1
|
Wu J, Qian Y, Yang K, Zhang S, Zeng E, Luo D. Innate immune cells in vascular lesions: mechanism and significance of diversified immune regulation. Ann Med 2025; 57:2453826. [PMID: 39847394 PMCID: PMC11758805 DOI: 10.1080/07853890.2025.2453826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions. In recent years, monotherapy with antiangiogenic drugs has encountered therapeutic bottlenecks because of the short-term effect of 'vascular normalization'. The combination treatment of antiangiogenic therapy and immunotherapy breaks the traditional treatment pattern. While it has a remarkable curative effect and survival benefits, it also faces many challenges. This review focuses on innate immune cells and mainly introduces the regulatory mechanisms of monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs) and neutrophils in vascular lesions. The purpose of this paper was to elucidate the underlying mechanisms of angiogenesis and development and the current research status of innate immune cells in regulating vascular lesions in different states. This review provides a theoretical basis for addressing aberrant angiogenesis in disease processes or finding new antiangiogenic immune targets in inflammation and tumor.
Collapse
Affiliation(s)
- Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulu Qian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kuang Yang
- Queen Mary University of London, Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Cardiovascular Research Institute, Nanchang, Jiangxi, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Hu X, Shen Z, Hao H, Ma K, Zhen A, Yang Y, Liang K, Chen Z, Li J, Lv Y, Chao S, Pei Y, Qu Z, Pei Z. NIR II light-driven nanomotor synergistically enhances immunogenic cell death through photothermal and chemodynamic therapy for melanoma immunotherapy. J Colloid Interface Sci 2025; 694:137688. [PMID: 40300374 DOI: 10.1016/j.jcis.2025.137688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
Melanoma is a highly invasive and metastatic malignant skin tumor. Recently, immunogenic cell death (ICD) has attracted great attention as a promising approach to immunotherapy. However, efficiently and comprehensively activating ICD throughout the dense tumor tissue is a key challenge. Herein, we designed a NIR II light-driven asymmetric nanomotor drug delivery system (Sor@CS-ZIF-8@MO1) to achieve deep penetration into the tumor tissue. By combining photothermal therapy (PTT) and chemodynamic therapy (CDT) to synergistically induce ICD, the immunotherapeutic efficacy against melanoma is enhanced. The research results showed that Sor@CS-ZIF-8@MO1 exhibited good photothermal performance and motor-driven performance, and was able to effectively penetrate 3D tumor cell spheroids deeply. Sor@CS-ZIF-8@MO1 targeted tumor tissues through mannose and controllably released sorafenib under the low pH conditions in tumor tissues and photothermal stimulation, thereby promoting tumor tissue angiogenesis to improve its hypoxic microenvironment and effectively enhancing the CDT effect induced by Cu+/2+. This could synergistically enhance the ICD of tumor cells with the PTT. Meanwhile, the tumor-associated antigens released by ICD, together with ovalbumin and mannose, stimulated immune response, reshaped the tumor immune microenvironment, enhanced tumor immunity, and ultimately effectively inhibited the growth and metastasis of melanoma tumors. In this work, a nanomotor delivery system that integrates multiple modalities and is capable of deeply penetrating tumor tissues to efficiently and comprehensively induce immunogenic cell death (ICD) has been designed, providing a new strategy to address the problem of insufficient induction of ICD in melanoma immunotherapy.
Collapse
Affiliation(s)
- Xuan Hu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ziyan Shen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huahua Hao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Nanolattix Biotechnology Co., Ltd., Taiyuan, Shanxi 030032, PR China
| | - Ke Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Aihua Zhen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Shandong Sheelian Pharmaceutical Co., Ltd., Yuncheng, Shandong 274700, PR China
| | - Yibo Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kai Liang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yinghua Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shuang Chao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Zhican Qu
- Nanolattix Biotechnology Co., Ltd., Taiyuan, Shanxi 030032, PR China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Bai M, Xu P, Cheng R, Li N, Cao S, Guo Q, Wang X, Li C, Bai N, Jiang B, Wu X, Song X, Sun C, Zhao M, Cao L. ROS-ATM-CHK2 axis stabilizes HIF-1α and promotes tumor angiogenesis in hypoxic microenvironment. Oncogene 2025; 44:1609-1619. [PMID: 40057605 DOI: 10.1038/s41388-025-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/02/2025] [Accepted: 02/27/2025] [Indexed: 05/23/2025]
Abstract
Hypoxia is an established hallmark of tumorigenesis. HIF-1α activation may be the prime driver of adaptive regulation of tumor cells reacting to hypoxic conditions of the tumor microenvironment. Here, we report a novel regulatory mechanism in charge of the fundamental stability of HIF-1α in solid tumor. Under hypoxic conditions, the checkpoint kinase CHK2 binds to HIF-1α and inhibits its ubiquitination, which is highly likely due to phosphorylation of a threonine residue (Thr645), a formerly uncharacterized site within the inhibitory domain. Meanwhile, HIF-1α phosphorylation induced by CHK2 promotes complex formation between HIF-1-α and the deubiquitination enzyme USP7, increasing stability under hypoxic conditions. This novel modification of the crosstalk between phosphorylation and ubiquitination of HIF-1α mediated by CHK2 enriches the post-translational modification spectrum of HIF-1α, thus offering novel insights into potential anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Ming Bai
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Pengzhi Xu
- Department of Orthopedics, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, China
| | - Rong Cheng
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sunrun Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoxun Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunlu Li
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Ning Bai
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Bo Jiang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xuan Wu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China.
| | - Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Li Y, Wang J, Liu T, Zhang J, Shan Y, Zhang J. Discovery of a Novel ADC for Multifunctional Theranostics: From Vascular Normalization to Synergistic Therapy. Bioconjug Chem 2025; 36:1079-1087. [PMID: 40197042 DOI: 10.1021/acs.bioconjchem.5c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previous studies have shown the potential of bevacizumab-based ADCs in tumor vascular normalization and chemotherapy synergies. Here, in order to improve the tumor treatment efficiency of ADC and further avoid drug resistance, we introduced the previously discovered photodynamic therapy group PDT into bevacizumab, which has high reactive oxygen generation efficiency and deep tissue penetration ability, and has surprising imaging effect on solid tumors. At the same time, doxorubicin, a chemotherapy drug molecule with strong cytotoxicity, has also been introduced to construct novel multifunctional integrated antibody-drug conjugates, Bevacizumab-DOX-PDT. It is proved that novel ADCs have the antigen-antibody binding ability similar to bevacizumab, while also possess strong antitumor activity and vascular normalization activity. In addition, it also showed great tracer ability for transplanted tumors. In summary, the novel ADC showed a surprising vascular normalization-chemotherapy-photodynamic synergistic therapeutic effect, which further enriched the expansion of vascular normalization in the field of new drug discovery.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tingting Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
5
|
Xu S, Zhang H, Tian Y. Pericytes in hematogenous metastasis: mechanistic insights and therapeutic approaches. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01073-6. [PMID: 40392500 DOI: 10.1007/s13402-025-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Metastasis, the leading cause of cancer-related deaths, underscores the critical need to understand its regulatory mechanisms to improve prevention and treatment strategies for late-stage tumors. Hematogenous dissemination is a key route of metastasis. However, as the gatekeeper of vessels, the role of pericytes in hematogenous metastasis remains largely unknown. In this review, we comprehensively explore the contributions of pericytes throughout the metastatic cascade, particularly their functions that extend beyond influencing tumor angiogenesis. Pericytes should not be perceived as passive bystanders, but rather as active participants in various stages of the metastatic cascade. Pericytes-targeted therapy may provide novel insights for preventing and treating advanced-stage tumor.
Collapse
Affiliation(s)
- Shuo Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
6
|
Hussain QM, Al-Hussainy AF, Sanghvi G, Roopashree R, Kashyap A, Anand DA, Panigrahi R, Shavazi N, Taher SG, Alwan M, Jawad M, Mushtaq H. Dual role of miR-155 and exosomal miR-155 in tumor angiogenesis: implications for cancer progression and therapy. Eur J Med Res 2025; 30:393. [PMID: 40383762 PMCID: PMC12087080 DOI: 10.1186/s40001-025-02618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
Tumor angiogenesis facilitates cancer progression by supporting tumor growth and metastasis. MicroRNA-155 (miR-155) plays a pivotal role in regulating angiogenesis through both direct effects on tumor and endothelial cells and indirect modulation via exosomal communication. This review highlights miR-155's pro-angiogenic influence on endothelial cell behavior and tumor microenvironment remodeling. Additionally, exosomal miR-155 enhances intercellular communication, promoting vascularization in several cancers. Emerging therapeutic strategies include miR-155 inhibition using antagomirs, exosome-mediated delivery systems, and modulation of pathways such as JAK2/STAT3 and TGF-β/SMAD2. Targeting miR-155 represents a promising approach to hinder tumor angiogenesis and improve cancer therapy outcomes.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - D Alex Anand
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Nargiz Shavazi
- Department of Obstetrics and Gynecology, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Sada Ghalib Taher
- College of Dentistry, University of Thi-Qar, Thi-Qar, 64001, Iraq
- National University of Science and Technology, Thi-Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
7
|
Liu L, Wang H, Chen R, Song Y, Wei W, Baek D, Gillin M, Kurabayashi K, Chen W. Cancer-on-a-chip for precision cancer medicine. LAB ON A CHIP 2025. [PMID: 40376718 DOI: 10.1039/d4lc01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Many cancer therapies fail in clinical trials despite showing potent efficacy in preclinical studies. One of the key reasons is the adopted preclinical models cannot recapitulate the complex tumor microenvironment (TME) and reflect the heterogeneity and patient specificity in human cancer. Cancer-on-a-chip (CoC) microphysiological systems can closely mimic the complex anatomical features and microenvironment interactions in an actual tumor, enabling more accurate disease modeling and therapy testing. This review article concisely summarizes and highlights the state-of-the-art progresses in CoC development for modeling critical TME compartments including the tumor vasculature, stromal and immune niche, as well as its applications in therapying screening. Current dilemma in cancer therapy development demonstrates that future preclinical models should reflect patient specific pathophysiology and heterogeneity with high accuracy and enable high-throughput screening for anticancer drug discovery and development. Therefore, CoC should be evolved as well. We explore future directions and discuss the pathway to develop the next generation of CoC models for precision cancer medicine, such as patient-derived chip, organoids-on-a-chip, and multi-organs-on-a-chip with high fidelity. We also discuss how the integration of sensors and microenvironmental control modules can provide a more comprehensive investigation of disease mechanisms and therapies. Next, we outline the roadmap of future standardization and translation of CoC technology toward real-world applications in pharmaceutical development and clinical settings for precision cancer medicine and the practical challenges and ethical concerns. Finally, we overview how applying advanced artificial intelligence tools and computational models could exploit CoC-derived data and augment the analytical ability of CoC.
