1
|
Fujita S, Hironaka KI, Karasawa Y, Kuroda S. Model selection reveals selective regulation of blood amino acid and lipid metabolism by insulin in humans. iScience 2024; 27:109833. [PMID: 39055606 PMCID: PMC11270033 DOI: 10.1016/j.isci.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024] Open
Abstract
Insulin plays a crucial role in regulating the metabolism of blood glucose, amino acids (aa), and lipids in humans. However, the mechanisms by which insulin selectively regulates these metabolites are not fully understood. To address this question, we used mathematical modeling to identify the selective regulatory mechanisms of insulin on blood aa and lipids. Our study revealed that insulin negatively regulates the influx and positively regulates the efflux of lipids, consistent with previous findings. By contrast, we did not observe the previously reported insulin's negative regulation of branched-chain aa (BCAA) influx; instead, we found that insulin positively regulates BCAA efflux. We observed that the earlier peak time of lipids compared to BCAA is dependent on insulin's negative regulation of their influx. Overall, our findings shed new light on how insulin selectively regulates the levels of different metabolites in human blood, providing insights into the metabolic disorder pathogenesis and potential therapies.
Collapse
Affiliation(s)
- Suguru Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biotechnology, Graduate School of Agricultual and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ken-ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuaki Karasawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Jiang Y, Xie M, Fan W, Xue J, Zhou Z, Tang J, Chen G, Hou S. Transcriptome Analysis Reveals Differential Expression of Genes Regulating Hepatic Triglyceride Metabolism in Pekin Ducks During Dietary Threonine Deficiency. Front Genet 2019; 10:710. [PMID: 31428138 PMCID: PMC6688585 DOI: 10.3389/fgene.2019.00710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary threonine (Thr) deficiency increases hepatic triglyceride accumulation in Pekin ducks, which results in fatty liver disease and impairs hepatic function. However, the underlying molecular mechanisms altered by dietary Thr deficiency are still unknown. To identify the underlying molecular changes, 180 one-day-old ducklings were divided into three groups, including Thr deficiency group (Thr-D), Thr sufficiency group (Thr-S), and pair-fed group (Pair-F) that was fed with a Thr-sufficient diet but with reduced daily feed intake. The results showed that feed intake was similar between Thr-D and Pair-F groups, but weight gain rate and final body weight in the Thr-D group were lower than those in the Pair-F group. Feed intake, weight gain, and body weight in Thr-D and Pair-F groups were lower than those in the Thr-S group. The Thr-D diet reduced abdominal fat percentage but increased hepatic triglyceride content when compared with that of the Thr-S and Pair-F groups. The Pair-F reduced hepatic levels of C15:0, C17:0, C18:0, C20:0, C20:4n6, and C22:0 and also reduced total fatty acid, saturated fatty acid, and unsaturated fatty acid content when compared with those of the Thr-D and Thr-S groups. The Thr-D diet increased hepatic content of C6:0, C17:1, C18:3n6, C20:0, C20:1n9, and C22:2, as well as reduced the content of C18:2n6t and C23:0 when compared with those of the Thr-S group. Transcriptome analysis in the liver indicated that the Thr-D diet upregulated genes related to fatty acid and triglyceride synthesis and downregulated genes related to fatty acid oxidation and triglyceride transport. Gene ontology analysis showed that more genes related to lipid metabolism processes and molecular function were differentially expressed in the Thr-D group relative to Thr-S and Pair-F groups than in the Pair-F group relative to the Thr-S group. KEGG pathway analysis showed that differentially expressed genes were enriched in signal transduction, immune, hormone, lipid, and amino acid metabolism pathways. Our findings indicated that the Thr-D diet increased hepatic triglyceride and fatty acid accumulation via increasing fatty acid and triglyceride synthesis and reducing fatty acid oxidation and triglyceride transport. These findings provide novel insights into our understanding of the molecular mechanisms underlying fat accumulation in the liver caused by dietary threonine deficiency.
