1
|
Wang Q, Long T, Tang P, Xu C, Wang L, Liu J. Metabolic reprogramming in cholangiocarcinoma cancer stem cells: Emerging therapeutic paradigms. Cancer Lett 2025; 622:217714. [PMID: 40209849 DOI: 10.1016/j.canlet.2025.217714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy characterized by limited therapeutic options and poor prognosis, largely attributed to the presence of cancer stem cells (CSCs). These CSCs serve as pivotal drivers of tumor heterogeneity, chemotherapy resistance, and disease recurrence. CSCs in CCA exhibit remarkable plasticity, a characteristic sustained through metabolic state alterations and intricate interactions with the tumor microenvironment (TME), which collectively enhance their self-renewal and survival potential. While advancements have been made in understanding metabolic reprogramming of CCA CSCs, translating these findings into clinical applications encounters significant challenges, including insufficient target specificity, complex metabolic heterogeneity, and the profound complexity of the TME. This review provides a systematic evaluation of metabolic reprogramming mechanisms in CCA CSCs, with critical analysis of stemness-maintaining signaling pathways, oxidative phosphorylation (OXPHOS), nutrient utilization, metabolic crosstalk within the TME, autophagy regulation, and ferroptosis resistance. We emphasize emerging strategies to therapeutically target the interconnected metabolic networks essential for CSC functionality and survival, with the goal of establishing a theoretical basis for innovative precision therapies to enhance clinical outcomes for CCA patients.
Collapse
Affiliation(s)
- Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China
| | - Tanqing Long
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Peijuan Tang
- Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, 261000, Weifang, Shandong Province, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Liang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China.
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China.
| |
Collapse
|
2
|
Zhang J, Cui T, Xu J, Wang P, Lv C, Pan G. The potential of cancer stem cells for personalized risk assessment and therapeutic intervention in individuals with intrahepatic cholangiocarcinoma. Discov Oncol 2024; 15:306. [PMID: 39048806 PMCID: PMC11269542 DOI: 10.1007/s12672-024-01179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that intrahepatic cholangiocarcinoma (ICC) is a stem cell-based disease, but information on the biology of cancer stem cells (CSC) in ICC is very limited. METHODS ICC RNA-seq cohorts from three different public databases were integrated and the protein-coding genes were divided into different modules using "WGCNA" to screen the most relevant modules with CSC scores. Least Absolute Shrinkage and Selection Operator (LASSO) regression were introduced to construct prognostic classification models. In addition, the extent of immune cell infiltration in patients in different risk groups was assessed based on the ESTIMATE, CIBERSORT, MCP-Counter, and single sample gene set enrichment analysis (ssGSEA) algorithms. Finally, the correlation between different risk scores and common drugs was analyzed by pRRophetic package and Spearman method. RESULTS In the present study, we found that a high CSC score was associated with a poorer prognosis in patients with ICC. The yellow module obtained by WGCNA was significantly positively correlated with the CSCs score, in which 8 genes were served to build a prognostic classification model, and the obtained risk score was negatively correlated with CSCs score and prognosis. The low-risk score was more suitable for immunotherapy, and the high-risk score was more suitable for treatment with 11 antitumor drugs. CONCLUSION This study revealed the regulatory role of CSC-mediated EMT, angiogenesis, and immunomodulatory biological processes in ICC, and applied a prognostic classification model to highlight the great potential of CSC for personalized risk assessment, chemotherapy, and immunotherapy intervention in ICC individuals.
Collapse
Affiliation(s)
- Jian Zhang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Tao Cui
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Jiaobang Xu
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Peng Wang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Chongqing Lv
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Guozheng Pan
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China.
| |
Collapse
|
3
|
Na YJ, Lee HK, Choi KC. Amurensin G Sensitized Cholangiocarcinoma to the Anti-Cancer Effect of Gemcitabine via the Downregulation of Cancer Stem-like Properties. Nutrients 2023; 16:73. [PMID: 38201903 PMCID: PMC10780614 DOI: 10.3390/nu16010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant biliary tract tumor with a high mortality rate and refractoriness to chemotherapy. Gemcitabine is an anti-cancer chemotherapeutic agent used for CCA, but the efficacy of gemcitabine in CCA treatment is limited, due to the acquisition of chemoresistance. The present study evaluated the chemosensitizing effects of Amurensin G (AMG), a natural sirtuin-1 inhibitor derived from Vitis amurensis, in the SNU-478 CCA cells. Treatment with AMG decreased the SNU-478 cell viability and the colony formation ability. Annexin V/ Propidium iodide staining showed that the AMG increased apoptotic death. In addition, AMG downregulated anti-apoptotic Bcl-2 expression, while upregulating pro-apoptotic cleaved caspase-3 expression. Treatment with AMG decreased the migratory ability of the cells in a wound healing assay and transwell migration assay. It was observed that AMG decreased the gemcitabine-induced increase in CD44highCD24highCD133high cell populations, and the expression of the Sox-2 protein was decreased by AMG treatment. Co-treatment of AMG with gemcitabine significantly enhanced the production of reactive oxygen species, as observed through mitochondrial superoxide staining, which might be associated with the downregulation of the Sirt1/Nrf2 pathway by AMG. These results indicate that AMG enhances the chemotherapeutic ability of gemcitabine by downregulating cancer stem-like properties in CCA cells. Hence, a combination therapy of AMG with gemcitabine may be an attractive therapeutic strategy for cholangiocarcinoma.
Collapse
Affiliation(s)
| | | | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea; (Y.-J.N.); (H.K.L.)
| |
Collapse
|
4
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Xiang D, Gu M, Liu J, Dong W, Yang Z, Wang K, Fu J, Wang H. m6A RNA methylation-mediated upregulation of HLF promotes intrahepatic cholangiocarcinoma progression by regulating the FZD4/β-catenin signaling pathway. Cancer Lett 2023; 560:216144. [PMID: 36958694 DOI: 10.1016/j.canlet.2023.216144] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Hepatic leukemia factor (HLF) is aberrantly expressed in human malignancies. However, its role in regulating intrahepatic cholangiocarcinoma (ICC) remains unclear. This study aimed to define the role of HLF in ICC progression. Here, we showed that HLF expression is upregulated in ICC and predicts the poor prognosis in patients. Mechanistically, HLF activation in ICC is mediated by METTL3-dependent m6A methylation of the HLF mRNA. As per the results from the loss- or gain-of-function experiments, HLF promoted the self-renewal, tumorigenicity, proliferation and metastasis of ICC cells. RNA-seq and CUT&Tag analyses showed that frizzled-4 (FZD4) and forkhead box Q1 (FOXQ1) are target genes of HLF. Moreover, FOXQ1 transcriptionally activates METTL3 expression, forming a positive feedback loop, which subsequently activates WNT/β-catenin signaling and downstream tumor stemness. Furthermore, HLF expression was positively correlated with METTL3, IGF2BP3, FZD4 and FOXQ1 expression in ICC tissues in a large ICC cohort. The combined IHC panels exhibited a better prognostic value for patients with ICC than any of these components alone. In conclusions, these findings demonstrated that the METTL3/HLF/FOXQ1 regulatory circuit drove FZD4-mediated WNT/β-catenin activation in ICC progression, suggesting that targeting this axis could be novel therapeutic strategy for ICC.
Collapse
Affiliation(s)
- Daimin Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Junyu Liu
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Wei Dong
- Department of Pathology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Zhishi Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Kui Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China.
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China.
| | - Hongyang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
6
|
Correnti M, Binatti E, Gammella E, Invernizzi P, Recalcati S. The Emerging Role of Tumor Microenvironmental Stimuli in Regulating Metabolic Rewiring of Liver Cancer Stem Cells. Cancers (Basel) 2022; 15:5. [PMID: 36612000 PMCID: PMC9817521 DOI: 10.3390/cancers15010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most devastating cancers worldwide. Extensive phenotypical and functional heterogeneity is a cardinal hallmark of cancer, including PLC, and is related to the cancer stem cell (CSC) concept. CSCs are responsible for tumor growth, progression, relapse and resistance to conventional therapies. Metabolic reprogramming represents an emerging hallmark of cancer. Cancer cells, including CSCs, are very plastic and possess the dynamic ability to constantly shift between different metabolic states depending on various intrinsic and extrinsic stimuli, therefore amplifying the complexity of understanding tumor heterogeneity. Besides the well-known Warburg effect, several other metabolic pathways including lipids and iron metabolism are altered in PLC. An increasing number of studies supports the role of the surrounding tumor microenvironment (TME) in the metabolic control of liver CSCs. In this review, we discuss the complex metabolic rewiring affecting liver cancer cells and, in particular, liver CSCs. Moreover, we highlight the role of TME cellular and noncellular components in regulating liver CSC metabolic plasticity. Deciphering the specific mechanisms regulating liver CSC-TME metabolic interplay could be very helpful with respect to the development of more effective and innovative combinatorial therapies for PLC treatment.