Collapse
Affiliation(s)
- Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Huishu Wang
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Ruiqi Chen
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yujing Song
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - William Wei
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - David Baek
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Mahan Gillin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Li W, Zhang Y, Zhu H, Su N, Sun R, Mao X, Yang Q, Yuan S. CAVIN3 deficiency promotes vascular normalization in ocular neovascular disease via ERK/JAG1 signaling pathway. JCI Insight 2025; 10:e187836. [PMID: 40337864 DOI: 10.1172/jci.insight.187836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Multiple members of the caveolae-associated protein (Cavin) family are implicated in angiogenesis. However, the specific role of CAVIN3 in pathological angiogenesis within the eye remains unclear. The present study demonstrated that CAVIN3 knockdown in endothelial cells (ECs) promoted vascular normalization in ocular pathological neovascularization. Elevated CAVIN3 expression was observed in the ECs of retinal pigment epithelium/choroid complexes from patients with neovascular age-related macular degeneration and fibrovascular membranes from patients with proliferative diabetic retinopathy. Additionally, upregulated Cavin3 expression was detected in laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) mouse models. In both OIR and CNV mice, Cavin3 knockdown inhibited pathological neovascularization. Cavin3 deficiency further disrupted EC proliferation and vascular sprouting, thereby promoting vascular normalization by partially restoring microenvironmental hypoxia and reestablishing pericyte-EC interactions. Mechanistically, we demonstrated that zinc finger E-box-binding homeobox 1 (ZEB1) regulated CAVIN3 transcription in ECs under hypoxic conditions. CAVIN3 deficiency modulated pathological vascularization by inhibiting ERK phosphorylation, which downregulated jagged 1 (JAG1) expression. Conclusively, this study elucidated the protective role of endothelial CAVIN3 deficiency in pathological neovascularization models, addressing a gap in understanding the regulatory role of Cavins in angiogenesis. These findings suggested a therapeutic direction for ocular neovascular diseases.
Collapse
Affiliation(s)
- Weiqi Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yeran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjing Zhu
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Na Su
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruxu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Oryani MA, Mohammad Al-Mosawi AK, Javid H, Tajaldini M, Karimi-Shahri M. A Bioligical Perspective on the role of miR-206 in Colorectal cancer. Gene 2025; 961:149552. [PMID: 40339768 DOI: 10.1016/j.gene.2025.149552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
MicroRNAs (miRs) have emerged as pivotal regulators in the development and progression of colorectal cancer (CRC), and MicroRNA-206 (miR-206) has garnered attention as a potentially influential factor. However, the specific biological functions and complete mechanistic understanding of miR-206 in CRC remain largely uncharacterized. This study aims to bridge this research gap by providing a comprehensive analysis of miR-206's role in CRC. An exploration of the molecular mechanisms regulated by miR-206, its intricate interplay with target genes, and its significant impact on cellular processes highlights its potential utility as both a diagnostic marker and a therapeutic target. The significance of this research lies in potentially enabling the development of innovative therapeutic approaches, ultimately aiming to improve prognosis and survival rates in CRC patients by elucidating the functions of miR-206. Critical pathways, such as c-Met and PTEN/AKT, play crucial roles within the regulatory network of miR-206 in CRC and impact various cellular processes involved in CRC pathogenesis, metastasis, and treatment response. Understanding the complex interactions between miR-206 and key signaling pathways like c-Met and PTEN/AKT is crucial for understanding the underlying mechanisms driving CRC initiation and progression. This knowledge can inform the development of targeted therapeutic interventions, potentially leading to improved patient outcomes and advances in CRC management.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences. Gorgan, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
10
|
Ultimo A, Jain A, Gomez-Gonzalez E, Alex TS, Moreno-Borrallo A, Jana S, Ghosh S, Ruiz-Hernandez E. Nanotherapeutic Formulations for the Delivery of Cancer Antiangiogenics. Mol Pharm 2025; 22:2322-2349. [PMID: 40184281 PMCID: PMC12056699 DOI: 10.1021/acs.molpharmaceut.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Antiangiogenic medications for cancer treatment have generally failed in showing substantial benefits in terms of prolonging life on their own; their effects are noticeable only when combined with chemotherapy. Moreover, treatments based on prolonged antiangiogenics administration have demonstrated to be ineffective in stopping tumor progression. In this scenario, nanotherapeutics can address certain issues linked to existing antiangiogenic treatments. More specifically, they can provide the ability to target the tumor's blood vessels to enhance drug accumulation and manage release, ultimately decreasing undesired side effects. Additionally, they enable the administration of multiple angiogenesis inhibitors at the same time as chemotherapy. Key reports in this field include the design of polymeric nanoparticles, inorganic nanoparticles, vesicles, and hydrogels for loading antiangiogenic substances like endostatin and interleukin-12. Furthermore, nanoformulations have been proposed to efficiently control relevant pro-angiogenic pathways such as VEGF, Tie2/Angiopoietin-1, HIF-1α/HIF-2α, and TGF-β, providing powerful approaches to block tumor growth and metastasis. In this article, we outline a selection of nanoformulations for antiangiogenic treatments for cancer that have been developed in the past ten years.
Collapse
Affiliation(s)
- Amelia Ultimo
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Ayushi Jain
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Elisabet Gomez-Gonzalez
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Thomson Santosh Alex
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Almudena Moreno-Borrallo
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Sukanya Jana
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Shubhrima Ghosh
- Trinity
Translational Medicine Institute, Trinity College Dublin, the University
of Dublin, St. James’s
Hospital, Dublin 8 D08 NHY1, Ireland
- School
of Biological, Health and Sports Sciences, Technological University Dublin, Grangegorman Lower, Dublin 7 D07 ADY7, Ireland
| | - Eduardo Ruiz-Hernandez
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
11
|
Liang Y, Su T, Zhu S, Sun R, Qin J, Yue Z, Wang X, Liang Z, Tan X, Bian Y, Zhao F, Tang D, Yin G. Astragali Radix-Curcumae Rhizoma normalizes tumor blood vessels by HIF-1α to anti-tumor metastasis in colon cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156562. [PMID: 40023968 DOI: 10.1016/j.phymed.2025.156562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Abnormal tumor blood vessels can significantly promote the malignant progression of tumors, prompting researchers to focus on drugs that normalize these vessels for clinical treatment. The combination of the Qi-tonifying drug Astragali Radix and the blood-activating drug Curcumae Rhizoma, referred to as AC, exhibited significant anti-tumor metastasis effects. However, the association between the anti-tumor metastasis effect of AC and its potential role in regulating tumor vascular remodeling warrants further exploration. PURPOSE This study aimed to elucidate the mechanism through which AC induces tumor blood vessel normalization in colon cancer (CC). METHODS The potential active components of AC were identified through UPLC-MS/MS. An orthotopic transplantation model of CC was established in BALB/c mice using the CT26-Lucifer cell line, and the effects of AC were evaluated using IVIS imaging, hematoxylin and eosin (H&E) staining, and immunohistochemistry. Network pharmacology and molecular biology analyses were employed to identify the potential direct targets of AC. Subsequently, RT-PCR and Western blotting techniques were utilized to validate the findings obtained from network pharmacology. Furthermore, ELISA and other methodologies were used to investigate glycolysis-related indicators, along with immunofluorescence technology to demonstrate changes in vascular leakage and perfusion characteristics associated with blood vessel normalization. RESULTS We identified HIF-1α as a potential direct target of AC. This interaction influences the glycolytic processes in both tumor cells and tumor-associated endothelial cells (TECs) by directly binding to HIF-1α and modulating its nuclear translocation, thereby determining the integrity of TEC junctions. Mechanistically, AC directly regulates the key enzyme PFKFB3 in glycolysis by modulating HIF-1α expression and inhibiting its nuclear translocation. This action reduces tumor glycolytic flux, decreases the internalization of VE-cad, and influences the expression of downstream matrix metalloproteinases (MMPs), thereby strengthening the adherens and tight junctions between TECs and restoring vascular integrity. CONCLUSION This study presents novel findings that AC can regulate glycolysis through the inhibition of HIF-1α nuclear translocation, thereby promoting the normalization of tumor blood vessels and effectively inhibiting tumor metastasis. These results suggested that AC may serve as an effective therapeutic agent for normalizing tumor blood vessels.
Collapse
Affiliation(s)
- Yan Liang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingting Su
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijiao Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruolan Sun
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahui Qin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zengyaran Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Wang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhongqing Liang
- School of Acupuncture-Moxibustion and Tuina · School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Zhao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Decai Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Gang Yin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
13
|
Tedeschi BBB, Henrique T, Vila APS, Rodrigues GH, Kawasaki-Oyama RS, Pavarino ÉC, de Jesus Morais P, Possebon VS, Júnior VS, Castanhole-Nunes MMU, Goloni-Bertollo EM. Evaluation of hypoxia-inducible factor-1 and 2 alpha inhibitory compounds in the oral cavity and pharyngeal cancer. Biomed Pharmacother 2025; 186:118024. [PMID: 40174539 DOI: 10.1016/j.biopha.2025.118024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Hypoxia in the tumor environment leads to an activation of genotypes that favors the tumor, promoting angiogenesis, epithelial-mesenchymal transition, cell invasion, and metastasis. It is considered a prognostic factor related to the progression and aggressiveness of Head and Neck Cancer (HNC). Hypoxia-inducible factor (HIF) is the main gene activated by hypoxia and has been associated with tumor advancement. Thus, this work aims to evaluate the performance of the compounds Acriflavine, Resveratrol, Topotecan, and RNA interference (siRNA) as HIF inhibitors as well as a therapeutic approach. Molecular docking results have suggested that the evaluated compounds present potential interactions with HIF-1α and HIF-2α. In vitro analysis, they demonstrated that treatments with Acriflavine and Topotecan caused a decrease in the gene expression of HIFs in the HN13 cell line (carcinoma of the oral cavity). Furthermore, treatments performed with siRNAs effectively inhibited gene expression of HIFs in HN13 and FaDu (carcinoma of the pharynx) cell lines. Considering the role of hypoxia and HIFs in tumor aggressiveness; the present study shows the potential of the evaluated compounds as a therapeutic use for the prevention of tumor progression in head and neck cancer.
