1
|
Seyyedi-Mansour S, Donn P, Barciela P, Perez-Vazquez A, Nogueira-Marques R, Chamorro F, Carpena M, Prieto MA. Citrus aurantium Flowers: Overview of Chemistry, Functionality, and Technological Applications. Molecules 2025; 30:930. [PMID: 40005242 PMCID: PMC11858012 DOI: 10.3390/molecules30040930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Bitter orange (Citrus aurantium L.), a member of the Rutaceae family, finds global utility in both the treatment of various ailments and its role as a rootstock for Citrus species in agriculture. Various parts of Citrus aurantium L. have been employed in traditional medicine due to their multifarious therapeutic potential. The blossom of this plant serves as a rich source of bioactive compounds, notably polyphenols, alkaloids, and terpenes. Additionally, it harbors substantial quantities of functional, nutritive, and biologically active compounds, which manifest their presence through antioxidant, antidiabetic, anticancer, antimicrobial, cardiovascular, and neuroprotective properties. The recovery of bioactive compounds is significantly affected by extraction methods. Many conventional methods have been explored for the recovering of bioactive compounds from bitter orange flowers. However, in response to the limitations of conventional techniques, green extraction methods, characterized by their ability to significantly increase the yield and reduce the time, energy, and solvent requirements, have also been assessed for this matrix. Therefore, the study of the functionalities of bitter orange blossoms represents a domain with unexplored research opportunities. Consequently, this review aims to offer a comprehensive insight into the biological properties and medicinal applications of the active compounds found within C. aurantium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (S.S.-M.); (P.D.); (P.B.); (A.P.-V.); (R.N.-M.); (F.C.)
| | - Miguel A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (S.S.-M.); (P.D.); (P.B.); (A.P.-V.); (R.N.-M.); (F.C.)
| |
Collapse
|
2
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Unveiling the Therapeutic Potential of Kelulut (Stingless Bee) Honey in Alzheimer's Disease: Findings from a Rat Model Study. Antioxidants (Basel) 2024; 13:926. [PMID: 39199172 PMCID: PMC11351951 DOI: 10.3390/antiox13080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) poses a major worldwide health challenge because of its profound impact on cognitive abilities and overall well-being. Despite extensive research and numerous clinical trials, therapeutic options remain limited. Our study aimed to investigate the potential of Kelulut honey (KH) as a novel therapeutic agent for addressing the multifactorial pathology of AD. We tried to evaluate the disease-attenuating and neuroprotective potential of KH in the intrahippocampally induced AD rat model by utilizing histochemistry and enzyme-linked immunosorbent assay (ELISA) studies. A total of 26 male Sprague Dawley rats weighing ~280-380 g were randomly divided into three groups: Control, AD-induced (Aβ), and AD-induced and treated with KH (Aβ+KH). The latter two groups underwent stereotaxic surgery, where 6.25 µg of amyloid β1-42 peptides were injected intrahippocampally. One-week post-surgery, KH was administered to the treatment group at a dose of 1 g/kg body weight for a period of four weeks, after which the rats went through behavior tests. After completion of behavior analysis, the rats were sacrificed, and the brains were processed for histochemistry and ELISA studies. The open field test analysis demonstrated that KH improved the locomotion of Aβ+KH compared to Aβ (p = 0.0013). In comparison, the Morris water maze did not show any nootropic effects on cognition with a paradoxical increase in time spent in the target quadrant by the Aβ group (p = 0.029). Histochemical staining showed markedly increased Congo-red-stained amyloid plaques, which were significantly reduced in dentate gyrus of Aβ+KH compared to Aβ (p < 0.05). Moreover, significantly higher apoptosis was seen in the Aβ group compared to Aβ+KH (p < 0.01) and control groups (p < 0.001). Furthermore, the ELISA studies deduced more phosphorylated tau in the diseased group compared to Aβ+KH (p = 0.038) and controls (p = 0.016). These findings suggest that KH consumption for twenty-eight days has the potential to attenuate the pathological burden of disease while exerting neuroprotective effects in rodent models of AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| |
Collapse
|
3
|
Brinza I, Boiangiu RS, Honceriu I, Abd-Alkhalek AM, Eldahshan OA, Dumitru G, Hritcu L, Todirascu-Ciornea E. Investigating the Potential of Essential Oils from Citrus reticulata Leaves in Mitigating Memory Decline and Oxidative Stress in the Scopolamine-Treated Zebrafish Model. PLANTS (BASEL, SWITZERLAND) 2024; 13:1648. [PMID: 38931080 PMCID: PMC11207389 DOI: 10.3390/plants13121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were for methyl-N-methyl anthranilate (89.93%) and γ-terpinene (6.25%). Over 19 days, zebrafish (Tubingen strain) received PGEO (25, 150, and 300 μL/L) before induction of cognitive impairment with scopolamine immersion (SCOP, 100 μM). Anxiety-like behavior and memory of the zebrafish were assessed by a novel tank diving test (NTT), Y-maze test, and novel object recognition test (NOR). Additionally, the activity of acetylcholinesterase (AChE) and the extent of the brain's oxidative stress were explored. In conjunction, in silico forecasts were used to determine the pharmacokinetic properties of the principal compounds discovered in PGEO, employing platforms such as SwissADME, Molininspiration, and pKCSM. The findings provided evidence that PGEO possesses the capability to enhance memory by AChE inhibition, alleviate SCOP-induced anxiety during behavioral tasks, and diminish brain oxidative stress.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | | | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt;
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| |
Collapse
|
4
|
Canday M, Yurtkal A, Makav M, Kuru M. Anti-inflammatory, antioxidant, antiangiogenic, and therapeutic efficacy of neroli oil in rats with endometriotic lesions. J Obstet Gynaecol Res 2024; 50:516-525. [PMID: 38148005 DOI: 10.1111/jog.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Endometriosis is a serious health problem among women of reproductive age, with pelvic pain and infertility. Given the limited success of current treatments, this study explores Neroli oil (N.O.) effects on inflammation, oxidation, angiogenesis, and tissue remodeling implicated in endometriosis. MATERIALS AND METHODS Albino Wistar female rats were used to simulate an endometriosis model. Groups were established for comparison: a control, an endometriosis model, a N.O.-treated group, and a N.O.-treated group postendometriosis induction. The study focused on Tumor necrosis factor-alpha (TNF-α), Interleukin 6, Interleukin 8, vascular endothelial growth factor (VEGF), myeloperoxidase, Matrix metalloproteinase-1 (MMP-1), nitric oxide, superoxide dismutase, catalase, and anti-mullerian hormone values, as well as histopathological evaluations of endometriotic foci. RESULTS AMH values showed a significant increase in the endometriosis group treated with N.O. compared with the endometriosis group (p < 0,01).A statistically significant decrease was found in MMP-1 level in the endometriosis group that underwent N.O. (p < 0.001). Increased CAT (p < 0.0001) and decrease in nitric oxide (p < 0.01) are found in N.O.-treated endometriosis group. TNF-α levels in the endometriosis group showed a statistically significant increase in the endometriosis group when compared with the control and sham group (p < 0.001, p < 0.01 respectively). In our study, a statistically significant increase was observed in VEGF levels (p < 0.001) in endometriosis group and significant decrease in the N.O. administered endometriosis model group. Groups treated with N.O. showed decreased inflammation and congestion scores. Histopathological assessments demonstrated reduced inflammation and tissue remodeling signs in endometriotic foci. CONCLUSION This study highlights the potential of N.O. in the treatment of endometriosis, owing to its anti-inflammatory, antioxidant, and antiangiogenic properties that can disrupt chronic processes. Our findings lend support to utilization of herbal remedies for the management of endometriosis, thereby emphasizing the necessity for additional comprehensive investigations in the future.
Collapse
Affiliation(s)
- Mujde Canday
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Aslıhan Yurtkal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary, Kafkas University, Kars, Turkey
| | - Mushap Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary, Kafkas University, Kars, Turkey
| |
Collapse
|
5
|
Thongsopha C, Chaiwut T, Thaweekhotr P, Sudwan P, Phasukdee N, Quiggins R. Aegle marmelos (L.) Leaf Extract Improves Symptoms of Memory Loss Induced by Scopolamine in Rats. Foods 2024; 13:627. [PMID: 38397604 PMCID: PMC10888157 DOI: 10.3390/foods13040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that results in memory impairment. Aegle marmelos (L.) Correa (AM) is used as a traditional medicine. AM leaves have the potential to inhibit acetylcholinesterase activity. This study used scopolamine to induce AD in rats. The aim of this study was to investigate the effects of AM leaf extract using this model. Motor and memory functions were tested by the motor activity and Morris water maze (MWM) tests, respectively. The density of the synaptophysin and dendritic spines in the CA1 were detected by immunofluorescence and Golgi impregnation, respectively. The hippocampal histology was reviewed by H&E staining. After the treatment, the latency times in the MWM tests of the AD groups reduced, while the motor activities showed no difference. The density of the synaptophysin of the AD groups increased after the treatments, and that of the dendritic spines also increased in all AD groups post-treatment. The hippocampal tissue also recovered. AM leaf extract can improve cognitive impairment in AD models by maintaining the presynaptic vesicle proteins and dendritic spines in a dose-dependent manner.