Collapse
Affiliation(s)
- Yong Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming Xie
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jiajia Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Campollo O, Sprengers D, Dam G, Vilstrup H, McIntyre N. Protein tolerance to standard and high protein meals in patients with liver cirrhosis. World J Hepatol 2017; 9:667-676. [PMID: 28588751 PMCID: PMC5437611 DOI: 10.4254/wjh.v9.i14.667] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/21/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the plasma amino acid response and tolerance to normal or high protein meals in patients with cirrhosis. METHODS The plasma amino acid response to a 20 g mixed protein meal was compared in 8 biopsy-proven compensated cirrhotic patients and 6 healthy subjects. In addition the response to a high protein meal (1 g/kg body weight) was studied in 6 decompensated biopsy-proven cirrhotics in order to evaluate their protein tolerance and the likelihood of developing hepatic encephalopathy (HE) following a porto-caval shunt procedure. To test for covert HE, the "number connection test" (NCT) was done on all patients, and an electroencephalogram was recorded in patients considered to be at Child-Pugh C stage. RESULTS The changes in plasma amino acids after a 20 g protein meal were similar in healthy subjects and in cirrhotics except for a significantly greater increase (P < 0.05) in isoleucine, leucine and tyrosine concentrations in the cirrhotics. The baseline branched chain amino acids/aromatic amino acids (BCAA/AAA) ratio was higher in the healthy persons and remained stable-but it decreased significantly after the meal in the cirrhotic group. After the high protein meal there was a marked increase in the levels of most amino acids, but only small changes occurred in the levels of taurine, citrulline, cysteine and histidine.The BCAA/AAA ratio was significantly higher 180 and 240 min after the meal. Slightly elevated basal plasma ammonia levels showed no particular pattern. Overt HE was not observed in any patients. CONCLUSION Patients with stable liver disease tolerate natural mixed meals with a standard protein content. The response to a high protein meal in decompensated cirrhotics suggests accumulation of some amino acids but it did not precipitate HE. These results support current nutritional guidelines that recommend a protein intake of 1.2-1.5 g/kg body weight/day for patients with cirrhosis.
Collapse
Affiliation(s)
- Octavio Campollo
- Octavio Campollo, Center of Studies on Alcohol and Addictions, Antigüo Hospital Civil de Guadalajara, Universidad de Guadalajara, Guadalajara, Jal CP 44280, Mexico
| | - Dirk Sprengers
- Octavio Campollo, Center of Studies on Alcohol and Addictions, Antigüo Hospital Civil de Guadalajara, Universidad de Guadalajara, Guadalajara, Jal CP 44280, Mexico
| | - Gitte Dam
- Octavio Campollo, Center of Studies on Alcohol and Addictions, Antigüo Hospital Civil de Guadalajara, Universidad de Guadalajara, Guadalajara, Jal CP 44280, Mexico
| | - Hendrik Vilstrup
- Octavio Campollo, Center of Studies on Alcohol and Addictions, Antigüo Hospital Civil de Guadalajara, Universidad de Guadalajara, Guadalajara, Jal CP 44280, Mexico
| | - Neil McIntyre
- Octavio Campollo, Center of Studies on Alcohol and Addictions, Antigüo Hospital Civil de Guadalajara, Universidad de Guadalajara, Guadalajara, Jal CP 44280, Mexico
| |
Collapse
|
4
|
Highly Sensitive Analysis of Proteins and Metabolites by Metal Tagging Using LC-ICP-MS. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Estimation of the Mechanism of Adrenal Action of Endocrine-Disrupting Compounds Using a Computational Model of Adrenal Steroidogenesis in NCI-H295R Cells. J Toxicol 2016; 2016:4041827. [PMID: 27057163 PMCID: PMC4773560 DOI: 10.1155/2016/4041827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
Adrenal toxicity is one of the major concerns in drug development. To quantitatively understand the effect of endocrine-active compounds on adrenal steroidogenesis and to assess the human adrenal toxicity of novel pharmaceutical drugs, we developed a mathematical model of steroidogenesis in human adrenocortical carcinoma NCI-H295R cells. The model includes cellular proliferation, intracellular cholesterol translocation, diffusional transport of steroids, and metabolic pathways of adrenal steroidogenesis, which serially involve steroidogenic proteins and enzymes such as StAR, CYP11A1, CYP17A1, HSD3B2, CYP21A2, CYP11B1, CYP11B2, HSD17B3, and CYP19A1. It was reconstructed in an experimental dynamics of cholesterol and 14 steroids from an in vitro steroidogenesis assay using NCI-H295R cells. Results of dynamic sensitivity analysis suggested that HSD3B2 plays the most important role in the metabolic balance of adrenal steroidogenesis. Based on differential metabolic profiling of 12 steroid hormones and 11 adrenal toxic compounds, we could estimate which steroidogenic enzymes were affected in this mathematical model. In terms of adrenal steroidogenic inhibitors, the predicted action sites were approximately matched to reported target enzymes. Thus, our computer-aided system based on systems biological approach may be useful to understand the mechanism of action of endocrine-active compounds and to assess the human adrenal toxicity of novel pharmaceutical drugs.