Collapse
Affiliation(s)
- Bianca Barbério Bogdan Tedeschi
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Tiago Henrique
- Laboratory of Molecular Markers and Bioinformatics- LMMB, Faculty of Medicine of São José do Rio Preto/SP, FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Ana Paula Simedan Vila
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Gabriela Helena Rodrigues
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Rosa Sayoko Kawasaki-Oyama
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Érika Cristina Pavarino
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Peterson de Jesus Morais
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Vitória Scavacini Possebon
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Vilson Serafim Júnior
- São Paulo State University, UNESP/IBILCE, R. Cristóvão Colombo, 2265 - Jardim Nazareth, São José do Rio Preto, SP 15054-000, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Eny Maria Goloni-Bertollo
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil.
| |
Collapse
|
14
|
Gao Q, Wang J, Zhang H, Wang J, Jing Y, Su J. Organoid Vascularization: Strategies and Applications. Adv Healthc Mater 2025:e2500301. [PMID: 40285576 DOI: 10.1002/adhm.202500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Organoids provide 3D structures that replicate native tissues in biomedical research. The development of vascular networks within organoids enables oxygen and nutrient delivery while facilitating metabolic waste removal, which supports organoid growth and maturation. Recent studies demonstrate that vascularized organoid models offer insights into tissue interactions and promote tissue regeneration. However, the current limitations in establishing functional vascular networks affect organoid growth, viability, and clinical translation potential. This review examines the development of vascularized organoids, including the mechanisms of angiogenesis and vasculogenesis, construction strategies, and biomedical applications. The approaches are categorized into in vivo and in vitro methods, with analysis of their specific advantages and limitations. The review also discusses emerging techniques such as bioprinting and gene editing for improving vascularization and functional integration in organoid-based therapies. Current developments in organoid vascularization indicate potential applications in modeling human diseases and developing therapeutic strategies, contributing to advances in translational research.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
15
|
Ren X, Yang W, Yan X, Zhang H. Exploring RNA binding proteins in hepatocellular carcinoma: insights into mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:130. [PMID: 40275278 PMCID: PMC12020288 DOI: 10.1186/s13046-025-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is linked to elevated global incidence and mortality rates. Elucidating the intricate molecular pathways that drive the progression of HCC is imperative for devising targeted and effective therapeutic interventions. RNA-binding proteins (RBPs) serve as pivotal regulators of post-transcriptional processes, influencing various cellular functions. This review endeavors to provide a comprehensive analysis of the expression, function, and potential implications of RBPs in HCC. We discuss the classification and diverse roles of RBPs, with a particular focus on key RBPs implicated in HCC and their association with disease progression. Additionally, we explore the mechanisms by which RBPs contribute to HCC, including their impact on gene expression, cell proliferation, cell metastasis, angiogenesis, signaling pathways, and post-transcriptional modifications. Importantly, we examine the potential of RBPs as therapeutic targets and prognostic biomarkers, offering insights into their relevance in HCC treatment. Finally, we outline future research directions, emphasizing the need for further investigation into the functional mechanisms of RBPs and their clinical translation for personalized HCC therapy. This comprehensive review highlights the pivotal role of RBPs in HCC and their potential as novel therapeutic avenues to improve patient outcomes.
Collapse
Affiliation(s)
- Xing Ren
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenna Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D, Li Y. Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res 2025; 13:62. [PMID: 40251641 PMCID: PMC12007322 DOI: 10.1186/s40364-025-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/20/2025] Open
Abstract
Angiogenesis, a crucial process in tumor growth and metastasis, necessitates targeted therapeutic intervention. This review reviews the latest knowledge of anti-angiogenesis targets in tumors, with emphasis on the molecular mechanisms and signaling pathways that regulate this process. We emphasize the tumor microenvironment's role in angiogenesis, examine endothelial cell metabolic changes, and evaluated potential therapeutic strategies targeting the tumor vascular system. At the same time, we analyzed the signaling pathway and molecular mechanism of tumor angiogenesis in detail. In addition, this paper also looks at the development trend of tumor anti-angiogenesis drugs, including their future development direction and challenges, aiming to provide prospective insight into the development of this field. Despite their potential, anti-angiogenic therapies encounter challenges like drug resistance and side effects, necessitating ongoing research to enhance cancer treatment strategies and the efficacy of these therapies.
Collapse
Affiliation(s)
- Xueru Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
17
|
Wang W, Yuan J, Zhu Y, Li R, Zhang J. Traditional Chinese medicine (TCM) enhances the therapeutic efficiency of a gemcitabine-loaded injectable hydrogel on postoperative breast cancer through modulating the microenvironment. J Mater Chem B 2025; 13:4864-4878. [PMID: 40171620 DOI: 10.1039/d4tb02776k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Local injection of the drug-loaded hydrogel at the surgery site is promising for postoperative breast cancer. However, the postoperative changes in the tumor microenvironment, such as inflammation, abnormal angiogenesis and hypoxia, inhibit drug perfusion and contribute to breast cancer recurrence (BCR). Normalizing the abnormal blood vessels can effectively improve perfusion and reduce hypoxia. Here, we encapsulated gemcitabine (GEM) in a PLGA-PEG-PLGA hydrogel (GEM-hydrogel) for local treatment of postoperative breast cancer. The GEM-hydrogel can be injected into the surgery cavity allowing sustained release of the drug. Meanwhile, traditional Chinese medicine (TCM) Shexiang Baoxin Pill (SBP) was given to normalize the blood vessels to enhance drug perfusion. The results suggest that the combination of SBP enhances the therapeutic efficiency of the GEM-hydrogel, inhibiting tumor recurrence. Mechanism studies reveal that SBP works by promoting PDGFB expression in macrophages, subsequently recruiting pericytes, and normalizing blood vessels, finally alleviating hypoxia. This study demonstrates that the combination of TCM and chemotherapeutics is promising for suppressing postoperative tumor recurrence.
Collapse
Affiliation(s)
- Wenxu Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jixiang Yuan
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Huang Q, Zheng X, Xu W. Case Report: A long-term response of immunotherapy combined with anti-angiogenesis therapy in a patient with dMMR metastatic colorectal cancer after ICI failure. Front Oncol 2025; 15:1553380. [PMID: 40270608 PMCID: PMC12014423 DOI: 10.3389/fonc.2025.1553380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have demonstrated significant efficacy in patients with metastatic colorectal cancer (mCRC) characterized by high microsatellite instability (MSI-H) or deficient mismatch repair (dMMR). However, most patients experience intrinsic or acquired resistance. The need for treatment for patients with MSI-H/dMMR mCRC remains unmet. Here, we report the case of a patient with dMMR mCRC who achieved a durable therapeutic benefit from the combination of ICI and angiogenesis inhibitor after ICI failure. Case presentation A 40-year-old Chinese woman diagnosed with cT4N2M1b mCRC characterized by dMMR attributed to MLH-1 and PMS-2 deficiency, along with KRAS mutation. Primarily, the patient was treated with a combination of Chinese medicine and XELOX and underwent disease progression. Due to dMMR status, this patient then received single-agent camrelizumab. Unfortunately, disease progression was observed after two cycles of treatment. Subsequently, she received camrelizumab combined with bevacizumab. After treatment, the patient achieved a complete response, and the disease was sustainably controlled with a progression-free survival (PFS) of 3 years and counting. Conclusions This report demonstrates that the combination of ICI and anti-angiogenesis therapy can induce a powerful and durable antitumor response in patients with ICI-resistant MSI-H/dMMR mCRC, which is worthy of further research.
Collapse
Affiliation(s)
- Qianwen Huang
- Department of Medical Oncology, Boluo County People’s Hospital, Huizhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Boluo County People’s Hospital, Huizhou, China
| | - Wenshen Xu
- Department of Medical Oncology, Boluo County People’s Hospital, Huizhou, China
| |
Collapse
|
19
|
Zhong X, Fei Y, Zhao H, Chen J, Gao M, Huang Y, Fei W. Mechanistic studies and therapeutic potential of angiopoietin in head and neck tumor angiogenesis. Front Oncol 2025; 15:1529225. [PMID: 40260291 PMCID: PMC12010120 DOI: 10.3389/fonc.2025.1529225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 04/23/2025] Open
Abstract
Head and neck tumors represent a prevalent category of oral and maxillofacial malignancies, posing significant therapeutic and prognostic challenges due to their complex anatomical structure, tumor heterogeneity, and resistance to conventional therapies. Recent studies have highlighted the strong association between tumor progression and neoangiogenesis, with the angiopoietin (ANG) family playing a central role in this process. Comprising ANG1, ANG2, ANG3, and ANG4, these factors regulate multiple signaling pathways that promote cellular growth, differentiation, and proliferation, thereby driving angiogenesis and accelerating tumor growth and metastasis. Therefore, a comprehensive investigation of the ANG family's role in head and neck tumors may offer critical insights into tumorigenesis mechanisms and unveil novel therapeutic targets. Such research has the potential to improve treatment outcomes and enhance the quality of life for patients.
Collapse
Affiliation(s)
- Xiaojuan Zhong
- School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Yujie Fei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Haihui Zhao
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mingyu Gao
- Yibin Second People’s Hospital, Yibin, Sichuan, China
| | - Yi Huang
- Department of Maxillofacial Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Fei
- Department of Maxillofacial Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Wenjiang Hospital, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Zhang C, Wang H, Li X, Jiang Y, Sun G, Yu H. Enhancing antitumor immunity: the role of immune checkpoint inhibitors, anti-angiogenic therapy, and macrophage reprogramming. Front Oncol 2025; 15:1526407. [PMID: 40260303 PMCID: PMC12009726 DOI: 10.3389/fonc.2025.1526407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer treatment has long been hindered by the complexity of the tumor microenvironment (TME) and the mechanisms that tumors employ to evade immune detection. Recently, the combination of immune checkpoint inhibitors (ICIs) and anti-angiogenic therapies has emerged as a promising approach to improve cancer treatment outcomes. This review delves into the role of immunostimulatory molecules and ICIs in enhancing anti-tumor immunity, while also discussing the therapeutic potential of anti-angiogenic strategies in cancer. In particular, we highlight the critical role of endoplasmic reticulum (ER) stress in angiogenesis. Moreover, we explore the potential of macrophage reprogramming to bolster anti-tumor immunity, with a focus on restoring macrophage phagocytic function, modulating hypoxic tumor environments, and targeting cytokines and chemokines that shape immune responses. By examining the underlying mechanisms of combining ICIs with anti-angiogenic therapies, we also review recent clinical trials and discuss the potential of biomarkers to guide and predict treatment efficacy.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxin Jiang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Zhou RT, Luo XJ, Zhang XXR, Wu JF, Ni YR. The potential of miR-29 in modulating tumor angiogenesis: a comprehensive review. Discov Oncol 2025; 16:474. [PMID: 40189720 PMCID: PMC11973036 DOI: 10.1007/s12672-025-02246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They are associated with various biological processes related to tumors. Among the numerous miRNAs, miR-29 has garnered attention for its role in regulating tumor angiogenesis. In numerous human tumors, miR-29 has been demonstrated to negatively correlate with the capacity for angiogenesis and the degree of malignancy, as well as with the expression levels of pro-angiogenic factors such as vascular endothelial growth factor vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and matrix metalloproteinase (MMP)-2. Multiple studies, utilizing techniques like dual-luciferase reporter assays, have confirmed that miR-29 directly targets the 3'-untranslated region (UTR) of mRNAs for VEGF, PDGF, and MMP-2. Extensive investigations involving tumor cell lines and animal models have shown that the overexpression of miR-29, achieved through miRNA transfection or the introduction of miRNA mimics, effectively inhibits angiogenesis by upregulating these pro-angiogenic factors. Conversely, downregulation of miR-29 using specific inhibitors promotes angiogenesis. While small molecule inhibitors and antibodies targeting VEGF constitute a primary strategy in anti-angiogenesis therapies, miR-29's ability to target multiple pro-angiogenic molecules positions it as a promising candidate for future therapeutic interventions, especially with ongoing advancements in nucleic acid drug design and delivery systems.
