1
|
Singh H, Kunkle BF, Troia AR, Suvarnakar AM, Waterman AC, Khin Y, Korkmaz SY, O'Connor CE, Lewis JH. Drug Induced Liver Injury: Highlights and Controversies in the 2023 Literature. Drug Saf 2025; 48:455-488. [PMID: 39921708 DOI: 10.1007/s40264-025-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Drug-induced liver injury (DILI) remains an active field of clinical research and investigation with more than 4700 publications appearing in 2023 relating to hepatotoxicity of all causes and injury patterns. As in years past, we have attempted to identify and summarize highlights and controversies from the past year's literature. Several new and novel therapeutic agents were approved by the US Food and Drug Administration (FDA) in 2023, a number of which were associated with significant hepatotoxicity. Updates in the diagnosis and management of DILI using causality scores as well as newer artificial intelligence-based methods were published. Details of newly established hepatotoxins as well as updated information on previously documented hepatotoxic drugs is presented. Significant updates in treatment of DILI were also included as well as reports related to global DILI registries.
Collapse
Affiliation(s)
- Harjit Singh
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.
| | - Bryce F Kunkle
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Angela R Troia
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | | | - Ade C Waterman
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Yadana Khin
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Serena Y Korkmaz
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Corinne E O'Connor
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Medstar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
2
|
Suzuki A, MinjunChen. Epidemiology and Risk Determinants of Drug-Induced Liver Injury: Current Knowledge and Future Research Needs. Liver Int 2025; 45:e16146. [PMID: 39494620 DOI: 10.1111/liv.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
AIMS Drug-induced liver injury (DILI) is a major global health concern resulting from adverse reactions to medications, supplements or herbal medicines. The relevance of DILI has grown with an aging population, the rising prevalence of chronic diseases and the increased use of biologics, including checkpoint inhibitors. This article aims to summarise current knowledge on DILI epidemiology and risk factors. METHODS This review critically appraises available evidence on DILI frequency, outcomes and risk determinants, focusing on drug properties and non-genetic host factors that may influence susceptibility. RESULTS DILI incidence varies across populations, with hospitalised patients experiencing notably higher rates than outpatients or the general population. Increased medication use, particularly among older adults and women, may partly explain age- and sex-based disparities in DILI incidence and reporting. Physiological changes associated with aging likely increase susceptibility to DILI in older adults, though further exposure-based studies are needed for definitive conclusions. Current evidence does not strongly support that women are inherently more susceptible to DILI than men; rather, susceptibility appears to depend on specific drugs. However, once DILI occurs, older age and female sex are associated with greater severity and poorer outcomes. Other less-studied host-related risk factors are also discussed based on available evidence. CONCLUSIONS This article summarises existing data on DILI frequency, outcomes, drug properties affecting hepatotoxicity and non-genetic host risk factors while identifying critical knowledge gaps. Addressing these gaps through future research could enhance understanding and support preventive measures.
Collapse
Affiliation(s)
- Ayako Suzuki
- Gastroenterology, Duke University, Durham, North Carolina, USA
- Gastroenterology, Durham VA Medical Center, Durham, North Carolina, USA
| | - MinjunChen
- Division of Bioinformatics and Biostatistics, FDA's National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
3
|
Björnsson RA, Sigurdsson SS, Arnarson DT, Logason E, Björnsson ES. The Frequency of Drug-Induced Liver Injury Due to Antibiotics Among Hospitalised Patients. Drug Saf 2025:10.1007/s40264-025-01541-w. [PMID: 40072769 DOI: 10.1007/s40264-025-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Most epidemiological studies have found antibiotics to be the most common cause of drug-induced liver injury (DILI). It is unclear what the risk of DILI is associated with different antibiotics. OBJECTIVE The aim of the study was to assess the frequency of DILI due to the most commonly used antibiotics among inpatients, in a population-based setting. METHODS Patients who were treated with the 14 most-used antibiotics at Landspitali University Hospital Iceland 2012-2023, with concomitant: > 5 × upper limit of normal (ULN) of alanine aminotransferase (ALT) and/or > 2 × ULN of alkaline phosphatase (ALP), were identified. If DILI was a potential cause, the Revised Electronic Causality Assessment Method (RECAM) method was used to determine likelihood of DILI. RESULTS Overall 2292 patients fulfilled the inclusion criteria, 52 of whom were found to have DILI, median age 67 (range 21-93) years, 58% females, 17 (33%) with jaundice and three (5.8%) died of liver failure. The most commonly implicated agent was amoxicillin/clavulanate (n = 23) in 1:1327 users (0.075%), ceftriaxone (n = 8) 1:3779 (0.02%), cefazolin (n = 7) 1: 6363 (0.016%), cloxacillin 1:6024 (n = 4) (0.017%), piperacillin/tazobactam (n = 2) 1:1551 (0.097%), vancomycin (n = 2) 1:1966 (0.076%), trimethoprim-sulfamethoxazole (TMP/SMX) (n = 3) 1:1096 (0.091%) and ciprofloxacin (n = 1) 1:10,938 (0.009%). In two cases, more than one antibiotic was considered likely. CONCLUSIONS Drug-induced liver injury was found to be a rare adverse effect of antibiotics in a population-based setting. Overall, 33% presented with jaundice but three died of liver failure, all due to amoxicillin/clavulanate, which was the most common cause occurring in around 1 in 1300 users. However, TMP/SMX was associated with the highest proportional risk of DILI.
