1
|
Zhu Z, Sun J, Xu W, Zeng Q, Feng H, Zang L, He Y, He X, Sheng N, Ren X, Liu G, Huang H, Huang R, Yan J. MGAT4A/Galectin9-Driven N-Glycosylation Aberration as a Promoting Mechanism for Poor Prognosis of Endometrial Cancer with TP53 Mutation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409764. [PMID: 39527463 DOI: 10.1002/advs.202409764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Emerging evidence recognizes aberrant glycosylation as the malignant characteristics of cancer cells, but little is known about glycogenes' roles in endometrial carcinoma (EC), especially the most aggressive subtype carrying TP53 mutations. Using unsupervised hierarchical clustering, an 11-glycogene cluster is identified to distinguish an EC subtype associated with frequent TP53 mutation and worse prognosis. Among them, MGAT4A (alpha-1,3-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase A) emerges as the most consistently overexpressed glycogene, contributing to EC aggressiveness. In the presence of galectin-9, MGAT4A increases EC cell proliferation and invasion via promoting glucose metabolism. N-glycoproteomics further revealed GLUT1, a glucose transporter, as a glycoprotein modified by MGAT4A. Binding of galectin-9 to the MGAT4A-branched N-glycan on GLUT1 enhances its cell membrane distribution, leading to glucose uptake increase. In addition, oncogenic mutations of TP53 gene in EC cells upregulate MGAT4A expression by disrupting the regulatory oversight exerted by wild-type p53 on tumor-suppressive miRNAs, including miR-34a and miR-449a/b. The findings highlight a new molecular mechanism involving MGAT4A-regulated N-glycosylation on the key regulator of glucose metabolism in p53 mutants-driven EC aggressiveness, which may provide a strategic avenue to combat advanced EC.
Collapse
Affiliation(s)
- Zhen Zhu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center;, Laboratory Animal Center, Fudan University, Shanghai, 200032, China
- Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Jingya Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqing Xu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qinghe Zeng
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hanyi Feng
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijuan Zang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yinyan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiao He
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Na Sheng
- Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Xuelian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guobin Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruimin Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center;, Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Taniguchi N, Ohkawa Y, Kuribara T, Abe J, Harada Y, Takahashi M. Roles of Glyco-Redox in Epithelial Mesenchymal Transition and Mesenchymal Epithelial Transition, Cancer, and Various Diseases. Antioxid Redox Signal 2024; 41:910-926. [PMID: 39345141 DOI: 10.1089/ars.2024.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Significance: Reduction-oxidation (redox) regulation is an important biological phenomenon that provides a balance between antioxidants and the generation of reactive oxygen species and reactive nitrogen species under pathophysiological conditions. Structural and functional changes in glycans are also important as post-translational modifications of proteins. The integration of glycobiology and redox biology, called glyco-redox has provided new insights into the mechanisms of epithelial-mesenchymal transition (EMT)/mesenchymal-epithelial transition (MET), cancer, and various diseases including Alzheimer's disease, chronic obstructive lung disease, type 2 diabetes, interstitial pneumonitis, and ulcerative colitis. Recent Advances: Glycans are biosynthesized by specific glycosyltransferases and each glycosyltransferase is either directly or indirectly regulated by oxidative stress and redox regulation. A typical example of glyco-redox is the role of N-glycan referred to as core fucose in superoxide dismutase 3. This glycan was found to be involved in the growth inhibition of cancer cell lines. Critical Issues: The significance of glyco-redox in EMT/MET, cancer, and various diseases was found in major N-glycan branching glycosyltransferases β1,4N-acetylglucosaminyltransferase III, β1,4N-acetylglucosaminyltransferase IV, β1,6N-acetylglucosaminyltransferase V, β1,4-acetylglucosaminyltransfearfse VI, β1,6-acetylglucosaminyltransferase IX, α-1,6 fucosyltransferase, and β-galactoside α-2,6-sialyltransferase 1. Herein, we summarize previous reports on target proteins and how this relates to oxidative stress. We also discuss the products of these processes and their significance to cancer and various diseases. Future Direction: A clear-cut understanding of the significance of glyco-redox in relation to prevention, diagnosis, and therapeutics is required. These studies will open a new road toward glycobiology and redox biology. Antioxid. Redox Signal. 41, 910-926.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Taiki Kuribara
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Junpei Abe
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Ibrahim MA, Isah MB, Inim MD, Abdullahi AD, Adamu A. The connections of sialic acids and diabetes mellitus: therapeutic or diagnostic value? Glycobiology 2024; 34:cwae053. [PMID: 39041707 DOI: 10.1093/glycob/cwae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Modulation of sialic acids is one of the important pathological consequences of both type 1 and type 2 diabetes mellitus with or without the micro- and macrovascular complications. However, the mechanistic, therapeutic and/or diagnostic implications of these observations are uncoordinated and possibly conflicting. This review critically analyses the scientific investigations connecting sialic acids with diabetes mellitus. Generally, variations in the levels and patterns of sialylation, fucosylation and galactosylation were predominant across various tissues and body systems of diabetic patients, but the immune system seemed to be most affected. These might be explored as a basis for differential diagnosis of various diabetic complications. Sialic acids are predominantly elevated in nearly all forms of diabetic conditions, particularly nephropathy and retinopathy, which suggests some diagnostic value but the mechanistic details were not unequivocal from the available data. The plausible mechanistic explanations for the elevated sialic acids are increased desialylation by sialidases, stimulation of hexosamine pathway and synthesis of acute phase proteins as well as oxidative stress. Additionally, sialic acids are also profoundly associated with glucose transport and insulin resistance in human-based studies while animal-based studies revealed that the increased desialylation of insulin receptors by sialidases, especially NEU1, might be the causal link. Interestingly, inhibition of the diabetes-associated NEU1 desialylation was beneficial in diabetes management and might be considered as a therapeutic target. It is hoped that the article will provide an informed basis for future research activities on the exploitation of sialic acids and glycobiology for therapeutic and/or diagnostic purposes against diabetes mellitus.
Collapse
Affiliation(s)
| | - Murtala Bindawa Isah
- Department of Biochemistry, Umaru Musa Yar'adua University, P.M.B. 2218, Katsina, Nigeria
| | - Mayen David Inim
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| | | | - Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| |
Collapse
|
4
|
Niu B, Ma L, Yao L, Zhang Y, Su H. HCV affects K ATP channels through GnT-IVa-mediated N-glycosylation of GLUT2 on the surface of pancreatic β-cells leading to impaired insulin secretion. Endocrine 2024; 84:427-440. [PMID: 37962815 PMCID: PMC11076383 DOI: 10.1007/s12020-023-03589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE To explore the mechanism of insulin secretion dysfunction in pancreatic beta cells induced by N-glycosylation mediated by an infection from the hepatitis C virus (HCV). METHODS Min6 cell models infected with HCV and stimulated with glucose were constructed. Meanwhile, an HCV-infected animal model and a type 2 diabetes mellitus (T2DM) rat model were constructed. Glucose uptake in the Min6 cells was detected, and insulin secretion was detected by ELISA. Flow cytometry, immunofluorescence staining, Western blotting, RT-qPCR, and lectin blotting were used to detect the expression levels of related proteins and mRNA, as well as the level of N-glycosylation. HE staining was used to observe the pathological changes in the pancreatic tissue, and an oral glucose tolerance test (OGTT) was used to evaluate the glucose tolerance of the rats. RESULTS Compared with the NC group, the expression levels of GnT-IVa, GLUT2, galectin-9, and voltage-dependent calcium channel 1.2 (Cav1.2) were significantly downregulated in the HCV-infected group. The ATP-sensitive potassium channel (KATP) component proteins SUR1 and Kir6.2 were significantly upregulated, while intracellular glucose intake and insulin secretion decreased, N-glycosylation levels and ATP levels significantly decreased, and the overexpression of GnT-IVa reversed the effect of the HCV infection. However, treatment with the glycosylation inhibitor kifunensine (KIF) or the KATP channel activator diazine (Dia) reversed the effects of the overexpression of GnT-IVa. In the animal experiments, HE staining revealed serious pathological injuries in the pancreatic tissue of the HCV-infected rats, with decreased glucose tolerance and glycosylation levels, decreased insulin secretion, downregulated expression of GnT-IVa, GLUT2, and Cav1.2, and upregulated expression of SUR1 and Kir6.2. The overexpression treatment of GnT-IVa or the KATP channel antagonist miglinide reversed the effects of HCV. CONCLUSION HCV infection inhibits GLUT2 N-glycosylation on the pancreatic β cell surface by downregulating the expression of GnT-IVa and then activates the KATP pathway, which ultimately leads to disturbances in insulin secretion.