Collapse
Affiliation(s)
- Rui-Ting Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Gastroenterology, The First College of Clinical Medical Science and Yichang Central People's Hospital, China Three Gorges University, Yichang, 443003, China
- Division of Gastroenterology and Hepatology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Xiao-Xin-Ran Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| | - Yi-Ran Ni
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| |
Collapse
|
22
|
Song F, Xu D, Che J, Huang M, Li H. Chitosan hydrogel incorporated with bone marrow mesenchymal stem cell-derived exosomal TIMP2 to inhibit angiogenesis in cholangiocarcinoma. Tissue Cell 2025; 93:102694. [PMID: 39718067 DOI: 10.1016/j.tice.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) presents a therapeutic challenge due to its aggressiveness and poor survival rates. This study introduces an approach using tissue inhibitor of metalloproteinase 2 (TIMP2)-enriched bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) encapsulated in chitosan hydrogels (CS), intending to provide novel insight into the CCA treatment. METHODS BMSC-Exo was characterized by using TEM, nanoparticle tracking analysis, and western blotting. Role of TIMP2 in CCA was explored using bioinformatics analysis. Therapeutic efficacy and mechanisms of BMSC-Exo/CS in CCA were assessed through cell viability tests and colony formation assays. Angiogenic and Wnt/β-catenin signaling pathways-related key factors were detected through RT-qPCR or western blotting. RESULTS BMSC-Exo displayed typical cup-shaped morphology and was positive for exosomal markers CD9 and TSG101, but negative for endoplasmic reticulum marker Calnexin, with a diameter of 124.6 nm. BMSC-Exo combined with CS showed synergistic anti-proliferative effects in CCA cells. High-expression TIMP2 samples indicated a better prognosis of CCA patients, and BMSC-Exo/CS increased the TIMP2 expression in CCA cells. Mechanistically, BMSC-Exo/CS TIMP2 overexpression inhibited key factors related to angiogenesis (VEGFA and VEGFR2) and Wnt/β-catenin pathway (β-catenin and c-Myc), thereby reducing CCA cell viability. Notably, these inhibitory effects were reversed by a Wnt signaling agonist (BML-284). CONCLUSION The study validates the therapeutic potential of BMSC-Exo/CS TIMP2 in CCA treatment. This innovative approach targets angiogenesis and Wnt/β-catenin signaling, providing a new avenue for more effective and comprehensive CCA therapies.
Collapse
Affiliation(s)
- Fei Song
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Dan Xu
- Department of Medical laboratory, Pingbian County People's Hospital, Pingbian, Yunnan, China.
| | - Jiayin Che
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Ming Huang
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Hongyang Li
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
23
|
Grimm D, Corydon TJ, Sahana J, González-Torres LF, Kraus A, Marchal S, Wise PM, Simonsen U, Krüger M. Recent studies of the effects of microgravity on cancer cells and the development of 3D multicellular cancer spheroids. Stem Cells Transl Med 2025; 14:szaf008. [PMID: 40099549 PMCID: PMC11914975 DOI: 10.1093/stcltm/szaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/30/2025] [Indexed: 03/20/2025] Open
Abstract
The still young and developing space age, characterized by lunar and Martian exploration and the vision of extraterrestrial settlements, presents a unique environment to study the impact of microgravity (µg) on human physiology and disease development. Cancer research is currently a key focus of international space science, as µg fundamentally impacts cellular processes like differentiation, adhesion, migration, proliferation, survival, cell death, or growth of cancer cells as well as the cytoskeleton and the extracellular matrix (ECM). By creating three-dimensional (3D) tumor models in a µg-environment, like multicellular spheroids (MCS), researchers can expedite drug discovery and development, reducing the need for animal testing. This concise review analyses the latest knowledge on the influence of µg on cancer cells and MCS formation. We will focus on cells from brain tumors, lung, breast, thyroid, prostate, gastrointestinal, and skin cancer exposed to real (r-) and simulated (s-) µg-conditions.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
| | - Armin Kraus
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
| | - Petra M Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke-University, 39106 Magdeburg, Germany
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, United States
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke-University, 39106 Magdeburg, Germany
| |
Collapse
|
24
|
Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol 2025; 42:108. [PMID: 40087196 DOI: 10.1007/s12032-025-02675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The tumor microenvironment (TME) contains tumor cells, surrounding cells, and secreted factors. It provides a favorable environment for the maintenance of cancer stem cells (CSCs), the spread of cancer cells to metastatic sites, angiogenesis, and apoptosis, as well as the growth, proliferation, invasion, and drug resistance of cancer cells. Cancer cells rely on the activation of oncogenes, inactivation of tumor suppressors, and the support of a normal stroma for their growth, proliferation, and survival, all of which are provided by the TME. The TME is characterized by the presence of various cells, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), CD8 + cytotoxic T cells (CTLs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), endothelial cells, adipocytes, and neuroendocrine (NE) cells. The high expression of inflammatory cytokines, angiogenic factors, and anti-apoptotic factors, as well as drug resistance mechanisms in the TME, contributes to the poor therapeutic efficacy of anticancer drugs and tumor progression. Hence, this review describes the mechanisms through which the TME is involved in apoptosis, angiogenesis, metastasis, and drug resistance in tumor cells.
Collapse
Affiliation(s)
- Yanhong Xiao
- Harbin Medical University Cancer Hospital, Harbin, 150006, Heilongjiang Province, China
| | - Mahan Hassani
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
25
|
Yang S, Zhang X, Li X, Li H. Crip2 affects vascular development by fine-tuning endothelial cell aggregation and proliferation. Cell Mol Life Sci 2025; 82:110. [PMID: 40074973 PMCID: PMC11904032 DOI: 10.1007/s00018-025-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Endothelial cell adhesion and migration are crucial to various biological processes, including vascular development. The identification of factors that modulate vascular development through these cell functions has emerged as a prominent focus in cardiovascular research. Crip2 is known to play a crucial role in cardiac development, yet its involvement in vascular development and the underlying mechanism remains elusive. In this study, we revealed that Crip2 is expressed predominantly in the vascular system, particularly in the posterior cardinal vein and caudal vein plexus intersegmental vein. Upon Crip2 loss, the posterior cardinal vein plexus and caudal vein plexus are hypoplastic, and endothelial cells exhibit aberrant aggregation. In human umbilical vein endothelial cells (HUVECs), CRIP2 interacts with the cytoskeleton proteins KRT8 and VIM. The absence of CRIP2 negatively regulates their expression, thereby fine-tuning cytoskeleton formation, resulting in a hyperadhesive phenotype. Moreover, CRIP2 deficiency perturbs the VEGFA/CDC42 signaling pathway, which in turn diminishes the migrating capacity of HUVECs. Furthermore, the loss of CRIP2 impairs cell proliferation by affecting its interaction with SRF through PDE10A/cAMP and PDGF/JAK/STAT/SRF signaling. Collectively, our findings delineate a crucial role for CRIP2 in controlling the migration, adhesion and proliferation of endothelial cells, thereby contributing to vascular development in zebrafish. These insights may provide a deeper understanding of the etiology of cardiovascular disorders.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xianpeng Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hongyan Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Ocean University of China, Room 301, Darwin Building, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
26
|
Guo X, Yang J, Cao R, Hao G. The interplay between angiogenesis-associated genes and molecular, clinical, and immune features in bladder cancer. Discov Oncol 2025; 16:265. [PMID: 40042726 PMCID: PMC11883062 DOI: 10.1007/s12672-025-01966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Immunotherapy plays an important role in the treatment of bladder cancer (BLCA), with outcomes influenced by the tumor microenvironment (TME). Angiogenesis, a hallmark of cancer progression, shapes the TME and impacts immunotherapy efficacy. However, its specific role in BLCA remains underexplored. METHODS We analyzed 268 angiogenesis-related genes (ARGs) across ten gene sets using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Through unsupervised clustering, we identified ARG-based subtypes and developed an ARG scoring system to quantify angiogenesis activity. The ARG score was correlated with clinical outcomes, immune cell infiltration, and immunotherapy response. Functional validation was performed using in vitro assays. RESULTS Two distinct ARG clusters exhibited significant differences in immune profiles, clinical outcomes, and functional characteristics. Patients in the high ARG cluster had poorer survival but showed enhanced responsiveness to immune checkpoint inhibitors (ICIs). The novel ARG score demonstrated strong predictive power for immunotherapy efficacy and survival outcomes. CONCLUSION ARG expression patterns profoundly impact the TME, clinical outcomes, and immunotherapy response in BLCA. The ARG score is a novel biomarker for stratifying patients and optimizing treatment strategies. These findings may contribute to clarifying the characteristics of TME and enable the exploration of more potent immunotherapy strategies.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China.
| | - Jingxin Yang
- Department of Urology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Gangyue Hao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China.
| |
Collapse
|
27
|
He B, Zhao R, Zhang B, Pan H, Liu J, Huang L, Wei Y, Yang D, Liang J, Wang M, Zhao M, Wang S, Dong F, Zhang J, Zhang Y, Zhang X, Zhang X, Dong G, Xiong H, Bie Q, Zhang B. Endothelial OX40 activation facilitates tumor cell escape from T cell surveillance through S1P/YAP-mediated angiogenesis. J Clin Invest 2025; 135:e186291. [PMID: 40026246 PMCID: PMC11870743 DOI: 10.1172/jci186291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
Understanding the complexity of the tumor microenvironment is vital for improving immunotherapy outcomes. Here, we report that the T cell costimulatory molecule OX40 was highly expressed in tumor endothelial cells (ECs) and was negatively associated with the prognosis of patients, which is irrelevant to T cell activation. Analysis of conditional OX40 loss- and gain-of-function transgenic mice showed that OX40 signal in ECs counteracted the antitumor effects produced in T cells by promoting angiogenesis. Mechanistically, leucine-rich repeat-containing GPCR5 (Lgr5+ ) cancer stem cells induced OX40 expression in tumor ECs via EGF/STAT3 signaling. Activated OX40 interacted with Spns lysolipid transporter 2 (Spns2), obstructing the export of sphingosine 1-phosphate (S1P) and resulting in S1P intracellular accumulation. Increased S1P directly bound to Yes 1-associated protein (YAP), disrupting its interaction with large tumor suppressor kinase 1 (LATS1) and promoting YAP nuclear translocation. Finally, the YAP inhibitor verteporfin enhanced the antitumor effects of the OX40 agonist. Together, these findings reveal an unexpected protumor role of OX40 in ECs, highlighting the effect of nonimmune cell compartments on immunotherapy.