Collapse
Affiliation(s)
- Chanida Thongsopha
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanasit Chaiwut
- The Department of General Education, Kanchanabhishek Institute of medical and Public Health Technology, Nonthaburi 11150, Thailand;
| | - Pornnarez Thaweekhotr
- The School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Paiwan Sudwan
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
| | - Noppadol Phasukdee
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
| | - Ranida Quiggins
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
| |
Collapse
|
6
|
Chang YB, Jung EJ, Suh HJ, Choi HS. Protective Effects of Whey Protein Hydrolysate, Treadmill Exercise, and Their Combination against Scopolamine-Induced Cognitive Deficit in Mice. Foods 2023; 12:4428. [PMID: 38137233 PMCID: PMC10742977 DOI: 10.3390/foods12244428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, the potential of whey protein hydrolysate (WPH) and treadmill exercise to prevent cognitive decline was investigated, along with their neuroprotective mechanisms. Cognitive dysfunction was induced in mice with 1 mg/kg of scopolamine, followed by the administration of WPH at 100 and 200 mg/kg and/or treadmill exercise at 15 m/min for 30 min five days per week. Both WPH administration and treadmill exercise significantly improved the memory of mice with scopolamine-induced cognitive impairment, which was attributed to several key mechanisms, including a reduction in oxidative stress based on decreased levels of reactive oxygen species and malondialdehyde in the brain tissue and an increase in acetylcholine by increasing choline acyltransferase and decreasing acetylcholine esterase levels. Exercise and WPH also exerted neuroprotective effects by inhibiting the hyperphosphorylation of tau proteins, enhancing the expression of the brain-derived neurotrophic factor, and inhibiting apoptosis by reducing the Bax/Bcl2 ratio in conjunction with the downregulation of the mitogen-activated protein kinase pathway. Moreover, the impact of WPH and treadmill exercise extended to the gut microbiome, suggesting a potential link with cognitive improvement. These findings suggest that both WPH intake and treadmill exercise are effective strategies for mitigating cognitive impairment, providing promising avenues for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea;
- Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Jin Jung
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea;
- Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
7
|
Kazemi S, Marefati N, Beheshti F, Salmani H, Bigham M, Hosseini M. The effect of olibanum on the rats with memory deficit induced by scopolamine. Cent Nerv Syst Agents Med Chem 2023; 23:CNSAMC-EPUB-134227. [PMID: 37680155 DOI: 10.2174/1871524923666230901142436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Oxidative stress is an important contributor to Alzheimer's disease. Olibanum has therapeutic effects on various diseases. The effect of Olibanum on memory deficit induced by scopolamine (Sco) was challenged. METHODS Four groups were considered as (1) control (2) Sco, (3-4) Sco - Olib 100 and 200 mg/kg. Treatment by Olib or vehicle was done for two weeks. The third week was accompanied by the Morris water maze (MWM) and passive avoidance (PA) with Sco injection. On the last day, the brain and hippocampus were used for evaluation of the malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and a total thiol group. RESULTS Sco increased the traveled time and distance to reach the hidden platform during five days of learning (p<0.01 - p<0.001) whereas it decreased the traveled time and distance (p<0.05- p<0.01) in the target area during the probe test of MWM. Sco also decreased delay time in the PA test (P<0.05 - P<0.001). Sco also decreased CAT, SOD, and thiol, whereas it, increased MDA in both the cortex and hippocampus (p<0.01 - p<0.001). Olib attenuated the impaired performance of the rats induced by Sco in MWM and PA tests. Olib reversed the increasing effects of Sco on MDA in both cortex and hippocampus and also reversed the attenuating effects of Sco on CAT, SOD, and thiol. CONCLUSION Olib had an inhibitory effect on memory deficit induced by Sco probably through its anti-oxidant property.
Collapse
Affiliation(s)
- Sara Kazemi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Maryam Bigham
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Thawkar BS, Kaur G. Betanin mitigates scopolamine-induced cognitive impairment by restoring cholinergic function, boosting brain antioxidative status, and increasing BDNF level in the zebrafish model. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:335-349. [PMID: 36991213 DOI: 10.1007/s10695-023-01185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
Betalains obtained from Beta vulgaris (family Caryophyllales) are regularly consumed as part of the regular diet with medicinal benefits due to antioxidant and anti-inflammatory properties. The objective of this article was to evaluate betanin's neuroprotective properties in a scopolamine-induced zebrafish paradigm. Betanin (BET) (50, 100, and 200 mg/L), and donepezil (10 mg/L) were delivered to zebrafish in a treatment tank once a day for 8 days, while memory impairment was produced by scopolamine (100 µM), which was given 60 min before behavioral assessments. The treatment dosages were determined based on acute toxicity studies. The existence of betacyanin and betaxanthins of BET was tested using liquid chromatography-mass spectrometry (LC-MS). The Y-maze task was used to examine the novelty and spatial memory, while the novel tank diving test was used to assess anxiety-like behavior (NTT). The activities of acetylcholinesterase (AChE) and the oxidative stress sensitivity in zebrafish brains were examined. Also, brain-derived neurotrophic factor (BDNF) level is quantified by an ELISA kit. Scopolamine-induced rises in AChE activity, memory loss, anxiety, and brain oxidant capacity were all reduced by BET. These results suggest that BET (50 and 100 mg/L) has a therapeutic ability to treat brain oxidative stress and cognitive deficits in amnesic zebrafish.
Collapse
Affiliation(s)
- Baban S Thawkar
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
9
|
Pensamiento-Niño CA, Castañeda-Ovando A, Añorve-Morga J, Hernández-Fuentes AD, Aguilar-Arteaga K, Ojeda-Ramírez D. Edible Flowers and Their Relationship with Human Health: Biological Activities. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
| | | | - Javier Añorve-Morga
- Chemistry Department, Universidad Autonoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Alma D. Hernández-Fuentes
- Veterinary Medicine and Agroindustry Engineering Departments, Universidad Autonoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Karina Aguilar-Arteaga
- Agroindustry Engineering Department, Universidad Politécnica de Francisco, Madero, Francisco Madero, Mexico
| | - Deyanira Ojeda-Ramírez
- Veterinary Medicine and Agroindustry Engineering Departments, Universidad Autonoma del Estado de Hidalgo, Tulancingo, Mexico
| |
Collapse
|
10
|
Citrus Essential Oils in Aromatherapy: Therapeutic Effects and Mechanisms. Antioxidants (Basel) 2022; 11:antiox11122374. [PMID: 36552586 PMCID: PMC9774566 DOI: 10.3390/antiox11122374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40-47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found in significant quantities in oil sacs or oil glands present in the leaves, flowers, and fruit peels (mainly the flavedo part). Citrus EO is a complex mixture of ~400 compounds and has been found to be useful in aromatic infusions for personal health care, perfumes, pharmaceuticals, color enhancers in foods and beverages, and aromatherapy. The citrus EOs possess a pleasant scent, and impart relaxing, calming, mood-uplifting, and cheer-enhancing effects. In aromatherapy, it is applied either in message oils or in diffusion sprays for homes and vehicle sittings. The diffusion creates a fresh feeling and enhances relaxation from stress and anxiety and helps uplifting mood and boosting emotional and physical energy. This review presents a comprehensive outlook on the composition, properties, characterization, and mechanism of action of the citrus EOs in various health-related issues, with a focus on its antioxidant properties.
Collapse
|
11
|
Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chemical compounds from plants have been used as a medicinal source for various diseases. Aromachology is a unique field that studies the olfactory effects after inhaling aromatic compounds. Aromatherapy is a complementary treatment methodology involving the use of essential oils containing phytoncides and other volatile organic compounds for various physical and mental illnesses. Phytoncides possess an inherent medicinal property. Their health benefits range from treating stress, immunosuppression, blood pressure, respiratory diseases, anxiety, and pain to anti-microbial, anti-larvicidal, anti-septic, anti-cancer effects, etc. Recent advancements in aromatherapy include forest bathing or forest therapy. The inhalation of phytoncide-rich forest air has been proven to reduce stress-induced immunosuppression, normalize immune function and neuroendocrine hormone levels, and, thus, restore physiological and psychological health. The intricate mechanisms related to how aroma converts into olfactory signals and how the olfactory signals relieve physical and mental illness still pose enormous questions and are the subject of ongoing research. Aromatherapy using the aroma of essential oils/phytoncides could be more innovative and attractive to patients. Moreover, with fewer side effects, this field might be recognized as a new field of complementary medicine in alleviating some forms of physical and mental distress. Essential oils are important assets in aromatherapy, cosmetics, and food preservatives. The use of essential oils as an aromatherapeutic agent is widespread. Detailed reports on the effects of EOs in aromatherapy and their pharmacological effects are required to uncover its complete biological mechanism. This review is about the evolution of research related to phytoncides containing EOs in treating various ailments and provides comprehensive details from complementary medicine.
Collapse
|
12
|
Aykac A, Teralı K, Özbeyli D, Ede S, Albayrak Ö, Başer KHC, Şener G. A multi-parameter evaluation of the neuroprotective and cognitive-enhancing effects of Origanum onites L. (Turkish Oregano) essential oil on scopolamine-induced amnestic rats. Metab Brain Dis 2022; 37:1041-1055. [PMID: 35201555 DOI: 10.1007/s11011-022-00933-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions (dementia) and represents a growing public health concern since the population in the age groups at risk is increasing. The latter raises an urgent need to translate research findings in the basic brain and behavioral sciences into anti-AD drugs and disease-modifying therapies. Origanum onites (L.), also called Turkish oregano, is a perennial and herbaceous plant species grown for centuries for medicinal, cosmetic and culinary purposes. This is the first study to investigate the putative neuroprotective and pro-cognitive activities of O. onites essential oil (OOEO) against scopolamine-induced amnesia of AD-type in Wistar albino rats. The results of behavioral tests revealed that OOEO administration was able to significantly alleviate learning and memory impairments induced by scopolamine in vivo. The observed effects could be attributed to inhibition of acetylcholinesterase activity, attenuation of oxidative stress and prevention of neuronal apoptosis in the hippocampus and frontal cortex of AD rats. Modulation of pro-inflammatory enzymes, including cyclooxygenase-2, inducible nitric oxide synthase and myeloperoxidase, might further contribute to the neuroprotective properties of OEOO, as predicted by our in silico models. These findings offer novel insights into the therapeutic potential of OEOO in patients with AD.
Collapse
Affiliation(s)
- Asli Aykac
- Department of Biophysics, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus.