Collapse
Affiliation(s)
- Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Lijing Ma
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Lixuan Yao
- Department of Nephrology, Bao Ji People's Hospital, Baoji, 721000, Shaanxi, China
| | - Yating Zhang
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| |
Collapse
|
5
|
Zhong X, Xiao C, Wang R, Deng Y, Du T, Li W, Zhong Y, Tan Y. Lipidomics based on UHPLC/Q-TOF-MS to characterize lipid metabolic profiling in patients with newly diagnosed type 2 diabetes mellitus with dyslipidemia. Heliyon 2024; 10:e26326. [PMID: 38404868 PMCID: PMC10884851 DOI: 10.1016/j.heliyon.2024.e26326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Dyslipidemia often accompanies type 2 diabetes mellitus (T2DM). Elevated blood glucose in patients commonly leads to high levels of lipids. Lipid molecules can play a crucial role in early detection, treatment, and prognosis of T2DM with dyslipidemia. Previous lipid studies on T2DM mainly focused on Western diabetic populations with elevated blood glucose. In this research, we investigate both high blood sugar and high lipid levels to better understand changes in plasma lipid metabolism in newly diagnosed Chinese T2DM patients with dyslipidemia (NDDD). We used a plasma lipid analysis method based on ultra-high performance liquid chromatography coupled with mass spectrometry technology (UHPLC-MS) and statistical analysis to characterize lipid profiles and identify potential biomarkers in NDDD patients compared to healthy control (HC) subjects. Additionally, we examined the differences in lipid profiles between hyperlipidemia (HL) patients and HC subjects. We found significant changes in 15 and 23 lipid molecules, including lysophosphatidylcholine (LysoPC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and ceramide (Cer), in the NDDD and HL groups compared to the HC group. These altered lipid molecules are associated with five metabolic pathways, with sphingolipid metabolism and glycerophospholipid metabolism being the most relevant to glucose and lipid metabolism changes. These lipid biomarkers are strongly correlated with traditional markers of glucose and lipid metabolism. Notably, Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/16:1), SM(d18:1/24:1), and SM(d18:2/24:1) were identified as essential potential biomarkers closely linked to clinical parameters through synthetic analysis of receiver operating characteristic curves, random forest analysis, and Pearson matrix correlation. These lipid biomarkers can enhance the risk prediction for the development of T2DM in individuals with dyslipidemia but no clinical signs of high blood sugar. Furthermore, they offer insights into the pathological mechanisms of T2DM with dyslipidemia.
Collapse
Affiliation(s)
- Xunlong Zhong
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chang Xiao
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ruolun Wang
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunfeng Deng
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Tao Du
- Department of Endocrinology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wangen Li
- Department of Endocrinology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanmei Zhong
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongzhen Tan
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
6
|
Shimizu K, Ono M, Mikamoto T, Urayama Y, Yoshida S, Hase T, Michinaga S, Nakanishi H, Iwasaki M, Terada T, Sakurai F, Mizuguchi H, Shindou H, Tomita K, Nishinaka T. Overexpression of lysophospholipid acyltransferase, LPLAT10/LPCAT4/LPEAT2, in the mouse liver increases glucose-stimulated insulin secretion. FASEB J 2024; 38:e23425. [PMID: 38226852 DOI: 10.1096/fj.202301594rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takenari Mikamoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yuya Urayama
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Sena Yoshida
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomomi Hase
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | | | - Miho Iwasaki
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| |
Collapse
|
7
|
Cai Z, Du S, Zhao N, Huang N, Yang K, Qi L. Periodontitis promotes the progression of diabetes mellitus by enhancing autophagy. Heliyon 2024; 10:e24366. [PMID: 38288023 PMCID: PMC10823111 DOI: 10.1016/j.heliyon.2024.e24366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Objective This study aims to identify the periodontitis factor that activates excessive autophagy in pancreatic β cells, resulting in organic lesions of pancreatic islet tissues and diminished insulin secretion, thereby accelerating the progression of diabetes mellitus (DM). Methods Sprague-Dawley (SD) rats were induced with periodontitis (PD), type 2 diabetes mellitus (T2DM), or the combination of T2DM and PD (DP) through a high-sugar/high-fat diet and ligation of the tooth neck with silk thread. Alveolar bone resorption was assessed using Micro-CT, blood glucose levels were measured with a blood glucose meter, pancreatic tissue pathology was examined through HE staining, and the expression of autophagy-related proteins Beclin1 and LC3II/LC3I was analyzed using Western blotting. Results Micro-CT results revealed more pronounced alveolar bone resorption and root bifurcation exposure in the PD and DP groups compared to the control group, with the DP group exhibiting the most severe condition. HE staining demonstrated the formation of periodontal pockets, severe alveolar bone destruction, and abnormal pancreatic islet tissue morphology in the PD and DP groups. The serum levels of IL-6, TNF-α, and IL-1β increased sequentially in the control, DM, PD, and DP groups (P < 0.05). Relative expressions of GCK and GLUT-2 mRNA decreased in the PD group compared to the control group (P > 0.05), while the mRNA expressions in the DP and DM groups increased (P < 0.05), with the DP group exhibiting higher levels than the DM group (P < 0.05). Western blot results indicated increased expression levels of autophagy proteins Beclin1 and LC3II/LC3I in the DM and DP groups compared to the control group (P < 0.05), with the DP group exhibiting higher levels than the DM group (P < 0.05). Conclusion The findings demonstrate that periodontal inflammatory factors may promote the enhancement of pancreatic cell autophagy in diabetic rats.
Collapse
Affiliation(s)
- Zhiguo Cai
- Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Periodontology, Stomatological Hospital Zunyi, Zunyi Medical University, Zunyi, Guizhou, China
- Honghuagang District Stomatological Hospital, Zunyi, Guizhou, China
| | - Shasha Du
- Department of Periodontology, Stomatological Hospital Zunyi, Zunyi Medical University, Zunyi, Guizhou, China
| | - Na Zhao
- Department of Periodontology, Stomatological Hospital Zunyi, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Kun Yang
- Department of Periodontology, Stomatological Hospital Zunyi, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liu Qi
- Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Zhang C, Shafaq-Zadah M, Pawling J, Hesketh GG, Dransart E, Pacholczyk K, Longo J, Gingras AC, Penn LZ, Johannes L, Dennis JW. SLC3A2 N-glycosylation and Golgi remodeling regulate SLC7A amino acid exchangers and stress mitigation. J Biol Chem 2023; 299:105416. [PMID: 37918808 PMCID: PMC10698284 DOI: 10.1016/j.jbc.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.
