1
|
Khoshbaten M, Maleki SH, Hadad S, Baral A, Rocha AV, Poudel L, Abdshah A. Association of nonalcoholic fatty liver disease and carotid media-intima thickness: A systematic review and a meta-analysis. Health Sci Rep 2023; 6:e1554. [PMID: 37701352 PMCID: PMC10493365 DOI: 10.1002/hsr2.1554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction The relationship between cardiovascular disorders and nonalcoholic fatty liver disease (NAFLD) has been extensively studied. To better pool this data and make a more definite conclusion, we performed a meta-analysis to evaluate the association between NAFLD and the thickness of media and intima of carotid artery (CIMT) and cardiovascular disorders. Methods We searched PubMed, Ovid, Scopus, ProQuest, Web of Science, and the Cochrane Library, and analyzed the pooled data using R studio and the "metafor" package. Results The final analysis included a total of 59 studies with 16,179 cases and 26,120 control individuals. NAFLD was shown to be associated with an increase of 0.1231 mm (20.6%) in carotid artery intima-media thickness (CIMT) (p = 0.002, 95% confidence interval [CI]: 0.0462-0.2000) in individuals with NAFLD. The prevalence of atherosclerotic plaques in the carotid arteries and the occurrence of NAFLD are significantly correlated, according to a meta-analysis based on 17 distinct studies (p = 0.001, 1.28-1.43, 95% CI, odds ratio = 1.356). Conclusion Patients with increased CIMT are considerably more likely to have NAFLD. Large prospective investigations are required to corroborate these findings and their prognostic significance, along with the effectiveness of the available interventions.
Collapse
Affiliation(s)
- Manouchehr Khoshbaten
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Sepideh H. Maleki
- Department of PathologyImam Reza Hospital, Tabriz University of Medical SciencesTabrizIran
| | - Sara Hadad
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amrit Baral
- Department of Public Health SciencesMiller School of Medicine, University of MiamiMiamiFloridaUSA
| | - Ana V. Rocha
- Department of Public Health SciencesMiller School of Medicine, University of MiamiMiamiFloridaUSA
| | | | - Alireza Abdshah
- Department of Public Health SciencesMiller School of Medicine, University of MiamiMiamiFloridaUSA
- School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Alon L, Corica B, Raparelli V, Cangemi R, Basili S, Proietti M, Romiti GF. Risk of cardiovascular events in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Prev Cardiol 2021; 29:938-946. [PMID: 34939092 DOI: 10.1093/eurjpc/zwab212] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/19/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent disease and has been repeatedly associated with an increased risk of cardiovascular disease. However, the extent of such association is unclear. We conducted a systematic review and meta-analysis of the literature to evaluate the risk of myocardial infarction (MI), ischaemic stroke (IS), atrial fibrillation (AF), and heart failure (HF) in NAFLD patients. METHODS AND RESULTS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched PubMed and EMBASE, from inception to 6 March 2021, and included all studies reporting the incidence of MI, IS, AF, and HF in patients with and without NAFLD. Random-effect fmodels were used to estimate pooled odds ratio (OR), 95% confidence intervals (CI), and 95% prediction intervals (PI); subgroup analyses, meta-regressions, and sensitivity analyses were additionally performed. Among 3254 records retrieved from literature, 20 studies were included. Non-alcoholic fatty liver disease was associated with an increased risk of MI (OR: 1.66, 95% CI: 1.39-1.99, 95% PI: 0.84-3.30), IS (OR: 1.41, 95% CI: 1.29-1.55, 95% PI 1.03-1.93), AF (OR: 1.27, 95% CI: 1.18-1.37, 95% PI: 1.07-1.52), and HF (OR: 1.62, 95% CI: 1.43-1.84, 95% CI: 1.04-2.51). We identified significant subgroup differences according to geographical location, study design, NAFLD definition, and risk of bias; meta-regressions identified mean age, male sex, and study-level characteristics as potential moderators of the risk of MI and IS. CONCLUSIONS Non-alcoholic fatty liver disease was associated with increased risk of MI, IS, AF, and HF. Age, sex, and study characteristics may moderate the strength of this association. Further studies are required to evaluate specific cardiovascular prevention strategies in patients with NAFLD.
