1
|
Velayutham V, Benitez-Aguirre PZ, Liew G, Jenkins AJ, Craig ME, Donaghue KC. Markers of Early Liver Dysfunction Associate With Reduced Heart Rate Variability in Adolescents With Type 1 Diabetes. Pediatr Diabetes 2025; 2025:1910554. [PMID: 40406225 PMCID: PMC12097865 DOI: 10.1155/pedi/1910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
Aim: Data on the impact of metabolic dysfunction-associated fatty liver disease (MAFLD) on diabetes complications in youth with type 1 diabetes are lacking. However, MAFLD is well known to contribute to cardiovascular disease (CVD) in people with type 2 diabetes. We aimed to investigate markers of MAFLD in youth with type 1 diabetes and their relationship with chronic complications. Methods: A prospective study of 102 adolescents (mean age 14.7 ± 1.9 years) with type 1 diabetes underwent repeated annual diabetes complications assessments, including annual measures of liver enzymes. Early cardiac autonomic nerve dysfunction (CAN) was defined as ≥1 abnormality in seven heart rate variability parameters derived from a 10-min resting electrocardiogram. Multivariate generalized estimating equations explored predictors of CAN and other microvascular complications (retinopathy and early kidney dysfunction). Results: After a median follow-up of 3.5 years (IQR 2.7-4.6), there were significant increases in the mean alanine transaminase level (ALT) and systolic blood pressure (SBP) percentiles. Upper ALT and gamma-glutamyl transferase (GGT) tertiles (T3 vs. T1-2: odds ratio [OR], 95% confidence interval [CI], 2.05 [1.20, 3.48], and 2.99 [1.61, 5.58], respectively) predicted CAN development (23%, n = 24) independent of HbA1c and diabetes duration. They were not associated with retinopathy or early kidney dysfunction. Conclusion: Higher ALT and GGT associate with early CAN in adolescents with type 1 diabetes, suggesting hepatic inflammation may compound the impact of the diabetes milieu on systemic endothelial dysfunction.
Collapse
Affiliation(s)
- Vallimayil Velayutham
- Paediatrics, University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Paul Z. Benitez-Aguirre
- Paediatrics, University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Gerald Liew
- Ophthalmology, The Children's Hospital Westmead, Sydney, New South Wales, Australia
- Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Alicia J. Jenkins
- Diabetic and Vascular Medicine, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Maria E. Craig
- Paediatrics, University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Paediatrics, University of New South Wales, Sydney, New South Wales, Australia
| | - Kim C. Donaghue
- Paediatrics, University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Noon SL, Lam TBN, Schwimmer JB. Editorial: Prevalence of Suspected Metabolic Dysfunction-Associated Liver Disease in Adolescents in the United States Using Updated Diagnostic Criteria-Authors' Reply. Aliment Pharmacol Ther 2025; 61:1557-1558. [PMID: 40091192 DOI: 10.1111/apt.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Sheila L Noon
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- University of California San Diego School of Medicine, La Jolla, California, USA
| | - Tin Bo Nicholas Lam
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
3
|
Hathagoda W, Rajindrajith S, Niriella MA. Gaps and challenges in the management of pediatric steatotic liver diseases: a narrative review. World J Pediatr 2025; 21:352-360. [PMID: 40252149 DOI: 10.1007/s12519-025-00902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Given the rising prevalence of pediatric steatotic liver disease (SLD), it is imperative to identify and address common challenges in clinical practice. This article aims to examine key issues in managing pediatric SLD and attempts to propose evidence-based recommendations. DATA SOURCES We reviewed published literature on steatotic liver diseases in children focusing on overweight and obesity, including original research, systematic reviews, meta-analyses, consensus statements, and position papers. Databases searched were PubMed/MEDLINE, Cochrane Library, Web of Science, and Scopus. Search terms included: "non-alcoholic fatty liver disease", "NAFLD", "steatohepatitis", "NASH", "steatotic liver disease", "fatty liver", "children", "adolescents", "pediatric", "obesity", and "overweight". RESULTS Critical issues include an over-reliance on liver biochemistry, which may fail to capture the broader spectrum of SLD [e.g., metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction associated with steatohepatitis (MASH)], and delays in recognizing metabolic comorbidities. Dietary and lifestyle recommendations are often generalized, overlooking individual patient needs, while psychological factors, such as stress and mental health, are frequently neglected despite their role in disease progression. Advanced fibrosis cases are under-referred, long-term risks like cirrhosis are underestimated, and insufficient follow-up, coupled with limited family involvement in education, further compromises care. CONCLUSIONS Addressing these deficiencies through a multidisciplinary approach that incorporates early diagnosis, personalized treatment strategies, structured monitoring, and comprehensive family involvement is imperative for optimizing outcomes and mitigating the long-term impact of pediatric SLD.