Collapse
Affiliation(s)
- Cunjie Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Karina Pacholczyk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Fu H, Vuononvirta J, Fanti S, Bonacina F, D'Amati A, Wang G, Poobalasingam T, Fankhaenel M, Lucchesi D, Coleby R, Tarussio D, Thorens B, Hearnden RJ, Longhi MP, Grevitt P, Sheikh MH, Solito E, Godinho SA, Bombardieri M, Smith DM, Cooper D, Iqbal AJ, Rathmell JC, Schaefer S, Morales V, Bianchi K, Norata GD, Marelli-Berg FM. The glucose transporter 2 regulates CD8 + T cell function via environment sensing. Nat Metab 2023; 5:1969-1985. [PMID: 37884694 PMCID: PMC10663157 DOI: 10.1038/s42255-023-00913-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Hongmei Fu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Juho Vuononvirta
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan, Italy
| | - Antonio D'Amati
- Section of Anatomical Pathology Department of Precision and Regenerative Medicine, University of Bari Medical School, Bari, Italy
| | - Guosu Wang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thanushiyan Poobalasingam
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Fankhaenel
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Lucchesi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachel Coleby
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Tarussio
- Faculty of Biology and Medicine, Center for Integrative Genomics, Génopode Building - UNIL Sorge, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Faculty of Biology and Medicine, Center for Integrative Genomics, Génopode Building - UNIL Sorge, University of Lausanne, Lausanne, Switzerland
| | - Robert J Hearnden
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul Grevitt
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madeeha H Sheikh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Susana A Godinho
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michele Bombardieri
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David M Smith
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Dianne Cooper
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Schaefer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valle Morales
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katiuscia Bianchi
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan, Italy
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Yang D, Han F, Cai J, Sun H, Wang F, Jiang M, Zhang M, Yuan M, Zhou W, Li H, Yang L, Bai Y, Xiao L, Dong H, Cheng Q, Mao H, Zhou L, Wang R, Li Y, Nie H. N-glycosylation by N-acetylglucosaminyltransferase IVa enhances the interaction of integrin β1 with vimentin and promotes hepatocellular carcinoma cell motility. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119513. [PMID: 37295747 DOI: 10.1016/j.bbamcr.2023.119513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
N-glycosylation has been revealed to be tightly associated with cancer metastasis. As a key transferase that catalyzes the formation of β1,4 N-acetylglucosamine (β1,4GlcNAc) branches on the mannose core of N-glycans, N-acetylglucosaminyltransferase IVa (GnT-IVa) has been reported to be involved in hepatocellular carcinoma (HCC) metastasis by forming N-glycans; however, the underlying mechanisms are largely unknown. In the current study, we found that GnT-IVa was upregulated in HCC tissues and positively correlated with worse outcomes in HCC patients. We found that GnT-IVa could promote tumor growth in mice; notably, this effect was attenuated after mutating the enzymatic site (D445A) of GnT-IVa, suggesting that GnT-IVa regulated HCC progression by forming β1,4GlcNAc branches. To mechanistically investigate the role of GnT-IVa in HCC, we conducted GSEA and GO functional analysis as well as in vitro experiments. The results showed that GnT-IVa could enhance HCC cell migration, invasion and adhesion ability and increase β1,4GlcNAc branch glycans on integrin β1 (ITGB1), a tumor-associated glycoprotein that is closely involved in cell motility by interacting with vimentin. Interruption of β1,4GlcNAc branch glycan modification on ITGB1 could suppress the interaction of ITGB1 with vimentin and inhibit cell motility. These results revealed that GnT-IVa could promote HCC cell motility by affecting the biological functions of ITGB1 through N-glycosylation. In summary, our results revealed that GnT-IVa is highly expressed in HCC and can form β1,4GlcNAc branches on ITGB1, which are essential for interactions with vimentin to promote HCC cell motility. These findings not only proposed a novel mechanism for GnT-IVa in HCC progression but also revealed the significance of N-glycosylation on ITGB1 during the process, which may provide a novel target for future HCC therapy.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Handi Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fengyou Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Meiyi Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mengmeng Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mengfan Yuan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Qixiang Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haoyu Mao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lu Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ruonan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
11
|
Sun B, Chen H, Xue J, Li P, Fu X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol Biol Rep 2023; 50:6963-6974. [PMID: 37358764 PMCID: PMC10374759 DOI: 10.1007/s11033-023-08535-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
The glucose transporter family has an important role in the initial stage of glucose metabolism; Glucose transporters 2 (GLUTs, encoded by the solute carrier family 2, SLC2A genes) is the major glucose transporter in β-cells of pancreatic islets and hepatocytes but is also expressed in the small intestine, kidneys, and central nervous system; GLUT2 has a relatively low affinity to glucose. Under physiological conditions, GLUT2 transports glucose into cells and allows the glucose concentration to reach balance on the bilateral sides of the cellular membrane; Variation of GLUT2 is associated with various endocrine and metabolic disorders; In this study, we discussed the role of GLUT2 in participating in glucose metabolism and regulation in multiple organs and tissues and its effects on maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Bo Sun
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Department of Infantile Endocrine Genetic Metabolism, Gansu Maternal and child Health Care Hospital, Lanzhou, 730000, China
| | - Hui Chen
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Jisu Xue
- EndEnorcrine and Metabolism Department, Shenzhen Bao 'an People's Hospital (Group), Shenzhen, 518100, China
| | - Peiwu Li
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| |
Collapse
|
12
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
13
|
Wu Y, Hao M, Li W, Xu Y, Yan D, Xu Y, Liu W. N-glycomic profiling reveals dysregulated N-glycans of peripheral neuropathy in type 2 diabetes. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1220:123662. [PMID: 36905911 DOI: 10.1016/j.jchromb.2023.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Given the increasing morbidity of diabetes mellitus type 2 (T2DM) with peripheral neuropathy (PN), efficient screening for T2DM-PN is of great significance. Altered N-glycosylation is closely associated with T2DM progression, whereas its association with T2DM-PN remains uncharacterized. In this study, N-glycomic profiling was performed to identify the N-glycan features between T2DM patients with (n = 39, T2DM-PN) and without PN (n = 36, T2DM-C). Another independent set of T2DM patients (n = 29 for both T2DM-C and T2DM-PN) were utilized to validate these N-glycomic features. There were 10 N-glycans varied significantly between T2DM-C and T2DM-PN (p < 0.05 and 0.7 < AUC < 0.9), of which T2DM-PN was associated with increased oligomannose and core-fucosylation of sialylated glycans, and decreased bisected mono-sialylated glycan. Notably, these results were validated by an independent set of T2DM-C and T2DM-PN. This is the first profiling for N-glycan features in T2DM-PN patients, which reliably differentiates them from T2DM controls, thus providing a prospective profile of glyco-biomarkers for the screening and diagnosis of T2DM-PN.
Collapse
Affiliation(s)
- Yike Wu
- The Department of Endocrinology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China; The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Mingyu Hao
- The Department of Endocrinology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China
| | - Weifeng Li
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yun Xu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Dewen Yan
- The Department of Endocrinology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China.
| | - Yong Xu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
| | - Wenlan Liu
- The Department of Endocrinology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China; The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
14
|
Das M, Banerjee A, Roy R. A novel in vitro approach to test the effectiveness of fish oil in ameliorating type 1 diabetes. Mol Cell Biochem 2022; 477:2121-2132. [PMID: 35545742 DOI: 10.1007/s11010-022-04424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Diabetes type 1 (T1D) characterized by destruction of pancreatic β-cells results in inadequate insulin production and hyperglycaemia. Generation of reactive oxygen species and glycosylation end-products stimulates toxic impacts on T1D. Dietary w-3 fatty acids present in Fish oil (FO) might be helpful in the prevention of oxidative stress and lipid peroxidation, thus, beneficial against T1D. But how the cellular secretion from β-cells under influence of FO affects the glucose homeostasis of peri-pancreatic cells is poorly understood. In the current study, we aimed to introduce an in vitro model for T1D and evaluate its effectiveness in respect of alloxan treatment to pancreatic Min6 cells. We use alloxan in the Min6 pancreatic β-cell line to induce cellular damage related to T1D. Further treatment with FO was seen to prevent cell death by alloxan and induce mRNA expression of both insulin 1 and insulin 2 isoforms under low-glucose conditions. From the first part of the study, it is clear that FO is effective to recover Min6 cells from the destructive effect of alloxan, and it worked best when given along with alloxan or given after alloxan treatment regime. FO-induced secretion of molecules from Min6 was clearly shown to regulate mRNA expression of key enzymes of carbohydrate metabolism in peri-pancreatic cell types. This is a pilot study showing that an improved in vitro approach of using Min6 along with muscle cells (C2C12) and adipose tissue cells (3T3-L1) together to understand the crosstalk of molecules could be used to check the efficacy of an anti-diabetic drug.
