.v15.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/16/2023] Open
Abstract
Liver disorders are one of the most common pathological problems worldwide. It affects more than 1.5 billion worldwide. Many types of hepatic cells have been reported to be involved in the initiation and propagation of both acute and chronic liver diseases, including hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells (HSCs). In addition, oxidative stress, cytokines, fibrogenic factors, microRNAs, and autophagy are also involved. Understanding the molecular mechanisms of liver diseases leads to discovering new therapeutic interventions that can be used in clinics. Recently, antioxidant, anti-inflammatory, anti-HSCs therapy, gene therapy, cell therapy, gut microbiota, and nanoparticles have great potential for preventing and treating liver diseases. Here, we explored the recent possible molecular mechanisms involved in the pathogenesis of acute and chronic liver diseases. Besides, we overviewed the recent therapeutic interventions that targeted liver diseases and summarized the recent studies concerning liver disorders therapy.
Collapse
Affiliation(s)
- Fares Em Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Elham I Sharab
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
6
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
7
|
Essa BM, Selim AA, Sayed GH, Anwer KE. Conventional and microwave-assisted synthesis, anticancer evaluation, 99mTc-coupling and In-vivo study of some novel pyrazolone derivatives. Bioorg Chem 2022; 125:105846. [PMID: 35512493 DOI: 10.1016/j.bioorg.2022.105846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022]
Abstract
New pyrazolone derivatives were successfully synthesized by both microwave-assisted and conventional techniques. Compound 3 (3-(3-Methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)-3-oxopropanehydrazide) displayed remarkable anti-cancer activity (IC50 obtained at 8.71 and 10.63 µM for HCT-116 and MCF-7, respectively. Moreover, biodistribution study using radiolabeling approach revealed a remarked uptake of [99mTc]Tc-compound 3 complex into tumour induced in mice. The biodistribution showed high accumulation in tumour tissues with T/NT of 6.92 after 60 min post injection. As a result of these promising data, the newly synthesized compounds especially compound 3 affords a potential radio-carrier that could be used as a tumour marker and can be used for cancer therapy after further preclinical studies.
Collapse
Affiliation(s)
- Basma M Essa
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Adli A Selim
- Labelled Compounds Department, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt.
| | - Galal H Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| |
Collapse
|
8
|
Hasanien YA, Nassrallah AA, Zaki AG, Abdelaziz G. Optimization, purification, and structure elucidation of Anthraquinone pigment derivative from Talaromyces purpureogenus as a novel promising antioxidant, anticancer, and kidney radio-imaging agentAnthraquinone pigment as a promising antioxidant, anticancer, and radio-imaging agent. J Biotechnol 2022; 356:30-41. [PMID: 35868432 DOI: 10.1016/j.jbiotec.2022.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
This study aims to investigate the bioproduction and prospective biological applications of a natural red pigment from Talaromyces purpureogenus AUMC2603. Maximum pigment yield was achieved by a numerical optimization at pH 6, temperature 25°C, and an 18-day incubation period on Yeast Malt Broth (YMB) media. The crude pigment was separated and purified into two pigment fractions via solid-phase extraction and then characterized as anthraquinone (dominant) and herquinone by LC/MS and 1HNMR analysis. The crude pigment extract and the two separated fractions displayed a potential antioxidant activity. Additionally, they showed a powerful anticancer activity towards cancer cell lines, MCF-7, HepG-2, and HCT116 with less cytotoxicity on normal cell lines, MCF12F and BJ-1T. The radioiodination efficiency of the radiosynthesized 99mTc-anthraquinone pigment complex was also investigated and optimized, obtaining a radiochemical yield of 92.70% ± 0.89%. An in vivo biodistribution study of the 99mTc-anthraquinone pigment complex demonstrated a high kidney uptake of 34% injected dose per gram of organ tissue 60min after intravenous injection, and the complex retention remained high up to 120min. The current study is the first bioassay report on the efficacy of a purified anthraquinone from T. purpureogenus as a potent agent for kidney radio-imaging that could be applied in kidney cancer diagnosis.