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Kyrenia, Cyprus
| | - Dilek Özbeyli
- Department of Medical Pathology Techniques, Vocational School of Health Services, Marmara University, Istanbul, Turkey
| | - Seren Ede
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Ömercan Albayrak
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kemal Hüsnü Can Başer
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| | - Göksel Şener
- Department of Pharmacology, Fenerbahce University, Istanbul, Turkey
| |
Collapse
|
13
|
Ameliorative effect of Allium atroviolaceum on sperm quality in cyclophosphamide-treated mice. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cyclophosphamide (CP) is an anti-neoplastic alkylating agent that is extensively used in different chemotherapy regimens. Adverse effects on the reproductive system, especially spermatogenesis, are one of the most important side effects of this drug. It is medically essential to use complementary and alternative drugs. Herbal drugs have long been used as a complementary treatment. Our purpose was to study the effect of hydroalcoholic Allium atroviolaceum L. extract on spermatogenesis in CP-treated mice.
Results
CP affected a significant decrease in sperm count, motility, viability, and morphology. Sperm count was significantly higher in the all extract groups than in the group of control (p<0.001) and CP group (p<0.001, p<0.01). Sperm motility was significantly greater in the extract (100 and 200mg/kg) groups than in the group of control (p<0.05 and <0.001). Sperm immotility and rotational movement were significantly higher in the CP group than in the CP+extract groups (p<0.001). The sperm viability was significantly greater in the CP+extract (200mg/kg) group than in the CP group (p<0.001). The number of headless sperm, sperm with initial tail, with coiled tail, and sperm with curved body, was significantly lower in the CP+extract (200mg/kg) group than in the CP group (p<0.001).
Conclusion
A. atroviolaceum extract treatment significantly improved CP-induced reproductive toxicity.
Collapse
|
14
|
Mandour DA, Bendary MA, Alsemeh AE. Histological and imunohistochemical alterations of hippocampus and prefrontal cortex in a rat model of Alzheimer like-disease with a preferential role of the flavonoid "hesperidin". J Mol Histol 2021; 52:1043-1065. [PMID: 34170456 DOI: 10.1007/s10735-021-09998-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a chronic age-related neurodegenerative disease characterized by degeneration of the central cholinergic neurons, inflammation and oxidative stress in the basal forebrain, prefrontal cortex and hippocampus. Hesperidin (Hesp) is one of the flavonoids havinganti-inflammatory and anti-oxidative properties in some neurodegerative brain lesions. To investigate the possible neuroprotective role of Hespin an AD-like rat model induced experimentally by Scopolamine (Scop). Forty adult male Sprague Dawley rats were randomly allocated into four groups. Group I-(Control), group II-(Hesp) (supplemented orally with 100 mg/kg Hesp for 28 days), group III-(AD) (injected i.p with 1 mg/kg Scop for 9 days) and group IV-(Hesp/AD). At the end of the experiment, behavioral (Y-maze test) and biochemical analysis were carried out along with histological, immunohistochemical and morphometric studies of the hippocampus and prefrontal cortex. AD rats displayed memory impairment in the behavioural paradigm with a concomitant increase of serum TNF-α and IL-1β, while IL-10 decreased significantly. Also, there was a rise of amyloid beta-42 (Aβ-42), acetylcholinesterase (AChE) activity and malondialdehyde (MDA) together with a decrease of reduced glutathione (GSH) in hippocampal and prefrontal homogenate. In addition, sections of the hippocampus and prefrontal cortex revealed obvious histopathological changes, overexpression of p-Tau protein and glial fibrillary acidic protein (GFAP) with a decrease in the expression of synaptophysin (SYN). Contradictorily, pre-treatment with Hesp offset the spatial memory deficits, redox imbalance, Aβ-42 and AChE over activity as well as preserved the histological architecture and attenuated the raised p-Tau protein and GFAP while upregulated SYN immuoreactivity of AD rats. Collectively, our results highlight the potential mitigating role of Hesp in AD-like state in rats and this may presumably raise the possibility of its future implementation as a prophylactic remedy against AD in humans.
Collapse
Affiliation(s)
- Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - M A Bendary
- Department of Physiology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Amira E Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
15
|
Sajjad Haider M, Ashraf W, Javaid S, Fawad Rasool M, Muhammad Abdur Rahman H, Saleem H, Muhammad Muneeb Anjum S, Siddique F, Morales-Bayuelo A, Kaya S, Alqahtani F, Alasmari F, Imran I. Chemical characterization and evaluation of the neuroprotective potential of Indigofera sessiliflora through in-silico studies and behavioral tests in scopolamine-induced memory compromised rats. Saudi J Biol Sci 2021; 28:4384-4398. [PMID: 34354423 PMCID: PMC8325032 DOI: 10.1016/j.sjbs.2021.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/23/2023] Open
Abstract
In the current study, we investigated the phytochemical and neuropharmacological potential of Indigofera sessiliflora, an indigenous least characterized plant widely distributed in deserted areas of Pakistan. The crude extract of the whole plant Indigofera sessiliflora (IS.CR) was preliminary tested in-vitro for the existence of polyphenol content, antioxidant and anticholinesterase potential followed by detailed chemical characterization through UHPLC-MS. Rats administered with different doses of IS.CR (100-300 mg/kg) for the duration of 4-weeks were behaviorally tested for anxiety and cognition followed by biochemical evaluation of dissected brain. The in-silico studies were employed to predict the blood-brain barrier crossing tendencies of secondary metabolites with the elucidation of the target binding site. The in-vitro assays revealed ample phenols and flavonoids content in IS.CR with adequate anti-oxidant and anticholinesterase potential. The dose-dependent anxiolytic potential of IS.CR was demonstrated in open field (OFT), light/dark (L/D) and elevated plus maze (EPM) tests as animals spent more time in open, illuminated and elevated zones (P < 0.05). In the behavioral tests for learning/memory, the IS.CR reversed the scopolamine-induced cognitive deficits, as animals showed better (P < 0.05) spontaneous alternation and discrimination index in y-maze and novel object recognition (NOR) tests. Similarly, as compared to amnesic rats, the step-through latencies were increased (P < 0.05) and escape latencies were decreased (P < 0.05) in passive avoidance (PAT) and Morris water maze (MWM) tests, respectively. Biochemical analysis of rat brains showed significant reduction in malondialdehyde and acetylcholinesterase levels, alongwith preservation of glutathione peroxidase and superoxide dismutase activity. The docking studies further portrayed a possible interaction of detected phytoconstituents with acetylcholinesterase target. The results of the study show valuable therapeutic potential of phytoconstituents present in IS.CR to correct the neurological disarrays which might be through antioxidant activity or via modulation of GABAergic and cholinergic systems by artocommunol, 1,9-dideoxyforskolin and 6E,9E-octadecadienoic acid.
Collapse
Affiliation(s)
- Muhammad Sajjad Haider
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Hammad Saleem
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Alejandro Morales-Bayuelo
- Facultad de Ingenierías, Centro de Investigación de Procesos del Tecnologico Comfenalco, (CIPTEC), Programa de Ingeniería Industrial, Fundacion Universitaria Tecnologico, Comfenalco -Cartagena, Bolívar, Colombia
| | - Savas Kaya
- Sivas Cumhuriyet University Health Services Vocational School, Department of Pharmacy, 8140 Sivas, Turkey
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
16
|
Raghavan S, Gurunathan J. Citrus species – a golden treasure box of metabolites that is beneficial against disorders. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Sharma V, Firdaus Z, Rai H, Nayak PK, Singh TD, Gautam DNS. Consumption of Ashtanga Ghrita (clarified cow butter added with herb extracts) improves cognitive dysfunction induced by scopolamine in rats via regulation of acetylcholinesterase activity and oxidative stress. Drug Metab Pers Ther 2021; 36:337-350. [PMID: 34109771 DOI: 10.1515/dmpt-2021-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Ashtanga Ghrita (AG), an Indian traditional formulation, has been used to promote neuropharmacological activities. AG is made up of clarified cow butter (ghee) and eight different herbs. METHODS To test whether scopolamine (SCP)-induced dementia and brain oxidative stress can be counteracted by AG, rats were separated into five groups (n=6/group): group one control, group two SCP (1 mg/kg b.w., i.p.) treated and group three to five were co-treated with different doses of AG (1.25, 2.5 and 5 g/kg b.w., orally) and SCP. After the treatment regimen, behavioral (Y-maze test) and brain biochemical changes were measured in all groups. RESULTS Microbial load and heavy metals were found within permissible limits. Results from attenuated total reflection Fourier-transform infrared spectroscopy demonstrated the complexation/interaction of herbal phytoconstituents with the functional groups of Ghrita. Preliminary phytochemical analysis of AG exhibited the occurrence of flavonoids, phenolics, glycosides, steroids, triterpenes, tannins, and amino acids. Findings of the experimental study exhibited that AG significantly protected the rats from SCP-induced behavioral dysfunction and brain biochemical alterations. CONCLUSIONS This study demonstrates that AG protects the brain from SCP-induced dementia by promoting brain antioxidant activity and thus could be a promising drug for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Zeba Firdaus
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Himanshu Rai
- Department of Science and Technology-CIMS, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
18
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
19
|
Aourabi S, Driouch M, Sfaira M, Mahjoubi F, Hammouti B, Verma C, Ebenso EE, Guo L. Phenolic fraction of Ammi visnaga extract as environmentally friendly antioxidant and corrosion inhibitor for mild steel in acidic medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114950] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Khan M, Rauf W, Habib FE, Rahman M, Iqbal M. Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry. World J Hepatol 2020; 12:976-992. [PMID: 33312423 PMCID: PMC7701965 DOI: 10.4254/wjh.v12.i11.976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis C virus genotype 3a (HCV G3a) is highly prevalent in Pakistan. Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV, medicinal natural products of potent antiviral activity should be screened for the cost-effective treatment of the disease. Furthermore, from natural products, active compounds against vital HCV proteins like non-structural protein 3 (NS3) protease could be identified to prevent viral proliferation in the host. AIM To develop cost-effective HCV genotype 3a NS3 protease inhibitors from citrus fruit extracts. METHODS Full-length NS3 without co-factor non-structural protein 4A (NS4A) and codon optimized NS3 protease in fusion with NS4A were expressed in Escherichia coli. The expressed protein was purified by metal ion affinity chromatography and gel filtration. Citrus fruit extracts were screened using fluorescence resonance energy transfer (FRET) assay against the protease and polyphenols were identified as potential inhibitors using electrospray ionization-mass spectrometry (MS)/MS technique. Among different polyphenols, highly potent compounds were screened using molecular modeling approaches and consequently the most active compound was further evaluated against HCV NS4A-NS3 protease domain using FRET assay. RESULTS NS4A fused with NS3 protease domain gene was overexpressed and the purified protein yield was high in comparison to the lower yield of the full-length NS3 protein. Furthermore, in enzyme kinetic studies, NS4A fused with NS3 protease proved to be functionally active compared to full-length NS3. So it was concluded that co-factor NS4A fusion is essential for the purification of functionally active protease. FRET assay was developed and validated by the half maximal inhibitory concentration (IC50) values of commercially available inhibitors. Screening of citrus fruit extracts against the native purified fused NS4A-NS3 protease domain showed that the grapefruit mesocarp extract exhibits the highest percentage inhibition 91% of protease activity. Among the compounds identified by LCMS analysis, hesperidin showed strong binding affinity with the protease catalytic triad having S-score value of -10.98. CONCLUSION Fused NS4A-NS3 protease is functionally more active, which is effectively inhibited by hesperidin from the grapefruit mesocarp extract with an IC50 value of 23.32 µmol/L.