Collapse
MESH Headings
- Lysophospholipids/immunology
- Lysophospholipids/genetics
- Lysophospholipids/metabolism
- Animals
- Humans
- Mice
- Sphingosine/analogs & derivatives
- Sphingosine/genetics
- Sphingosine/metabolism
- Sphingosine/immunology
- YAP-Signaling Proteins
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Receptors, OX40/immunology
- Receptors, OX40/genetics
- Receptors, OX40/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cell Line, Tumor
- Tumor Escape
- Mice, Transgenic
- Transcription Factors/genetics
- Cell Cycle Proteins
- Endothelial Cells/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Signal Transduction/immunology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Mice, Knockout
- Tumor Microenvironment/immunology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/genetics
- Angiogenesis
- OX40 Ligand
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine
| | - Rou Zhao
- Department of Laboratory Medicine
| | | | | | | | | | | | - Dong Yang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | | | - Mingyi Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Sen Wang
- Department of Laboratory Medicine
| | | | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yanhua Zhang
- Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xu Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | | | | |
Collapse
|
28
|
Mousavikia SN, Matin MM, Bahreyni Tossi MT, Azimian H. Unraveling the role of the P2X7 receptor in cancer radioresistance: Molecular insights and therapeutic implications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119910. [PMID: 39889832 DOI: 10.1016/j.bbamcr.2025.119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The P2X7 receptor, a key player in purinergic signaling, is a crucial factor in modulating the response of cancer cells to radiotherapy. The aim of this study was to elucidate the molecular mechanisms by which P2X7 receptor activation contributes to radioresistance in different cancer types. P2X7 receptor signaling influences cellular processes such as DNA damage repair and inflammatory responses, thereby improving tumor survival after radiation exposure. Activation of the P2X7 receptor leads to changes in the tumor microenvironment and promotes an adaptive response that enables cancer cells to resist therapeutic interventions. Therefore, targeting the P2X7 receptor could represent a new therapeutic strategy against cancer. By linking molecular insights with therapeutic implications, this research highlights the P2X7 receptor as a promising target for overcoming radioresistance in cancer therapy and paves the way for novel combination approaches that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Seyedeh Nasibeh Mousavikia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Taghi Bahreyni Tossi
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Guo R, Wang P. The complex role of regulatory cells in breast cancer: implication for immunopathogenesis and immunotherapy. Breast Cancer 2025; 32:227-241. [PMID: 39589625 DOI: 10.1007/s12282-024-01654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Breast cancers (BCs) are frequently linked to an immunosuppressive microenvironment that facilitates tumor evasion of anti-cancer immunity. The cells that suppress the immune system such as regulatory B cells (Bregs), regulatory T cells (Tregs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), play a crucial role in immune resistance. Also, tumor progression and immune evasion of cancers are facilitated by cytokines and factors released by tumor cells or immunosuppressive cells. Targeting these regulatory cells therapeutically, whether through elimination, inactivation, or reprogramming, has resulted in hopeful anti-tumor reactions. Yet, the substantial diversity and adaptability of these cells, both in terms of appearance and function, as well as their variation over time and depending on where they are in the body, have posed significant challenges for using them as reliable biomarkers and creating focused therapies that could target their creation, growth, and various tumor-promoting roles. The immunotherapy approaches in BC and their effectiveness in treating certain subtypes are still in their initial phases. In this review, we thoroughly outlined the characteristics, roles, and possible treatment options for these immune-suppressing cells in the tumor environment.
Collapse
Affiliation(s)
- RuiJuan Guo
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China.
| |
Collapse
|
30
|
Mabrouk RR, Mahdy HA, Abdallah AE, Celik I, Abdelsalam Ouf AM, Alamoudi MK, Alnami A, Al Ward MMS, Mehany AB, El-Zahabi MA. Novel triazoloquinazoline derivatives as VEGFR inhibitors: synthesis, cytotoxic evaluation and in silico studies. Future Med Chem 2025; 17:529-541. [PMID: 39995350 PMCID: PMC11901504 DOI: 10.1080/17568919.2025.2468146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND New triazoloquinazoline derivatives were synthesized to explore their cytotoxic activity on various cancer cell lines, prompted by the need for effective anticancer agents. RESEARCH DESIGN AND METHODS All synthesized compounds were confirmed by spectroscopic methods and tested in vitro for their inhibitory activities against hepatocellular carcinoma (HepG-2), breast cancer (MCF-7), and prostate cancer (PC3) cell lines. Ten compounds were tested in vitro to explore their inhibitory activity against the VEGFR-2. Additionally, various studies were investigated for the most active compound 6, including cell cycle analysis, apoptotic activity assessment, effect on gene expression, safety profiling, molecular docking, MD simulation, and ADMET analysis. RESULTS Compounds 3a, 3c, and 6 exhibited higher cytotoxic activity against MCF-7 than doxorubicin. Compound 6 was most potent, arresting the cell cycle at G1 phase and showing proapoptotic action. It significantly inhibited VEGFR-2 and altered gene expression, promoting BAX, P21, and P53 while downregulating BCL-2. Docking and MD simulations indicated stable interaction with VEGFR-2, safety, and ADMET profiles suggested favorable drug-likeness and safety. CONCLUSIONS Compound 6 has shown promising anticancer potential, particularly against breast cancer, but further research is needed to confirm these findings and address long-term safety.
Collapse
Affiliation(s)
- Reda R. Mabrouk
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Directorate of Health Affairs in Buhaira-Clinical Research Department, Ministry of Health and Population, Damanhour, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ismail Celik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | - Mariam K. Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Aisha Alnami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maged Mohammed Saleh Al Ward
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Al Razi University, Sana’a, Yemen
| | - Ahmed B.M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
31
|
Qian C, Huang Y, Zhang S, Yang C, Zheng W, Tang W, Wan G, Wang A, Lu Y, Zhao Y. Integrated identification and mechanism exploration of bioactive ingredients from Salvia miltiorrhiza to induce vascular normalization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156427. [PMID: 39892310 DOI: 10.1016/j.phymed.2025.156427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The clinical management of ischemic disease and cancer is complex, with disruptions in local vascular function and tumor angiogenesis contributing to blood stasis, which complicates treatment strategies. Salvia miltiorrhiza, a natural product, is known to restore vascular structure and function. However, its specific roles in concurrently addressing ischemic disease and cancer within the same organism remain poorly understood. PURPOSE This study aimed to explore the material basis, pharmacological effects, and underlying mechanisms of Salvia miltiorrhiza extract (SME) in promoting blood flow recovery in ischemic hindlimbs and inducing tumor vascular normalization. METHODS The pharmacological effects of SME were evaluated in a mouse model combining ischemic hindlimbs and tumors. Mice were administered low (SME-L) or high (SME-H) doses of SME daily, and the gastrocnemius muscle mass and tumor vascular structure were assessed. Laser Doppler perfusion imaging (LDPI) was used to monitor hindlimb blood flow recovery and tumor vascular perfusion. The pharmacokinetics of the key bioactive constituents in SME were characterized by liquid chromatography-mass spectrometry (LC-MS). Interactions between SME's active compounds and predicted targets were investigated using molecular docking, microscale thermophoresis (MST), and luciferase reporter assays. The synergistic effects of the primary components, Tanshinone I (Tan I) and Salvianolic acid A (Sal A), were analyzed through tube formation assays, enzyme-linked immunosorbent assays (ELISA), immunofluorescence staining, and western blot. RESULTS Phytochemical profiling revealed that SME contains several active compounds, including Danshensu, Sal A, Sal B, Tan IIA, and Tan I. SME treatment reduced the frequency of necrotic toes, increased muscle mass, and alleviated hypoxia in the gastrocnemius muscle. SME significantly improved tumor vascular perfusion and notably enhanced pericyte coverage and basement membrane integrity. Pharmacokinetic analysis identified Tan I and Sal A as the key bioactive components that promote vascular normalization. Tan I inhibited FoxO1, preventing endothelial cell activation induced by angiopoietin 2 (Ang2), while Sal A bound to Ang2, facilitating Tie2 activation mediated by Ang1. Both in vitro and in vivo results demonstrated that the combination of Tan I and Sal A exerted a synergistic therapeutic effect on correcting abnormal blood vessels in ischemic hindlimbs and tumors. CONCLUSION Our study innovatively revealed a reliable mouse model wherein the Ang2/Tie2 signaling cascade disrupted the endothelial homeostasis to aggravate the progression of hindlimb ischemia and tumor angiogenesis. This balance can be rescued by the combination therapy of Tan I and Sal A that were both from SME, leading to the occurrence of vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Tang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
32
|
FANG ZIYI, SHAO YONGFU, HU MENG, YAN JIANING, YE GUOLIANG. Biological roles and molecular mechanism of circular RNAs in epithelial-mesenchymal transition of gastrointestinal malignancies. Oncol Res 2025; 33:549-566. [PMID: 40109856 PMCID: PMC11915071 DOI: 10.32604/or.2024.051589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 03/22/2025] Open
Abstract
Circular RNAs (circRNAs) are formed by splicing of precursor RNAs and covalently linked at the 5' and 3' ends. Dysregulated circRNAs are closely related to the epithelial-mesenchymal transition (EMT) of gastrointestinal malignancies. CircRNAs, including circRNA_0008717, circGOT1, circ-DOCK5, circVPS33B, circPVT1, circMET, circ-OXCT1, circ_67835, circRTN4, circ_0087502, circFNDC38, circ_PTEN1, circPGPEP1, and circ-E-Cad are involved in the EMT process of gastrointestinal malignancies through a variety of mechanisms, such as regulating EMT-inducing transcription factors, signaling pathways, and tumor microenvironments. Gastrointestinal (GI) malignancies are common malignant tumors worldwide, and the heterogeneity and easy metastasis of gastrointestinal malignancies limit the effectiveness of medical treatments. Therefore, investigating the molecular mechanisms involved in the pathogenesis of gastrointestinal malignancies is essential for clinical treatment. This article summarizes the biological roles and molecular mechanism of circRNAs in EMT of gastrointestinal malignancies, providing a theoretical basis for applying EMT-related circRNAs in targeted therapy.