Collapse
Affiliation(s)
- Moitreyi Das
- Department of Zoology, Goa University, Goa, India
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, India
| | | |
Collapse
|
15
|
Mohammadi H, Eshtiaghi R, Gorgani S, Khoramizade M. Assessment of Insulin, GLUT2 and inflammatory cytokines genes expression in pancreatic β-Cells in zebrafish ( Danio rario) with overfeeding diabetes induction w/o glucose. J Diabetes Metab Disord 2021; 20:1567-1572. [PMID: 34900808 DOI: 10.1007/s40200-021-00903-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Abstract In recent years, zebrafish have been proposed as a model for rapid analysis of gene function and biological activity due to high genetic similarities with humans. The aim of this study was to determine the effects of overfeeding-induced diabetes w/o glucose on inflammatory cytokine as well as insulin and glucose transporter-2 genes (GLUT2) genes expression in the pancreas in zebrafish. Materials and methods The experiment was performed on 120 zebrafish (duplicated sample) with a specific genetic mapping (AB-Wild type). A total of 8 tanks, each containing 15 fish per 2-liter water, were used and divided into four groups: (1) Control group, (2) regular diet with glucose,3) Only Artemia overfeeding and 4) Combined Artemia with glucose. We induced T2DM zebrafish using glucose monohydrate solution in water and repeated daily Artemia feeding. In this model, fasting blood glucose increase is preceded by obesity and glucose intolerance. The experiment lasted for two months. Blood glucose and fish biometrics were measured in two steps. The expression of TNFα, IFNγ, GLUT2 and Insulin genes were quantified by a Real-Time qPCR System (Applied Biosystems, USA) using a set of specific primers. Results The highest mortality rate was observed in combined Artemia and glucose (p < 0.05). We showed significantly higher expression of IL-1B and TNF-α as well as inhibitory cytokines such as IFNγ genes in overfeeding induced diabetes(OID) which was highest in the combined Artemia and glucose group.(p < 0.05)The GLUT2 gene expression was higher in the pure artemia group which decreased to a lower level by adding glucose to Artemia in the diet. (p < 0.05). Also, the lowest insulin gene expression was observed in the combined group (p < 0.05). Conclusions In zebrafish, diabetes induction with overfeeding and supraphysiological glucose in diet accompanied with higher expression of inflammatory cytokines genes in the pancreas as well as lower insulin and GLU2 genes. These epigenetic factors appeared to initiate pancreatic beta dysfunction alongside insulin resistance and could have a crucial role in the pathogenesis of overfeeding-induced diabetes using primitive animal models.
Collapse
Affiliation(s)
- Hassan Mohammadi
- Department of Aquaculture Science, Department of Laboratory Sciences, Paramedical School, AJA University of Medical Sciences, Tehran, Iran
| | - Radina Eshtiaghi
- Division of Endocrinology, Internal Medicine Ward, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Sattar Gorgani
- Department of Laboratory Sciences, Paramedical School, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Khoramizade
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, and Zebra fish core Facility (ZFIN ID : ZDB-LAB- 190117-2), Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
17
|
Grácio M, Rocha J, Pinto R, Boavida Ferreira R, Solas J, Eduardo‐Figueira M, Sepodes B, Ribeiro AC. A proposed lectin-mediated mechanism to explain the in Vivo antihyperglycemic activity of γ-conglutin from Lupinus albus seeds. Food Sci Nutr 2021; 9:5980-5996. [PMID: 34760231 PMCID: PMC8565248 DOI: 10.1002/fsn3.2520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023] Open
Abstract
Experiments conducted in vitro and in vivo, as well as clinical trials for hypoglycemic therapeutics, support the hypoglycemic properties of the lectin γ-conglutin, a Lupinus seed storage protein, by a mechanism not yet been clarified. Structural studies established that binding of γ-conglutin, in native and denatured form, to insulin occurs by a strong binding that resists rupture when 0.4 M NaCl and 0.4 M galactose are present, suggesting that strong electrostatic interactions are involved. Studies on binding of γ-conglutin in native and denatured form to HepG2 membrane glycosylated receptors were conducted, which reveal that only the native form of γ-conglutin with lectin activity is capable of binding to these receptors. Glycosylated insulin receptors were detected on purified HepG2 cell membranes and characterized by 1D and 2D analyses. Preclinical assays with male mice (CD-1) indicated that native and denatured γ-conglutins display antihyperglycemic effect, decreasing glucose in blood comparable after 120 min to that exhibited by the animal group treated with metformin, used to treat T2D and used as a positive control. Measurement of organ injury/functional biomarkers (hepatic, pancreatic, renal, and lipid profile) was comparable to that of metformin treatment or even better in terms of safety endpoints (pancreatic and hepatic biomarkers).
Collapse
Affiliation(s)
- Madalena Grácio
- Faculdade de Farmácia da Universidade de LisboaLisboaPortugal
- Linking Landscape, Environment, Agriculture and Food (LEAF)University of Lisbon Higher Institute of AgronomyLisbonPortugal
| | - João Rocha
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Faculdade de Farmácia da Universidade de LisboaLisboaPortugal
| | - Rui Pinto
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Faculdade de Farmácia da Universidade de LisboaLisboaPortugal
- JCS Dr Joaquim Chaves Lab Análises ClínicasAlgésPortugal
| | - Ricardo Boavida Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF)University of Lisbon Higher Institute of AgronomyLisbonPortugal
| | - João Solas
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Faculdade de Farmácia da Universidade de LisboaLisboaPortugal
- HTRC‐Health and Technology Research CenterESTeSLInstituto Superior TécnicoUniversidade de LisboaLisboaPortugal
| | - Maria Eduardo‐Figueira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Faculdade de Farmácia da Universidade de LisboaLisboaPortugal
| | - Bruno Sepodes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Faculdade de Farmácia da Universidade de LisboaLisboaPortugal
| | - Ana Cristina Ribeiro
- Faculdade de Farmácia da Universidade de LisboaLisboaPortugal
- Linking Landscape, Environment, Agriculture and Food (LEAF)University of Lisbon Higher Institute of AgronomyLisbonPortugal
| |
Collapse
|
18
|
Cvetko A, Mangino M, Tijardović M, Kifer D, Falchi M, Keser T, Perola M, Spector TD, Lauc G, Menni C, Gornik O. Plasma N-glycome shows continuous deterioration as the diagnosis of insulin resistance approaches. BMJ Open Diabetes Res Care 2021; 9:9/1/e002263. [PMID: 34518155 PMCID: PMC8438737 DOI: 10.1136/bmjdrc-2021-002263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Prediction of type 2 diabetes mellitus (T2DM) and its preceding factors, such as insulin resistance (IR), is of great importance as it may allow delay or prevention of onset of the disease. Plasma protein N-glycome has emerged as a promising predictive biomarker. In a prospective longitudinal study, we included patients with a first diagnosis of impaired glucose metabolism (IR or T2DM) to investigate the N-glycosylation's predictive value years before diabetes development. RESEARCH DESIGN AND METHODS Plasma protein N-glycome was profiled by hydrophilic interaction ultra-performance liquid chromatography in 534 TwinsUK participants free from disease at baseline. This included 89 participants with incident diagnosis of IR or T2DM during the follow-up period (7.14±3.04 years) whose last sample prior to diagnosis was compared using general linear regression with 445 age-matched unrelated controls. Findings were replicated in an independent cohort. Changes in N-glycome have also been presented in connection with time to diagnosis. RESULTS Eight groups of plasma N-glycans were different between incident IR or T2DM cases and controls (p<0.05) after adjusting for multiple testing using Benjamini-Hochberg correction. These differences were noticeable up to 10 years prior to diagnosis and are changing continuously as becoming more expressed toward the diagnosis. The prediction model was built using significant glycan traits, displaying a discriminative performance with an area under the receiver operating characteristic curve of 0.77. CONCLUSIONS In addition to previous studies, we showed the diagnostic potential of plasma N-glycome in the prediction of both IR and T2DM development years before the clinical manifestation and indicated the continuous deterioration of N-glycome toward the diagnosis.
Collapse
Affiliation(s)
- Ana Cvetko
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Marko Tijardović
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Domagoj Kifer
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Toma Keser
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Gordan Lauc
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Olga Gornik
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| |
Collapse
|
19
|
Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci Rep 2021; 11:13751. [PMID: 34215797 PMCID: PMC8253845 DOI: 10.1038/s41598-021-93063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.