Collapse
Affiliation(s)
- Wathsala Hathagoda
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Kynsey Road Colombo 8, Colombo, 00800, Sri Lanka
- University Paediatric Unit, Lady Ridgeway Hospital for Children, Danister de Silva Road, Colombo 08, Colombo, 00800, Sri Lanka
| | - Shaman Rajindrajith
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Kynsey Road Colombo 8, Colombo, 00800, Sri Lanka
- University Paediatric Unit, Lady Ridgeway Hospital for Children, Danister de Silva Road, Colombo 08, Colombo, 00800, Sri Lanka
| | - Madunil Anuk Niriella
- Colombo North Centre for Liver Diseases, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka.
| |
Collapse
|
4
|
Azizi N, Naghibi H, Shakiba M, Morsali M, Zarei D, Abbastabar H, Ghanaati H. Evaluation of MRI proton density fat fraction in hepatic steatosis: a systematic review and meta-analysis. Eur Radiol 2025; 35:1794-1807. [PMID: 39254718 DOI: 10.1007/s00330-024-11001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Amidst the global rise of metabolic dysfunction-associated steatotic liver disease (MASLD), driven by increasing obesity rates, there is a pressing need for precise, non-invasive diagnostic tools. Our research aims to validate MRI Proton Density Fat Fraction (MRI-PDFF) utility, compared to liver biopsy, in grading hepatic steatosis in MASLD. METHODS A systematic search was conducted across Embase, PubMed/Medline, Scopus, and Web of Science until January 13, 2024, selecting studies that compare MRI-PDFF with liver biopsy for hepatic steatosis grading, defined as grades 0 (< 5% steatosis), 1 (5-33% steatosis), 2 (34-66% steatosis), and 3 (> 66% steatosis). RESULTS Twenty-two studies with 2844 patients were included. The analysis showed high accuracy of MRI-PDFF with AUCs of 0.97 (95% CI = 0.96-0.98) for grade 0 vs ≥ 1, 0.91 (95% CI = 0.88-0.93) for ≤ 1 vs ≥ 2, and 0.91 (95% CI = 0.88-0.93) for ≤ 2 vs 3, diagnostic odds ratio (DOR) from 98.74 (95% CI = 58.61-166.33) to 23.36 (95% CI = 13.76-39.68), sensitivity and specificity from 0.93 (95% CI = 0.88-0.96) to 0.76 (95% CI = 0.63-0.85) and 0.93 (95% CI = 0.88-0.96) to 0.89 (95% CI = 0.84-0.93), respectively. Likelihood ratio (LR) + ranged from 13.3 (95% CI = 7.4-24.0) to 7.2 (95% CI = 4.9-10.5), and LR - from 0.08 (95% CI = 0.05-0.13) to 0.27 (95% CI = 0.17-0.42). The proposed MRI-PDFF threshold of 5.7% for liver fat content emerges as a potential cut-off for the discrimination between grade 0 vs ≥ 1 (p = 0.075). CONCLUSION MRI-PDFF is a precise non-invasive technique for diagnosing and grading hepatic steatosis, warranting further studies to establish its diagnostic thresholds. CLINICAL RELEVANCE STATEMENT This study underscores the high diagnostic accuracy of MRI-PDFF for distinguishing between various grades of hepatic steatosis for early detection and management of MASLD, though further research is necessary for broader application. KEY POINTS MRI-PDFF offers precision in diagnosing and monitoring hepatic steatosis. The diagnostic accuracy of MRI-PDFF decreases as the grade of hepatic steatosis advances. A 5.7% MRI-PDFF threshold differentiates steatotic from non-steatotic livers.