Collapse
Affiliation(s)
- Mahim Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Waqar Rauf
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Fazal-E- Habib
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Moazur Rahman
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan.
| |
Collapse
|
21
|
Capatina L, Todirascu-Ciornea E, Napoli EM, Ruberto G, Hritcu L, Dumitru G. Thymus vulgaris Essential Oil Protects Zebrafish against Cognitive Dysfunction by Regulating Cholinergic and Antioxidants Systems. Antioxidants (Basel) 2020; 9:antiox9111083. [PMID: 33158153 PMCID: PMC7694219 DOI: 10.3390/antiox9111083] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Thymus vulgaris L. is an aromatic herb used for medicinal purposes such as antimicrobial, spasmolytic, antioxidant, anti-inflammatory, antinociceptive, antitumor, and may have beneficial effects in the treatment of Alzheimer’s disease. The present study aimed to investigate whether Thymus vulgaris L. essential oil enhances cognitive function via the action on cholinergic neurons using scopolamine (Sco)-induced zebrafish (Danio rerio) model of memory impairments. Thymus vulgaris L. essential oil (TEO, 25, 150, and 300 µL/L) was administered by immersion to zebrafish once daily for 13 days, whereas memory impairment was induced by Sco (100 μM), a muscarinic receptor antagonist, delivered 30 min before behavioral tests. Spatial memory was assessed using the Y-maze test and novel object recognition test (NOR). Anxiety and depression were measured in the novel tank diving test (NTT). Gas Chromatograph-Mass Spectrometry (GC-MS) analysis was used to study the phytochemical composition of TEO. Acetylcholinesterase (AChE) activity and oxidative stress response in the brain of zebrafish were determined. TEO ameliorated Sco-induced increasing of AChE activity, amnesia, anxiety, and reduced the brain antioxidant capacity. These results suggest that TEO may have preventive and/or therapeutic potentials in the management of memory deficits and brain oxidative stress in zebrafish with amnesia.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
- Correspondence: ; Tel.: +40-232-201-666
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| |
Collapse
|
22
|
Lee J, Kim YS, Kim E, Kim Y, Kim Y. Curcumin and hesperetin attenuate D-galactose-induced brain senescence in vitro and in vivo. Nutr Res Pract 2020; 14:438-452. [PMID: 33029285 PMCID: PMC7520561 DOI: 10.4162/nrp.2020.14.5.438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/OBJECTIVES Brain senescence causes cognitive impairment and neurodegeneration. It has also been demonstrated that curcumin (Cur) and hesperetin (Hes), both antioxidant polyphenolic compounds, mediate anti-aging and neuroprotective effects. Therefore, the objective of this study was to investigate whether Cur, Hes, and/or their combination exert anti-aging effects in D-galactose (Dg)-induced aged neuronal cells and rats. MATERIALS/METHODS SH-SY5Y cells differentiated in response to retinoic acid were treated with Cur (1 μM), Hes (1 μM), or a combination of both, followed by 300 mM Dg. Neuronal loss was subsequently evaluated by measuring average neurite length and analyzing expression of β-tubulin III, phosphorylated extracellular signal-regulated kinases, and neurofilament heavy polypeptide. Cellular senescence and related proteins, p16 and p21, were also investigated, including their regulation of antioxidant enzymes. In vivo, brain aging was induced by injecting 250 mg/kg body weight (b.w.) Dg. The effects of supplementing this model with 50 mg/kg b.w. Cur, 50 mg/kg b.w. Hes, or a combination of both for 3 months were subsequently evaluated. Brain aging was examined with a step-through passive avoidance test and apoptosis markers were analyzed in brain cortex tissues. RESULTS Cur, Hes, and their combination improved neuron length and cellular senescence by decreasing the number of β-gal stained cells, down-regulated expression of p16 and p21, and up-regulated expression of antioxidant enzymes, including superoxide dismutase 1, glutathione peroxidase 1, and catalase. Administration of Cur, Hes, or their combination also tended to ameliorate cognitive impairment and suppress apoptosis in the cerebral cortex by down-regulating Bax and poly (ADP-ribose) polymerase expression and increasing Bcl-2 expression. CONCLUSIONS Cur and Hes appear to attenuate Dg-induced brain aging via regulation of antioxidant enzymes and apoptosis. These results suggest that Cur and Hes may mediate neuroprotective effects in the aging process, and further study of these antioxidant polyphenolic compounds is warranted.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yoo Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
23
|
Skrajda-Brdak M, Dąbrowski G, Konopka I. Edible flowers, a source of valuable phytonutrients and their pro-healthy effects – A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Samad N, Ali A, Yasmin F, Ullah R, Bari A. Behavioral and Biochemical Effects of Mukia madrespatana Following Single Immobilization Stress on Rats. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E350. [PMID: 32674473 PMCID: PMC7404485 DOI: 10.3390/medicina56070350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Elevated oxidative stress has been shown to play an important role in the diagnosis and prognosis of stress and memory-related complications. Mukia madrespatana (M. madrespatana) has been reported to have various biological and antioxidant properties. We intended to evaluate the effect of M. madrespatana peel on single immobilization stress-induced behavioral deficits and memory changes in rats. Materials and Methods: M. madrespatana peel (2000 mg/kg/day, orally) was administered to control and immobilize stressed animals for 4 weeks. Anxiolytic, antidepressant, and memory-enhancing effects of M. madrespatana were observed in both unstressed and stressed animals. Results: Lipid peroxidation was decreased while antioxidant enzymes were increased in both unstressed and stressed animals. Acetylcholine level was increased while acetylcholinesterase activity was decreased in both M. madrespatana treated unstressed and stressed rats. There was also an improvement in memory function. Serotonin neurotransmission was also regulated in M. madrespatana treated rats following immobilization stress with anxiolytic and anti-depressive effects. Conclusion: Based on the current study, it is suggested that M. madrespatana has strong antioxidant properties and may be beneficial as dietary supplementation in stress and memory-related conditions.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Amna Ali
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Farzana Yasmin
- Department of Biomedical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan;
- Department of Food Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Ahmed Bari
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
25
|
Farag MA, Abib B, Ayad L, Khattab AR. Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chem 2020; 331:127306. [PMID: 32593794 DOI: 10.1016/j.foodchem.2020.127306] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Sweet and bitter oranges are two of the most commercially-important fruit with a total world production of 75.4 Mt, well-recognized for their unique sensory characters in addition to multiple nutritive and therapeutic attributes due to their highly-valued bioactive ingredients. Hence, their differential qualitative/quantitative phytochemical make-ups are presented for better utilization as therapeutic agents. Sweet orange exhibits therapeutic applications as being effective anti-diabetic, anti-obesity, and hypocholesterolemic agents. Whereas, for anti-osteoporotic products and intestinal dysbiosis treatment, bitter orange is more preferred. Moreover, the review recapitulates on different valorization practices of citrus bio-wastes and utilization of their bioactives as therapeutic agents and in functional food industry. Sweet orange waste functions as a fat replacer and preservative to increase food shelf life with better organoleptic attributes than bitter orange. The detailed action mechanism and safety of Citrus bioactives, as well as processing technologies to further improve its effects are posed as future research perspectives.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| | - Bishoy Abib
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Laila Ayad
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| |
Collapse
|
26
|
Yu L, Chen M, Liu J, Huang X, He W, Qing Z, Zeng J. Systematic Detection and Identification of Bioactive Ingredients from Citrus aurantium L. var. amara Using HPLC-Q-TOF-MS Combined with a Screening Method. Molecules 2020; 25:E357. [PMID: 31952271 PMCID: PMC7024317 DOI: 10.3390/molecules25020357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/05/2023] Open
Abstract
Bitter orange, Citrus aurantium L. var. amara (CAVA), is an important crop and its flowers and fruits are widely used in China as a food spice, as well as in traditional Chinese medicine, due to its health-promoting properties. The secondary metabolites that are present in plant-derived foods or medicines are, in part, responsible for the health benefits and desirable flavor profiles. Nevertheless, detailed information about the bioactive ingredients in CAVA is scarce. Therefore, this study was aimed at exploring the phytochemicals of CAVA by high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Here, a systematic screening method combined with HPLC-Q-TOF-MS was presented. This technique was used to systematically screen metabolites, primarily from the complex matrix of CAVA, and to identify these compounds by their exact masses, characteristic fragment ions, and fragmentation behaviors. A total of 295 metabolites were screened by the screening method and 89 phytochemicals were identified in the flowers, fruits, roots, leaves, and branches of CAVA. For the first time, 69 phytochemicals (flavonoids, alkaloids, terpenoids, etc.) were reported from CAVA. The results highlight the importance of CAVA as a source of secondary metabolites in the food, medicine, and nutraceutical industries.