Collapse
Affiliation(s)
- Margherita Correnti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milano, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milano, Italy
| |
Collapse
|
7
|
Bi Y, Shi X, Chen D, Zhao Y. CD133, but Not CD44, May Serve as a Novel Biomarker for Differential Diagnosis Between Basal Cell Carcinoma and Trichoblastomas. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:1517-1526. [PMID: 35941854 PMCID: PMC9356750 DOI: 10.2147/ccid.s373331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
Abstract
Purpose To investigate the clinical value of CD133 and CD44 as putative cancer stem cell markers in distinguishing between basal cell carcinoma (BCC) and trichoblastomas (TB). Patients and Methods Tumor samples from 24 BCC and 23 TB patients were retrospectively retrieved for immunohistochemical staining of CD133 and CD44. The results were interpreted using a semiquantitative scoring system (H score). A receiver operating characteristic (ROC) curve was developed to identify an optimal cutoff value for differentiating between BCC and TB. Results Expression of CD133 was significantly higher in BCC patients than in TB patients (median H score: 30 [IQR: 12.5–56.3] vs 0 [IQR: 0–2], P < 0.001). However, there was no significant difference in CD44 expression between the two groups (median H score: 105 [IQR: 63.8–155.0] vs 60 [IQR: 30–120], P = 0.095). The ROC analysis of CD133 immunostaining yielded an area under the curve (AUC) of 0.881 (95% CI: 0.756–1.000) for differentiating between BCC and TB by using a H score of 7 as the cut-off value (98.5% sensitivity and 87.0% specificity). By contrast, immunostaining of CD44 showed a lower diagnostic value, with an AUC of 0.642 (95% CI: 0.476–0.808) at the optimal cut-off value of 85 (62.5% sensitivity and 73.9% specificity). The positive and negative predictive values were 88.5% and 95.2% for CD133 and 71.4% and 65.4% for CD44, respectively. Additionally, CD133 expression was significantly associated with mitotic activity in BCC patients (r = 0.549, P = 0.005). Conclusion Our study expanded upon previous studies of CD133 and CD44 expressions in skin tumors, suggesting that CD133, but not CD44, may serve as a novel biomarker for differential diagnosis of BCC, although future studies using a larger number of patients are needed to justify it further.
Collapse
Affiliation(s)
- Yalan Bi
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dian Chen
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Yi Zhao
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
- Correspondence: Yi Zhao, Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, People’s Republic of China, Tel/Fax +86 010 56119127, Email
| |
Collapse
|
8
|
Rahman MA, Mittal V, Wahab S, Alsayari A, Bin Muhsinah A, Almaghaslah D. Intravenous Nanocarrier for Improved Efficacy of Quercetin and Curcumin against Breast Cancer Cells: Development and Comparison of Single and Dual Drug-Loaded Formulations Using Hemolysis, Cytotoxicity and Cellular Uptake Studies. MEMBRANES 2022; 12:membranes12070713. [PMID: 35877916 PMCID: PMC9316189 DOI: 10.3390/membranes12070713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022]
Abstract
The present work highlights the suitability of an oil-based nanocarrier to deliver quercetin (Q) and curcumin (C) through the intravenous route for treatment of breast cancer. The nanoemulsion prepared by the modified emulsification-solvent evaporation method resulted in particle size (<30 nm), polydispersity index (<0.2), zeta potential (<10 mV), optimum viscosity, high encapsulation efficiency and drug loading for both drugs. The pH and osmolarity of the nanoemulsion were about 7.0 and 280 mOsm, respectively, demonstrated its suitability for intravenous administration. In-vitro release of drugs from all the formulations demonstrated initial fast release followed by sustained release for a period of 48 h. The fabricated single and dual drug−loaded nanoemulsion (QNE, CNE, QC-NE) exhibited moderate hemolysis at a concentration of 50 μg/mL. The % hemolysis caused by all the formulations was similar to their individual components (p ˃ 0.05) and demonstrated the biocompatibility of the nanoemulsion with human blood. In vitro cytotoxic potential of single and dual drug−loaded nanoemulsions were determined against breast cancer cells (MF-7). The IC50 value for QNE and CNE were found to be 40.2 ± 2.34 µM and 28.12 ± 2.07 µM, respectively. The IC50 value for QC-NE was 21.23 ± 2.16 µM and demonstrated the synergistic effect of both the drugs. The internalization of the drug inside MF-7 cells was detected by cellular uptake study. The cellular uptake of QNE and CNE was approximately 3.9-fold higher than free quercetin and curcumin (p < 0.0001). This strategically designed nanoemulsion appears to be a promising drug delivery system for the proficient primary preclinical development of quercetin and curcumin as therapeutic modalities for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
- Correspondence:
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak 124001, India;
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (S.W.); (A.A.); (A.B.M.)
- Complementary and Alternative Medicine Unit, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (S.W.); (A.A.); (A.B.M.)
- Complementary and Alternative Medicine Unit, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (S.W.); (A.A.); (A.B.M.)
- Complementary and Alternative Medicine Unit, King Khalid University, Abha 61421, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| |
Collapse
|
9
|
Antitumor activity of T cells secreting αCD133-αCD3 bispecific T-cell engager against cholangiocarcinoma. PLoS One 2022; 17:e0265773. [PMID: 35312724 PMCID: PMC8936442 DOI: 10.1371/journal.pone.0265773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer of bile duct epithelial cells with a high mortality rate and limited therapeutic options. An effective treatment is, therefore, urgently needed to improve treatment outcomes for these patients. To develop a new therapeutic option, we engineered T cells secreting αCD133-αCD3 bispecific T-cell engager and evaluated their antitumor effects against CD133-expressing CCA cells. The cDNA encoding αCD133-αCD3 bispecific T-cell engager (αCD133-αCD3-ENG) was cloned into pCDH lentiviral construct and its expression was tested in Lenti-X 293T cells. T cells from healthy donors were then transduced with engineered lentiviruses to create T cells secreting αCD133-αCD3 engager to evaluate their antitumor activities. The average transduction efficiency into T cells was approximately 60.03±21.65%. In the co-culture system containing T cells secreting αCD133-αCD3 engager (as effector cells) and mWasabi-luciferase-expressing CCA cells (KKU-100 and KKU-213A; as target cells), the effector T cells exhibited significantly higher cytolytic activities against the target CCA cells (49.0±9.76% and 64.10±13.18%, respectively) than those observed against the untransduced T cells (10.97±10.65%; p = 0.0103 and 9.80±11.05%; p = 0.0054) at an effector-to-target ratio of 5:1. In addition, the secreted αCD133-αCD3 engager significantly redirected both transduced T cells and bystander T cells to kill the target CCA cells (up to 73.20±1.68%; p<0.05). Moreover, the transduced and bystander T cells could kill the target CCA spheroids at a rate approximately 5-fold higher than that of the no treatment control condition (p = 0.0011). Our findings demonstrate proof-of-principle that T cells secreting αCD133-αCD3 engager can be an alternative approach to treating CD133-positive CCA, and they pave the way for future in vivo study and clinical trials.
Collapse
|
10
|
Shu Y, Xu Q, Xu Y, Tao Q, Shao M, Cao X, Chen Y, Wu Z, Chen M, Zhou Y, Zhou P, Shi Y, Bu H. Loss of Numb promotes hepatic progenitor expansion and intrahepatic cholangiocarcinoma by enhancing Notch signaling. Cell Death Dis 2021; 12:966. [PMID: 34667161 PMCID: PMC8526591 DOI: 10.1038/s41419-021-04263-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Numb, a stem cell fate determinant, acts as a tumor suppressor and is closely related to a wide variety of malignancies. Intrahepatic cholangiocarcinoma (iCCA) originates from hepatic progenitors (HPCs); however, the role of Numb in HPC malignant transformation and iCCA development is still unclear. A retrospective cohort study indicated that Numb was frequently decreased in tumor tissues and suggests poor prognosis in iCCA patients. Consistently, in a chemically induced iCCA mouse model, Numb was downregulated in tumor cells compared to normal cholangiocytes. In diet-induced chronic liver injury mouse models, Numb ablation significantly promoted histological impairment, HPC expansion, and tumorigenesis. Similarly, Numb silencing in cultured iCCA cells enhanced cell spheroid growth, invasion, metastasis, and the expression of stem cell markers. Mechanistically, Numb was found to bind to the Notch intracellular domain (NICD), and Numb ablation promoted Notch signaling; this effect was reversed when Notch signaling was blocked by γ-secretase inhibitor treatment. Our results suggested that loss of Numb plays an important role in promoting HPC expansion, HPC malignant transformation, and, ultimately, iCCA development in chronically injured livers. Therapies targeting suppressed Numb are promising for the treatment of iCCA.