Collapse
Affiliation(s)
- Narges Azizi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Hamed Naghibi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Madjid Shakiba
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Mina Morsali
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Diana Zarei
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Hedayat Abbastabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
5
|
Goyal NP, Xanthakos S, Schwimmer JB. Metabolic dysfunction-associated steatotic liver disease in children. Gut 2025; 74:669-677. [PMID: 39848671 DOI: 10.1136/gutjnl-2023-331090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/06/2024] [Indexed: 01/25/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, is the most common cause of chronic liver disease in children. MASLD encompasses a spectrum of liver disease and can be severe, with 10% of affected children presenting with advanced fibrosis. While biopsy remains the most accurate method for diagnosing and staging the disease, MRI proton density fat fraction and magnetic resonance elastography are the most reliable non-invasive measures for assessing steatosis and fibrosis, respectively. MASLD is associated with multiple comorbidities including type 2 diabetes, hypertension, dyslipidaemia, decreased bone mineral density, obstructive sleep apnoea, anxiety and depression. Currently, there are no pharmacological treatments available for children, highlighting the urgent need for paediatric clinical trials. A diet low in free sugars is promising for reducing steatosis and decreasing alanine aminotransferase, a surrogate marker for hepatic inflammation. Emerging data indicate that steatosis can be present in children under 6 years of age, which was previously considered rare. The intricate interplay of genetics may inform future therapeutics and prognostication, with the PNPLA3 gene showing the most evidence for association with the risk and severity of steatotic liver disease and steatohepatitis. MASLD is a complex disease affecting one in ten children and is associated with increased early mortality risk. More dedicated studies are needed in children to advance our understanding of this disease and find effective treatments.
Collapse
Affiliation(s)
- Nidhi P Goyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's, Cincinnati, Ohio, USA
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
6
|
Kemp JM, Ghosh A, Dillman JR, Krishnasarma R, Manhard MK, Tipirneni-Sajja A, Shrestha U, Trout AT, Morin CE. Practical approach to quantitative liver and pancreas MRI in children. Pediatr Radiol 2025; 55:36-57. [PMID: 39760887 DOI: 10.1007/s00247-024-06133-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Quantitative abdominal magnetic resonance imaging (MRI) offers non-invasive, objective assessment of diseases in the liver, pancreas, and other organs and is increasingly being used in the pediatric population. Certain quantitative MRI techniques, such as liver proton density fat fraction (PDFF), R2* mapping, and MR elastography, are already in wide clinical use. Other techniques, such as liver T1 mapping and pancreas quantitative imaging methods, are emerging and show promise for enhancing diagnostic sensitivity and treatment monitoring. Quantitative imaging techniques have historically required a breath-hold, making them more difficult to implement in the pediatric population. However, technological advances, including free-breathing techniques and compressed sensing imaging, are making these techniques easier to implement. The purpose of this article is to review current liver and pancreas quantitative techniques and to provide a practical guide for implementing these techniques in pediatric practice. Future directions of liver and pancreas quantitative imaging will be briefly discussed.
Collapse
Affiliation(s)
- Justine M Kemp
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Radiology, University of Cincinnati College of Medicine, 3188 Bellevue Avenue, Cincinnati, OH, 45219, USA.
| | - Adarsh Ghosh
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3188 Bellevue Avenue, Cincinnati, OH, 45219, USA
| | - Rekha Krishnasarma
- Department of Radiology and Radiological Sciences, Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN, 37232, USA
| | - Mary Kate Manhard
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3188 Bellevue Avenue, Cincinnati, OH, 45219, USA
| | - Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Utsav Shrestha
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3188 Bellevue Avenue, Cincinnati, OH, 45219, USA
| | - Cara E Morin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Radiology, University of Cincinnati College of Medicine, 3188 Bellevue Avenue, Cincinnati, OH, 45219, USA.