Collapse
Affiliation(s)
- Liuyi Yu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine & College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.Y.); (M.C.); (J.L.); (X.H.)
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Miaofen Chen
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine & College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.Y.); (M.C.); (J.L.); (X.H.)
| | - Jinghong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine & College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.Y.); (M.C.); (J.L.); (X.H.)
| | - Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine & College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.Y.); (M.C.); (J.L.); (X.H.)
| | - Wei He
- Green Melody Bio-engineering Group Company Limited, Changsha 410329, China;
| | - Zhixing Qing
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine & College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.Y.); (M.C.); (J.L.); (X.H.)
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine & College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.Y.); (M.C.); (J.L.); (X.H.)
| |
Collapse
|
27
|
C.T S, M D, A.R S, K.R L, Balachandran I. Characterization of coumarins from Ipomoea mauritiana Jacq by LC-APCI-MS/MS analysis and evaluation of its anti-amnesic activity. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1186/s43088-019-0022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ipomoea mauritiana is one of the source plants of Vidari, an Ayurvedic drug used as Medhyarasayana (rejuvenating drug). In this current study, coumarins were separated from tuberous root of I. mauritiana and characterization of the coumarin fraction was done by LC-MS/MS analysis by atmospheric pressure chemical ionization method. Anti-amnesic activity was evaluated against scopolamine induced amnesia in Wistar rats.
Results
Mass spectroscopic characterization of coumarin fraction directed to the tentative identification of coumarins such as 7-hydroxy-6-methoxy coumarin, 7-hydroxycoumarin, 5-methoxy-6,7-furanocoumarin, 5,7-dimethoxycoumarin, and 6-hydroxy-7-methoxy-4-phenylcoumarin. Aqueous extract of I. mauritiana at a dose of 100 and 200 mg/kg showed significant anti-amnesic activity against scopolamine-induced changes in step through latency and working memory errors.
Conclusion
The findings of the study showed that I. mauritiana is a rich source of coumarins and possessed significant anti-amnesic activity. The study concluded the scientific basis of using I. mauritiana as rejuvenating drug in Ayurveda.
Graphical abstract
Collapse
|
28
|
Sohn E, Lim HS, Kim YJ, Kim BY, Jeong SJ. Annona atemoya Leaf Extract Improves Scopolamine-Induced Memory Impairment by Preventing Hippocampal Cholinergic Dysfunction and Neuronal Cell Death. Int J Mol Sci 2019; 20:ijms20143538. [PMID: 31331043 PMCID: PMC6679418 DOI: 10.3390/ijms20143538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
We explored the preventative effect of Annona atemoya leaf (AAL) extract on memory impairment in a scopolamine (SCO)-induced cognitive deficit mouse model. Fifty-eight mice were randomly divided into six groups and orally treated with AAL extract at (50, 100, or 200 mg/kg) or tacrine (TAC) for 21 days. Memory deficits were induced by a single injection of 1 mg/kg SCO (i.p.) and memory improvement was evaluated by using behavioral tests such as the passive avoidance task and Y-maze test. The levels of cholinergic functions, neuronal cell death, reactive oxygen species, and protein expression related to hippocampal neurogenesis were examined by immunohistochemical staining and western blotting. The administration of AAL extract improved memory impairment according to increased spontaneous alternation in the Y-maze and step-through latency in passive avoidance test. AAL extract treatment increased the acetylcholine content, choline acetyltransferase, and acetylcholinesterase activity in the hippocampus of SCO-stimulated mice. In addition, AAL extract attenuated oxidative stress-induced neuronal cell death of hippocampal tissue. In terms of the regulatory mechanisms, AAL extract treatment reversed the SCO-induced decreases in the expression of Akt, phosphorylation of cAMP response element binding protein, and brain-derived neurotrophic factor. Our findings demonstrate that AAL extract has the ability to alleviate memory impairment through preventative effect on cholinergic system dysfunction and oxidative stress-related neuronal cell death in a SCO-induced memory deficit animal model. Overall, AAL may be a promising plant resource for the managing memory dysfunction due to neurodegenerative diseases, such as Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
29
|
Elaeagnus glabra f. oxyphylla Attenuates Scopolamine-Induced Learning and Memory Impairments in Mice by Improving Cholinergic Transmission via Activation of CREB/NGF Signaling. Nutrients 2019; 11:nu11061205. [PMID: 31141948 PMCID: PMC6627942 DOI: 10.3390/nu11061205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/11/2023] Open
Abstract
We aimed to investigate the therapeutic effects of an Elaeagnus glabra f. oxyphylla (EGFO) ethanol extract in mice with scopolamine-induced memory dysfunction. Fifty male mice were randomly divided into a normal control group, a scopolamine-treated group, a scopolamine and EGFO extract-treated group, and a scopolamine and tacrine-treated group. EGFO (50 or 100 mg/kg/day) was received for 21 days. Step-through passive avoidance and Y-maze tests were performed to examine the effects of treatment on learning and memory impairments. Acetylcholine (Ach) levels and acetylcholinesterase (AchE) activity were measured via an enzyme-linked immunosorbent assay (ELISA). Levels of choline acetyltransferase (ChAT), nerve growth factor (NGF), cAMP response element-binding protein (CREB), and apoptosis-related protein expression were determined via Western blot analysis. EGFO pretreatment significantly attenuated scopolamine-induced memory impairments, relative to findings observed in the scopolamine-treated group. Levels of cholinergic factors in the brain tissues were markedly attenuated in the scopolamine-treated group. EGFO treatment also attenuated neural apoptosis in scopolamine-treated mice by decreasing the expression of apoptosis-related proteins such as Bax, Bcl2, cleaved caspase-3, and TUNEL staining. These results suggest that EGFO improves memory and cognition in a mouse model of memory impairment by restoring cholinergic and anti-apoptotic activity, possibly via activation of CREB/NGF signaling.
Collapse
|
30
|
Cognitive-enhancing and ameliorative effects of acanthoside B in a scopolamine-induced amnesic mouse model through regulation of oxidative/inflammatory/cholinergic systems and activation of the TrkB/CREB/BDNF pathway. Food Chem Toxicol 2019; 129:444-457. [PMID: 31077737 DOI: 10.1016/j.fct.2019.04.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022]
Abstract
Recently, our research team reported the anti-amnesic potential of desalted-hydroethanolic extracts of Salicornia europaea L. (SE-EE). In this study, we performed bioactivity-guided isolation and identification of Acanthoside B (Aca.B), from SE-EE, as the potential bioactive candidate and examined anti-amnesic activity with its potential mechanism of action using an in vivo model. S7-L3-3 purified from SE-EE showed enhanced in vitro acetylcholinesterase (AChE) inhibitory activity. The isolated S7-L3-3 was identified and characterized as Aca.B using varied spectral analyses, i.e., Nuclear magnetic resonance (NMR), Ultraviolet-visible (UV-Vis), and Electrospray ionization-mass spectrometry (ESI-MS). In the in vitro studies, Aca.B exhibited negligible toxicity and showed a dose-dependent nitric oxide inhibitory potential in Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. In the in vivo studies, the oral administration of Aca.B to mice showed enhanced bioavailability and dose-dependent repression of the behavioral/cognitive impairment by regulating the cholinergic function, restoring the antioxidant status, attenuating the inflammatory cytokines/mediators and actively enriching neurotropic proteins in the hippocampal regions of the scopolamine-administered mice.
Collapse
|
31
|
Omidi-Ardali H, Lorigooini Z, Soltani A, Balali-Dehkordi S, Amini-Khoei H. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: protective effect of the trigonelline. Inflammopharmacology 2019; 27:1265-1273. [PMID: 30924005 DOI: 10.1007/s10787-019-00581-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Pathogenesis of the inflammatory bowel disease (IBD) involves the combination of immunological and inflammatory factors. IBD is associated with several extra-intestinal manifestations. The exact underlying bridge between the probable cardiac diseases in IBD patients is undetermined. Trigonelline is an alkaloid with several therapeutic potential properties. In this study, we aimed to assess the probable underlying mechanisms of this comorbidity as well as protective effect of trigonelline focusing inflammatory response and oxidative state in mouse model of colitis. Dextran sodium sulfate (DSS) was used for induction of colitis in mice. Trigonelline (10, 50 and 100 mg/kg) was administrated via intraperitoneal rout (i.p.) for 14 continuous days. Heart, intestine and serum samples were taken for assessment of total antioxidant capacity, malondialdehyde (MDA), gene expressions of inflammatory markers including tumor necrosis factor alpha (Tnf-α), interleukin 1-beta (Il/1β), toll- like receptor 4 (Tlr4) as well as for evaluation of histopathological alterations. Results demonstrated that trigonelline effectively attenuated the cellular/molecular and histopathological adverse effects of colitis in the intestine and heart tissues. In this regards, we found that trigonelline decreased the MDA level, attenuated the expression of Tnf-α, Il/1β and, Tlr4 as well as modulated the histopathological alterations in the intestine. Furthermore, trigonelline increased the antioxidant capacity in the related experimental groups. We concluded that IBD (colitis) is associated with comorbid cellular/molecular modifications in the heart and for the first time, we found that trigonelline has potential therapeutic effects (at least partially) to attenuate the cardiac manifestations of the colitis.