Collapse
Affiliation(s)
- ZIYI FANG
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - YONGFU SHAO
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - MENG HU
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - JIANING YAN
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - GUOLIANG YE
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| |
Collapse
|
33
|
Sun J, Luo J, Liu J, Wu H, Li Y, Xu Y, Liu L, Liu X, Zhang Q. Cancer-secreted exosomal miR-1825 induces angiogenesis to promote colorectal cancer metastasis. Cancer Cell Int 2025; 25:63. [PMID: 39987450 PMCID: PMC11847347 DOI: 10.1186/s12935-025-03674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Angiogenesis is one of the important factors related to tumorigenesis, invasion, and metastasis. Cancer-secreted exosomes are essential mediators of intercellular cross-talk and participate in angiogenesis and metastasis. Unveiling the mechanism of angiogenesis is an important way to develop anti-angiogenesis therapeutic strategies to against cancer progression. METHODS miR-1825 expression and relationship with microvascular density were validated in colorectal cancer (CRC) by in situ hybridization (ISH) staining and immunohistochemistry (IHC). Sequential differential centrifugation, transmission electron microscopy, and western blotting analysis were used to extract and characterize exosomes. The effort of exosomal miR-1825 on endothelial cells was examined by transwell assay, wound healing assay, tube formation assay, and aortic ring assay. The relationship of miR-1825, ING1 and the downstream pathway were analyzed by western blot, RT-PCR, Immunofluorescence, and dual-luciferase reporter system analysis. RESULTS Exosomal miR-1825 is associated with angiogenesis in CRC and is enriched in exosomes extracted from the serum of CRC patients. The CRC-secreted exosomal miR-1825 can be transferred into vascular endothelial cells, promoting endothelial cell migration and tube formation in vitro, and facilitating angiogenesis and tumor metastasis in vivo. Mechanistically, exosomal miR-1825 regulates angiogenesis and tumor metastasis by suppressing inhibitor of growth family member 1 (ING1) and activating the TGF-β/Smad2/Smad3 signaling pathway in the recipient HUVECs. CONCLUSIONS Our study demonstrated the CRC-secreted exosomal miR-1825 could be transferred to vascular endothelial cells, subsequently leads to the inhibition of ING1 and the activation of the TGF-β/Smad2/Smad3 signaling pathway, thereby promoting angiogenesis and liver metastasis in CRC. Exosomal miR-1825 is thus a potential diagnostic and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Jingbo Sun
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Junjie Luo
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jialong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yanyan Li
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yangwei Xu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
34
|
Yang S, Bai Z, Zhang F, Cui W, Bu P, Bai W, Xi Y. Expression and prognostic significance of CD93 in blood vessels in colorectal cancer: an immunohistochemical analysis of 134 cases. BMC Gastroenterol 2025; 25:84. [PMID: 39962383 PMCID: PMC11834615 DOI: 10.1186/s12876-025-03643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE Tumor blood vessels are tortuous and dilated, contributing to the aberrant tumor microenvironment. CD93 is a newly reported transmembrane receptor, mainly expressed in tumor endothelial cells, that has demonstrated prognostic value in some cancer types. However, the role of CD93 in the vasculature of colorectal cancer (CRC) tissues and its prognostic significance remain unknown. It is therefore necessary to explore the effect of CD93 in patients with CRC. METHOD We detected the expression of CD93 in human CRC tissues using immunohistochemistry. We then examined the correlation between CD93 expression and clinicopathological factors in cancer tissues from 134 patients with CRC. RESULT CD93 expression levels were higher in CRC vessels than in vessels in adjacent normal tissues. Upregulation of CD93 was associated with tumor site and microsatellite instability. CD93 protein expression was positively related to macrophage infiltration in CRC. High expression of CD93 may indicate normalization of the tumor vasculature and was associated with better overall survival. CONCLUSION CD93 was highly expressed in CRC vessels and correlated with infiltration of immune cells. Our findings reveal that vascular normalization and patient prognosis can be predicted by detecting CD93 expression in CRC tumor tissues.
Collapse
Affiliation(s)
- Shuzhe Yang
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Zhongyuan Bai
- First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Fei Zhang
- Department of Pathology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hosipital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGongXinCun Street, Taiyuan, China
| | - Wei Cui
- Department of Pathology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hosipital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGongXinCun Street, Taiyuan, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hosipital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGongXinCun Street, Taiyuan, China
| | - Wenqi Bai
- Department of General Surgery Sciences, Cancer Hospital, Shanxi Province Cancer Hospital/ShanxiHospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to ShanxiMedical University, No. 3, ZhiGongXinCun Street, Taiyuan, China.
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hosipital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGongXinCun Street, Taiyuan, China.
| |
Collapse
|
35
|
Kukita K, Sakaguchi M, Inoue H, Imamura Y, Shin Y. Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis. Biochem Biophys Res Commun 2025; 749:151351. [PMID: 39842335 DOI: 10.1016/j.bbrc.2025.151351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs). Using small interfering RNA (siRNA) to suppress Notch3 expression, we observed a significant reduction in COL4A1 gene expression, which encodes the α1 chain of type IV collagen. Conversely, transient expression of the Notch3 intracellular domain (NICD3) activated Notch signaling, resulting in increased COL4A1 expression. In the co-culture model, pre-treatment of TIG-1 cells with Notch signaling inhibitors, including siNotch3 and DAPT, decreased the number of α1(IV)-positive TIG-1 fibroblasts adjacent to HUVECs. This reduction highlights the essential role of Notch3-mediated signaling in promoting type IV collagen expression during angiogenesis. Our findings suggest that Notch signaling regulates type IV collagen expression levels, supporting basement membrane formation and vascular maturation. These results provide insight into the molecular mechanisms of angiogenesis, potentially contributing to therapeutic strategies targeting vascular-related pathologies.
Collapse
Affiliation(s)
- Kazuki Kukita
- Graduate School of Engineering, Kogakuin University, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan
| | - Hiroki Inoue
- Department of Medical Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yasutada Imamura
- Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan
| | - Yongchol Shin
- Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan.
| |
Collapse
|
36
|
Ghosh P, Dey A, Nandi S, Majumder R, Das S, Mandal M. CTGF (CCN2): a multifaceted mediator in breast cancer progression and therapeutic targeting. Cancer Metastasis Rev 2025; 44:32. [PMID: 39945880 DOI: 10.1007/s10555-025-10248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 02/01/2025] [Indexed: 03/28/2025]
Abstract
Breast cancer, with its diverse subtypes like ER-positive, HER-2-positive, and triple-negative, presents complex challenges demanding personalized treatment approaches. The intricate interplay of genetic, environmental, and lifestyle factors underscores its status as a primary contributor to cancer-related fatalities in women globally. Understanding the molecular drivers specific to each subtype is crucial for developing effective therapies. In this landscape, connective tissue growth factor (CTGF), also referred to as cellular communication network factor 2 (CCN2), emerges as a significant player. CTGF regulates critical biological activities like cell growth, invasion, and migration, impacting breast cancer development and progression. It modulates breast tumor microenvironment by promoting angiogenesis, activating cancer-associated fibroblasts (CAFs), and inducing inflammation. The activity of CTGF depends on several factors including oxygen levels, hormone signals, and growth factors and differs according to the type of breast cancer. CTGF can regulate breast cancer cells by activating various signaling pathways and modulating the transcription of other genes that are involved in tumor development and metastasis including S100A4, glucose transporter 3 (GLUT3), and vascular endothelial growth factor (VEGF). The matricellular protein can be considered a potential therapeutic target, as it can promote tumor growth and confer drug resistance in breast cancer. Numerous tactics, including neutralizing antibodies, antisense oligonucleotides, natural compounds, recombinant proteins, and short hairpin RNAs have been suggested to block its function. This review highlights the structure of CTGF, regulation of its expression, and current knowledge of its oncogenic role in breast cancer, as well as focusing on potential therapeutic strategies for targeting CTGF in breast cancer.