Collapse
|
20
|
Abstract
Changes in glycosylation on proteins or lipids are one of the hallmarks of tumorigenesis. In many cases, it is still not understood how glycan information is translated into biological function. In this review, we discuss at the example of specific cancer-related glycoproteins how their endocytic uptake into eukaryotic cells is tuned by carbohydrate modifications. For this, we not only focus on overall uptake rates, but also illustrate how different uptake processes-dependent or not on the conventional clathrin machinery-are used under given glycosylation conditions. Furthermore, we discuss the role of certain sugar-binding proteins, termed galectins, to tune glycoprotein uptake by inducing their crosslinking into lattices, or by co-clustering them with glycolipids into raft-type membrane nanodomains from which the so-called clathrin-independent carriers (CLICs) are formed for glycoprotein internalization into cells. The latter process has been termed glycolipid-lectin (GL-Lect) hypothesis, which operates in a complementary manner to the clathrin pathway and galectin lattices.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| | - Anne Billet
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Université de Paris, F-75005, Paris, France
| |
Collapse
|
21
|
Maeda K, Tasaki M, Ando Y, Ohtsubo K. Galectin-lattice sustains function of cationic amino acid transporter and insulin secretion of pancreatic β cells. J Biochem 2021; 167:587-596. [PMID: 31960919 DOI: 10.1093/jb/mvaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Maintenance of cell surface residency and function of glycoproteins by lectins are essential for regulating cellular functions. Galectins are β-galactoside-binding lectins and form a galectin-lattice, which regulates stability, clustering, membrane sub-domain localization and endocytosis of plasmalemmal glycoproteins. We have previously reported that galectin-2 (Gal-2) forms a complex with cationic amino acid transporter 3 (CAT3) in pancreatic β cells, although the biological significance of the molecular interaction between Gal-2 and CAT3 has not been elucidated. In this study, we demonstrated that the structure of N-glycan of CAT3 was either tetra- or tri-antennary branch structure carrying β-galactosides, which works as galectin-ligands. Indeed, CAT3 bound to Gal-2 using β-galactoside epitope. Moreover, the disruption of the glycan-mediated bindings between galectins and CAT3 significantly reduced cell surface expression levels of CAT3. The reduced cell surface residency of CAT3 attenuated the cellular arginine uptake activities and subsequently reduced nitric oxide production, and thus impaired the arginine-stimulated insulin secretion of pancreatic β cells. These results indicate that galectin-lattice stabilizes CAT3 by preventing endocytosis to sustain the arginine-stimulated insulin secretion of pancreatic β cells. This provides a novel cell biological insight into the endocrinological mechanism of nutrition metabolism and homeostasis.
Collapse
Affiliation(s)
- Kento Maeda
- Department of Analytical Biochemistry;, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan
| | - Masayoshi Tasaki
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukio Ando
- Depatment of Amyloidosis Research, Nagasaki International University, Nagasaki 859-3243, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry;, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan.,Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan
| |
Collapse
|
22
|
Štambuk T, Gornik O. Protein Glycosylation in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:285-305. [PMID: 34495541 DOI: 10.1007/978-3-030-70115-4_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by the presence of hyperglycaemia. Due to its high prevalence and substantial heterogeneity, many studies have been investigating markers that could identify predisposition for the disease development, differentiate between the various subtypes, establish early diagnosis, predict complications or represent novel therapeutic targets. N-glycans, complex oligosaccharide molecules covalently linked to proteins, emerged as potential markers and functional effectors of various diabetes subtypes, appearing to have the capacity to meet these requirements. For instance, it has been shown that N-glycome changes in patients with type 2 diabetes and that N-glycans can even identify individuals with an increased risk for its development. Moreover, genome-wide association studies identified glycosyltransferase genes as candidate causal genes for both type 1 and type 2 diabetes. N-glycans have also been suggested to have a major role in preventing the impairment of glucose-stimulated insulin secretion by modulating cell surface expression of glucose transporters. In this chapter we aimed to describe four major diabetes subtypes: type 1, type 2, gestational and monogenic diabetes, giving an overview of suggested role for N-glycosylation in their development, diagnosis and management.
Collapse
Affiliation(s)
- Tamara Štambuk
- Genos, Glycoscience Research Laboratory, Zagreb, Croatia.
| | - Olga Gornik
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| |
Collapse
|
23
|
Ali RS, Dick MF, Muhammad S, Sarver D, Hou L, Wong GW, Welch KC. Glucose transporter expression and regulation following a fast in the ruby-throated hummingbird, Archilochus colubris. J Exp Biol 2020; 223:jeb229989. [PMID: 32895327 PMCID: PMC10668337 DOI: 10.1242/jeb.229989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
Hummingbirds, subsisting almost exclusively on nectar sugar, face extreme challenges to blood sugar regulation. The capacity for transmembrane sugar transport is mediated by the activity of facilitative glucose transporters (GLUTs) and their localisation to the plasma membrane (PM). In this study, we determined the relative protein abundance of GLUT1, GLUT2, GLUT3 and GLUT5 via immunoblot using custom-designed antibodies in whole-tissue homogenates and PM fractions of flight muscle, heart and liver of ruby-throated hummingbirds (Archilochus colubris). The GLUTs examined were detected in nearly all tissues tested. Hepatic GLUT1 was minimally present in whole-tissue homogenates and absent win PM fractions. GLUT5 was expressed in flight muscles at levels comparable to those of the liver, consistent with the hypothesised uniquely high fructose uptake and oxidation capacity of hummingbird flight muscles. To assess GLUT regulation, we fed ruby-throated hummingbirds 1 mol l-1 sucrose ad libitum for 24 h followed by either 1 h of fasting or continued feeding until sampling. We measured relative GLUT abundance and concentration of circulating sugars. Blood fructose concentration in fasted hummingbirds declined (∼5 mmol l-1 to ∼0.18 mmol l-1), while fructose-transporting GLUT2 and GLUT5 abundance did not change in PM fractions. Blood glucose concentrations remained elevated in fed and fasted hummingbirds (∼30 mmol l-1), while glucose-transporting GLUT1 and GLUT3 in flight muscle and liver PM fractions, respectively, declined in fasted birds. Our results suggest that glucose uptake capacity is dynamically reduced in response to fasting, allowing for maintenance of elevated blood glucose levels, while fructose uptake capacity remains constitutively elevated promoting depletion of blood total fructose within the first hour of a fast.
Collapse
Affiliation(s)
- Raafay S Ali
- Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Morag F Dick
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Saad Muhammad
- Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Dylan Sarver
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lily Hou
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kenneth C Welch
- Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| |
Collapse
|
24
|
N-glycans as functional effectors of genetic and epigenetic disease risk. Mol Aspects Med 2020; 79:100891. [PMID: 32861467 DOI: 10.1016/j.mam.2020.100891] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
N-glycosylation is a frequent modification of proteins, essential for all domains of life. N-glycan biosynthesis is a dynamic, complex, non-templated process, wherein specific glycoforms are modulated by various microenvironmental cues, cellular signals and local availability of dedicated enzymes and sugar precursors. This intricate regulatory network comprises hundreds of proteins, whose activity is dependent on both sequence of implicated genes and the regulation of their expression. In this regard, variation in N-glycosylation patterns stems from either gene polymorphisms or from stable epigenetic regulation of gene expression in different individuals. Moreover, epigenome alters in response to various environmental factors, representing a direct link between environmental exposure and changes in gene expression, that are subsequently reflected through altered N-glycosylation. N-glycosylation itself has a fundamental role in numerous biological processes, ranging from protein folding, cellular homeostasis, adhesion and immune regulation, to the effector functions in multiple diseases. Moreover, specific modification of the glycan structure can modulate glycoprotein's biological function or direct the faith of the entire cell, as seen on the examples of antibodies and T cells, respectively. Since immunoglobulin G is one of the most profoundly studied glycoproteins in general, the focus of this review will be on its N-glycosylation changes and their functional implications. By deepening the knowledge on the mechanistic roles that certain glycoforms exert in differential pathological processes, valuable insight into molecular perturbations occurring during disease development could be obtained. The prospect of resolving the exact biological pathways involved offers a potential for the development of new therapeutic interventions and molecular tools that would aid in prognosis, early referral and timely treatment of multiple disease conditions.
Collapse
|
25
|
Synthesis of 18F-labeled streptozotocin derivatives and an in-vivo kinetics study using positron emission tomography. Bioorg Med Chem Lett 2020; 30:127400. [PMID: 32738964 DOI: 10.1016/j.bmcl.2020.127400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/28/2023]
Abstract
Glucose transporter 2 (GLUT2) is involved in glucose uptake by hepatocytes, pancreatic beta cells, and absorptive cells in the intestine and proximal tubules in the kidney. Pancreatic GLUT2 also plays an important role in the mechanism of glucose-stimulated insulin secretion. In this study, novel Fluorine-18-labeled streptozotocin (STZ) derivatives were synthesized to serve as glycoside analogs for in-vivo GLUT2 imaging. Fluorine was introduced to hexyl groups at the 3'-positions of the compounds, and we aimed to synthesize compounds that were more stable than STZ. The nitroso derivatives exhibited relatively good stability during purification and purity analysis after radiosynthesis. We then evaluated the compounds in PET imaging and ex-vivo biodistribution studies. We observed high levels of radioactivity in the liver and kidney, which indicated accumulation in these organs within 5 min of administration. In contrast, the denitroso derivatives accumulated only in the kidney and bladder shortly after administration. Compounds with nitroso groups are thus expected to accumulate in GLUT2-expressing organs, and the presence of a nitroso group is essential for in-vivo GLUT2 imaging.