Collapse
Affiliation(s)
- Yuke Shu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahong Xu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Tao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyang Shao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Cao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwei Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Menglin Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjie Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Zhou
- Department of Pathology, Sichuan Tumor Hospital, Chengdu, 610041, China
| | - Yujun Shi
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Bu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, Kanai T, Saya H, Arima Y. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci 2021; 112:1822-1838. [PMID: 33068050 PMCID: PMC8088913 DOI: 10.1111/cas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancer (BTC) arises from biliary epithelial cells (BECs) and includes intrahepatic cholangiocarcinoma (IHCC), gallbladder cancer (GC), and extrahepatic cholangiocarcinoma (EHCC). Although frequent KRAS mutations and epigenetic changes at the INK4A/ARF locus have been identified, the molecular pathogenesis of BTC is unclear and the development of corresponding anticancer agents remains inadequate. We isolated epithelial cell adhesion molecule (EpCAM)–positive BECs from the mouse intrahepatic bile duct, gallbladder, and extrahepatic bile duct, and established organoids derived from these cells. Introduction of activated KRAS and homozygous deletion of Ink4a/Arf in the cells of each organoid type conferred the ability to form lethal metastatic adenocarcinoma with differentiated components and a pronounced desmoplastic reaction on cell transplantation into syngeneic mice, indicating that the manipulated cells correspond to BTC–initiating cells. The syngeneic mouse models recapitulate the pathological features of human IHCC, GC, and EHCC, and they should therefore prove useful for the investigation of BTC carcinogenesis and the development of new therapeutic strategies. Tumor cells isolated from primary tumors formed organoids in three‐dimensional culture, and serial syngeneic transplantation of these cells revealed that their cancer stem cell properties were supported by organoid culture, but not by adherent culture. Adherent culture thus attenuated tumorigenic activity as well as the expression of both epithelial and stem cell markers, whereas the expression of epithelial‐mesenchymal transition (EMT)–related transcription factor genes and mesenchymal cell markers was induced. Our data show that organoid culture is important for maintenance of epithelial cell characteristics, stemness, and tumorigenic activity of BTC–initiating cells.
Collapse
Affiliation(s)
- Akiyoshi Kasuga
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Semba
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Thoracic Surgery, Kumamoto University, Kumamoto, Japan
| | - Ryo Sato
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiromasa Takaishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Moeini A, Haber PK, Sia D. Cell of origin in biliary tract cancers and clinical implications. JHEP Rep 2021; 3:100226. [PMID: 33665585 PMCID: PMC7902553 DOI: 10.1016/j.jhepr.2021.100226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancers (BTCs) are aggressive epithelial malignancies that can arise at any point of the biliary tree. Albeit rare, their incidence and mortality rates have been rising steadily over the past 40 years, highlighting the need to improve current diagnostic and therapeutic strategies. BTCs show high inter- and intra-tumour heterogeneity both at the morphological and molecular level. Such complex heterogeneity poses a substantial obstacle to effective interventions. It is widely accepted that the observed heterogeneity may be the result of a complex interplay of different elements, including risk factors, distinct molecular alterations and multiple potential cells of origin. The use of genetic lineage tracing systems in experimental models has identified cholangiocytes, hepatocytes and/or progenitor-like cells as the cells of origin of BTCs. Genomic evidence in support of the distinct cell of origin hypotheses is growing. In this review, we focus on recent advances in the histopathological subtyping of BTCs, discuss current genomic evidence and outline lineage tracing studies that have contributed to the current knowledge surrounding the cell of origin of these tumours.
Collapse
Key Words
- ARID1A, AT-rich interactive domain-containing protein 1A
- BAP1, BRCA1-associated protein 1
- BRAF, v-Raf murine sarcoma viral oncogene homolog B
- BTC, biliary tract cancer
- Biliary tract cancers
- CCA, cholangiocarcinoma
- CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B
- CK, cytokeratin
- CLC, cholangiolocarcinoma
- Cell of origin
- Cholangiocarcinoma
- CoH, Canal of Hering
- DCR, disease control rate
- ER, estrogen receptor
- ERBB2/3, Erb-B2 Receptor Tyrosine Kinase 2/3
- FGFR, fibroblast growth factor receptor
- FGFR2, Fibroblast Growth Factor Receptor 2
- GBC, gallbladder cancer
- GEMM, genetically engineered mouse models
- Genomics
- HCC, hepatocellular carcinoma
- HPCs, hepatic progenitor cells
- IDH, isocitrate dehydrogenase
- KRAS, Kirsten Rat Sarcoma Viral Oncogene Homolog
- Lineage tracing
- MET, Hepatocyte Growth Factor Receptor
- MST1, Macrophage Stimulating 1
- NA, not applicable
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NGS, next-generation sequencing
- NR, not reported
- NTRK, Neurotrophic Receptor Tyrosine Kinase 1
- ORR, objective response rate
- OS, overall survival
- PBG, peribiliary gland
- PFS, progression- free survival
- PIK3CA, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
- PLC, primary liver cancer
- PRKACA/B, Protein Kinase CAMP-Activated Catalytic Subunit Alpha/Beta
- PROM1, Prominin 1
- PSC, primary sclerosing cholangitis
- Personalized therapy
- RNF43, Ring Finger Protein 43
- SMAD4, SMAD Family Member 4
- TBG, thyroid binding globulin
- TP53, Tumor Protein P53
- WHO, World Health Organization
- dCCA, distal cholangiocarcinoma
- eCCA, extrahepatic cholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
- mo, months
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
- Agrin Moeini
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Philipp K Haber
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
13
|
Bekric D, Neureiter D, Ritter M, Jakab M, Gaisberger M, Pichler M, Kiesslich T, Mayr C. Long Non-Coding RNAs in Biliary Tract Cancer-An Up-to-Date Review. J Clin Med 2020; 9:jcm9041200. [PMID: 32331331 PMCID: PMC7231154 DOI: 10.3390/jcm9041200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The term long non-coding RNA (lncRNA) describes non protein-coding transcripts with a length greater than 200 base pairs. The ongoing discovery, characterization and functional categorization of lncRNAs has led to a better understanding of the involvement of lncRNAs in diverse biological and pathological processes including cancer. Aberrant expression of specific lncRNA species was demonstrated in various cancer types and associated with unfavorable clinical characteristics. Recent studies suggest that lncRNAs are also involved in the development and progression of biliary tract cancer, a rare disease with high mortality and limited therapeutic options. In this review, we summarize current findings regarding the manifold roles of lncRNAs in biliary tract cancer and give an overview of the clinical and molecular consequences of aberrant lncRNA expression as well as of underlying regulatory functions of selected lncRNA species in the context of biliary tract cancer.
Collapse
Affiliation(s)
- Dino Bekric
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria;
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Markus Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria;
| | - Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
| | - Christian Mayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
14
|
Yoo SY, Badrinath N, Lee HL, Heo J, Kang DH. A Cancer-Favoring, Engineered Vaccinia Virus for Cholangiocarcinoma. Cancers (Basel) 2019; 11:E1667. [PMID: 31717883 PMCID: PMC6896061 DOI: 10.3390/cancers11111667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
While oncolytic vaccinia virus-based therapy has shown promising results for uncured patients with cancer, its effects on cholangiocarcinoma (CCA) remain unclear. Here, we evaluated the anti-cancer activity of the cancer-favoring oncolytic vaccinia virus (CVV), which was recognized as a promising therapy for stem cell-like colon cancer cells (SCCs) and metastatic hepatocellular carcinoma (HCC) in previous studies. CCA presents major challenges, such as clinical complexity, stem cell cancer characteristics, a high refractory rate, resistance to conventional therapy, and a dismal prognosis. In the present study, we confirmed the oncolytic activity of the CVV in CCA with a slightly alkaline microenvironment (pH 7-8), in which the CVV was stable and highly effective at infecting CCA. Taken together, our findings suggest that CVV-based therapy is highly suitable for the treatment of CCA.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (H.L.L.); (D.-H.K.)
| | - Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea; (N.B.); (J.H.)
| | - Hye Lim Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (H.L.L.); (D.-H.K.)
| | - Jeong Heo
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea; (N.B.); (J.H.)
| | - Dae-Hwan Kang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (H.L.L.); (D.-H.K.)
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea; (N.B.); (J.H.)
| |
Collapse
|
15
|
Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP, Bozko P, Plentz RR. Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res 2019; 385:111671. [PMID: 31634481 DOI: 10.1016/j.yexcr.2019.111671] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022]
Abstract
Aberrant activation of Sonic Hedgehog (SHH) pathway has been implicated in a variety of cancers including cholangiocarcinoma (CC); however, the influencing factors are still unknown. Additionally, intratumoral hypoxia is known to contribute towards therapeutic resistance through modulatory effects on various pathways. In this study, we investigated the relationship between hypoxia and SHH pathway activation and the effect of this interplay on cancer stemness and epithelial-to- mesenchymal transition (EMT) during cholangiocarcinogenesis. Hypoxia promoted SHH pathway activation, evidenced by upregulated SHH and SMO levels, and enhanced glioma-associated oncogene homolog 1 (GLI1) nuclear translocation; whereas silencing of HIF-1α impaired SHH upregulation. Hypoxia also enhanced the expression of cancer stem cell (CSC) transcription factors (NANOG, Oct4, SOX2), CD133 and EMT markers (N-cadherin, Vimentin), thereby supporting invasion. Cyclopamine treatment suppressed hypoxia induced SHH pathway activation, consequently reducing invasiveness by downregulating the expression of CSC transcription factors, CD133 and EMT. Cyclopamine induced apoptosis in CC cells under hypoxia, suggesting that hypoxia induced activation of SHH pathway has modulatory effects on CC progression. Therefore, SHH signaling is proposed as a target for CC treatment, which is refractory to standard chemotherapy.