Collapse
Affiliation(s)
- Priya Ghosh
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Suvendu Nandi
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Ranabir Majumder
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Subhayan Das
- Department of Allied Health Sciences, Brainware University, Kolkata 700125, Barasat, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India.
| |
Collapse
|
37
|
Ha H, Choi Y, Kim NH, Kim J, Jang J, Niepa THR, Tanaka M, Lee HY, Choi J. Lipid Nanoparticle Delivery System for Normalization of Tumor Microenvironment and Tumor Vascular Structure. Biomater Res 2025; 29:0144. [PMID: 39935791 PMCID: PMC11811622 DOI: 10.34133/bmr.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Tumors grow by receiving oxygen and nutrients from the surrounding blood vessels, leading to rapid angiogenesis. This results in functionally and structurally abnormal vasculature characterized by high permeability and irregular blood flow, causing hypoxia within the tumor microenvironment (TME). Hypoxia exacerbates the secretion of pro-angiogenic factors such as vascular endothelial growth factor (VEGF), further perpetuating abnormal vessel formation. This environment compromises the efficacy of radiotherapy, immunotherapy, and chemotherapy. In this study, we developed a pH-sensitive liposome (PSL) system, termed OD_PSL@AKB, to co-deliver oxygen (OD) and razuprotafib (AKB-9778) to tumors. This system rapidly responds to the acidic TME to alleviate hypoxia and inhibit VEGF secretion, restoring VE-cadherin expression in hypoxic endothelial cell/cancer cell cocultures. Our findings highlight the potential of OD_PSL@AKB in normalizing tumor vasculature and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Heejin Ha
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Chemical Science and Engineering,
Institute of Science Tokyo, Kanagawa 226-8503, Japan
| | - Na-Hyeon Kim
- Department of Chemical Engineering,
Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaehee Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tagbo H. R. Niepa
- Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering,
Institute of Science Tokyo, Kanagawa 226-8503, Japan
| | - Hee-Young Lee
- Department of Chemical Engineering,
Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
38
|
Liu X, Tao P, Su H, Li Y. Machine learning-random forest model was used to construct gene signature associated with cuproptosis to predict the prognosis of gastric cancer. Sci Rep 2025; 15:4170. [PMID: 39905263 PMCID: PMC11794614 DOI: 10.1038/s41598-025-88812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Gastric cancer (GC) is one of the most common tumors; one of the reasons for its poor prognosis is that GC cells can resist normal cell death process and therefore develop distant metastasis. Cuproptosis is a novel type of cell death and a limited number of studies have been conducted on the relationship between cuproptosis-related genes (CRGs) in GC. The purpose of the present study was to establish a prognostic model of CRGs and provide directions for the diagnosis and treatment of GC. Transcriptome and clinical data of patients with GC were collected from The Cancer Genome Atlas and Gene Expression Omnibus datasets. Single sample gene set enrichment analysis (GSEA) and the randomized forest method were used to establish the prognostic model. Kaplan-Meier survival curve, receiver operating characteristics diagram and a nomogram were used to evaluate the reliability of the model. GSEA and gene set variation analysis (GSVA) were used to examine enrichment pathways between high and low risk groups. Finally, immunohistochemical analysis was used to examine ephrin 4 (EFNA4) expression in GC samples and determine the prognosis of patients with GC based on the expression pattern of EFNA4. A group of 7 predictive models (RTKN2, INO80B, EFNA4, ELF2, MUSTN, KRTAP4, and ARHGEF40) was established which were correlated with CRGs. This model can be used as an independent prognostic factor to predict the prognosis of patients with GC. GSEA and GSVA results indicated that high risk patients with GC were mainly associated with the enrichment of ANGIOGENESIS and TGF_BETA_SIGNALING pathways. Finally, EFNA4 expression in GC was significantly higher than that in normal tissues, and patients with GC and high EFNA4 expression exhibited improved prognosis. In conclusion, the prognosis model based on CRGs could be used as the basis for predicting the potential prognosis of patients with GC and provide new insights for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolong Liu
- The First School of Clinical Medical, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Science and Education, The Third People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Pengxian Tao
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, 730000, People's Republic of China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - He Su
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Yulan Li
- The First School of Clinical Medical, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
39
|
Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, Prasad SB, Shinde A, Wagh S, Srinivasarao DA, Kumar R, Khatri DK, Asthana A, Srivastava S. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Deliv Transl Res 2025; 15:389-406. [PMID: 39009931 DOI: 10.1007/s13346-024-01669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular and Cellular Biology Laboratory, Department of Pharmacology, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
40
|
Zhang Z, Zhao R, Wu X, Ma Y, He Y. Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Mol Med Rep 2025; 31:47. [PMID: 39635819 PMCID: PMC11638739 DOI: 10.3892/mmr.2024.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
The cornea is a clear connective tissue membrane at the front of the outer layer of the eyeball wall. It plays a crucial role in the refractive system of the eyeball, making it essential to maintain its transparency. Neovascularization and lymphangiogenesis in the cornea significantly impact corneal transparency and immune privilege. The growth of corneal neovascularization (CNV) and corneal lymphangiogenesis (CL) vessels is interconnected yet independent. Currently, there is a substantial amount of clinical and experimental research on CNV and CL vessels. However, due to the relatively recent focus on CL vessel research compared with CNV research, most scholars tend to concentrate on CNV, with few articles offering a comprehensive comparison and discussion of the two processes. The present review emphasizes the similarities and differences between CNV and CL and summarizes recent research progress on their correlation in animal models, growth characteristics, cytokine effects and related diseases.
Collapse
Affiliation(s)
- Zhaochen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Rongxuan Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xuhui Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yunkun Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
41
|
Lei Z, Luo Y, Lu J, Fu Q, Wang C, Chen Q, Zhang Z, Zhang L. FBXO22 promotes HCC angiogenesis and metastasis via RPS5/AKT/HIF-1α/VEGF-A signaling axis. Cancer Gene Ther 2025; 32:198-213. [PMID: 39809956 PMCID: PMC11839479 DOI: 10.1038/s41417-024-00861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
The gene F-box only protein 22 (FBXO22) has been discovered to promote the development of liver cancer tumors. Nevertheless, there remains considerable ambiguity regarding the involvement of FBXO22 in the processes of angiogenesis and metastasis in hepatocellular carcinoma (HCC). Our study has confirmed a significant upregulation of FBXO22 expression in both HCC samples and cellular models. The increased level of FBXO22 correlates strongly with the number of tumors, presence of vascular invasion, and poor prognosis. Experimental investigations have shown that FBXO22 significantly enhances angiogenesis and metastasis of HCC both in vitro and in vivo. Mechanistically, FBXO22 interacts with and ubiquitinates 40S ribosomal protein S5 (RPS5) on Lys85, thereby promoting its K48-linked ubiquitin-mediated degradation in the cytoplasm. Following a decrease in the expression of RPS5, activation of downstream PI3K/AKT signaling pathway occurs, leading to elevated levels of HIF-1α and vascular endothelial growth factor A (VEGF-A). Our study has shown that FBXO22 facilitates HCC angiogenesis and metastasis via the RPS5/AKT/HIF-1α/VEGF-A signaling axis. Notably, inhibition of FBXO22 enhances the efficacy of Lenvatinib both in vitro and in vivo. Therefore, FBXO22 may present itself as a potential target for therapeutic intervention in the treatment of HCC.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- F-Box Proteins/metabolism
- F-Box Proteins/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Signal Transduction
- Mice
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Neoplasm Metastasis
- Cell Line, Tumor
- Male
- Mice, Nude
- Female
- Gene Expression Regulation, Neoplastic
- Angiogenesis
- Receptors, Cytoplasmic and Nuclear
Collapse
Affiliation(s)
- Zhen Lei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Junli Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qian Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Long Zhang
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, People's Republic of China.
| |
Collapse
|
42
|
Józwiak M, Bauer M, Kamysz W, Kleczkowska P. Multifunctionality and Possible Medical Application of the BPC 157 Peptide-Literature and Patent Review. Pharmaceuticals (Basel) 2025; 18:185. [PMID: 40005999 PMCID: PMC11859134 DOI: 10.3390/ph18020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BPC 157, known as the "Body Protection Compound", is a pentadecapeptide isolated from human gastric juice that demonstrated its pleiotropic beneficial effects in various preclinical models mimicking medical conditions, such as tissue injury, inflammatory bowel disease, or even CNS disorders. Unlike many other drugs, BPC 157 has a desirable safety profile, since only a few side effects have been reported following its administration. Nevertheless, this compound was temporarily banned by the World Anti-Doping Agency (WADA) in 2022 (it is not currently listed as banned by the WADA). However, it has not been approved for use in standard medicine by the FDA and other global regulatory authorities due to the absence of sufficient and comprehensive clinical studies confirming its health benefits in humans. In this review, we summarize information on the biological activities of BPC 157, with particular reference to its mechanism of action and probable toxicity. This generated the attention of experts, as BPC 157 has been offered for sale on many websites. We also present recent interest in BPC 157 as reflected in a number of patent applications and granted patents.
Collapse
Affiliation(s)
- Michalina Józwiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland;
| | - Marta Bauer
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | | |
Collapse
|
43
|
Kasiński D, Szeliski K, Drewa T, Pokrywczyńska M. Extracellular vesicles-a new player in the development of urinary bladder cancer. Ther Adv Med Oncol 2025; 17:17588359241297529. [PMID: 39850919 PMCID: PMC11755519 DOI: 10.1177/17588359241297529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 01/25/2025] Open
Abstract
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells. What brings more attention and potential implications is the fact that cancer cells secrete more EVs than non-malignant cells. EVs are widely studied for their role in cancer development. This publication summarizes the impact of EVs secreted by urinary bladder cancer cells on urinary bladder cancer development and metastasis. EVs isolated from urinary bladder cancer cells affect other lower-grade cancer cells or normal cells by inducing different metabolic pathways (transforming growth factor β/Smads pathway; phosphoinositide 3-kinase/Akt pathway) that promote epithelial-mesenchymal transition. The cargo carried by EVs can also induce angiogenesis, another critical element in the development of bladder cancer, and modulate the immune system response in a tumor-beneficial manner. In summary, the transfer of substances produced by tumor cells via EVs to the environment influences many stages of tumor progression. An in-depth understanding of the role EVs play in the development of urinary bladder cancer is crucial for the development of future anticancer therapies.