Collapse
|
26
|
Jennemann R, Kaden S, Volz M, Nordström V, Herzer S, Sandhoff R, Gröne HJ. Gangliosides modulate insulin secretion by pancreatic beta cells under glucose stress. Glycobiology 2020; 30:722-734. [PMID: 32149357 DOI: 10.1093/glycob/cwaa022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
In pancreatic beta cells, the entry of glucose and downstream signaling for insulin release is regulated by the glucose transporter 2 (Glut2) in rodents. Dysfunction of the insulin-signaling cascade may lead to diabetes mellitus. Gangliosides, sialic acid-containing glycosphingolipids (GSLs), have been reported to modulate the function of several membrane proteins.Murine islets express predominantly sialylated GSLs, particularly the simple gangliosides GM3 and GD3 having a potential modulatory role in Glut2 activity. Conditional, tamoxifen-inducible gene targeting in pancreatic islets has now shown that mice lacking the glucosylceramide synthase (Ugcg), which represents the rate-limiting enzyme in GSL biosynthesis, displayed impaired glucose uptake and showed reduced insulin secretion. Consequently, mice with pancreatic GSL deficiency had higher blood glucose levels than respective controls after intraperitoneal glucose application. High-fat diet feeding enhanced this effect. GSL-deficient islets did not show apoptosis or ER stress and displayed a normal ultrastructure. Their insulin content, size and number were similar as in control islets. Isolated beta cells from GM3 synthase null mice unable to synthesize GM3 and GD3 also showed lower glucose uptake than respective control cells, corroborating the results obtained from the cell-specific model. We conclude that in particular the negatively charged gangliosides GM3 and GD3 of beta cells positively influence Glut2 function to adequately respond to high glucose loads.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Sylvia Kaden
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Martina Volz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2 Marburg 35043, Germany
| |
Collapse
|
27
|
Wittenbecher C, Štambuk T, Kuxhaus O, Rudman N, Vučković F, Štambuk J, Schiborn C, Rahelić D, Dietrich S, Gornik O, Perola M, Boeing H, Schulze MB, Lauc G. Plasma N-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study. Diabetes Care 2020; 43:661-668. [PMID: 31915204 DOI: 10.2337/dc19-1507] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Plasma protein N-glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma N-glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke). RESEARCH DESIGN AND METHODS Based on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort (n = 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes (n = 820; median follow-up time 6.5 years) and CVD (n = 508; median follow-up time 8.2 years). Information on the relative abundance of 39 N-glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive N-glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women. RESULTS The N-glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. N-glycans were moderately predictive for CVD incidence (weighted C-indices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected N-glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD. CONCLUSIONS Selected N-glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein N-glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Olga Kuxhaus
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Catarina Schiborn
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dario Rahelić
- University Clinics for Diabetes, Endocrinology and Metabolism, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Stefan Dietrich
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heiner Boeing
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
28
|
Comorbidities of HIV infection: role of Nef-induced impairment of cholesterol metabolism and lipid raft functionality. AIDS 2020; 34:1-13. [PMID: 31789888 PMCID: PMC6903377 DOI: 10.1097/qad.0000000000002385] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combination antiretroviral therapy has dramatically changed the outcome of HIV infection, turning it from a death sentence to a manageable chronic disease. However, comorbidities accompanying HIV infection, such as metabolic and cardio-vascular diseases, as well as cognitive impairment, persist despite successful virus control by combination antiretroviral therapy and pose considerable challenges to clinical management of people living with HIV. These comorbidities involve a number of pathological processes affecting a variety of different tissues and cells, making it challenging to identify a common cause(s) that would link these different diseases to HIV infection. In this article, we will present evidence that impairment of cellular cholesterol metabolism may be a common factor driving pathogenesis of HIV-associated comorbidities. Potential implications for therapeutic approaches are discussed.
Collapse
|
29
|
Sviridov D, Miller YI. Biology of Lipid Rafts: Introduction to the Thematic Review Series. J Lipid Res 2019; 61:598-600. [PMID: 31462515 DOI: 10.1194/jlr.in119000330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are organized plasma membrane microdomains, which provide a distinct level of regulation of cellular metabolism and response to extracellular stimuli, affecting a diverse range of physiologic and pathologic processes. This Thematic Review Series focuses on Biology of Lipid Rafts rather than on their composition or structure. The aim is to provide an overview of ideas on how lipid rafts are involved in regulation of different pathways and how they interact with other layers of metabolic regulation. Articles in the series will review the involvement of lipid rafts in regulation of hematopoiesis, production of extracellular vesicles, host interaction with infection, and the development and progression of cancer, neuroinflammation, and neurodegeneration, as well as the current outlook on therapeutic targeting of lipid rafts.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
30
|
Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019; 593:1598-1615. [PMID: 31215021 DOI: 10.1002/1873-3468.13495] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
N-glycosylation is a ubiquitous protein modification, and N-glycosylation profiles are emerging as both biomarkers and functional effectors in various types of diabetes. Genome-wide association studies identified glycosyltransferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies focused on N-glycosylation changes in type 2 diabetes demonstrated that patients can be distinguished from healthy controls based on N-glycome composition. In addition, individuals at an increased risk of future disease development could be identified based on N-glycome profiles. Moreover, accumulating evidence indicates that N-glycans have a major role in preventing the impairment of glucose-stimulated insulin secretion by maintaining the glucose transporter in proper orientation, indicating that interindividual variation in protein N-glycosylation might be a novel risk factor contributing to diabetes development. Defective N-glycosylation of T cells has been implicated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alterations have successfully been used to identify individuals with rare types of diabetes (such as the HNF1A-MODY), and also to evaluate functional significance of novel diabetes-associated mutations. In conclusion, both N-glycans and glycosyltransferases emerge as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
31
|
Balakrishnan BB, Krishnasamy K, Mayakrishnan V, Selvaraj A. Moringa concanensis Nimmo extracts ameliorates hyperglycemia-mediated oxidative stress and upregulates PPARγ and GLUT4 gene expression in liver and pancreas of streptozotocin-nicotinamide induced diabetic rats. Biomed Pharmacother 2019; 112:108688. [PMID: 30798121 DOI: 10.1016/j.biopha.2019.108688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
The current study investigates the effects of ethanolic extract of M. concanensis Nimmo leaves (EEMCNL) with respect to its potent protective tissue damage, antioxidant properties in serum, liver and kidney, histopathological evaluation, and PPARγ and GLUT4 gene expression in liver and pancreatic tissue of Streptozotocin-Nicotinamide (STZ-NA) induced diabetic rats. Animals were divided into five groups (n = 5): control; diabetic; diabetic + EEMCNL; control + EEMCNL; and diabetic + glibenclamide. After 45 days of treatment with EEMCNL, MDA levels were significantly decreased in the diabetic-induced group when compared with the STZ-induced diabetic group (P < 0.05). The activities of serum enzymes AST, ALT, ALP, ACP and LDH were significantly decreased in serum and kidney, and increased in liver tissues of the EEMCNL-treated group as compared with the STZ-NA induced diabetic group (P < 0.05). The levels of total protein, urea, creatinine and uric acid observed in the diabetic group returned to normal by administration of EEMCNL (250 mg/kg) as relative to the STZ-NA induced diabetic group (P < 0.05). Furthermore, EEMCNL upregulated PPARγ and GLUT4 expression in liver and pancreatic tissue of the STZ-NA induced diabetic group rats. Taken together, these findings contribute to a better understanding of the hepatoprotective and renoprotective potential of EEMCNL against oxidative stress in the diabetic state, which was evidenced by the capacity of EEMCNL to modulate the antioxidant defence and to decrease lipid peroxidation in these tissues.