Collapse
Affiliation(s)
| | | | | | - Egill Logason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Einar Stefan Björnsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The National University Hospital of Iceland, Reykjavik, Iceland.
| |
Collapse
|
4
|
Chen VL, Rockey DC, Bjornsson ES, Barnhart H, Hoofnagle JH. Incidence of Idiosyncratic Drug-Induced Liver Injury Caused by Prescription Drugs. Drug Saf 2025; 48:151-160. [PMID: 39317916 PMCID: PMC11785493 DOI: 10.1007/s40264-024-01486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The incidence of drug-induced liver injury (DILI) is not known for most prescription medications. We aimed to estimate the incidence of DILI for commonly prescribed outpatient drugs. METHODS To establish a baseline estimate of DILI incidence, we used the estimated incidence (EI) of amoxicillin/clavulanate DILI from a previous population-based study in Iceland. This was combined with the multicenter prospective DILI Network (DILIN) cohort and the US population-based Medical Expenditure Panel Survey (MEPS). From 2005 to 2019, prescription drugs with at least five bona fide DILIN cases and data from at least 10 of the 15 years from MEPS during that timeframe were included. The EI for 'drug A' was calculated as follows: EI ( drug A ) = EI AC × # DILIN cases of drug A # annual new prescriptions of drug A × # annual new prescriptions of AC # DILIN cases of AC RESULTS: In total, 30 drugs met the inclusion criteria, of which 11 were antibiotics, 4 were antiepileptic drugs (AEDs), 4 were statins, and 11 were other drug types. The highest EI was seen with azathioprine and older AEDs, with one DILI case per 349-2329 new prescriptions. The EI of antibiotics ranged greatly, with the highest risk seen for minocycline, amoxicillin/clavulanate, and nitrofurantoin (approximately 1:1000-2400 new prescriptions), and lowest risk for clindamycin, doxycycline, azithromycin, and amoxicillin (approximately 1:40,000-170,000 new prescriptions). The EI for commonly prescribed statins was approximately 1:10,000-50,000. Important medication classes with > 5 million new prescriptions from 2005 to 2019 but fewer than five DILIN cases included β-blockers, thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, selective serotonin reuptake inhibitors, and metformin, which presumably have very low DILI incidence. CONCLUSIONS The highest EI was found for azathioprine, older antiepileptics, and minocycline. In contrast, many widely used drugs are rare causes of DILI. These findings may help clinicians better weigh potential benefits of medications against hepatotoxicity risk.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, SC, USA
| | - Einar S Bjornsson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Huiman Barnhart
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Jay H Hoofnagle
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Lucena MI, Villanueva-Paz M, Alvarez-Alvarez I, Aithal GP, Björnsson ES, Cakan-Akdogan G, Cubero FJ, Esteves F, Falcon-Perez JM, Fromenty B, Garcia-Ruiz C, Grove JI, Konu O, Kranendonk M, Kullak-Ublick GA, Miranda JP, Remesal-Doblado A, Sancho-Bru P, Nelson L, Andrade RJ, Daly AK, Fernandez-Checa JC. Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet. Pharmacol Res 2024; 200:107046. [PMID: 38159783 PMCID: PMC7617395 DOI: 10.1016/j.phrs.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.