Collapse
Affiliation(s)
- Hossein Omidi-Ardali
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Balali-Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
32
|
Bora NS, Mazumder B, Mandal S, Bhutia YD, Das S, Karmakar S, Chattopadhyay P, Dwivedi SK. Protective effect of a topical sunscreen formulation fortified with melatonin against UV-induced photodermatitis: an immunomodulatory effect via NF-κB suppression. Immunopharmacol Immunotoxicol 2019; 41:130-139. [PMID: 30741582 DOI: 10.1080/08923973.2019.1566358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Melatonin and pumpkin seed oil, along with US FDA approved UV filters were incorporated into a formulation for enhancement of UV protection by exerting an antioxidant effect. The objective of this study was to assess the protective effect of this formulation against ultraviolet (UV) radiation-induced photo dermatitis in rats, which is an established model to study the aetiopathogenic mechanisms in psoriasis vulgaris, as the former exhibits the same features to those of clinical psoriasis vulgaris in humans. Materials and methods: The animals were segregated into five groups (6/group) and all received their respective formulations dermally prior to chronic UV irradiation for 28 days. The test, placebo, and standard groups; received the test, placebo, and standard formulations respectively; whereas the positive control group received only UV radiation. A normal control group was also maintained. Disease and treatment status were analyzed using various techniques by euthanizing the rats after 28 days. Results: The test formulation was able to ameliorate the UV-induced increase in skin fold, epidermal thickness, and skin edema; inhibit the reduction of hydroxyproline content and incidence of LPO within the skin tissues of exposed animals. The formulation was also able to inhibit the release of proinflammatory cytokines; IFN-γ, IL-1β, IL-6, and TNF-α; and upregulation of NF-κB and COX-2 genes caused by chronic UV exposure. Conclusion: It can be stated that melatonin included in the newly formulated sunscreen was able to inhibit the induction of photodermatitis via immunoregulation of inflammatory cytokines along with NF-κB and COX-2 genes.
Collapse
Affiliation(s)
- Nilutpal Sharma Bora
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India.,b Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Bhaskar Mazumder
- b Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Santa Mandal
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India.,c School of Pharmaceutical Sciences , IFTM University , Moradabad , India
| | - Yangchen D Bhutia
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| | - Sanghita Das
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| | - Sanjeev Karmakar
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| | | | - Sanjai K Dwivedi
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| |
Collapse
|
33
|
Patel SS, Raghuwanshi R, Masood M, Acharya A, Jain SK. Medicinal plants with acetylcholinesterase inhibitory activity. Rev Neurosci 2018; 29:491-529. [PMID: 29303784 DOI: 10.1515/revneuro-2017-0054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/23/2017] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disease, is characterised by hypofunction of acetylcholine (ACh) neurotransmitter in the distinct region of brain. Acetylcholinesterase (AChE) is an enzyme that metabolises the ACh at synaptic cleft resulting in Alzheimer's disease. Medicinal plants have been used to treat numerous ailments and improve human health from ancient time. A traditional system of medicine is long recognised for its effective management of neurological disorders. The present review confers the scope of some common medicinal plants with a special focus on AChE-mediated central nervous system complications especially Alzheimer's disease. Literature suggests that medicinal plants reduce neuronal dysfunctions by reducing AChE activity in different brain regions. In some instances, activation of AChE activity by medicinal plants also showed therapeutic potential. In conclusion, medicinal plants have a wide scope and possess therapeutic potential to efficiently manage neurological disorders associated with AChE dysregulation.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Misha Masood
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ashish Acharya
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Surendra Kumar Jain
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| |
Collapse
|
34
|
Ren D, Zhao F, Liu C, Wang J, Guo Y, Liu J, Min W. Antioxidant hydrolyzed peptides from Manchurian walnut (Juglans mandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5142-5152. [PMID: 29652442 DOI: 10.1002/jsfa.9060] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Walnut protein, which is obtained as a by-product of oil expression, has not been used efficiently. Although walnuts are beneficial for cognitive functioning, the potential of their protein composition in strengthening learning and memory functions remains unknown. In this study, the inhibition of memory impairment by the Manchurian walnut hydrolyzed peptide (MWHP) was evaluated. RESULTS Small-molecular-weight MWHP (<3 kDa) achieved the optimal antioxidative activity. Therefore, MWHP (<3 kDa) was subjected to the following mice trials to evaluate its attenuation effect on memory impairment. In the Morris water maze test, MWHP shortened the total path for searching the platform, reduced the escape latency, and increased the dwelling distance and time in the coverage zone. MWHP also prolonged the latency and diminished errors in the passive avoidance response tests. These behavioral tests demonstrated that MWHP could inhibit scopolamine-induced memory impairment. MWHP improved memory by reducing oxidative stress, inhibiting apoptosis, regulating neurotransmitter functions, maintaining hippocampal CA3 pyramidal neurons, and increasing calmodulin-dependent protein kinase II levels in brain tissues. CONCLUSION Experimental results proved that MWHP exhibits potential in improving memory and should be used to develop novel functional food. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, Jilin, China
| | - Fanrui Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, Jilin, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, Jilin, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, Jilin, China
| | - Yong Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, Jilin, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, Jilin, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, Jilin, China
| |
Collapse
|
35
|
Dosoky NS, Setzer WN. Biological Activities and Safety of Citrus spp. Essential Oils. Int J Mol Sci 2018; 19:E1966. [PMID: 29976894 PMCID: PMC6073409 DOI: 10.3390/ijms19071966] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Citrus fruits have been a commercially important crop for thousands of years. In addition, Citrus essential oils are valuable in the perfume, food, and beverage industries, and have also enjoyed use as aromatherapy and medicinal agents. This review summarizes the important biological activities and safety considerations of the essential oils of sweet orange (Citrus sinensis), bitter orange (Citrus aurantium), neroli (Citrus aurantium), orange petitgrain (Citrus aurantium), mandarin (Citrus reticulata), lemon (Citrus limon), lime (Citrus aurantifolia), grapefruit (Citrus × paradisi), bergamot (Citrus bergamia), Yuzu (Citrus junos), and kumquat (Citrus japonica).
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
36
|
Investigation of amyloid formation inhibition of chemically and biogenically from Citrus aurantium L. blossoms and Rose damascena oils of gold nanoparticles: Toxicity evaluation in rat pheochromocytoma PC12 cells. Int J Biol Macromol 2018; 112:703-711. [DOI: 10.1016/j.ijbiomac.2018.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
|
37
|
Yadav E, Singh D, Yadav P, Verma A. Comparative Evaluation of Prosopis cineraria (L.) Druce and Its ZnO Nanoparticles on Scopolamine Induced Amnesia. Front Pharmacol 2018; 9:549. [PMID: 29875670 PMCID: PMC5974226 DOI: 10.3389/fphar.2018.00549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Over recent years, utilization of green synthesized nanomaterials has been widely growing on human body because of its special properties. With the increasing acceptance of nanoparticle approach for various clinical treatments, the biosafety and toxicological effects on the vital organs such as central nervous system, have received more concern. Main focus of this study was to evaluate acute exposure of n-butanol fraction of Prosopis cineraria (L.) Druce hydroethanolic extract (BuPC) and green synthesized zinc oxide nanoparticles of BuPC (ZnOPC) on spatial cognition behavior, and to assess underlying mechanism by estimation of enzymatic antioxidative status along with acetylcholinesterase (AChE) activity in mice brain. Strongest in vitro antioxidant and AChE inhibitory activity exhibiting fraction, BuPC, was examined for inhibition kinetic study by Lineweaver-Burk and Dixon plots. BuPC was further used for fabrication ZnOPC and characterized by UV-visible spectroscopy, Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X ray (EDX), and Dynamic Light Scattering (DLS) analysis. Old male swiss albino mice were randomly divided into seven groups and treated for 21 days. Subsequently spatial memory was determined by two behavioral models [Elevated plus maze (EPM) and Hebbs William maze (HWM)] and supernatant of brain homogenate was analyzed for enzymatic antioxidant level and AChE inhibitory activity. Zinc content of blood plasma and brain was estimated. Results showed prolonged transfer latency (TL) and time taken to reach reward chamber (TRC) by scopolamine was not ameliorated by the ZnOPC group, whereas BuPC group showed significant reduction in scopolamine induced increase in TL and TRC compared to control and scopolamine treated groups. ZnOPC alleviated enzymatic antioxidant activity and AChE as compared to donepezil and BuPC treated groups. Study concludes that ZnOPC attenuated spatial learning and memory by increase in oxidative stress and decrease in AChE activity at both dose levels. Our results suggest that BuPC exhibited a strong neuroprotective effect on cognitive deficit mice and it may be employed as a strong substance for the treatment of dementia whereas the green synthesized ZnOPC was not proficient to reverse the memory impairment induced by scopolamine.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| | - Deepika Singh
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| | - Pankajkumar Yadav
- Pharmaceutics Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| |
Collapse
|
38
|
Karthivashan G, Park SY, Kweon MH, Kim J, Haque ME, Cho DY, Kim IS, Cho EA, Ganesan P, Choi DK. Ameliorative potential of desalted Salicornia europaea L. extract in multifaceted Alzheimer's-like scopolamine-induced amnesic mice model. Sci Rep 2018; 8:7174. [PMID: 29740000 PMCID: PMC5940894 DOI: 10.1038/s41598-018-25381-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
The Salicornia europaea L. (SE) plant is a halophyte that has been widely consumed as a seasoned vegetable, and it has been recently reported to counteract chronic diseases related to oxidative and inflammatory stress. In this study, we performed an initial phytochemical analysis with in vitro biochemical tests and chromatographic profiling of desalted and enzyme-digested SE ethanol extract (SE-EE). Subsequently, we evaluated the anti-neuroinflammatory and ameliorative potential of SE-EE in LPS-inflicted BV-2 microglial cells and scopolamine-induced amnesic C57/BL6N mice, respectively. SE-EE possess considerable polyphenols and flavonoids that are supposedly responsible to improve its bio-efficacy. SE-EE dose-dependently attenuated LPS-induced inflammation in BV-2 cells, significantly repressed behavioural/cognitive impairment, dose-dependently regulated the cholinergic function, suppressed oxidative stress markers, regulated inflammatory cytokines/associated proteins expression and effectively ameliorated p-CREB/BDNF levels, neurogenesis (DCX stain), neuron proliferation (Ki67 stain) in scopolamine-administered mice. Thus, SE-EE extract shows promising multifactorial disease modifying activities and can be further developed as an effective functional food, drug candidate, or supplemental therapy to treat neuroinflammatory mediated disorders.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, 27478, Republic of Korea