Collapse
Affiliation(s)
- Livnat Alon
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Bernadette Corica
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy.,Faculty of Nursing, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Marco Proietti
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, Milan 20122, Italy.,Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, Via Camaldoli 64, 20138 Milan, Italy.,Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool 14 3PE, UK
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| |
Collapse
|
3
|
Wen X, Shi C, Yang L, Zeng X, Lin X, Huang J, Li Y, Zhuang R, Zhu H, Guo Z, Zhang X. A radioiodinated FR-β-targeted tracer with improved pharmacokinetics through modification with an albumin binder for imaging of macrophages in AS and NAFL. Eur J Nucl Med Mol Imaging 2021; 49:503-516. [PMID: 34155537 DOI: 10.1007/s00259-021-05447-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The formation of advanced plaques, which is characterized by the uninterrupted aggregation of macrophages with high expression of folate receptor-β (FR-β), is observed in several concomitant metabolic syndromes. The objective of this study was to develop a novel FR-β-targeted single-photon emission computed tomography (SPECT) radiotracer and validate its application to the noninvasive detection of atherosclerosis (AS) plaque and non-alcoholic fatty liver (NAFL). METHODS Two radioiodinated probes, [131I]IPBF and [131I]IBF, were developed, and cell uptake studies were used to identify their specific targets for activated macrophages. Biodistribution in normal mice was performed to obtain the pharmacokinetic information of the probes. Apolipoprotein E knockout (ApoE-/-) mice with atherosclerotic aortas were induced by a high-fat and high-cholesterol (HFHC) diet. To investigate the affinity of radiotracers to FR-β, Kd values were determined using in vitro assays. In addition, the assessments of the aorta in the ApoE-/- mice at different stages were performed using in vivo SPECT/CT imaging, and the findings were compared by histology. RESULTS Both [131I]IPBF and [131I]IBF were synthesized with > 95% radiochemical purity and up to 3 MBq/nmol molar activity. In vitro assay of [131I]IPBF showed a moderate binding affinity to plasma proteins and specific uptake in activated macrophages. The prolonged blood elimination half-life (t1/2z) of [131I]IPBF (8.14 h) was observed in a pharmacokinetic study of normal mice, which was significantly longer than that of [131I]IBF (t1/2z = 2.95 h). As expected, the Kd values of [131I]IPBF and [131I]IBF in the Raw 264.7 cells were 43.94 ± 9.83 nM and 61.69 ± 15.19 nM, respectively. SPECT imaging with [131I]IPBF showed a high uptake in advanced plaques and NAFL. Radioactivity in excised aortas examined by ex vivo autoradiography further confirmed the specific uptake of [131I]IPBF in high-risk AS plaques. CONCLUSIONS In summary, we reported a proof-of-concept study of an albumin-binding folate derivative for macrophage imaging. The FR-β-targeted probe, [131I]IPBF, significantly prolongs the plasma elimination half-life and has the potential for the monitoring of AS plaques and concomitant fatty liver.
Collapse
Affiliation(s)
- Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing, Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Xiaoru Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Jinxiong Huang
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, 361003, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, 361003, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing, Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
| |
Collapse
|
4
|
Effects of dipeptidyl peptidase 4 inhibition on inflammation in atherosclerosis: A 18F-fluorodeoxyglucose study of a mouse model of atherosclerosis and type 2 diabetes. Atherosclerosis 2020; 305:64-72. [PMID: 32386751 DOI: 10.1016/j.atherosclerosis.2020.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS Dipeptidyl peptidase 4 (DPP-4) inhibitors have anti-inflammatory and atheroprotective effects. We evaluated the effects of the DPP-4 inhibitor linagliptin on atherosclerotic plaque and hepatic inflammation using histology and 2-deoxy-2-[18F]-fluoro-d-glucose (18F-FDG), a positron emission tomography tracer of inflammation, in a mouse model of hypercholesterolemia and type 2 diabetes. METHODS Igf2/Ldlr-/-Apob100/100 mice were fed a high-fat diet (HFD) for 8 weeks and then randomly allocated to receive HFD (n = 14), or HFD with added linagliptin (n = 15) for additional 12 weeks. Five mice fed a chow diet were studied as an additional control. At the end of the study, glucose tolerance, aortic and liver uptake of 18F-FDG, and histology were studied. RESULTS Mice in linagliptin and HFD groups had similar fasting glucose concentrations, but linagliptin improved glucose tolerance. Aortas of linagliptin and HFD groups showed advanced atherosclerotic plaques with no difference in the mean intima-to-media ratio or number of macrophages in the plaques. Autoradiography showed similar 18F-FDG uptake by atherosclerotic plaques in linagliptin and HFD groups (plaque-to-wall ratio: 1.7 ± 0.25 vs. 1.6 ± 0.21; p = 0.24). In the liver, linagliptin reduced the histologic inflammation score but had no effect on 18F-FDG uptake. Compared with chow diet, uptake of 18F-FDG was similar in the aorta, but higher in the liver after HFD. CONCLUSIONS Linagliptin therapy improved glucose tolerance and reduced hepatic inflammation but had no effect on plaque burden or atherosclerotic inflammation, as determined by histology and 18F-FDG uptake, in atherosclerotic mice with type 2 diabetes.