Collapse
Affiliation(s)
- Vikas Bhuria
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Jun Xing
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Tim Scholta
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Mai Ly Thi Nguyen
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany.
| | - Ruben R Plentz
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany; Department of Internal Medicine II, Bremen-Nord Hospital, Bremen, Germany.
| |
Collapse
|
16
|
Chen C, Nelson LJ, Ávila MA, Cubero FJ. Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells 2019; 8:1172. [PMID: 31569444 PMCID: PMC6829385 DOI: 10.3390/cells8101172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the incidence of both liver and biliary tract cancer has increased. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of hepatic malignancies. Whereas HCC is the fifth most common malignant tumor in Western countries, the prevalence of CCA has taken an alarming increase from 0.3 to 2.1 cases per 100,000 people. The lack of specific biomarkers makes diagnosis very difficult in the early stages of this fatal cancer. Thus, the prognosis of CCA is dismal and surgery is the only effective treatment, whilst recurrence after resection is common. Even though chemotherapy and radiotherapy may prolong survival in patients with CCA, the 5-year survival rate is still very low-a significant global problem in clinical diagnosis and therapy. The mitogen-activated protein kinase (MAPK) pathway plays an important role in signal transduction by converting extracellular stimuli into a wide range of cellular responses including inflammatory response, stress response, differentiation, survival, and tumorigenesis. Dysregulation of the MAPK cascade involves key signaling components and phosphorylation events that play an important role in tumorigenesis. In this review, we discuss the pathophysiological role of MAPK, current therapeutic options, and the current situation of MAPK-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi 214000, China.
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, UK.
| | - Matías A Ávila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
| |
Collapse
|
17
|
Wu HJ, Chu PY. Role of Cancer Stem Cells in Cholangiocarcinoma and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20174154. [PMID: 31450710 PMCID: PMC6747544 DOI: 10.3390/ijms20174154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of liver cancer, and is highly aggressive with very poor prognosis. CCA is classified into intrahepatic cholangiocarcinoma (iCCA) and extra-hepatic cholangiocarcinoma (eCCA), which is further stratified into perihilar (pCCA) and distal (dCCA). Cancer stem cells (CSCs) are a subpopulation of cancer cells capable of tumor initiation and malignant growth, and are also responsible for chemoresistance. Thus, CSCs play an important role in CCA carcinogenesis. Surface markers such as CD133, CD24, CD44, EpCAM, Sox2, CD49f, and CD117 are important for identifying and isolating CCA CSCs. CSCs are present in the tumor microenvironment (TME), termed ‘CSC niche’, where cellular components and soluble factors interact to promote tumor initiation. Epithelial-to-mesenchymal transition (EMT) is another important mechanism underlying carcinogenesis, involved in the invasiveness, metastasis and chemoresistance of cancer. It has been demonstrated that EMT plays a critical role in generating CSCs. Therapies targeting the surface markers and signaling pathways of CCA CSCs, proteins involved in TME, and immune checkpoint proteins are currently under investigation. Therefore, this review focuses on recent studies on the roles of CSCs in CCA; the possible therapeutic strategies targeting CSCs of CCA are also discussed.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua County 505, Taiwan
| | - Pei-Yi Chu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan.
| |
Collapse
|
18
|
Onalan E. Hypercalcemia related to cholangiocellular carcinoma. Clin Case Rep 2019; 7:1542-1544. [PMID: 31428385 PMCID: PMC6693048 DOI: 10.1002/ccr3.2286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with malignancies may develop hypercalcemia due to bone metastases or paraneoplastic reasons. Hepatocellular cancer should be considered in liver masses detected in chronic viral hepatitis B patients with delta agents. However, in our case, we detected cholangiocellular carcinoma in the etiology of hypercalcemia.
Collapse
Affiliation(s)
- Erhan Onalan
- Department of Internal Medicine, Faculty of MedicineFirat UniveristyElazigTurkey
| |
Collapse
|
19
|
Recalcati S, Correnti M, Gammella E, Raggi C, Invernizzi P, Cairo G. Iron Metabolism in Liver Cancer Stem Cells. Front Oncol 2019; 9:149. [PMID: 30941302 PMCID: PMC6433741 DOI: 10.3389/fonc.2019.00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSC) which have been identified in several tumors, including liver cancer, represent a particular subpopulation of tumor cells characterized by properties similar to those of adult stem cells. Importantly, CSC are resistant to standard therapies, thereby leading to metastatic dissemination and tumor relapse. Given the increasing evidence that iron homeostasis is deregulated in cancer, here we describe the iron homeostasis alterations in cancer cells, particularly in liver CSC. We also discuss two paradoxically opposite iron manipulation-strategies for tumor therapy based either on iron chelation or iron overload-mediated oxidant production leading to ferroptosis. A better understanding of iron metabolism modifications occurring in hepatic tumors and particularly in liver CSC cells may offer new therapeutic options for this cancer, which is characterized by increasing incidence and unfavorable prognosis.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Chiara Raggi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Department of Medicine and Surgery, Center for Autoimmune Liver Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Jiang K, Centeno BA. Primary Liver Cancers, Part 2: Progression Pathways and Carcinogenesis. Cancer Control 2018; 25:1073274817744658. [PMID: 29353494 PMCID: PMC5933573 DOI: 10.1177/1073274817744658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and primary intrahepatic cholangiocarcinoma (ICC) have been increasing in incidence worldwide and are leading causes of cancer death. Studies of the molecular alterations leading to these carcinomas provide insights into the key mechanisms involved. A literature review was conducted to identify articles with information relevant to current understanding of the etiologies and molecular pathogenesis of HCC and ICC. Chronic inflammatory diseases are the key etiological risk factors for both HCC and ICC, although other diseases play a role, and for many ICCs, an underlying risk factor is not identified. Mutations in catenin beta 1 ( CTNBB1) and tumor protein 53 (P53) are the main genetic alterations in HCC. Isocitrate dehydrogenases 1 and 2 (IDH1/2), KRAS protooncogene GTPase (KRAS), a RAS Viral Oncogene Homolog in neoroblastoma (NRAS) and P53 are primary genetic alterations in ICC. In both diseases, the mutational landscape is dependent on the underlying etiology. The most significant etiologies and genetic processes involved in the carcinogenesis of HCC and ICC are reviewed.
Collapse
Affiliation(s)
- Kun Jiang
- 1 Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA.,2 Department of Oncologic Sciences, Morsani College of Medicine at University of South Florida, Tampa, FL, USA
| | - Barbara A Centeno
- 1 Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA.,2 Department of Oncologic Sciences, Morsani College of Medicine at University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Jiang K, Al-Diffhala S, Centeno BA. Primary Liver Cancers-Part 1: Histopathology, Differential Diagnoses, and Risk Stratification. Cancer Control 2018; 25:1073274817744625. [PMID: 29350068 PMCID: PMC5933592 DOI: 10.1177/1073274817744625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the 2 most common primary malignant liver tumors, with hepatocellular and bile ductular differentiation, respectively. This article reviews the key histopathological findings of these 2 primary liver cancers and includes a review of the role of ancillary testing for differential diagnosis, risk stratification according to the American Joint Committee on Cancer (AJCC) staging recommendation, and a review of precancerous lesions. A literature review was conducted to identify articles with information relevant to precancerous precursors, current histopathological classification, ancillary testing, and risk stratification of primary malignant liver tumors. The histomorphology of normal liver, preinvasive precursors, primary malignancies, and morphological variants, and the utilization of ancillary tests for the pathological diagnosis are described. Dysplastic nodules are the preinvasive precursors of HCC, and intraductal papillary neoplasms of bile ducts and biliary intraepithelial neoplasia are the preinvasive precursors of CC. Benign liver nodules including focal nodular hyperplasia and adenomas are included in this review, since some forms of adenomas progress to HCC and often they have to be differentiated from well-differentiated HCC. A number of morphological variants of HCC have been described in the literature, and it is necessary to be aware of them in order to render the correct diagnosis. Risk stratification is still dependent on the AJCC staging system. The diagnosis of primary liver carcinomas is usually straightforward. Application of the appropriate ancillary studies aids in the differential diagnosis of difficult cases. The understanding of the carcinogenesis of these malignancies has improved with the standardization of the pathological classification of preinvasive precursors and studies of the molecular pathogenesis. Risk stratification still depends on pathological staging.
Collapse
Affiliation(s)
- Kun Jiang
- 1 Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,2 Department of Oncologic Sciences, Morsani College of Medicine at University of South Florida, Tampa, FL, USA
| | - Sameer Al-Diffhala
- 3 Division of Anatomic Pathology, Department of Pathology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Barbara A Centeno
- 1 Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,2 Department of Oncologic Sciences, Morsani College of Medicine at University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma. Nat Commun 2018; 9:894. [PMID: 29497050 PMCID: PMC5832792 DOI: 10.1038/s41467-018-03276-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular-cholangiocarcinoma (H-ChC) is a rare subtype of liver cancer with clinicopathological features of both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). To date, molecular mechanisms underlying the co-existence of HCC and iCCA components in a single tumor remain elusive. Here, we show that H-ChC samples contain substantial private mutations from WES analyses, ranging from 33.1 to 86.4%, indicative of substantive intratumor heterogeneity (ITH). However, on the other hand, numerous ubiquitous mutations shared by HCC and iCCA suggest the monoclonal origin of H-ChC. Mutated genes identified herein, e.g., VCAN, ACVR2A, and FCGBP, are speculated to contribute to distinct differentiation of HCC and iCCA within H-ChC. Moreover, immunohistochemistry demonstrates that EpCAM is highly expressed in 80% of H-ChC, implying the stemness of such liver cancer. In summary, our data highlight the monoclonal origin and stemness of H-ChC, as well as substantial intratumoral heterogeneity. Hepatocellular-cholangiocarcinoma (H-ChC) is a rare subtype of liver cancer with features of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Here, the authors utilize whole exome sequencing to highlight the monoclonal origin and stemness of H-ChC, as well as substantial intratumoral heterogeneity.