| | - Shin-Young Park
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, 27478, Republic of Korea
| | - Mee-Hyang Kweon
- Research center, Phyto corporation, Seoul, 08826, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, 27478, Republic of Korea
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, 27478, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, 27478, Republic of Korea
| | - Eun-Ah Cho
- Research center, Phyto corporation, Seoul, 08826, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, 27478, Republic of Korea.,Nanotechnology research center College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, 27478, Republic of Korea. .,Department of Applied Life Science, Graduate school of Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
39
|
Kouémou NE, Taiwe GS, Moto FCO, Pale S, Ngoupaye GT, Njapdounke JSK, Nkantchoua GCN, Pahaye DB, Bum EN. Nootropic and Neuroprotective Effects of Dichrocephala integrifolia on Scopolamine Mouse Model of Alzheimer's Disease. Front Pharmacol 2017; 8:847. [PMID: 29209218 PMCID: PMC5702348 DOI: 10.3389/fphar.2017.00847] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/06/2017] [Indexed: 01/24/2023] Open
Abstract
Alzheimer’s disease the most common form of dementia in the elderly is a neurodegenerative disease that affects 44 millions of people worldwide. The first treatments against Alzheimer’s disease are acetylcholinesterase inhibitors; however, these medications are associated with many side effects. Dichrocephala integrifolia is a traditional herb widely used by indigenous population of Cameroon to treat and prevent Alzheimer’s disease and for memory improvement. In this study, we evaluated the effect of the decoction prepared from leaves of D. integrifolia, on scopolamine-induced memory impairment in mice. Seven groups of six animals were used. The first two groups received distilled water for the distilled water and scopolamine groups. The four test groups received one of the four doses of the decoction of the plant (35, 87.5, 175 or 350 mg/kg p.o.) and the positive control group received tacrine (10 mg/kg), a cholinesterase inhibitor used in the treatment of Alzheimer’s disease, during 10 consecutive days. Scopolamine (1 mg/kg), a cholinergic receptor blocker, administered 30 min after treatments, was used to induce memory impairment to all groups except the distilled water group on day 10 of drug treatment. The behavioral paradigms used to evaluate the effects of the treatment were the elevated plus maze for learning and memory, Y maze for spatial short-term memory, the novel object recognition for recognition memory and Morris water maze for the evaluation of spatial long-term memory. After behavioral tests, animals were sacrificed and brains of a subset were used for the assessment of some biomarkers of oxidative stress (malondialdehyde and reduced glutathione levels) and for the evaluation of the acetylcholinesterase activity. From the remaining subset brains, histopathological analysis was performed. The results of this study showed that, D. integrifolia at the doses of 87.5 and 350 mg/kg significantly (p < 0.01) improved spatial short-term and long-term memory, by increasing the percentage of spontaneous alternation in the Y maze and reducing the escape latency in the Morris water maze. Furthermore, the results of histopathological evaluation showed that D. integrifolia attenuated the neuronal death in the hippocampus induced by scopolamine. The main finding of this work is that D. integrifolia improves learning capacities and counteracts the memory impairment induced by scopolamine. Thus, D. integrifolia can be a promising plant resource for the management of Alzheimer’s disease and memory loss.
Collapse
Affiliation(s)
- Nadège E Kouémou
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon.,Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Germain S Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon.,Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Fleur C O Moto
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Simon Pale
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon.,Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Gwladys T Ngoupaye
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jacqueline S K Njapdounke
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Gisèle C N Nkantchoua
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - David B Pahaye
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon.,Institute of Mines and Petroleum Industries of Maroua, University of Maroua, Maroua, Cameroon
| |
Collapse
|
40
|
Bahri S, Ben Ali R, Abidi A, Jameleddine S. The efficacy of plant extract and bioactive compounds approaches in the treatment of pulmonary fibrosis: A systematic review. Biomed Pharmacother 2017; 93:666-673. [PMID: 28688290 DOI: 10.1016/j.biopha.2017.06.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is a lethal, chronic and progressive respiratory disease leading to interstitial lung damage and serious breathing problems. The pathogenic mechanism involves activation, migration, proliferation and differentiation of fibroblasts into myofibroblats inducing extracellular matrix accumulation that destroy lung parenchyma. Available antifibrotic treatment options are limited to Pirfenidone and Nintedanib that prevent deterioration without an improvement of this disease. The use of plant extracts and natural bioactive compounds for the treatment of PF has been known for more than thirty years in China. Nowadays, phytotherapy has gained a considerable attention in the treatment of PF both in vivo and in vitro using bleomycin (BLM)-induced lung inflammation, oxidative stress and pulmonary fibrosis in rats. In this review, we aimed to focus on the protective effects and the mechanisms of action of several plant extracts described by various research works for the treatment of PF.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia.
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia
| | - Anouar Abidi
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
41
|
Samarghandian S, Samini F, Azimi-Nezhad M, Farkhondeh T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett 2017; 659:26-32. [PMID: 28866053 DOI: 10.1016/j.neulet.2017.08.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
Safranal, a major constituent of saffron, possesses antioxidant and anti-apoptotic properties showing considerable neuroprotective effects. The present study was designed to investigate the effects of safranal against restraint stress induced oxidative damage in the rat brain. For inducing the chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days, then, the animals received systemic administrations of vehicle (0.1% DMSO) acted as the control group or safranal daily for 21days. Results indicated that the rats submitted to restraint stress showed an increase in the immobility time versus the non-stress rats. In addition, stress decreased number of crossing in the rats submitted to restraint stress versus the non-stress animals. Treatment with safranal (0.75mg/kg) showed a significant reduction in the immobility time compared to the non-treated stress group, while, the treatment improved the number of crossing in rats submitted to restraint stress versus the vehicle-treated stress rats. In the stressed animals that received vehicle, the MDA level was significantly higher and the levels of GSH and antioxidant enzymes were significantly lower than the non-stressed rats. Safranal ameliorated the changes in the stressed animals as compared with the control groups. The present findings indicate that safranal might be effective against depressant-like effects induced by chronic stress via modulating brain oxidative response.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran; Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fariborz Samini
- Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Azimi-Nezhad
- Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Neurosyrgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Department of Immunology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
42
|
Rabiei Z. Anticonvulsant effects of medicinal plants with emphasis on mechanisms of action. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M, Soltani A. Melatonin and human mitochondrial diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2017; 22:2. [PMID: 28400824 PMCID: PMC5361446 DOI: 10.4103/1735-1995.199092] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.
Collapse
Affiliation(s)
- Reza Sharafati-Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hedayatollah Shirzad
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Amin Soltani
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
44
|
Jung YP, Earnest CP, Koozehchian M, Galvan E, Dalton R, Walker D, Rasmussen C, Murano PS, Greenwood M, Kreider RB. Effects of acute ingestion of a pre-workout dietary supplement with and without p-synephrine on resting energy expenditure, cognitive function and exercise performance. J Int Soc Sports Nutr 2017; 14:3. [PMID: 28096758 PMCID: PMC5234109 DOI: 10.1186/s12970-016-0159-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine the effects of acute ingestion of a pre-workout dietary supplement (PWS) with and without p-synephrine (S) on perceptions of readiness to perform, cognitive function, exercise performance, and markers of safety. METHODS In a randomized, double-blind, and counterbalanced manner; 25 healthy and recreationally active male and female participants ingested a flavored maltodextrin placebo (PLA), a PWS containing beta-alanine (3 g), creatine nitrate as a salt (2 g), arginine alpha-ketoglutarate (2 g), N-Acetyl-L-Tyrosine (300 mg), caffeine (284 mg), Mucuna pruiriens extract standardized for 15% L-Dopa (15 mg), Vitamin C as Ascorbic Acid (500 mg), niacin (60 mg), folate as folic acid (50 mg), and Vitamin B12 as Methylcobalamin (70 mg) with 2 g of maltodextrin and flavoring; or, the PWS with Citrus aurantium (PWS + S) extract standardized for 30% p-synephrine (20 mg). Participants had heart rate (HR), blood pressure, resting energy expenditure (REE), 12-lead electrocardiograms (ECG), perceptions about readiness to perform, cognitive function (Stroop Color-Word test), bench and leg press performance (2 sets of 10 repetitions at 70% of 1RM and 1 set to failure), and Wingate anaerobic capacity (WAC) sprint performance determined as well as donated blood samples prior to and/or following exercise/supplementation. Data were analyzed by MANOVA with repeated measures as well as mean changes from baseline with 95% confidence intervals (CI). RESULTS No clinically significant differences were observed among treatments in HR, blood pressure, ECG, or general clinical blood panels. There was evidence that PWS and PWS + S ingestion promoted greater changes in REE responses. Participants reported higher perception of optimism about performance and vigor and energy with PWS and PWS + S ingestion and there was evidence that PWS and PWS + S improved changes in cognitive function scores from baseline to a greater degree than PLA after 1 or 2 h. However, the scores in the PWS + S treatment did not exceed PLA or PWS responses at any data point. No statistically significant differences were observed among treatments in total bench press lifting volume, leg press lifting volume or WAC sprint performance. CONCLUSIONS Within the confines of this study, ingestion of PWS and/or PWS + S prior to exercise appears to be well-tolerated when consumed by young, healthy individuals. The primary effects appear to be to increase REE responses and improve perceptions about readiness to perform and cognitive function with limited to no effects on muscular endurance and WAC. The addition of 20 mg of p-synephrine to the PWS provided limited to no additive benefits. TRIAL REGISTRATION This trial (NCT02952014) was retrospectively registered on September 13th 2016.