| |
Collapse
|
7
|
Yoon H, Kim J, Lim HJ, Lee MJ. Quantitative Liver Imaging in Children. Invest Radiol 2025; 60:60-71. [PMID: 39047265 DOI: 10.1097/rli.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
ABSTRACT In children and adults, quantitative imaging examinations determine the effectiveness of treatment for liver disease. However, pediatric liver disease differs in presentation from liver disease in adults. Children also needed to be followed for a longer period from onset and have less control of their bodies, showing more movement than adults during imaging examinations, which leads to a greater need for sedation. Thus, it is essential to appropriately tailor and accurately perform noninvasive imaging tests in these younger patients. This article is an overview of updated imaging techniques used to assess liver disease quantitatively in children. The common initial imaging study for diffuse liver disease in pediatric patients is ultrasound. In addition to preexisting echo analysis, newly developed attenuation imaging techniques have been introduced to evaluate fatty liver. Ultrasound elastography is also now actively used to evaluate liver conditions, and the broad age spectrum of the pediatric population requires caution to be taken even in the selection of probes. Magnetic resonance imaging (MRI) is another important imaging tool used to evaluate liver disease despite requiring sedation or anesthesia in young children because it allows quantitative analysis with sequences such as fat analysis and MR elastography. In addition to ultrasound and MRI, we review quantitative imaging methods specifically for fatty liver, Wilson disease, biliary atresia, hepatic fibrosis, Fontan-associated liver disease, autoimmune hepatitis, sinusoidal obstruction syndrome, and the transplanted liver. Lastly, concerns such as growth and motion that need to be addressed specifically for children are summarized.
Collapse
Affiliation(s)
- Haesung Yoon
- From the Department of Radiology, Gangnam Severance Hospital, Seoul, South Korea (H.Y.); Department of Radiology and Research Institute of Radiological Science, Yonsei University, College of Medicine, Seoul, South Korea (H.Y., J.K., H.J.L., M.-J.L.); and Department of Pediatric Radiology, Severance Children's Hospital, Seoul, South Korea (J.K., H.J.L., M.-J.L.)
| | | | | | | |
Collapse
|
8
|
Smith MR, Yu EL, Malki GJ, Newton KP, Goyal NP, Heskett KM, Schwimmer JB. Systematic review of exercise for the treatment of pediatric metabolic dysfunction-associated steatotic liver disease. PLoS One 2024; 19:e0314542. [PMID: 39656734 DOI: 10.1371/journal.pone.0314542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND & AIMS Steatotic liver disease affects approximately 1 in 10 children in the U.S. and increases the risk of cirrhosis, diabetes, and cardiovascular disease. Lifestyle modification centered on increased physical activity and dietary improvement is the primary management approach. However, significant gaps in the literature hinder the establishment of exercise as a targeted therapeutic strategy for pediatric metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease (NAFLD). We performed a systematic review of studies assessing the impact of exercise interventions on validated hepatic outcomes in children with NAFLD. METHODS We searched CENTRAL, PubMed, Embase, Web of Science, CINAHL, and Google Scholar on June 5 and 6, 2023, for studies in English involving children aged 0 to 19 years diagnosed with NAFLD or at increased risk for NAFLD due to overweight or obesity. We updated the search on August 8, 2024. Eligible studies were required to examine the impact of exercise interventions on hepatic steatosis or liver chemistry. The risk of bias was assessed with RoB2 and ROBINS-I. Data extraction was performed by two independent reviewers. RESULTS After screening 1578 unique records, 16 studies involving 998 children were included. This comprised seven studies comparing exercise intervention with non-exercising controls, three uncontrolled studies of exercise intervention, two studies comparing exercise plus lifestyle interventions with lifestyle interventions alone, and nine studies comparing different types of exercise interventions. Five of the 11 studies that evaluated hepatic steatosis reported an absolute decrease of 1% to 3%. In the nine studies that evaluated liver chemistry, no significant changes were observed. CONCLUSIONS Evidence supporting exercise intervention for the treatment of pediatric MASLD is limited. Existing studies were constrained by their methodological approaches; thus, there is a pressing need for high-quality future research. This will enable the development of precise, evidence-based exercise guidelines crucial for the effective clinical management of this condition.