Collapse
|
23
|
Correnti M, Raggi C. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer. Oncotarget 2018; 8:7094-7115. [PMID: 27738343 PMCID: PMC5351693 DOI: 10.18632/oncotarget.12569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
24
|
Wang R, Yang L, Li S, Ye D, Yang L, Liu Q, Zhao Z, Cai Q, Tan J, Li X. Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM). Med Sci Monit 2018; 24:412-420. [PMID: 29353288 PMCID: PMC5788241 DOI: 10.12659/msm.908022] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Quercetin, nature’s most common flavonoid, possesses anticarcinogenic properties against various forms of cancer. The aim of this study was to investigate the effect of quercetin on breast cancer stem cells in the MDA-MB-231 cell line, and to elucidate the possible mechanisms for those effects. Material/Methods We evaluated breast cancer stem cell proliferation, clone generation, and mammosphere formation to determine the effect of quercetin treatment on breast cancer stem cells. Results In our study, quercetin suppressed breast cancer stem cell proliferation, self-renewal, and invasiveness. It also lowered the expression levels of proteins related to tumorigenesis and cancer progression, such as aldehyde dehydrogenase 1A1, C-X-C chemokine receptor type 4, mucin 1, and epithelial cell adhesion molecules. Conclusions These results indicate that quercetin targets and destroys breast cancer stem cells, making it a potential novel drug in the fight against cancer.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmacy, College of Marine Science, Hainan University, Haikou, Hainan, China (mainland)
| | - Laixiu Yang
- Department of Pharmacognosy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Shen Li
- Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Dongmei Ye
- Medical College of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Lihong Yang
- Medical College of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Qingyan Liu
- Medical College of Chifeng University, , China (mainland)
| | - Zibo Zhao
- Medical College of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Qing Cai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Junzhen Tan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Xiuli Li
- Key Laboratory of Pharmacology, Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| |
Collapse
|
25
|
Lai YS, Cheng CC, Lee MT, Chao WT, Lai YCC, Hsu YH, Liu YH. The Prognostic Value of Cytokeratin and Sal-Like Protein 4 Expression in Hepatocellular Carcinoma and Intra-Hepatic Cholangiocarcinoma in Taiwan. Int J Med Sci 2018; 15:1746-1756. [PMID: 30588199 PMCID: PMC6299409 DOI: 10.7150/ijms.28440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background: We previously reported that modulation of cytokeratin18 induces pleomorphism of liver cells, higher cell motility, and higher drug sensitivity to sorafenib treatment of hepatoma cells. These relationships were established by in vitro experiments. The aim of this study was to determine the in vivo association between cytokeratin expression and tumor behavior, as well as cancer stem cells of hepatocellular carcinoma and intra-hepatic cholangiocarcinoma in Taiwan. Methods: Cytokeratins and sal-like protein 4 expression was determined in 83 hepatocellular carcinoma and 30 intra-hepatic cholangiocarcinoma specimens by immunohistochemistry. The relationship between cytokeratins and sal-like protein 4 expression with hepatitis virus infection, clinicopathologic factors, and survival was analyzed. Further, the correlation among cytokeratins and sal-like protein 4 expression was studied. Results: In addition to cytokeratin8/18, the expression of cytokeratin7/19 and sal-like protein 4 was noted in hepatocellular carcinoma; however, only cytokeratin19 expression had a significant correlation with poor overall survival and poor disease-free survival. The expression of cytokeratins and sal-like protein 4 was not correlated with hepatitis virus infection. The expression of cytokeratin19, but not 7, 8, and 18, was correlated with sal-like protein 4 expression in hepatocellular carcinoma. Cytokeratin7 expression was decreased and the sal-like protein 4 expression was absent in all 30 intra-hepatic cholangiocarcinoma cases. The expression of cytokeratins had not statistically significant correlation with overall and disease-free survival in patients with intra-hepatic cholangiocarcinoma. Conclusions: The expression of cytokeratin19 was associated with sal-like protein 4 expression, as well as poor overall and disease-free survival in hepatocellular carcinoma patients in Taiwan.
Collapse
Affiliation(s)
- Yih-Shyong Lai
- Department of Pathology, Chang Bing Show Chwan Memorial Hospital, Changhua County 505, Taiwan
| | - Chiung-Chi Cheng
- Department of Pathology, Chang Bing Show Chwan Memorial Hospital, Changhua County 505, Taiwan.,Center for General Education, Providence University, Taichung City 433, Taiwan
| | - Ming-Tsung Lee
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua City 500, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung City 407, Taiwan
| | - Yen-Chang Clark Lai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Tzu Chi University, Hualien County 970, Taiwan
| | - Yi-Hsiang Liu
- Department of Pathology, Chang Bing Show Chwan Memorial Hospital, Changhua County 505, Taiwan.,Department of Pathology, Tzu Chi University, Hualien County 970, Taiwan
| |
Collapse
|
26
|
Wengert GJ, Baltzer PAT, Bickel H, Thurner P, Breitenseher J, Lazar M, Pones M, Peck-Radosavljevic M, Hucke F, Ba-Ssalamah A. Differentiation of Intrahepatic Cholangiocellular Carcinoma from Hepatocellular Carcinoma in the Cirrhotic Liver Using Contrast-enhanced MR Imaging. Acad Radiol 2017; 24:1491-1500. [PMID: 28756085 DOI: 10.1016/j.acra.2017.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/21/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to investigate the potential of contrast-enhanced magnetic resonance imaging features to differentiate between mass-forming intrahepatic cholangiocellular carcinoma (ICC) and hepatocellular carcinoma (HCC) in cirrhotic livers. MATERIALS AND METHODS This study, performed between 2001 and 2013, included 64 baseline magnetic resonance imaging examinations with pathohistologically proven liver cirrhosis, presenting with either ICC (n = 32) or HCC (n = 32) tumors. To distinguish ICC form HCC tumors, 20 qualitative single-lesion descriptors were evaluated by two readers, in consensus, and statistically classified using the chi-square automatic interaction detection (CHAID) methodology. Diagnostic performance was assessed by a receiver operating characteristic analysis. RESULTS The CHAID algorithm identified three independent categorical lesion descriptors, including (1) liver capsular retraction; (2) progressive or persistent enhancement pattern or wash-out on the T1-weighted delayed phase; and (3) signal intensity appearance on T2-weighted images that could help to reliably differentiate ICC from HCC, which resulted in an AUC of 0.807, and a sensitivity and specificity of 68.8 and 90.6 (95% confidence interval 75.0-98.0), respectively. CONCLUSIONS The proposed CHAID algorithm provides a simple and robust step-by-step classification tool for a reliable and solid differentiation between ICC and HCC tumors in cirrhotic livers.
Collapse
Affiliation(s)
- Georg J Wengert
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria.
| | - Pascal A T Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria
| | - Hubert Bickel
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria
| | - Patrick Thurner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria
| | - Julia Breitenseher
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria
| | - Mathias Lazar
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria
| | - Matthias Pones
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria
| | - Markus Peck-Radosavljevic
- Department of Internal Medicine III, Division of Gastroenterology/Hepatology, Liver Cancer (HCC)-Study Group, Medical University of Vienna, Vienna, Austria
| | - Florian Hucke
- Department of Internal Medicine III, Division of Gastroenterology/Hepatology, Liver Cancer (HCC)-Study Group, Medical University of Vienna, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer-Guertel 18-20, 1090Vienna, Austria
| |
Collapse
|
27
|
Abstract
Cholangiocarcinoma is a malignant neoplasm originating from biliary epithelial cells. The incidence and mortality of this cancer are rising in the world. Currently, cholangiocarcinoma is accepted as a stem cell disease with many risk factors. Diagnosis is relatively simple but therapy is extremely difficult. Surgery is the mainstay of treatment for early stage patients. Endobiliary approaches, chemotherapy and radiotherapy are other therapeutic approaches.