Collapse
Affiliation(s)
- Y. Peter Jung
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Conrad P. Earnest
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
- Nutrabolt, Bryan, TX 77807 USA
| | - Majid Koozehchian
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Elfego Galvan
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Ryan Dalton
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Dillon Walker
- Center for Translational Research in Aging and Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Peter S. Murano
- Institute for Obesity Research & Program Evaluation, Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|
45
|
Jung YP, Earnest CP, Koozehchian M, Cho M, Barringer N, Walker D, Rasmussen C, Greenwood M, Murano PS, Kreider RB. Effects of ingesting a pre-workout dietary supplement with and without synephrine for 8 weeks on training adaptations in resistance-trained males. J Int Soc Sports Nutr 2017; 14:1. [PMID: 28096757 PMCID: PMC5234097 DOI: 10.1186/s12970-016-0158-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine whether ingesting a pre-workout dietary supplement (PWS) with and without synephrine (S) during training affects training responses in resistance-trained males. METHODS Resistance-trained males (N = 80) were randomly assigned to supplement their diet in a double-blind manner with either a flavored placebo (PLA); a PWS containing beta-alanine (3 g), creatine nitrate as a salt (2 g), arginine alpha-ketoglutarate (2 g), N-Acetyl-L-Tyrosine (300 mg), caffeine (284 mg), Mucuna pruiriens extract standardized for 15% L-Dopa (15 mg), Vitamin C as Ascorbic Acid (500 mg), niacin (60 mg), folate as folic acid (50 mg), and Vitamin B12 as Methylcobalamin (70 mg); or, the PWS supplement with Citrus aurantium extract containing 20 mg of synephrine (PWS + S) once per day for 8-weeks during training. Participants donated a fasting blood sample and had body composition (DXA), resting heart rate and blood pressure, cognitive function (Stroop Test), readiness to perform, bench and leg press 1 RM, and Wingate anaerobic capacity assessments determined a 0, 4, and 8-weeks of standardized training. Data were analyzed by MANOVA with repeated measures. Performance and cognitive function data were analyzed using baseline values as covariates as well as mean changes from baseline with 95% confidence intervals (CI). Blood chemistry data were also analyzed using Chi-square analysis. RESULTS Although significant time effects were seen, no statistically significant overall MANOVA Wilks' Lambda interactions were observed among groups for body composition, resting heart and blood pressure, readiness to perform questions, 1RM strength, anaerobic sprint capacity, or blood chemistry panels. MANOVA univariate analysis and analysis of changes from baseline with 95% CI revealed some evidence that cognitive function and 1RM strength were increased to a greater degree in the PWS and/or PWS + S groups after 4- and/or 8-weeks compared to PLA responses. However, there was no evidence that PWS + S promoted greater overall training adaptations compared to the PWS group. Dietary supplementation of PWS and PWS + S did not increase the incidence of reported side effects or significantly affect the number of blood values above clinical norms compared to PLA. CONCLUSION Results provide some evidence that 4-weeks of PWS and/or PWS + S supplementation can improve some indices of cognitive function and exercise performance during resistance-training without significant side effects in apparently health males. However, these effects were similar to PLA responses after 8-weeks of supplementation and inclusion of synephrine did not promote additive benefits. TRIAL REGISTRATION This trial (NCT02999581) was retrospectively registered on December 16th 2016.
Collapse
Affiliation(s)
- Y. Peter Jung
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Conrad P. Earnest
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
- Nutrabolt, Bryan, TX 77807 USA
| | - Majid Koozehchian
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Minye Cho
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Nick Barringer
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Dillon Walker
- Department of Health & Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Peter S. Murano
- Department of Nutrition and Food Sciences, Institute for Obesity Research & Program Evaluation, Texas A&M University, College Station, TX 77843 USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|
46
|
Singh V, Kahol A, Singh IP, Saraf I, Shri R. Evaluation of anti-amnesic effect of extracts of selected Ocimum species using in-vitro and in-vivo models. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:490-499. [PMID: 27725240 DOI: 10.1016/j.jep.2016.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ocimum species are traditionally used for the treatment of anxiety, nerve pain, convulsions and a variety of neurodegenerative disorders. The present study was undertaken to evaluate the anti-amnesic effect of O. basilicum L., O. sanctum L. and O. gratissimum L. extracts using in-vitro and in-vivo models. MATERIALS AND METHODS In-vitro acetylcholinesterase (AChE) inhibitory and antioxidant activities of hydro-methanol extracts of plants were evaluated using Ellman and DPPH and FRAP assays, respectively. The most active extract i.e. O. basilicum extract (OBE) was further explored for the possible anti-amnesic activity in mouse model of scopolamine induced amnesia using behavioral models (elevated plus maze and passive shock avoidance task). Brain AChE activity, oxidative profile and histopathological studies were assessed to outline the anti-amnesic mechanism of the extract. RESULTS Significant antioxidant and AChE inhibition activity was observed with all prepared extracts and however, OBE showed most marked free radical scavenging, reducing power and AChE inhibition (IC50 0.65±0.15mg/ml) activity. Basil leaves were standardized with respect to content of 7 phenolic acids using a HPLC-PDA method. A TLC densitometric method was employed to determine the quercetin content in the leaves. The in-vivo studies showed that OBE pre-treatment (200 and 400mg/kg, p.o.) reversed the memory deficit induced by scopolamine in mice, evident by significant (p<0.05) decrease in the transfer latency time and increase in step down latency in elevated plus maze and passive shock avoidance task, respectively. Moreover, OBE significantly reduced the brain AChE activity and oxidative stress. Further, histopathological examination of brain tissues displayed decrease in vacuolated cytoplasm and increase in pyramidal cells in hippocampal and cortical regions with OBE pre-treatment. CONCLUSION OBE possesses antioxidant and AChE inhibitory activity. These biochemical changes are responsible for the anti-amnesic and neuroprotective activities of O. basilicum which may be attributed to the presence of phenolic and flavonoid compounds. This can be developed as an effective anti-amnesic drug.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Aditi Kahol
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Inder Pal Singh
- Natural Products Research Laboratory, Department of Natural products, NIPER, Mohali, Punjab, India
| | - Isha Saraf
- Natural Products Research Laboratory, Department of Natural products, NIPER, Mohali, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
47
|
Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M. The research and development on the antioxidants in prevention of diabetic complications. ASIAN PAC J TROP MED 2016; 9:825-831. [DOI: 10.1016/j.apjtm.2016.07.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 12/01/2022] Open
|
48
|
Baharvand-Ahmadi B, Bahmani M, Tajeddini P, Rafieian-Kopaei M, Naghdi N. An ethnobotanical study of medicinal plants administered for the treatment of hypertension. J Renal Inj Prev 2016; 5:123-8. [PMID: 27689107 PMCID: PMC5039997 DOI: 10.15171/jrip.2016.26] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION The incidence of cardiovascular diseases (CVDs) is very high in human societies and their prevention and treatment are the most important priority in many countries. Hypertension makes an important contribution to the development of CVDs. OBJECTIVES This study aimed to collect the ethno-medicinal knowledge of the traditional healers of Shiraz on medicinal plants used in the treatment of hypertension. MATERIALS AND METHODS Ethno-medicinal data were collected from September 2012 to July 2013 through direct interview. Twenty-five healers were interviewed using semi-structured questionnaires and their traditional ethno-medicinal knowledge was recorded. Questionnaires were included apothecary personal information, plant local name, plant parts used, method of preparation, season of harvest and traditional use. Data collected from surveys and interviews were transferred to Microsoft Excel 2007 and analyzed. RESULTS Analysis of data showed that, 27 medicinal plants from 22 families are used for the treatment of hypertension. The families with most antihypertensive species were Apiaceae (8%), Rosaceae (8%) and Papaveraceae (8%). The most frequently used plant parts were leaves (36%) followed by fruits (30%), aerial part (17%) and branches (7%). The most frequently used preparation method was decoction (95%). Borago officinalis (51.85%), Berberis vulgaris (51.58%) had the highest frequency of mention. CONCLUSION The ethno-medicinal survey of medicinal plants recommended by traditional healers for the treatment of hypertension provides new areas of research on the antihypertensive effect of medicinal plants. In the case of safety and effectiveness, they can be refined and processed to produce natural drugs.
Collapse
Affiliation(s)
- Babak Baharvand-Ahmadi
- Madani Heart Hospital, Department of Cardiovascular, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Bahmani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Pegah Tajeddini
- Medical Plants Research Center, Shahrekord University of Medical sciences, Shahrekord, Iran
| | | | - Nasrollah Naghdi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
49
|
Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M. A Review Study on Punica granatum L. J Evid Based Complementary Altern Med 2016; 21:221-227. [DOI: 10.1177/2156587215598039] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Punica granatum L (pomegranate) is a deciduous shrub, native to Iran. Nowadays, besides its use as a fruit, its medicinal properties have attracted the interest of researchers of many countries. Pomegranate fruit has medicinal properties such as anti-inflammatory and antibacterial activities. The pomegranate seed oil has inhibitory effect on skin and breast cancers. The pomegranate seed oil has phytoestrogenic compounds and the fruit is rich in phenolic compounds with strong antioxidant activity. Ellagic acid is one of the main components of pomegranate with phenolic structure and antioxidant activity. This review article presents the recently published findings on different aspects of this plant focusing on its medicinal properties
Collapse
Affiliation(s)
| | - Mahmoud Bahmani
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | |
Collapse
|
50
|
Bahmani M, Eftekhari Z, Saki K, Fazeli-Moghadam E, Jelodari M, Rafieian-Kopaei M. Obesity Phytotherapy. J Evid Based Complementary Altern Med 2016; 21:228-234. [PMID: 26269377 DOI: 10.1177/2156587215599105] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Obesity is an important disorders due to which 25 million deaths occur annually worldwide. Synthetic drugs for weight loss have low efficacy and high side effects. Apart from synthetic drugs in modern medicine, various other methods including the use of herbal medications are used to induce weight loss. Cambodia hoodia, green tea, Citrus aurantium, white beans, fenugreek, caffeine, ephedrine, capsaicin, yohimbine, chitosan, fitostreols, and guar gum have been studied in clinical trials and their effects have been confirmed. It seems necessary to study more to determine the effectiveness and safety of medicinal plants and herbal extracts as well as pharmaceutically active ingredients that may have the property of weight loss. In this article, we aimed to review recent knowledge about medicinal plants that are recommended for weight loss.
Collapse
Affiliation(s)
- Mahmoud Bahmani
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Kourosh Saki
- Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | | |
Collapse
|