Collapse
Affiliation(s)
- M I Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - M Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - I Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - G P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - E S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - G Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey. Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - F J Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - F Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - J M Falcon-Perez
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - B Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - C Garcia-Ruiz
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - J I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - O Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - M Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - G A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - J P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A Remesal-Doblado
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - P Sancho-Bru
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain
| | - L Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, UK
| | - R J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - A K Daly
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J C Fernandez-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Atallah E, Welsh SJ, O’Carrigan B, Oshaughnessy A, Dolapo I, Kerr AS, Kucharczak J, Lee CY, Crooks C, Hicks A, Chimakurthi CR, Rao A, Franks H, Patel PM, Aithal GP. Incidence, risk factors and outcomes of checkpoint inhibitor-induced liver injury: A 10-year real-world retrospective cohort study. JHEP Rep 2023; 5:100851. [PMID: 37727807 PMCID: PMC10505983 DOI: 10.1016/j.jhepr.2023.100851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 09/21/2023] Open
Abstract
Background & Aims Checkpoint inhibitors (CPI) account for increasing numbers of drug-induced liver injury (DILI) cases. We aimed to determine the incidence rate and risk factors associated with checkpoint inhibitor-induced liver injury (ChILI). Methods Prescription event monitoring was performed on all melanoma and renal cancer patients who received CPI at a tertiary centre between 2011 and 2021. ChILI cases were identified using the definitions, grading, and causality assessment methods validated for DILI. We assessed risk factors associated with ChILI in CPI-naive patients using multivariable logistic regression model. Consecutive patients with suspected ChILI from two other tertiary centres were adjudicated and combined for case characterisation and outcomes of ChILI. Results Out of 432 patients who received CPI over 10 years, ChILI occurred in 38 (8.8%) with an overall incidence rate of 11.5 per 1,000 person-months (95% CI 8.2-15.8). Probability of ChILI was highest in combination therapy (32%) and no new events occurred beyond 135 days of treatment. Risk factor analysis showed that combination therapy, female sex, higher baseline alanine transferase level and lower baseline alkaline phosphatase level were independently associated with higher risk of ChILI. In total, 99 patients were adjudicated to have ChILI from three centres. Although Common Terminology Criteria for Adverse Events classified 20 patients (20.2%) to have 'life-threatening' grade 4 hepatitis, ChILI severity was graded as mild in 45 (45.5%) and moderate in the remaining 54 (54.5%) cases. Conclusions The real-world risk of ChILI is higher than previously reported. Among patients receiving dual CPI, this risk falls markedly after 4.5 months. As Common Terminology Criteria for Adverse Events overestimates its clinical severity, case-definition, evaluation and management of ChILI should be revised to harmonise care. Impact and implications Using prescription event monitoring over a 10-year period, the incidence rate of checkpoint inhibitor induced liver injury (ChILI) based on established case definitions for drug-induced liver injury (DILI) is 11.5 per 1,000 person-months. Formal causality assessment identified an alternative cause in 19% of patients with suspected ChILI highlighting the importance of systematic evaluation by clinicians to minimise unnecessary immunosuppression. Intensity of monitoring in patients receiving combination therapy regime after 4.5 months of therapy can be reduced as the risk of new onset ChILI beyond this point is minimal. Current Common Terminology Criteria for Adverse Events (CTCAE) grading overestimates clinical severity of ChILI and hence contributes to avoidable hospitalisation.
Collapse
Affiliation(s)
- Edmond Atallah
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Sarah J. Welsh
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Brent O’Carrigan
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ana Oshaughnessy
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Igboin Dolapo
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Andrew S. Kerr
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Joanna Kucharczak
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Colin Y.C. Lee
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Colin Crooks
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Amy Hicks
- Leeds Liver Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Ankit Rao
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hester Franks
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Centre for Cancer Sciences, Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Poulam M. Patel
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Centre for Cancer Sciences, Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Grove JI, Stephens C, Lucena MI, Andrade RJ, Weber S, Gerbes A, Bjornsson ES, Stirnimann G, Daly AK, Hackl M, Khamina-Kotisch K, Marin JJG, Monte MJ, Paciga SA, Lingaya M, Forootan SS, Goldring CEP, Poetz O, Lombaard R, Stege A, Bjorrnsson HK, Robles-Diaz M, Li D, Tran TDB, Ramaiah SK, Samodelov SL, Kullak-Ublick GA, Aithal GP. Study design for development of novel safety biomarkers of drug-induced liver injury by the translational safety biomarker pipeline (TransBioLine) consortium: a study protocol for a nested case-control study. Diagn Progn Res 2023; 7:18. [PMID: 37697410 PMCID: PMC10496294 DOI: 10.1186/s41512-023-00155-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
A lack of biomarkers that detect drug-induced liver injury (DILI) accurately continues to hinder early- and late-stage drug development and remains a challenge in clinical practice. The Innovative Medicines Initiative's TransBioLine consortium comprising academic and industry partners is developing a prospective repository of deeply phenotyped cases and controls with biological samples during liver injury progression to facilitate biomarker discovery, evaluation, validation and qualification.In a nested case-control design, patients who meet one of these criteria, alanine transaminase (ALT) ≥ 5 × the upper limit of normal (ULN), alkaline phosphatase ≥ 2 × ULN or ALT ≥ 3 ULN with total bilirubin > 2 × ULN, are enrolled. After completed clinical investigations, Roussel Uclaf Causality Assessment and expert panel review are used to adjudicate episodes as DILI or alternative liver diseases (acute non-DILI controls). Two blood samples are taken: at recruitment and follow-up. Sample size is as follows: 300 cases of DILI and 130 acute non-DILI controls. Additional cross-sectional cohorts (1 visit) are as follows: Healthy volunteers (n = 120), controls with chronic alcohol-related or non-alcoholic fatty liver disease (n = 100 each) and patients with psoriasis or rheumatoid arthritis (n = 100, 50 treated with methotrexate) are enrolled. Candidate biomarkers prioritised for evaluation include osteopontin, glutamate dehydrogenase, cytokeratin-18 (full length and caspase cleaved), macrophage-colony-stimulating factor 1 receptor and high mobility group protein B1 as well as bile acids, sphingolipids and microRNAs. The TransBioLine project is enabling biomarker discovery and validation that could improve detection, diagnostic accuracy and prognostication of DILI in premarketing clinical trials and for clinical healthcare application.