Collapse
Affiliation(s)
- Vedat Goral
- Department of Gastroenterology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
28
|
Mayr C, Ocker M, Ritter M, Pichler M, Neureiter D, Kiesslich T. Biliary tract cancer stem cells - translational options and challenges. World J Gastroenterol 2017; 23:2470-2482. [PMID: 28465631 PMCID: PMC5394510 DOI: 10.3748/wjg.v23.i14.2470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Management of biliary tract cancer remains challenging. Tumors show high recurrence rates and therapeutic resistance, leading to dismal prognosis and short survival. The cancer stem cell model states that a tumor is a heterogeneous conglomerate of cells, in which a certain subpopulation of cells - the cancer stem cells - possesses stem cell properties. Cancer stem cells have high clinical relevance due to their potential contributions to development, progression and aggressiveness as well as recurrence and metastasis of malignant tumors. Consequently, reliable identification of as well as pharmacological intervention with cancer stem cells is an intensively investigated and promising research field. The involvement of cancer stem cells in biliary tract cancer is likely as a number of studies demonstrated their existence and the obvious clinical relevance of several established cancer stem cell markers in biliary tract cancer models and tissues. In the present article, we review and discuss the currently available literature addressing the role of putative cancer stem cells in biliary tract cancer as well as the connection between known contributors of biliary tract tumorigenesis such as oncogenic signaling pathways, micro-RNAs and the tumor microenvironment with cancer stem cells.
Collapse
|
29
|
Yang J, Farren MR, Ahn D, Bekaii-Saab T, Lesinski GB. Signaling pathways as therapeutic targets in biliary tract cancer. Expert Opin Ther Targets 2017; 21:485-498. [PMID: 28282502 DOI: 10.1080/14728222.2017.1306055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The incidence of biliary tract cancer (BTC) is increasing, and the disease is frequently diagnosed during advanced stages, leading to poor overall survival. Limited treatment options are currently available and novel therapeutic approaches are needed. A number of completed clinical trials have evaluated the role of chemotherapy for BTC, demonstrating a marginal benefit. Thus, there is increased interest in applying targeted therapies for this disease. Areas covered: This review article summarizes the role of chemotherapeutic regimens for the treatment of BTC, and highlights key signal transduction pathways of interest for targeted inhibition. Of particular interest are the MEK or MAP2K (mitogen-activated protein kinase kinase), phosphatidylinositol-3 kinase (PI3K) and signal transducer and activator of transcription-3 (STAT3) pathways. We discuss the available data on several promising inhibitors of these pathways, both in the pre-clinical and clinical settings. Expert opinion: Future treatment strategies should address targeting of MEK, PI3K and STAT3 for BTC, with a focus on combined therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Yang
- a Molecular Cellular and Developmental Biology Graduate Program , The Ohio State University , Columbus , OH , USA
| | - Matthew R Farren
- b Department of Hematology and Medical Oncology , The Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Daniel Ahn
- c Division of Medical Oncology, Department of Medicine , Mayo Clinic , Phoenix , AZ , USA
| | - Tanios Bekaii-Saab
- c Division of Medical Oncology, Department of Medicine , Mayo Clinic , Phoenix , AZ , USA
| | - Gregory B Lesinski
- b Department of Hematology and Medical Oncology , The Winship Cancer Institute of Emory University , Atlanta , GA , USA
| |
Collapse
|
30
|
Feng KC, Guo YL, Liu Y, Dai HR, Wang Y, Lv HY, Huang JH, Yang QM, Han WD. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol 2017; 10:4. [PMID: 28057014 PMCID: PMC5217546 DOI: 10.1186/s13045-016-0378-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/16/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is one of the most fatal malignant tumors with increasing incidence, mortality, and insensitivity to traditional chemo-radiotherapy and targeted therapy. Chimeric antigen receptor-modified T cell (CART) immunotherapy represents a novel strategy for the management of many malignancies. However, the potential of CART therapy in treating advanced unresectable/metastatic CCA is uncharted so far. CASE PRESENTATION In this case, a 52-year-old female who was diagnosed as advanced unresectable/metastatic CCA and resistant to the following chemotherapy and radiotherapy was treated with CART cocktail immunotherapy, which was composed of successive infusions of CART cells targeting epidermal growth factor receptor (EGFR) and CD133, respectively. The patient finally achieved an 8.5-month partial response (PR) from the CART-EGFR therapy and a 4.5-month-lasting PR from the CART133 treatment. The CART-EGFR cells induced acute infusion-related toxicities such as mild chills, fever, fatigue, vomiting and muscle soreness, and a 9-day duration of delayed lower fever, accompanied by escalation of IL-6 and C reactive protein (CRP), acute increase of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase, and grade 2 lichen striatus-like skin pathological changes. The CART133 cells induced an intermittent upper abdominal dull pain, chills, fever, and rapidly deteriorative grade 3 systemic subcutaneous hemorrhages and congestive rashes together with serum cytokine release, which needed emergent medical intervention including intravenous methylprednisolone. CONCLUSIONS This case suggests that CART cocktail immunotherapy may be feasible for the treatment of CCA as well as other solid malignancies; however, the toxicities, especially the epidermal/endothelial damages, require a further investigation. TRIAL REGISTRATION ClinicalTrials.gov NCT01869166 and NCT02541370 .
Collapse
Affiliation(s)
- Kai-Chao Feng
- Department of Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Ye-Lei Guo
- Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yang Liu
- Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, China
| | - Han-Ren Dai
- Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yao Wang
- Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Hai-Yan Lv
- Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jian-Hua Huang
- Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Qing-Ming Yang
- Department of Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Wei-Dong Han
- Department of Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China. .,Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
31
|
Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene 2015; 35:3376-86. [PMID: 26455324 PMCID: PMC4932558 DOI: 10.1038/onc.2015.396] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/30/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA), which is a poor prognosis malignancy that arises from the malignant transformation of cholangiocytes, is associated with chronic inflammation of the biliary epithelium. Thus far, the molecular mechanisms of the origin and neoplastic processes of CCA that are promoted by inflammation are still unclear and need to be fully elucidated. Here using small RNA sequencing to determine the microRNA (miRNA) expression profiles in CCA, we found that let-7c, miR-99a and miR-125b, which are three miRNAs of the same cluster, were downregulated in CCA and targeted interleukin 6 (IL-6), IL-6R and type 1 insulin-like growth factor, which are important cytokines and receptors of the IL-6/signal transducer and activator 3 (STAT3) pathway and have key roles in inflammation and CCA initiation. We also found that enforced expression of let-7c, miR-99a or miR-125b could reduce the activity of STAT3 and further suppress CCA tumorigenicity in vivo and inhibit the migration and invasion of CCA cells in vitro. Surprisingly, let-7c/miR-99a/miR-125b cluster also significantly decreased the ability of CCA cells for cancer stem cell-like mammosphere generation by downregulating CD133 and CD44, which suggests the pivotal roles of let-7c, miR-99a and miR-125b in CCA by regulating both inflammation and stem-like properties. Our findings showed potential links between miRNAs and inflammation, and provide a potential treatment strategy for developing an miRNA-based therapy via IL-6/STAT3 targeting for CCA.
Collapse
|
32
|
Wengert GJ, Bickel H, Breitenseher J, Ba-Ssalamah A. [Primary liver tumors : hepatocellular versus intrahepatic cholangiocellular carcinoma]. Radiologe 2015; 55:27-35. [PMID: 25575724 DOI: 10.1007/s00117-014-2705-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CLINICAL ISSUE Hepatocellular carcinoma (HCC) and intrahepatic cholangiocellular carcinoma (ICC) are the most commonly occurring and important primary liver tumors. Originating from one pluripotent liver stem cell both tumor entities can occur in a cirrhotic liver and also in patients without cirrhosis. Several risk factors have been identified as causative for both carcinomas; therefore, tumor screening is advantageous, especially for high-risk patients who could be diagnosed in an early stage to allow curative treatment. Surgical resection, interventional procedures and transplantation are available as curative treatment options when diagnosed in time. STANDARD RADIOLOGICAL METHODS Common characteristic features and morphology in cross-sectional imaging by ultrasound (US), multidetector computed tomography (CT) and magnetic resonance imaging (MRI) as well as screening aspects are presented and discussed. METHODICAL INNOVATIONS Recent findings show a better understanding of the carcinogenesis model of both liver tumors originating from one pluripotent liver stem cell. Further developments of modern cross-sectional imaging modalities, especially MRI in combination with diffusion-weighted imaging and intravenous administration of hepatocyte-specific contrast agents enable early detection, exact differentiation, staging and treatment evaluation of HCC and ICC ACHIEVEMENTS: In this article we discuss modern, multiparametric imaging modalities, which allow a complete and reliable diagnosis of the majority of these tumor entities. PRACTICAL RECOMMENDATIONS Contrast-enhanced MRI, using hepatocyte-specific contrast agents, is currently the most accurate procedure for the noninvasive diagnosis and treatment evaluation of HCC and ICC.
