1
|
Verma A, Manchel A, Narayanan R, Hoek JB, Ogunnaike BA, Vadigepalli R. A Spatial Model of Hepatic Calcium Signaling and Glucose Metabolism Under Autonomic Control Reveals Functional Consequences of Varying Liver Innervation Patterns Across Species. Front Physiol 2021; 12:748962. [PMID: 34899380 PMCID: PMC8662697 DOI: 10.3389/fphys.2021.748962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Rapid breakdown of hepatic glycogen stores into glucose plays an important role during intense physical exercise to maintain systemic euglycemia. Hepatic glycogenolysis is governed by several different liver-intrinsic and systemic factors such as hepatic zonation, circulating catecholamines, hepatocellular calcium signaling, hepatic neuroanatomy, and the central nervous system (CNS). Of the factors regulating hepatic glycogenolysis, the extent of lobular innervation varies significantly between humans and rodents. While rodents display very few autonomic nerve terminals in the liver, nearly every hepatic layer in the human liver receives neural input. In the present study, we developed a multi-scale, multi-organ model of hepatic metabolism incorporating liver zonation, lobular scale calcium signaling, hepatic innervation, and direct and peripheral organ-mediated communication between the liver and the CNS. We evaluated the effect of each of these governing factors on the total hepatic glucose output and zonal glycogenolytic patterns within liver lobules during simulated physical exercise. Our simulations revealed that direct neuronal stimulation of the liver and an increase in circulating catecholamines increases hepatic glucose output mediated by mobilization of intracellular calcium stores and lobular scale calcium waves. Comparing simulated glycogenolysis between human-like and rodent-like hepatic innervation patterns (extensive vs. minimal) suggested that propagation of calcium transients across liver lobules acts as a compensatory mechanism to improve hepatic glucose output in sparsely innervated livers. Interestingly, our simulations suggested that catecholamine-driven glycogenolysis is reduced under portal hypertension. However, increased innervation coupled with strong intercellular communication can improve the total hepatic glucose output under portal hypertension. In summary, our modeling and simulation study reveals a complex interplay of intercellular and multi-organ interactions that can lead to differing calcium dynamics and spatial distributions of glycogenolysis at the lobular scale in the liver.
Collapse
Affiliation(s)
- Aalap Verma
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States.,Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Manchel
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rahul Narayanan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Streba LAM, Vere CC, Ionescu AG, Streba CT, Rogoveanu I. Role of intrahepatic innervation in regulating the activity of liver cells. World J Hepatol 2014; 6:137-143. [PMID: 24672643 PMCID: PMC3959114 DOI: 10.4254/wjh.v6.i3.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/05/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Liver innervation comprises sympathetic, parasympathetic and peptidergic nerve fibers, organized as either afferent or efferent nerves with different origins and roles. Their anatomy and physiology have been studied in the past 30 years, with different results published over time. Hepatocytes are the main cell population of the liver, making up almost 80% of the total liver volume. The interaction between hepatocytes and nerve fibers is accomplished through a wealth of neurotransmitters and signaling pathways. In this short review, we have taken the task of condensing the most important data related to how the nervous system interacts with the liver and especially with the hepatocyte population, how it influences their metabolism and functions, and how different receptors and transmitters are involved in this complex process.
Collapse
Affiliation(s)
- Letitia Adela Maria Streba
- Letitia Adela Maria Streba, Alin Gabriel Ionescu, University of Medicine and Pharmacy of Craiova, 200348 Craiova, Romania
| | - Cristin Constantin Vere
- Letitia Adela Maria Streba, Alin Gabriel Ionescu, University of Medicine and Pharmacy of Craiova, 200348 Craiova, Romania
| | - Alin Gabriel Ionescu
- Letitia Adela Maria Streba, Alin Gabriel Ionescu, University of Medicine and Pharmacy of Craiova, 200348 Craiova, Romania
| | - Costin Teodor Streba
- Letitia Adela Maria Streba, Alin Gabriel Ionescu, University of Medicine and Pharmacy of Craiova, 200348 Craiova, Romania
| | - Ion Rogoveanu
- Letitia Adela Maria Streba, Alin Gabriel Ionescu, University of Medicine and Pharmacy of Craiova, 200348 Craiova, Romania
| |
Collapse
|