Collapse
Affiliation(s)
- Jane I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Camilla Stephens
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - M Isabel Lucena
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - Raúl J Andrade
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - Sabine Weber
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Gerbes
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Einar S Bjornsson
- Department of Gastroenterology, Landspitali University Hospital Reykjavik, University of Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | | | | | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Sara A Paciga
- Worldwide Research Development and Medical, Pfizer, NY, USA
| | - Melanie Lingaya
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Shiva S Forootan
- Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | | | | | - Rudolf Lombaard
- ABX-CRO Advanced Pharmaceutical Services, Forschungsgesellschaft mbH, Cape Town, 7441, South Africa
| | - Alexandra Stege
- Charité-Universitätsmedizin Berlin, Central Biobank Charité (ZeBanC), Berlin, Germany
| | - Helgi K Bjorrnsson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mercedes Robles-Diaz
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - Dingzhou Li
- Worldwide Research Development and Medical, Pfizer, NY, USA
| | | | | | - Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056, Basel, Switzerland
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Teschke R, Danan G. Advances in Idiosyncratic Drug-Induced Liver Injury Issues: New Clinical and Mechanistic Analysis Due to Roussel Uclaf Causality Assessment Method Use. Int J Mol Sci 2023; 24:10855. [PMID: 37446036 DOI: 10.3390/ijms241310855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Clinical and mechanistic considerations in idiosyncratic drug-induced liver injury (iDILI) remain challenging topics when they are derived from mere case narratives or iDILI cases without valid diagnosis. To overcome these issues, attempts should be made on pathogenetic aspects based on published clinical iDILI cases firmly diagnosed by the original RUCAM (Roussel Uclaf Causality Assessment Method) or the RUCAM version updated in 2016. Analysis of RUCAM-based iDILI cases allowed for evaluating immune and genetic data obtained from the serum and the liver of affected patients. For instance, strong evidence for immune reactions in the liver of patients with RUCAM-based iDILI was provided by the detection of serum anti-CYP 2E1 due to drugs like volatile anesthetics sevoflurane and desflurane, partially associated with the formation of trifluoroacetyl (TFA) halide as toxic intermediates that form protein adducts and may generate reactive oxygen species (ROS). This is accompanied by production of anti-TFA antibodies detected in the serum of these patients. Other RUCAM-based studies on serum ANA (anti-nuclear antibodies) and SMA (anti-smooth muscle antibodies) associated with AIDILI (autoimmune DILI) syn DIAIH (drug-induced autoimmune hepatitis) provide additional evidence of immunological reactions with monocytes as one of several promoting immune cells. In addition, in the blood plasma of patients, mediators like the cytokines IL-22, IL-22 binding protein (IL-22BP), IL-6, IL-10, IL 12p70, IL-17A, IL-23, IP-10, or chemokines such as CD206 and sCD163 were found in DILI due to anti-tuberculosis drugs as ascertained by the prospective updated RUCAM, which scored a high causality. RUCAM-based analysis also provided compelling evidence of genetic factors such as HLA (human leucocyte antigen) alleles contributing to initiate iDILI by a few drugs. In conclusion, analysis of published RUCAM-based iDILI cases provided firm evidence of immune and genetic processes involved in iDILI caused by specific drugs.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Leimenstrasse 20, D-63450 Hanau, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, Rue des Ormeaux, 75020 Paris, France
| |
Collapse
|
9
|
Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans. Nat Commun 2023; 14:1215. [PMID: 36869085 PMCID: PMC9984368 DOI: 10.1038/s41467-023-36858-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. Here, we identify, confirm, and replicate the biomarker performance characteristics of candidate proteins in patients with DILI at onset (DO; n = 133) and follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up (n = 42), and healthy volunteers (HV; n = 104). Area under the receiver operating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argininosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase, fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete separation (range: 0.94-0.99) of DO and HV. In addition, we show that FBP1, alone or in combination with glutathione S-transferase A1 and leukocyte cell-derived chemotaxin 2, could potentially assist in clinical diagnosis by distinguishing NDO from DO (AUC range: 0.65-0.78), but further technical and clinical validation of these candidate biomarkers is needed.
Collapse
|