Collapse
Affiliation(s)
- G J Wengert
- Universitätsklinik für Radiologie und Nuklearmedizin, Allgemeines Krankenhaus, Medizinische Universität Wien, Währinger-Gürtel 18-20, 1090, Wien, Österreich,
| | | | | | | |
Collapse
|
33
|
Romano M, De Francesco F, Gringeri E, Giordano A, Ferraro GA, Di Domenico M, Cillo U. Tumor Microenvironment Versus Cancer Stem Cells in Cholangiocarcinoma: Synergistic Effects? J Cell Physiol 2015; 231:768-76. [PMID: 26357947 DOI: 10.1002/jcp.25190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCAs) may be defined as tumors that derived from the biliary tree with the differentiation in the biliary epithelial cells. This tumor is malignant, extremely aggressive with a poor prognosis. It can be treated surgically and its pathogenesis is poorly understood. The tumor microenvironment (TME) is a very important factor in the regulation of tumor angiogenesis, invasion, and metastasis. Besides cancer stem cells (CSCs) can modulate tumor growth, stroma formation, and migratory capability. The initial stage of tumorigenesis is characterized by genetic mutations and epigenetic alterations due to intrinsic factors which lead to the generation of oncogenes thus inducing tumorigenesis. CSCs may result from precancerous stem cells, cell de-differentiation, normal stem cells, or an epithelial-mesenchymal transition (EMT). CSCs have been found in the cancer niche, and EMT may occur early within the tumor microenvironment. Previous studies have demonstrated evidence of cholangiocarcinoma stem cells (CD133, CD24, EpCAM, CD44, and others) and the presence of these markers has been associated with malignant potential. The interaction between TME and cholangiocarcinoma stem cells via signaling mediators may create an environment that accommodates tumor growth, yielding resistance to cytotoxic insults (chemotherarapeutic). While progress has been made in the understanding of the mechanisms, the interactions in the tumorigenic process still remain a major challenge. Our review, addresses recent concepts of TME-CSCs interaction and will emphasize the importance of early detection with the use of novel diagnostic mechanisms such as CCA-CSC biomarkers and the importance of tumor stroma to define new treatments. J. Cell. Physiol. 231: 768-776, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maurizio Romano
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Francesco De Francesco
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Giuseppe A Ferraro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| |
Collapse
|
34
|
Zhou N, Wang R, Zhang Y, Lei Z, Zhang X, Hu R, Li H, Mao Y, Wang X, Irwin DM, Niu G, Tan H. Staurosporine Induced Apoptosis May Activate Cancer Stem-Like Cells (CD44(+)/CD24(-)) in MCF-7 by Upregulating Mucin1 and EpCAM. J Cancer 2015; 6:1049-57. [PMID: 26366219 PMCID: PMC4565855 DOI: 10.7150/jca.12501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022] Open
Abstract
Malignant tumors recur after chemotherapy. A small population of cancer stem-like cells within tumors is now generally considered the prime source of the recurrence. To better understand how cancer stem-like cells induce relapse after fractionated chemotherapy, we examined changes in the CD44(+)/CD24(-) cancer stem-like cells population and behavior using the breast cancer cell line MCF-7. Our results show that apart from an increase in the CD44(+)/CD24(-) population, proliferation and clone formation, but not migration, were enhanced after recovery from apoptosis induced by two pulses of staurosporine (STS). The distribution of cells in the cell cycle differed between acutely induced apoptosis and fractionated chemotherapy. Sorted CD44(+)/CD24(-) stem-like cells from MCF-7 cells recovered from STS treatment possessed greater proliferation abilities. We also observed that mucin1 (MUC1) and Epithelial cell adhesion molecule (EpCAM) were up-regulated in abundance coincidently with proliferation and clone formation enhancement. Our findings suggest that fractionated chemotherapy induced apoptosis could stimulate cancer stem-like cell to behave with a stronger malignant property than cancer cells themselves and MUC1 and EpCAM are important factors involving in this process. By demonstrating changes in cancer stem cell during chemotherapy and identifying the crucial factors, we potentially can target them, to eradicate tumors and overcome cancer relapse.
Collapse
Affiliation(s)
- Na Zhou
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - Rong Wang
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - Yizhuang Zhang
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - Zhen Lei
- 2. Beijing N&N Genetech Company, Beijing, 100082, China
| | - Xuehui Zhang
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - Ruobi Hu
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - Hui Li
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - Yiqing Mao
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - Xi Wang
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| | - David M Irwin
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China; ; 3. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gang Niu
- 2. Beijing N&N Genetech Company, Beijing, 100082, China
| | - Huanran Tan
- 1. Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China
| |
Collapse
|
35
|
Romano M, De Francesco F, Pirozzi G, Gringeri E, Boetto R, Di Domenico M, Zavan B, Ferraro GA, Cillo U. Expression of cancer stem cell biomarkers as a tool for a correct therapeutic approach to hepatocellular carcinoma. Oncoscience 2015; 2:443-456. [PMID: 26097877 PMCID: PMC4468330 DOI: 10.18632/oncoscience.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the fifth most commonly diagnosed malignancy and the second most frequent cause of cancer death in men worldwide. Amongst liver cancers, hepatocellular carcinoma (HCC) represents the major histological subtype and it is one of the most common malignant human tumors worldwide. Research into the molecular biology of hepatocarcinogenesis has identified several biomarkers, which could provide additional informations in order to better understand the biology of HCC. A large number of biomarkers have been shown to have potential predictive significance and a wide variety of molecular markers have been proven to be excellent diagnostic tools for HCC but it is difficult to characterize HCC with a single biomarker. Thus, signatures of a combination of biomarkers may be more valuable for the diagnosis, staging and prognosis of HCC. Specifically, a correlation of HCC-CSCs phenotype to specific hepatic cancer subtypes and to specific clinical and pathological features has not yet been reported in human liver tumors. In this view we will first discuss the possible sources of liver stem cells and their relation with liver cancer development and we will secondly focus on the prognostic significance of clinical and pathological features of HCC.
Collapse
Affiliation(s)
- Maurizio Romano
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| | - Francesco De Francesco
- Multidisciplinary department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples (Italy)
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, National Cancer Institute, G.Pascale, Naples (Italy)
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| | - Riccardo Boetto
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples (Italy)
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua (Italy)
| | - Giuseppe A Ferraro
- Multidisciplinary department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples (Italy)
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| |
Collapse
|
36
|
Nakashima S, Kobayashi S, Nagano H, Tomokuni A, Tomimaru Y, Asaoka T, Hama N, Wada H, Kawamoto K, Marubashi S, Eguchi H, Doki Y, Mori M. BRCA/Fanconi anemia pathway implicates chemoresistance to gemcitabine in biliary tract cancer. Cancer Sci 2015; 106:584-91. [PMID: 25736055 PMCID: PMC4452159 DOI: 10.1111/cas.12652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Accepted: 02/27/2015] [Indexed: 12/19/2022] Open
Abstract
The BRCA/Fanconi anemia (FA) pathway plays a key role in the repair of DNA double strand breaks. We focused on this pathway to clarify chemoresistance mechanisms in biliary tract cancer (BTC). We also investigated changes in the CD24+/44+ population that may be involved in chemoresistance, as this population likely includes cancer stem cells. We used three BTC cell lines to establish gemcitabine (GEM)-resistant (GR) cells and evaluated the expression of BRCA/FA pathway components, chemoresistance, and the effect of BRCA/FA pathway inhibition on the CD24+/44+ population. FANCD2 and CD24 expression were evaluated in 108 resected BTC specimens. GR cells highly expressed the BRCA/FA components. The BRCA/FA pathway was upregulated by GEM and cisplatin (CDDP) exposure. Inhibition using siRNA and RAD51 inhibitor sensitized GR cells to GEM or CDDP. The CD24+/44+ population was increased in GR and parent BTC cells treated with GEM or CDDP and highly expressed BRCA/FA genes. FANCD2 was related to CD24 expression in resected BTC specimens. Inhibition of the BRCA/FA pathway under GEM reduced the CD24+/44+ population in MzChA1-GR cells. Thus, high expression of the BRCA/FA pathway is one mechanism of chemoresistance against GEM and/or CDDP and is related to the CD24+/44+ population in BTC.
Collapse
Affiliation(s)
- Shinsuke Nakashima
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery, Osaka Medical Center for Cancer and Cardio-Vascular Diseases, Osaka, Japan
| | - Hiroaki Nagano
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Tomokuni
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoki Hama
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Kawamoto
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Marubashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62:198-207. [PMID: 25220250 DOI: 10.1016/j.jhep.2014.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying the diversity of CCA growth patterns remain a key issue of clinical concern. Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment or tumour microenvironment (TME) likely promotes initiation and progression of this malignancy, contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Sulpice L, Rayar M, Turlin B, Boucher E, Bellaud P, Desille M, Meunier B, Clément B, Boudjema K, Coulouarn C. Epithelial cell adhesion molecule is a prognosis marker for intrahepatic cholangiocarcinoma. J Surg Res 2014; 192:117-123. [PMID: 24909871 DOI: 10.1016/j.jss.2014.05.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, we identified a gene signature of intrahepatic cholangiocarcinoma (ICC) stroma and demonstrated its clinical relevance for prognosis. The most upregulated genes included epithelial cell adhesion molecule (EpCAM), a biomarker of cancer stem cells (CSC). We hypothesized that CSC biomarkers could predict recurrence of resected ICC. METHODS Both functional analysis of the stroma signature previously obtained and immunohistochemistry of 40 resected ICC were performed. The relationships between the expression of CSC markers and clinicopathologic factors including survival were assessed by univariate and multivariable analyzes. RESULTS Gene expression profile of the stroma of ICC highlighted embryonic stem cells signature. Immunohistochemistry on tissue microarray showed at a protein level the increased expression of CSC biomarkers in the stroma of ICC compared with nontumor fibrous liver tissue. The overexpression of EpCAM in the stroma of ICC is an independent risk factor for overall (hazard ratio = 2.6; 95% confidence interval, 1.3-5.1; P = 0.005) and disease-free survival (hazard ratio = 2.2; 95% confidence interval, 1.2-4.2; P = 0.012). In addition, the overexpression of EpCAM in nontumor fibrous liver tissue is closely correlated with a worst disease-free survival (P = 0.035). CONCLUSIONS Our findings provide new arguments for a potential role of CSC on ICC progression supporting the idea that targeting CSC biomarkers might represent a promise personalized treatment.