Collapse
Affiliation(s)
- Damian Kasiński
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Jagiellońska 13/15, 85-067 Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
44
|
Miao X, Chen T, Lang Z, Wu Y, Wu X, Zhu Z, Xu RX. Design, fabrication, and application of bioengineering vascular networks based on microfluidic strategies. J Mater Chem B 2025; 13:1252-1269. [PMID: 39691980 DOI: 10.1039/d4tb02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Vascularization is a critical component of tissue engineering research and is essential for enhancing the success rate of tissue construction and function. Over the past decade, researchers have explored various methods to construct in vitro vascular networks, including 3D printing, cell sphere technology, and microfluidics. Microfluidic technology has garnered significant attention due to its notable advantages in precision, controllability, flexibility, and applicability. It can be primarily classified into two modes: (i) the pre-designed mode, which involves creating vascular networks by pre-designing vascular channels and seeding endothelial cells, encompassing microfluidic chips and microfluidic spinning technologies; and (ii) the self-assembly mode, where cell spheres are fabricated using microfluidic technology and subsequently self-assemble into vascular networks. In this review, we first provide a brief overview of the normal physiological and pathological characteristics of vascular networks, followed by a discussion of the factors to be considered in designing in vitro vascular networks, and conclude with an examination of the classification of technologies for the preparation of microfluidic vascular networks and recent advancements. It is anticipated that in vitro vascular network models will soon be successfully applied in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Xiaoping Miao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqiang Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ronald X Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
45
|
Wei X, Xing X, Yao W, Wang C, Xiao Y, Du X. First-line combination therapy of immunotherapy plus anti-angiogenic drug for thoracic SMARCA4-deficient undifferentiated tumors in AIDS: a case report and review of the literature. Front Immunol 2025; 15:1473578. [PMID: 39850892 PMCID: PMC11754271 DOI: 10.3389/fimmu.2024.1473578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025] Open
Abstract
Background Thoracic SMARCA4-deficient undifferentiated tumors (SMARCA4-UT) exhibit a notably aggressive phenotype, which is associated with poor patient survival outcomes. These tumors are generally resistant to conventional cytotoxic chemotherapy, thereby limiting the availability of effective treatment options. Case presentation We describe a 69-year-old AIDS patient who initially presented with a fused, enlarged lymph node on the right clavicle and mild, unexplained pain under the right axilla that worsened with severe coughing episodes. An initial chest CT scan revealed multiple nodular and mass shadows in the mediastinum and multiple nodules in both lungs, as well as a small amount of pericardial effusion. Additionally, serum biomarkers of lung cancer were abnormal as follows: carcinoembryonic antigen (CEA) at 13.74 ng/mL, cytokeratin 19 fragment (CYFRA21-1) at 6.82 ng/mL, neuron-specific enolase (NSE) at 25.49 ng/mL, and progastrin-releasing peptide precursor (ProGRP) at 89.35 pg/mL. Subsequent pathology confirmed SMARCA4-deficient undifferentiated tumors. Considering that the weak immune status and intermediate PD-L1 level, the patient was treated with a first-line combination therapy of immunotherapy and anti-angiogenic drug instead of chemo-immunotherapy. The patient responded well to immunotherapy combining anti-angiogenic drugs and achieved an overall survival for more than 22 months. Conclusion Our study presented a rare case of thoracic SMARCA4-deficient undifferentiated tumors and AIDS, suggesting that first-line immunotherapy plus anti-angiogenic drugs as a potential therapeutic option for SMARCA4-UT patients under specific conditions.
Collapse
Affiliation(s)
- Xiaoling Wei
- Department of Respiratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangju Xing
- Department of Respiratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Yao
- Department of Respiratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changzheng Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiao
- Department of Translational Medicine, Shenzhen Yucebio Technology Co., Ltd., Shenzhen, China
| | - Xianzhi Du
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Wang Y, Jin X, Qiu R, Ma B, Zhang S, Song X, He J. Developing and validating a drug recommendation system based on tumor microenvironment and drug fingerprint. Front Artif Intell 2025; 7:1444127. [PMID: 39850847 PMCID: PMC11755346 DOI: 10.3389/frai.2024.1444127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Tumor heterogeneity significantly complicates the selection of effective cancer treatments, as patient responses to drugs can vary widely. Personalized cancer therapy has emerged as a promising strategy to enhance treatment effectiveness and precision. This study aimed to develop a personalized drug recommendation model leveraging genomic profiles to optimize therapeutic outcomes. Methods A content-based filtering algorithm was implemented to predict drug sensitivity. Patient features were characterized by the tumor microenvironment (TME), and drug features were represented by drug fingerprints. The model was trained and validated using the Genomics of Drug Sensitivity in Cancer (GDSC) database, followed by independent validation with the Cancer Cell Line Encyclopedia (CCLE) dataset. Clinical application was assessed using The Cancer Genome Atlas (TCGA) dataset, with Best Overall Response (BOR) serving as the clinical efficacy measure. Two multilayer perceptron (MLP) models were built to predict IC50 values for 542 tumor cell lines across 18 drugs. Results The model exhibited high predictive accuracy, with correlation coefficients (R) of 0.914 in the training set and 0.902 in the test set. Predictions for cytotoxic drugs, including Docetaxel (R = 0.72) and Cisplatin (R = 0.71), were particularly robust, whereas predictions for targeted therapies were less accurate (R < 0.3). Validation with CCLE (MFI as the endpoint) showed strong correlations (R = 0.67). Application to TCGA data successfully predicted clinical outcomes, including a significant association with 6-month progression-free survival (PFS, P = 0.007, AUC = 0.793). Discussion The model demonstrates strong performance across preclinical datasets, showing its potential for real-world application in personalized cancer therapy. By bridging preclinical IC50 and clinical BOR endpoints, this approach provides a promising tool for optimizing patient-specific treatments.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoye Jin
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui Qiu
- General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bo Ma
- General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Sheng Zhang
- General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuyang Song
- General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jinxi He
- General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
47
|
Mohammed KH, Arif SH, Adam LN, Al-Habib OAM. Potassium channels mediate nitric oxide-induced vasorelaxation in arteries supplying colon cancer. Prostaglandins Other Lipid Mediat 2025; 176:106937. [PMID: 39653273 DOI: 10.1016/j.prostaglandins.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Aberrant vascular function and cancer growth are closely related, with nitric oxide (NO) being a key factor in vascular tone regulation. This study provides Novel insights into the distinctive mechanisms underlying cancer-associated vascular dysfunction by investigating the involvement of potassium (K+) channels in NO-mediated vasorelaxation within arteries supplying colon cancer. METHODS Arterial segments from colon cancer patients were isolated and sectioned into rings, these rings were mounted in an organ bath filled with Krebs' solution and maintained at 37°C. Isometric tension recordings were obtained using a force transducer connected to a PowerLab Data Acquisition System. Arterial segments were pre-incubated with a variety of K+ channel blockers, both individually and in combination, including glibenclamide (GLIB), barium chloride (BaCl2), tetraethylammonium (TEA), and 4-aminopyridine (4-AP). Concentration-response curves were designed to evaluate how K+ channel blocking affected the vasodilation caused by NO. RESULTS Sodium nitroprusside (SNP) induced vasorelaxation in arterial rings from colon cancer, influenced by specific K+ channels. Pre-incubation with TEA significantly reduced Emax to 60.22 ± 8.14 %, compared to 124.91 ± 15.07 % in controls, while GLIB decreased Emax to 113.10 ± 3.87 %. BaCl2 and 4-AP further diminished relaxation, and combined K+ channel blockers showed complex, non-additive effects. Distinct contributions of KCa and KV channels to NO-induced vasodilation were elucidated. Additionally, interaction between NO and L-type calcium (Ca2+) channels suggested a novel vasorelaxation mechanism in cancerous tissues. CONCLUSION This research offers new perspectives on the intricate relationship between vascular biology and cancer development, emphasizing the promise of targeting potassium channels to address vascular abnormalities in cancer.
Collapse
Affiliation(s)
- Kamaran H Mohammed
- Department of Veterinary, Shaqlawa Technical College, Erbil Polytechnic University, Erbil, Iraq
| | - Sardar H Arif
- Department of Surgery, Medical College, University of Duhok, Kurdistan Region, Iraq
| | - Lina N Adam
- Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq.
| | - Omar A M Al-Habib
- Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq; Department of Biology, College of Science, University of Nawroz, Duhok, Kurdistan Region, Iraq
| |
Collapse
|
48
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2025; 67:231-252. [PMID: 38242529 PMCID: PMC11725115 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
49
|
Shen K, Shan Z, Li Y, Ji Z, Zhou L, Lv Z. TFAP2A Activates ADAM8 to Promote Lung Adenocarcinoma Angiogenesis Through the JAK/STAT Signaling Pathway. J Biochem Mol Toxicol 2025; 39:e70097. [PMID: 39812116 DOI: 10.1002/jbt.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
As the most prevalent subtype of lung cancer, lung adenocarcinoma (LUAD) is closely associated with angiogenesis, which is fundamental to its progression. ADAM8 (A disintegrin and metalloproteinase 8) is an enzyme associated with tumor invasion, while its implications in LUAD angiogenesis are a field that awaits exploration. A thorough investigation into the impacts of ADAM8 on LUAD angiogenesis could contribute to the development of therapeutic drugs for LUAD. Bioinformatics delineated the expression profiles of TFAP2A and ADAM8 in LUAD tissues, focusing on ADAM8-enriched pathways. qRT-PCR confirmed their expression in LUAD cells. The CCK-8 assay was applied to gauge cell viability, and Western blot detected the presence of JAK2/STAT3 pathway proteins and VEGFR-2 and VEGF. Angiogenesis assays quantified the length of angiogenesis, and dual-luciferase and Chromatin immunoprecipitation assays verified the TFAP2A-ADAM8 binding. ADAM8 exhibited high expression in LUAD tissues and cells, with notable enrichment in the VEGF and JAK/STAT pathways. Cellular assays revealed that elevated ADAM8 expression enhanced cell viability, promoted the phosphorylation of JAK2 and STAT3, and boosted angiogenic capacity. The JAK inhibitor Peficitinib reversed the proangiogenic effects induced by ADAM8 overexpression. We also discovered overexpression of TFAP2A, an upstream transcription factor of ADAM8, in LUAD. Rescue experiments indicated that ADAM8 overexpression could counteract the inhibitory effects of TFAP2A knockdown on LUAD angiogenesis. This study reveals for the first time the critical role of ADAM8 in LUAD angiogenesis, demonstrating that TFAP2A promotes JAK/STAT pathway conduction by activating ADAM8. This finding not only provides a new perspective for understanding the pathogenesis of LUAD but also lays the foundation for the development of new therapies targeting ADAM8.
Collapse
Affiliation(s)
- Kai Shen
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Zhidong Shan
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Yingjie Li
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Zeyi Ji
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Luyao Zhou
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Zhiliang Lv
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| |
Collapse
|
50
|
Gonzalez-Fierro A, Domínguez-Gómez G, Chavez-Blanco A, Duenas-Gonzalez A. Pharmacokinetics and pharmacodynamics of angiogenesis inhibitors used to treat cervical cancer: current and future. Expert Opin Drug Metab Toxicol 2025; 21:133-141. [PMID: 39252168 DOI: 10.1080/17425255.2024.2401586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION The treatment of advanced cervical cancer is continuously developing. There is a critical need to explore new treatment options to improve cure rates and make treatment more affordable. Despite efforts in prevention, cervical cancer remains the fourth most common cancer worldwide in terms of both incidence and mortality. AREAS COVERED This article offers an updated and critical analysis of angiogenesis inhibitors used in the treatment of advanced cervical cancer. It should be noted that this is not a systematic review. EXPERT OPINION Bevacizumab is currently the primary antiangiogenic agent used alongside chemotherapy and has become the standard of care for advanced cervical cancer. However, there are still uncertainties regarding the molecular mechanisms and associations in cervical cancer that could help in optimizing the use of Bevacizumab. Factors such as cost, toxicity, and methodological issues in the GOG-240 trial must be considered.
Collapse
Affiliation(s)
- Aurora Gonzalez-Fierro
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Alma Chavez-Blanco
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Alfonso Duenas-Gonzalez
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|