Collapse
Affiliation(s)
- Yasmeen A Hasanien
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amr A Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University.
| | - Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Gamal Abdelaziz
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Authority, Cairo, Egypt.
| |
Collapse
|
9
|
Ebrahem EMM, Sayed GH, Gad GNA, Anwer KE, Selim AA. Histopathology, pharmacokinetics and estimation of interleukin-6 levels of Moringa oleifera leaves extract-functionalized selenium nanoparticles against rats induced hepatocellular carcinoma. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is one of the most dangerous cancers in all the world. This study focused on prevention and therapy of hepatocellular carcinoma (HCC) using Moringa oleifera extract combined with vitamin C and selenium in a nanoplatform (MO/asc.-Se-NPs).
Results
Full characterization of MO/asc.-Se-NPs was performed by using different analytical techniques (TEM, DLS, zeta-sizer), and its antioxidant capacity was measured by DPPH assay. Biodistribution study was performed with the aid of radiolabeling technique using technetium-99m in normal albino mice. HCC was induced in Wister albino rats to evaluate the efficiency of MO/asc.-Se-NPs in the treatment of HCC. The biomarker analysis (ALT, AST and ALB) shows improvement in its values in prevention and treated groups by using MO/asc.-Se NP. The levels of inflammatory marker interleukin 6 (IL6 tissue homogenate) was improved by decreasing its values in these two groups also. Histology section of tissue liver showed alleviation in treated and prevention groups.
Conclusions
In conclusion, MO/asc.-Se-NPs can be used as a potential agent for prevention and treatment of HCC after further preclinical studies.
Collapse
|
10
|
Fayez H, Selim AA. Bone targeted new zoledronate derivative: design, synthesis, 99mTc-coupling, in-silico study and preclinical evaluation for promising osteosarcoma therapy. Int J Radiat Biol 2022; 98:1664-1672. [PMID: 35511480 DOI: 10.1080/09553002.2022.2074162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Background: Zoledronate suppresses human sarcomas by blocking the formation of geranylgeranyl diphosphate (GGPP) via inhibiting GGPP synthase.Objectives: Designing of new derivative of dronic acid (1-hydroxy-2-(4-nitro-1H-imidazol-1-yl)ethan-1,1-diyl)bis phosphonic acid), structurally related to zoledronate to be used for osteosarcoma therapy.Methods: 1-hydroxy-2-(4-nitro-1H-imidazol-1-yl)ethan-1,1-diyl)bis(phosphonic acid) was synthesized in one pot reaction with a yield of 65 ± 4%. The synthesized nitro-zoledronate compound was successfully radiolabeled with 99mTc with a radiochemical purity of 92.05%. Docking accuracy and scoring reliability for the new nitro-zoledronate with human GGPPS using MOE software has been presented.Results and Conclusion: The nitro-zoledronate successfully coupled with technetium-99m at high yield to investigate its in-vivo biodistribution which indicated highly selective uptake in the skeletal system and rapid clearance from soft tissues. The in-vitro cytotoxicity of the nitro-zoledronate was evaluated and potently inhibited the osteosarcoma cell line (MG-63) after 72 hours with an IC50 value of 10 μM. To summarize, our data point to a promising candidate to improve osteosarcoma therapy.
Collapse
Affiliation(s)
- Hend Fayez
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Adli Abdallah Selim
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
11
|
Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Mater Today Bio 2022; 13:100215. [PMID: 35198963 PMCID: PMC8850330 DOI: 10.1016/j.mtbio.2022.100215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Overall, 12% of the global population (800 million) suffers from liver disease, which causes 2 million deaths every year. Liver injury involving characteristic reactive oxygen/nitrogen species (RONS) and inflammation plays a key role in progression of liver disease. As a key metabolic organ of the human body, the liver is susceptible to injury from various sources, including COVID-19 infection. Owing to unique structural features and functions of the liver, most current antioxidants and anti-inflammatory drugs are limited against liver injury. However, the characteristics of the liver could be utilized in the development of nanodrugs to achieve specific enrichment in the liver and consequently targeted treatment. Nanodrugs have shown significant potential in eliminating RONS and regulating inflammation, presenting an attractive therapeutic tool for liver disease through controlling liver injury. Therefore, the main aim of the current review is to provide a comprehensive summary of the latest developments contributing to our understanding of the mechanisms underlying nanodrugs in the treatment of liver injury via harnessing RONS and inflammation. Meanwhile, the prospects of nanodrugs for liver injury therapy are systematically discussed, which provides a sound platform for novel therapeutic insights and inspiration for design of nanodrugs to treat liver disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yumei Li
- Department of Assisted Reproduction, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|