Collapse
Affiliation(s)
- Brindha Banu Balakrishnan
- Department of Biochemistry and Bioinformatics, Dr. MGR Janaki College of Arts and Science for Women, Affiliated to University of Madras, Chennai, 600028, Tamil Nadu, India; Department of Biochemistry, Kongunadu Arts and Science College, Affiliated to Bharathiar University, Coimbatore 641029, Tamil Nadu, India.
| | - Kalaivani Krishnasamy
- Department of Biochemistry, Kongunadu Arts and Science College, Affiliated to Bharathiar University, Coimbatore 641029, Tamil Nadu, India
| | - Vijayakumar Mayakrishnan
- Department of Nutrition, Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan, 31000, Republic of Korea
| | - Arokiyaraj Selvaraj
- Department of Food Science and Biotechnology, Sejong University, Gwangjingu, Seoul, Republic of Korea
| |
Collapse
|
32
|
Maeda K, Ohtsubo K. Galectin Lattice Regulates Nutrition Sensor Functions in Pancreatic β Cells. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1760.4e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kento Maeda
- Department of Analytical Biochemistry, Graduate School of Health Sciences, Kumamoto University
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Graduate School of Health Sciences, Kumamoto University
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
33
|
Workman RE, Myrka AM, Wong GW, Tseng E, Welch KC, Timp W. Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris. Gigascience 2018; 7:1-12. [PMID: 29618047 PMCID: PMC5869288 DOI: 10.1093/gigascience/giy009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
Background Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids that are derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. Findings We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. Conclusions We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism.
Collapse
Affiliation(s)
- Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Alexander M Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada and Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kenneth C Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada and Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
34
|
Abstract
Drug transporter proteins are critical to the distribution of a wide range of endogenous compounds and xenobiotics such as hormones, bile acids, peptides, lipids, sugars, and drugs. There are two classes of drug transporters- the solute carrier (SLC) transporters and ATP-binding cassette (ABC) transporters -which predominantly differ in the energy source utilized to transport substrates across a membrane barrier. Despite their hydrophobic nature and residence in the membrane bilayer, drug transporters have dynamic structures and adopt many conformations during the translocation process. Whereas there is significant literature evidence for the substrate specificity and structure-function relationship for clinically relevant drug transporters proteins, there is less of an understanding in the regulatory mechanisms that contribute to the functional expression of these proteins. Post-translational modifications have been shown to modulate drug transporter functional expression via a wide range of molecular mechanisms. These modifications commonly occur through the addition of a functional group (e.g. phosphorylation), a small protein (e.g. ubiquitination), sugar chains (e.g. glycosylation), or lipids (e.g. palmitoylation) on solvent accessible amino acid residues. These covalent additions often occur as a result of a signaling cascade and may be reversible depending on the type of modification and the intended fate of the signaling event. Here, we review the significant role in which post-translational modifications contribute to the dynamic regulation and functional consequences of SLC and ABC drug transporters and highlight recent progress in understanding their roles in transporter structure, function, and regulation.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Demetriou M, Nabi IR, Dennis JW. Galectins as Adaptors: Linking Glycosylation and Metabolism with Extracellular Cues. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1732.1se] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia
| | - James W. Dennis
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital
- Department of Molecular Genetics, & Department of Laboratory Medicine and Pathology, Department of Medicine, University of Toronto
| |
Collapse
|
36
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. Expert Rev Proteomics 2018. [PMID: 29521143 DOI: 10.1080/14789450.2018.1448710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| | - Edward S X Moh
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| |
Collapse
|
37
|
N -glycan-dependent cell-surface expression of the P2Y 2 receptor and N -glycan-independent distribution to lipid rafts. Biochem Biophys Res Commun 2017; 485:427-431. [DOI: 10.1016/j.bbrc.2017.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 01/23/2023]
|
38
|
Tumova S, Kerimi A, Porter KE, Williamson G. Transendothelial glucose transport is not restricted by extracellular hyperglycaemia. Vascul Pharmacol 2016; 87:219-229. [DOI: 10.1016/j.vph.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 11/02/2016] [Indexed: 01/18/2023]
|
39
|
Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression. Pflugers Arch 2016; 468:1837-1851. [DOI: 10.1007/s00424-016-1881-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
|
40
|
Thiemann S, Baum LG. Galectins and Immune Responses—Just How Do They Do Those Things They Do? Annu Rev Immunol 2016; 34:243-64. [DOI: 10.1146/annurev-immunol-041015-055402] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Thiemann
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| |
Collapse
|
41
|
Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Disease-associated glycans on cell surface proteins. Mol Aspects Med 2016; 51:56-70. [PMID: 27131428 DOI: 10.1016/j.mam.2016.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 01/02/2023]
Abstract
Most of membrane molecules including cell surface receptors and secreted proteins including ligands are glycoproteins and glycolipids. Therefore, identifying the functional significance of glycans is crucial for developing an understanding of cell signaling and subsequent physiological and pathological cellular events. In particular, the function of N-glycans associated with cell surface receptors has been extensively studied since they are directly involved in controlling cellular functions. In this review, we focus on the roles of glycosyltransferases that are involved in the modification of N-glycans and their target proteins such as epidermal growth factor receptor (EGFR), ErbB3, transforming growth factor β (TGF-β) receptor, T-cell receptors (TCR), β-site APP cleaving enzyme (BACE1), glucose transporter 2 (GLUT2), E-cadherin, and α5β1 integrin in relation to diseases and epithelial-mesenchymal transition (EMT) process. Above of those proteins are subjected to being modified by several glycosyltransferases such as N-acetylglucosaminyltransferase III (GnT-III), N-acetylglucosaminyltransferase IV (GnT-IV), N-acetylglucosaminyltransferase V (GnT-V), α2,6 sialyltransferase 1 (ST6GAL1), and α1,6 fucosyltransferase (Fut8), which are typical N-glycan branching enzymes and play pivotal roles in regulating the function of cell surface receptors in pathological cell signaling.
Collapse
Affiliation(s)
- Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsusima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| |
Collapse
|
42
|
Taniguchi N, Kizuka Y, Takamatsu S, Miyoshi E, Gao C, Suzuki K, Kitazume S, Ohtsubo K. Glyco-redox, a link between oxidative stress and changes of glycans: Lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology. Arch Biochem Biophys 2016; 595:72-80. [PMID: 27095220 DOI: 10.1016/j.abb.2015.11.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 11/25/2022]
Abstract
Reduction-oxidation (redox) response is one of the most important biological phenomena. The concept introduced by Helmut Sies encouraged many researchers to examine oxidative stress under pathophysiological conditions. Our group has been interested in redox regulation under oxidative stress as well as glycobiology in relation to disease. Current studies by our group and other groups indicate that functional and structural changes of glycans are regulated by redox responses resulting from the generation of reactive oxygen species (ROS) or reactive nitrogen species (RNS) in various diseases including cancer, diabetes, neurodegenerative disease such as Parkinson disease, Alzheimer's disease and amyotrophic lateral sclerosis (ALS), and chronic obstructive pulmonary disease (COPD), even though very few investigators appear to be aware of these facts. Here we propose that the field "glyco-redox" will open the door to a more comprehensive understanding of the mechanism associated with diseases in relation to glycan changes under oxidative stress. A tight link between structural and functional changes of glycans and redox system under oxidative stress will lead to the recognition and interest of these aspects by many scientists. Helmut's contribution in this field facilitated our future perspectives in glycobiology.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan.
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Congxiao Gao
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan
| | - Keiichiro Suzuki
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinobu Kitazume
- Systems Glycobiology Research Group, Max-Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
43
|
Metabolic Reprogramming by Hexosamine Biosynthetic and Golgi N-Glycan Branching Pathways. Sci Rep 2016; 6:23043. [PMID: 26972830 PMCID: PMC4789752 DOI: 10.1038/srep23043] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
De novo uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis requires glucose, glutamine, acetyl-CoA and uridine, however GlcNAc salvaged from glycoconjugate turnover and dietary sources also makes a significant contribution to the intracellular pool. Herein we ask whether dietary GlcNAc regulates nutrient transport and intermediate metabolism in C57BL/6 mice by increasing UDP-GlcNAc and in turn Golgi N-glycan branching. GlcNAc added to the drinking water showed a dose-dependent increase in growth of young mice, while in mature adult mice fat and body-weight increased without affecting calorie-intake, activity, energy expenditure, or the microbiome. Oral GlcNAc increased hepatic UDP-GlcNAc and N-glycan branching on hepatic glycoproteins. Glucose homeostasis, hepatic glycogen, lipid metabolism and response to fasting were altered with GlcNAc treatment. In cultured cells GlcNAc enhanced uptake of glucose, glutamine and fatty-acids, and enhanced lipid synthesis, while inhibition of Golgi N-glycan branching blocked GlcNAc-dependent lipid accumulation. The N-acetylglucosaminyltransferase enzymes of the N-glycan branching pathway (Mgat1,2,4,5) display multistep ultrasensitivity to UDP-GlcNAc, as well as branching-dependent compensation. Indeed, oral GlcNAc rescued fat accumulation in lean Mgat5−/− mice and in cultured Mgat5−/− hepatocytes, consistent with N-glycan branching compensation. Our results suggest GlcNAc reprograms cellular metabolism by enhancing nutrient uptake and lipid storage through the UDP-GlcNAc supply to N-glycan branching pathway.