Collapse
|
5
|
Mancini M, Summers P, Faita F, Brunetto MR, Callea F, De Nicola A, Di Lascio N, Farinati F, Gastaldelli A, Gridelli B, Mirabelli P, Neri E, Salvadori PA, Rebelos E, Tiribelli C, Valenti L, Salvatore M, Bonino F. Digital liver biopsy: Bio-imaging of fatty liver for translational and clinical research. World J Hepatol 2018; 10:231-245. [PMID: 29527259 PMCID: PMC5838442 DOI: 10.4254/wjh.v10.i2.231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/27/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
The rapidly growing field of functional, molecular and structural bio-imaging is providing an extraordinary new opportunity to overcome the limits of invasive liver biopsy and introduce a "digital biopsy" for in vivo study of liver pathophysiology. To foster the application of bio-imaging in clinical and translational research, there is a need to standardize the methods of both acquisition and the storage of the bio-images of the liver. It can be hoped that the combination of digital, liquid and histologic liver biopsies will provide an innovative synergistic tri-dimensional approach to identifying new aetiologies, diagnostic and prognostic biomarkers and therapeutic targets for the optimization of personalized therapy of liver diseases and liver cancer. A group of experts of different disciplines (Special Interest Group for Personalized Hepatology of the Italian Association for the Study of the Liver, Institute for Biostructures and Bio-imaging of the National Research Council and Bio-banking and Biomolecular Resources Research Infrastructure) discussed criteria, methods and guidelines for facilitating the requisite application of data collection. This manuscript provides a multi-Author review of the issue with special focus on fatty liver.
Collapse
Affiliation(s)
- Marcello Mancini
- Institute of Biostructure and Bioimaging, National Research Council, Naples 80145, Italy
| | - Paul Summers
- European Institute of Oncology (IEO) IRCCS, Milan 20141, Italy
| | - Francesco Faita
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa 56124, Italy
| | - Maurizia R Brunetto
- Hepatology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa 56125, Italy
| | - Francesco Callea
- Department of Pathology, Children Hospital Bambino Gesù IRCCS, Rome 00165, Italy
| | | | - Nicole Di Lascio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa 56124, Italy
| | - Fabio Farinati
- Department of Gastroenterology, Oncology and Surgical Sciences, University of Padua, Padua 35121, Italy
| | - Amalia Gastaldelli
- Cardio-metabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa 56124, Italy
| | - Bruno Gridelli
- Institute for Health, University of Pittsburgh Medical Center (UPMC), Chianciano Terme 53042, Italy
| | | | - Emanuele Neri
- Diagnostic Radiology 3, Department of Translational Research, University of Pisa and "Ospedale S. Chiara" AOUP, Pisa 56126, Italy
| | - Piero A Salvadori
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa 56124, Italy
| | - Eleni Rebelos
- Hepatology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa 56125, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato (FIF), Area Science Park, Campus Basovizza, Trieste 34012, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano and Department of Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan 20122, Italy
| | | | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Naples 80145, Italy
| |
Collapse
|
6
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2018; 25:320-330. [PMID: 29119374 DOI: 10.1007/s12350-017-1120-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Several original articles and editorials have been published in the Journal of Nuclear Cardiology in 2017. It has become a tradition at the beginning of each year to summarize some of these key articles in 2 sister reviews. In this first part one, we will discuss some of the progress made in the field of heart failure (cardio-oncology, myocardial blood flow, viability, dyssynchrony, and risk stratification), inflammation, molecular and hybrid imaging using advancement in positron emission tomography, computed tomography, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
7
|
Dimitriu-Leen AC, Scholte AJHA. Hepatic FDG uptake in patients with NAFLD: An important prognostic factor for cardio-cerebrovascular events? J Nucl Cardiol 2017; 24:900-902. [PMID: 26728014 PMCID: PMC5491629 DOI: 10.1007/s12350-015-0380-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Aukelien C Dimitriu-Leen
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Postal zone 2300 RC, 2333 ZA, Leiden, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Postal zone 2300 RC, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
8
|