Collapse
Affiliation(s)
- Laurent Sulpice
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France; Service de Chirurgie Hépatobiliaire et Digestive, CHU Rennes, Rennes, France.
| | - Michel Rayar
- Université de Rennes 1, Rennes, France; Service de Chirurgie Hépatobiliaire et Digestive, CHU Rennes, Rennes, France
| | - Bruno Turlin
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France; Service d'Anatomie et Cytologie Pathologiques, CHU Rennes, Rennes, France
| | - Eveline Boucher
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France; Centre Régional de Lutte contre le Cancer, Rennes, France
| | - Pascale Bellaud
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France
| | - Mireille Desille
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France
| | - Bernard Meunier
- Université de Rennes 1, Rennes, France; Service de Chirurgie Hépatobiliaire et Digestive, CHU Rennes, Rennes, France
| | - Bruno Clément
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France
| | - Karim Boudjema
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France; Service de Chirurgie Hépatobiliaire et Digestive, CHU Rennes, Rennes, France
| | - Cédric Coulouarn
- Liver Metabolisms and Cancer, INSERM UMR991, Rennes, France; Université de Rennes 1, Rennes, France
| |
Collapse
|
39
|
Maemura K, Natsugoe S, Takao S. Molecular mechanism of cholangiocarcinoma carcinogenesis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:754-760. [DOI: 10.1002/jhbp.126] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Sonshin Takao
- Center for Biomedical Science and Swine Research; Kagoshima University; 8-35-1 Sakuragaoka Kagoshima 890-8520 Japan
| |
Collapse
|
40
|
Allegra A, Alonci A, Penna G, Innao V, Gerace D, Rotondo F, Musolino C. The cancer stem cell hypothesis: a guide to potential molecular targets. Cancer Invest 2014; 32:470-95. [PMID: 25254602 DOI: 10.3109/07357907.2014.958231] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Common cancer theories hold that tumor is an uncontrolled somatic cell proliferation caused by the progressive addition of random mutations in critical genes that control cell growth. Nevertheless, various contradictions related to the mutation theory have been reported previously. These events may be elucidated by the persistence of residual tumor cells, called Cancer Stem Cells (CSCs) responsible for tumorigenesis, tumor maintenance, tumor spread, and tumor relapse. Herein, we summarize the current understanding of CSCs, with a focus on the possibility to identify specific markers of CSCs, and discuss the clinical application of targeting CSCs for cancer treatment.
Collapse
|
41
|
Chu HH, Cho BH, Song JS, Kim KM, Moon WS. C-KIT-positive undifferentiated tumor of the liver: A case report. Oncol Lett 2014; 8:1665-1669. [PMID: 25202388 PMCID: PMC4156211 DOI: 10.3892/ol.2014.2324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/24/2014] [Indexed: 11/18/2022] Open
Abstract
With recent advances in cancer stem cell analysis, it has been postulated that the transformation of hepatic stem and progenitor cells underlies the development of certain liver cancers. Human C-KIT is a transmembrane type III receptor protein with intrinsic tyrosine kinase activity that has been proposed as a marker for human embryonic stem cells. In addition, human C-KIT functions in maintaining the undifferentiated state of stem cells, and has been identified as a marker for human hematopoietic and hepatic stem/progenitor cells. The present study identified an unusual case of a C-KIT-positive hepatic tumor with an undifferentiated stem cell phenotype distinct from existing descriptions of liver tumors. A 69-year-old male with Ampulla of Vater (AoV) cancer was admitted to the hospital for the treatment of a hepatic mass that was incidentally detected during evaluation of AoV cancer. Microscopically, the hepatic tumor was composed of solidly packed small, round and uniform undifferentiated cells, which resembled that of a small-blue-round-cell tumor. The immunophenotype of neoplastic cells (C-KIT+/EpCAM+/E-cadherin+/keratin 7−/keratin 19−/α-fetoprotein−/albumin−) supported primitive stem cell features with no hepatic or biliary phenotypes. Polymerase chain reaction and direct DNA sequencing revealed no C-KIT mutations. It is suggested that this tumor may have originated from transformed C-KIT+/EpCAM+/E-cadherin+ cells, which are more primitive and undifferentiated than bipotential hepatic progenitor cells.
Collapse
Affiliation(s)
- Hyun Hee Chu
- Department of Pathology, Chonbuk National University, Medical School, Research Institute for Endocrine Sciences and Research Institute of Clinical Medicine, Jeonju 561-756, Republic of Korea
| | - Baik Hwan Cho
- Department of Surgery, Chonbuk National University, Medical School, Research Institute for Endocrine Sciences and Research Institute of Clinical Medicine, Jeonju 561-756, Republic of Korea
| | - Ji Soo Song
- Department of Radiology, Chonbuk National University, Medical School, Research Institute for Endocrine Sciences and Research Institute of Clinical Medicine, Jeonju 561-756, Republic of Korea
| | - Kyung Mi Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University, Medical School, Research Institute for Endocrine Sciences and Research Institute of Clinical Medicine, Jeonju 561-756, Republic of Korea
| |
Collapse
|
42
|
Romano G. The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. SCIENTIFICA 2013; 2013:317186. [PMID: 24381788 PMCID: PMC3870877 DOI: 10.1155/2013/317186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 06/01/2023]
Abstract
Akt serine/threonine kinases, or PKB, are key players in the regulation of a wide variety of cellular activities, such as growth, proliferation, protection from apoptotic injuries, control of DNA damage responses and genome stability, metabolism, migration, and angiogenesis. The Akt-related pathway responds to the stimulation mediated by growth factors, cytokines, hormones, and several nutrients. Akt is present in three isoforms: Akt1, Akt2, and Akt3, which may be alternatively named PKB α , PKB β , and PKB γ , respectively. The Akt isoforms are encoded on three diverse chromosomes and their biological functions are predominantly distinct. Deregulations in the Akt-related pathway were observed in many human maladies, including cancer, cardiopathies, neurological diseases, and type-2 diabetes. This review discusses the significance of the abnormal activities of the Akt axis in promoting and sustaining malignancies, along with the development of tumor cell populations that exhibit enhanced resistance to chemo- and/or radiotherapy. This occurrence may be responsible for the relapse of the disease, which is unfortunately very often related to fatal consequences in patients.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
43
|
Igarashi S, Sato Y, Ren XS, Harada K, Sasaki M, Nakanuma Y. Participation of peribiliary glands in biliary tract pathophysiologies. World J Hepatol 2013; 5:425-432. [PMID: 24023981 PMCID: PMC3767841 DOI: 10.4254/wjh.v5.i8.425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/24/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the roles of peribiliary glands around the bile ducts in the pathophysiology of the biliary tract.
METHODS: The expression of fetal pancreatic markers, pancreatic duodenal homeobox factor 1 (PDX1) and hairy and enhancer of split 1 (HES1) and endodermal stem/progenitor (S/P) cell markers [CD44s, chemokine receptor type 4 (CXCR4), SOX9 and epithelial cell adhesion molecule (EpCAM)] were examined immunohistochemically in 32 normal adult livers (autopsy livers) and 22 hepatolithiatic livers (surgically resected livers). The latter was characterized by the proliferation of the peribiliary glands. Immunohistochemistry was performed using formalin-fixed, paraffin-embedded tissue sections after deparaffinization. Although PDX1 and HES1 were expressed in both the nucleus and cytoplasm of epithelial cells, only nuclear staining was evaluated. SOX9 was expressed in the nucleus, while CD44s, CXCR4 and EpCAM were expressed in the cell membranes. The frequency and extent of the expression of these molecules in the lining epithelia and peribiliary glands were evaluated semi-quantitatively based on the percentage of positive cells: 0, 1+ (focal), 2+ (moderate) and 3+ (extensive).
RESULTS: In normal livers, PDX1 was infrequently expressed in the lining epithelia, but was frequently expressed in the peribiliary glands. In contrast, HES1 was frequently expressed in the lining epithelia, but its expression in the peribiliary glands was focal, suggesting that the peribiliary glands retain the potential of differentiation toward the pancreas and the lining epithelia exhibit properties to inhibit such differentiation. This unique combination was also seen in hepatolithiatic livers. The expression of endodermal S/P cell markers varied in the peribiliary glands in normal livers: SOX9 and EpCAM were frequently expressed, CD44s infrequently, and CXCR4 almost not at all. The expression of these markers, particularly CD44s and CXCR4, increased in the peribiliary glands and lining epithelia in hepatolithiatic livers. This increased expression of endodermal S/P cell markers may be related to the increased production of intestinal and gastric mucin and also to the biliary neoplasia associated with the gastric and intestinal phenotypes reported in hepatolithiasis.
CONCLUSION: The unique expression pattern of PDX1 and HES1 and increased expression of endodermal S/P cell markers in the peribiliary glands may be involved in biliary pathophysiologies.
Collapse
|