Collapse
|
6
|
An approach for dynamical network reconstruction of simple network motifs. BMC SYSTEMS BIOLOGY 2014; 7 Suppl 6:S4. [PMID: 24564905 PMCID: PMC4029519 DOI: 10.1186/1752-0509-7-s6-s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background One of the most important projects in the post-genome-era is the systemic identification of biological network. The almost of studies for network identification focused on the improvement of computational efficiency in large-scale network inference of complex system with cyclic relations and few attempted have been done for answering practical problem occurred in real biological systems. In this study, we focused to evaluate inferring performance of our previously proposed method for inferring biological network on simple network motifs. Results We evaluated the network inferring accuracy and efficiency of our previously proposed network inferring algorithm, by using 6 kinds of repeated appearance of highly significant network motifs in the regulatory network of E. coli proposed by Shen-Orr et al and Herrgård et al, and 2 kinds of network motif in S. cerevisiae proposed by Lee et. al. As a result, our method could reconstruct about 40% of interactions in network motif from time-series data set. Moreover the introduction of time-series data of one-factor disrupted model could remarkably improved the performance of network inference. Conclusions The results of network inference examination of E. coli network motif shows that our network inferring algorithm was able to apply to typical topology of biological network. A continuous examination of inferring well established network motif in biology would strengthen the applicability of our algorithm to the realistic biological network.
Collapse
|
7
|
Tanaka T, Mochida T, Maki Y, Shiraki Y, Mori H, Matsumoto S, Shimbo K, Ando T, Nakamura K, Endo F, Okamoto M. Interactive network analysis of the plasma amino acids profile in a mouse model of hyperglycemia. SPRINGERPLUS 2013; 2:287. [PMID: 23853755 PMCID: PMC3701794 DOI: 10.1186/2193-1801-2-287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
Abstract
Amino acids are a group of metabolites that are important substrates for protein synthesis, are important as signaling molecules and play central roles as highly connected metabolic hubs, and therefore, there are many reports that describe disease-specific abnormalities in plasma amino acids profile. However, the causes of progression from a healthy control to a manifestation of the plasma amino acid changes remain obscure. Here, we extended the plasma amino acids profile to relationships that have interactive properties, and found remarkable differences in the longitudinal transition of hyperglycemia as a diabetes emergency. What is especially important is to understand pathogenesis for better treatment and early diagnosis of diabetes. In this study, we performed interactive analysis using time course data of the plasma samples of AKITA mice, which develop hyperglycemia. Primarily, we decided to analyze the interactive property of amino acids which had highly significant association with hyperglycemia, namely alanine, glycine, leucine, isoleucine and valine. Next, we inferred the interactive network structure, which reproduces the actual time course within an error allowance of 10% using an S-system model (a conceptual mathematical model for analyzing and simulating networks). The emphasis of this study was altered interactions of plasma amino acids that show stabilizing and destabilizing features in a variety of clinical settings. By performing sensitivity analysis, the most dominant relations in this network were selected; the control paths from glycine to isoleucine in healthy control and from alanine to glycine in hyperglycemia. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from alanine to glycine.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Innovative Science and Technology for Bio-industry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan ; Institute for Innovation, Ajinomoto Co., Inc, 1-1 Suzuki-cho, Kawasakiku, Kawasaki, 210-8681 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mallakpour S, Khani M. Morphology Properties of Nanostructure Poly(Amide-Imide)s Based onN-Trimellitylimido-S-amino Acids and 5-(2-benzimidazole)-1,3-phenylenediamine under Green Conditions. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2012. [DOI: 10.1080/1023666x.2012.668612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Vuille-Dit-Bille RN, Ha-Huy R, Stover JF. Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury. Amino Acids 2011; 43:1287-96. [DOI: 10.1007/s00726-011-1202-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/09/2011] [Indexed: 01/31/2023]
|
10
|
Narita K, Nagao K, Bannai M, Ichimaru T, Nakano S, Murata T, Higuchi T, Takahashi M. Dietary deficiency of essential amino acids rapidly induces cessation of the rat estrous cycle. PLoS One 2011; 6:e28136. [PMID: 22132231 PMCID: PMC3223240 DOI: 10.1371/journal.pone.0028136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 11/02/2011] [Indexed: 01/07/2023] Open
Abstract
Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to survival until well-balanced amino acid sources are found.