Venkatesh SK, Hennedige T, Johnson GB, Hough DM, Fletcher JG. Imaging patterns and focal lesions in fatty liver: a pictorial review. Abdom Radiol (NY) 2017; 42:1374-1392. [PMID: 27999887 DOI: 10.1007/s00261-016-1002-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Non-alcoholic fatty liver disease is the most common cause of chronic liver disease and affects nearly one-third of US population. With the increasing trend of obesity in the population, associated fatty change in the liver will be a common feature observed in imaging studies. Fatty liver causes changes in liver parenchyma appearance on imaging modalities including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) and may affect the imaging characteristics of focal liver lesions (FLLs). The imaging characteristics of FLLs were classically described in a non-fatty liver. In addition, focal fatty change and focal fat sparing may also simulate FLLs. Knowledge of characteristic patterns of fatty change in the liver (diffuse, geographical, focal, subcapsular, and perivascular) and their impact on the detection and characterization of FLL is therefore important. In general, fatty change may improve detection of FLLs on MRI using fat suppression sequences, but may reduce sensitivity on a single-phase (portal venous) CT and conventional ultrasound. In patients with fatty liver, MRI is generally superior to ultrasound and CT for detection and characterization of FLL. In this pictorial essay, we describe the imaging patterns of fatty change in the liver and its effect on detection and characterization of FLLs on ultrasound, CT, MRI, and PET.
Collapse
Affiliation(s)
- Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Tiffany Hennedige
- Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David M Hough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
9
|
Lonardo A, Ballestri S, Guaraldi G, Nascimbeni F, Romagnoli D, Zona S, Targher G. Fatty liver is associated with an increased risk of diabetes and cardiovascular disease - Evidence from three different disease models: NAFLD, HCV and HIV. World J Gastroenterol 2016; 22:9674-9693. [PMID: 27956792 PMCID: PMC5124973 DOI: 10.3748/wjg.v22.i44.9674] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
Abstract
Fatty liver, which frequently coexists with necro-inflammatory and fibrotic changes, may occur in the setting of nonalcoholic fatty liver disease (NAFLD) and chronic infections due to either hepatitis C virus (HCV) or human immunodeficiency virus (HIV). These three pathologic conditions are associated with an increased prevalence and incidence of cardiovascular disease (CVD) and type 2 diabetes (T2D). In this multidisciplinary clinical review, we aim to discuss the ever-expanding wealth of clinical and epidemiological evidence supporting a key role of fatty liver in the development of T2D and CVD in patients with NAFLD and in those with HCV or HIV infections. For each of these three common diseases, the epidemiological features, pathophysiologic mechanisms and clinical implications of the presence of fatty liver in predicting the risk of incident T2D and CVD are examined in depth. Collectively, the data discussed in this updated review, which follows an innovative comparative approach, further reinforce the conclusion that the presence of fatty/inflamed/fibrotic liver might be a shared important determinant for the development of T2D and CVD in patients with NAFLD, HCV or HIV. This review may also open new avenues in the clinical and research arenas and paves the way for the planning of future, well-designed prospective and intervention studies.
Collapse
|
10
|
Mantovani A, Ballestri S, Lonardo A, Targher G. Cardiovascular Disease and Myocardial Abnormalities in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61:1246-1267. [PMID: 26809873 DOI: 10.1007/s10620-016-4040-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/11/2016] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in many developed countries, affecting an estimated 30 % of the adult population. In this updated clinical review, we summarize the current knowledge regarding the strong association between NAFLD and the risk of coronary heart disease (CHD) and other functional, structural, and arrhythmic cardiac complications (e.g., left ventricular dysfunction, heart valve diseases and atrial fibrillation). We also briefly discuss the putative biological mechanisms linking NAFLD with these important extra-hepatic complications. To date, a large body of evidence has suggested that NAFLD is not simply a marker of CHD and other functional, structural, and arrhythmic cardiac complications, but also may play a part in the development and progression of these cardiac complications. The clinical implication of these findings is that patients with NAFLD may benefit from more intensive surveillance and early treatment interventions aimed at decreasing the risk of CHD and other cardiac and arrhythmic complications.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Stefano Ballestri
- Division of Internal Medicine, Pavullo Hospital, Azienda USL of Modena, Pavullo, Italy
| | - Amedeo Lonardo
- Outpatient Liver Clinic and Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, NOCSAE, Baggiovara, Azienda USL, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata, Piazzale Stefani, 1, 37126, Verona, Italy.
| |
Collapse
|