Collapse
|
44
|
Robajac D, Masnikosa R, Miković Ž, Nedić O. Gestation-associated changes in the glycosylation of placental insulin and insulin-like growth factor receptors. Placenta 2016; 39:70-6. [PMID: 26992677 DOI: 10.1016/j.placenta.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/01/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Insulin receptor (IR) and type 1 and type 2 insulin-like growth factor receptors (IGF1R and IGF2R) play important roles in regulation of placental and foetal growth. All three receptors are abundantly glycosylated. N-glycosylation significantly affects protein conformation and may alter its function. We have recently found that the N-glycome of placental membrane proteins alters during gestation. The aim of the study presented herein was to investigate whether there were gestation-related changes in N-glycan profiles of placental IR and IGFRs. METHODS Placentas from healthy women at first (FTP) and third trimester (TTP) of pregnancy were collected, membrane proteins isolated, solubilised and used as the source of IR and IGFRs. Reactivity of glycoforms of IR and IGFRs with lectins was monitored by measuring radioactivity of (125)I-ligands-receptors complexes. RESULTS Significant differences in the binding pattern of all three receptors to the lectins were observed between FTP and TTP, which suggest gestational changes in N-glycans bound to receptors. These changes include decrease in total fucosylated, core-fucosylated biantennary N-glycan (NA2F) and α2,6-sialo-N-glycans (for IR); decrease in total fucosylated and α2,6-sialo-N-glycans and an increase in NA2F N-glycans (for IGF1R) and an increase in the total fucosylation and NA2F N-glycans (for IGF2R). DISCUSSION The gestational alterations in N-glycans attached to IR and IGFRs may represent a mechanism by which these receptors acquire new/additional roles as gestation progresses.
Collapse
Affiliation(s)
- Dragana Robajac
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| | - Romana Masnikosa
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia.
| | - Željko Miković
- Clinic of Gynaecology and Obstetrics "Narodni Front", University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
45
|
Ketchem CJ, Khundmiri SJ, Gaweda AE, Murray R, Clark BJ, Weinman EJ, Lederer ED. Role of Na+/H+ exchanger regulatory factor 1 in forward trafficking of the type IIa Na+-Pi cotransporter. Am J Physiol Renal Physiol 2015; 309:F109-19. [PMID: 25995109 DOI: 10.1152/ajprenal.00133.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi.
Collapse
|
46
|
Glycosylation of solute carriers: mechanisms and functional consequences. Pflugers Arch 2015; 468:159-76. [PMID: 26383868 DOI: 10.1007/s00424-015-1730-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well as their posttranslational regulation, but only relatively little is known about the role of SLC glycosylation. Glycosylation is one of the most abundant posttranslational modifications of animal proteins and through recent advances in our understanding of protein-glycan interactions, the functional roles of SLC glycosylation are slowly emerging. The purpose of this review is to provide a concise overview of the aspects of glycobiology most relevant to SLCs, to discuss the roles of glycosylation in the regulation and function of SLCs, and to outline the major open questions in this field, which can now be addressed given major technical advances in this and related fields of study in recent years.
Collapse
|
47
|
Thiemann S, Man JH, Chang MH, Lee B, Baum LG. Galectin-1 regulates tissue exit of specific dendritic cell populations. J Biol Chem 2015. [PMID: 26216879 PMCID: PMC4566239 DOI: 10.1074/jbc.m115.644799] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During inflammation, dendritic cells emigrate from inflamed tissue across the lymphatic endothelium into the lymphatic vasculature and travel to regional lymph nodes to initiate immune responses. However, the processes that regulate dendritic cell tissue egress and migration across the lymphatic endothelium are not well defined. The mammalian lectin galectin-1 is highly expressed by vascular endothelial cells in inflamed tissue and has been shown to regulate immune cell tissue entry into inflamed tissue. Here, we show that galectin-1 is also highly expressed by human lymphatic endothelial cells, and deposition of galectin-1 in extracellular matrix selectively regulates migration of specific human dendritic cell subsets. The presence of galectin-1 inhibits migration of immunogenic dendritic cells through the extracellular matrix and across lymphatic endothelial cells, but it has no effect on migration of tolerogenic dendritic cells. The major galectin-1 counter-receptor on both dendritic cell populations is the cell surface mucin CD43; differential core 2 O-glycosylation of CD43 between immunogenic dendritic cells and tolerogenic dendritic cells appears to contribute to the differential effect of galectin-1 on migration. Binding of galectin-1 to immunogenic dendritic cells reduces phosphorylation and activity of the protein-tyrosine kinase Pyk2, an effect that may also contribute to reduced migration of this subset. In a murine lymphedema model, galectin-1(-/-) animals had increased numbers of migratory dendritic cells in draining lymph nodes, specifically dendritic cells with an immunogenic phenotype. These findings define a novel role for galectin-1 in inhibiting tissue emigration of immunogenic, but not tolerogenic, dendritic cells, providing an additional mechanism by which galectin-1 can dampen immune responses.
Collapse
Affiliation(s)
- Sandra Thiemann
- From the Departments of Pathology and Laboratory Medicine and
| | - Jeanette H Man
- From the Departments of Pathology and Laboratory Medicine and
| | - Margaret H Chang
- Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | - Benhur Lee
- From the Departments of Pathology and Laboratory Medicine and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and the Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Linda G Baum
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
48
|
Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J Hepatol 2015; 7:1012-1019. [PMID: 26052390 PMCID: PMC4450178 DOI: 10.4254/wjh.v7.i8.1012] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/21/2015] [Accepted: 03/30/2015] [Indexed: 02/06/2023] Open
Abstract
Lately, the world has faced tremendous progress in the understanding of non-alcoholic fatty liver disease (NAFLD) pathogenesis due to rising obesity rates. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that modulate the expression of genes involved in lipid metabolism, energy homeostasis and inflammation, being altered in diet-induced obesity. Experimental evidences show that PPAR-alpha is the master regulator of hepatic beta-oxidation (mitochondrial and peroxisomal) and microsomal omega-oxidation, being markedly decreased by high-fat (HF) intake. PPAR-beta/delta is crucial to the regulation of forkhead box-containing protein O subfamily-1 expression and, hence, the modulation of enzymes that trigger hepatic gluconeogenesis. In addition, PPAR-beta/delta can activate hepatic stellate cells aiming to the hepatic recovery from chronic insult. On the contrary, PPAR-gamma upregulation by HF diets maximizes NAFLD through the induction of lipogenic factors, which are implicated in the fatty acid synthesis. Excessive dietary sugars also upregulate PPAR-gamma, triggering de novo lipogenesis and the consequent lipid droplets deposition within hepatocytes. Targeting PPARs to treat NAFLD seems a fruitful approach as PPAR-alpha agonist elicits expressive decrease in hepatic steatosis by increasing mitochondrial beta-oxidation, besides reduced lipogenesis. PPAR-beta/delta ameliorates hepatic insulin resistance by decreasing hepatic gluconeogenesis at postprandial stage. Total PPAR-gamma activation can exert noxious effects by stimulating hepatic lipogenesis. However, partial PPAR-gamma activation leads to benefits, mainly mediated by increased adiponectin expression and decreased insulin resistance. Further studies are necessary aiming at translational approaches useful to treat NAFLD in humans worldwide by targeting PPARs.
Collapse
Affiliation(s)
- Vanessa Souza-Mello
- Vanessa Souza-Mello, Biomedical Centre, Institute of Biology, Department of Anatomy, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
49
|
Abstract
n-3 polyunsaturated fatty acids (PUFAs) are a subgroup of fatty acids with broad health benefits, such as lowering blood triglycerides and decreasing the risk of some types of cancer. A beneficial effect of n-3 PUFAs in diabetes is indicated by results from some studies. Defective insulin secretion is a fundamental pathophysiological change in both types 1 and 2 diabetes. Emerging studies have provided evidence of a connection between n-3 PUFAs and improved insulin secretion from pancreatic β-cells. This review summarizes the recent findings in this regard and discusses the potential mechanisms by which n-3 PUFAs influence insulin secretion from pancreatic β-cells.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Catherine B Chan
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| |
Collapse
|
50
|
Abstract
The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| |
Collapse
|