Collapse
Affiliation(s)
- Kazumi Narita
- Department of Integrative Physiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Kenji Nagao
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-shi, Kanagawa, Japan
| | - Makoto Bannai
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-shi, Kanagawa, Japan
- * E-mail:
| | - Toru Ichimaru
- Department of Integrative Physiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Sayako Nakano
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-shi, Kanagawa, Japan
| | - Takuya Murata
- Department of Integrative Physiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Takashi Higuchi
- Department of Integrative Physiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Michio Takahashi
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-shi, Kanagawa, Japan
| |
Collapse
|
11
|
Miyaji K, Nagao K, Bannai M, Asakawa H, Kohyama K, Ohtsu D, Terasawa F, Ito S, Iwao H, Ohtani N, Ohta M. Characteristic metabolism of free amino acids in cetacean plasma: cluster analysis and comparison with mice. PLoS One 2010; 5:e13808. [PMID: 21072195 PMCID: PMC2970564 DOI: 10.1371/journal.pone.0013808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/28/2010] [Indexed: 11/25/2022] Open
Abstract
From an evolutionary perspective, the ancestors of cetaceans first lived in terrestrial environments prior to adapting to aquatic environments. Whereas anatomical and morphological adaptations to aquatic environments have been well studied, few studies have focused on physiological changes. We focused on plasma amino acid concentrations (aminograms) since they show distinct patterns under various physiological conditions. Plasma and urine aminograms were obtained from bottlenose dolphins, pacific white-sided dolphins, Risso's dolphins, false-killer whales and C57BL/6J and ICR mice. Hierarchical cluster analyses were employed to uncover a multitude of amino acid relationships among different species, which can help us understand the complex interrelations comprising metabolic adaptations. The cetacean aminograms formed a cluster that was markedly distinguishable from the mouse cluster, indicating that cetaceans and terrestrial mammals have quite different metabolic machinery for amino acids. Levels of carnosine and 3-methylhistidine, both of which are antioxidants, were substantially higher in cetaceans. Urea was markedly elevated in cetaceans, whereas the level of urea cycle-related amino acids was lower. Because diving mammals must cope with high rates of reactive oxygen species generation due to alterations in apnea/reoxygenation and ischemia-reperfusion processes, high concentrations of antioxidative amino acids are advantageous. Moreover, shifting the set point of urea cycle may be an adaption used for body water conservation in the hyperosmotic sea water environment, because urea functions as a major blood osmolyte. Furthermore, since dolphins are kept in many aquariums for observation, the evaluation of these aminograms may provide useful diagnostic indices for the assessment of cetacean health in artificial environments in the future.
Collapse
Affiliation(s)
- Kazuki Miyaji
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| | - Kenji Nagao
- Institute of Life Sciences, Ajinomoto Co. Inc., Kawasaki, Japan
| | - Makoto Bannai
- Institute of Life Sciences, Ajinomoto Co. Inc., Kawasaki, Japan
- * E-mail:
| | - Hiroshi Asakawa
- Department of Animal Care, Shimoda Floating Aquarium, Shimoda, Japan
| | - Kaoru Kohyama
- Department of Animal Care and Management, Izu-Mito Sea Paradise, Numazu, Japan
| | - Dai Ohtsu
- Aqua Resorts, Yokohama-Hakkeijima Sea Paradise, Yokohama, Japan
| | | | - Shu Ito
- Veterinary Hospital, Adventure World, Nishimuro, Japan
| | - Hajime Iwao
- Exhibition Division, Niigata City Aquarium Marinepia Nihonkai, Niigata, Japan
| | - Nobuyo Ohtani
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| | - Mitsuaki Ohta
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| |
Collapse
|
12
|
Nagao K, Bannai M, Seki S, Kawai N, Mori M, Takahashi M. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats. Am J Physiol Endocrinol Metab 2010; 298:E1170-8. [PMID: 20233939 DOI: 10.1152/ajpendo.00763.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition.
Collapse
Affiliation(s)
- Kenji Nagao
- Institute of Life Sciences, Ajinomoto Co. Inc., Kawasaki-ku, Japan
| | | | | | | | | | | |
Collapse
|