Collapse
Affiliation(s)
- Martha R Smith
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Elizabeth L Yu
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| | - Ghattas J Malki
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Kimberly P Newton
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| | - Nidhi P Goyal
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| | - Karen M Heskett
- The Library, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey B Schwimmer
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| |
Collapse
|
9
|
Huneault HE, Lo JS, Bai S, He Z, McPhaul MJ, Bril F, Vos MB, Cree MG. Fasting intact insulin by mass spectrometry is associated with metabolic dysfunction-associated steatotic liver disease in youth. Hepatol Commun 2024; 8:e0582. [PMID: 39585301 PMCID: PMC11596571 DOI: 10.1097/hc9.0000000000000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Fasting intact insulin concentrations can predict metabolic dysfunction-associated steatotic liver disease (MASLD) in adults without diabetes; however, research in youth is limited. We sought to determine whether fasting intact insulin, measured by liquid chromatography-tandem mass spectrometry, is associated with MASLD in children. METHODS This retrospective cross-sectional analysis used data and samples from children who participated in studies across 3 universities between 2014 and 2022. Key measurements included fasting intact insulin, ALT, and hepatic steatosis assessed by MRI techniques. MASLD was defined as hepatic steatosis ≥5% by MRI with at least 1 cardiometabolic risk factor. The optimal cutoff points to identify MASLD were determined by maximizing the Youden index, and the AUROC curves were compared using the DeLong test. RESULTS The analysis included 184 children (28% male; 14.9 ± 2.6 y; 57% Hispanic race/ethnicity; body mass index 32.5 ± 8.1 kg/m2; 64% with MASLD, 43% with polycystic ovary syndrome, and 5% with other liver diseases). Fasting intact insulin and ALT levels were significantly higher in children with MASLD (p < 0.05). Fasting intact insulin was strongly associated with MASLD with an AUROC of 0.83 (0.77-0.90), sensitivity of 71%, and specificity of 85%. When combined with ALT (intact insulin × ALT [μU/mL × U/L]), the AUROC was 0.88 (0.83-0.94), with a sensitivity of 89% and specificity of 81%. The improvement in AUROC over intact insulin alone was not statistically significant (p = 0.089) but was statistically significant from ALT (p = 0.022). Optimal cutoff points for intact insulin and intact insulin × ALT were 20 μU/mL and 522 μU/mL × U/L, respectively. CONCLUSIONS In pediatric patients, measurements of fasting intact insulin alone and combined with ALT provide a noninvasive strategy for identifying the presence of MASLD.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jaclyn S. Lo
- Department of Pediatric Endocrinology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zhulin He
- Pediatric Biostatistics Core, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael J. McPhaul
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California, USA
| | - Fernando Bril
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Miriam B. Vos
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Melanie G. Cree
- Department of Pediatric Endocrinology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
10
|
Stroes ASR, Vos M, Benninga MA, Koot BGP. Pediatric MASLD: current understanding and practical approach. Eur J Pediatr 2024; 184:29. [PMID: 39560782 DOI: 10.1007/s00431-024-05848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is now the most prevalent chronic liver disease in children in industrialized countries mainly due to the rise in obesity and overweight. Besides risk of progressive liver damage, MASLD also carries an increased risk of extra-hepatic morbidity, most importantly type 2 diabetes mellitus and cardiovascular disease. Important challenges remain in the prevention, detection, and treatment of this prevalent disorder. This review outlines the epidemiology and risk factors of MASLD and provides an approach to screening, diagnosis, and treatment based on current best available evidence and expert opinion. What is known: • NAFLD/MASLD is a common disorder in children strongly related to obesity/overweight and insulin resistance. • This silent disorder is underdiagnosed due to lack of awareness and lack of simple diagnostic criteria. What is new: • New diagnostic criteria have transformed NAFLD/MASLD from a diagnosis of exclusion to a positive diagnosis with simple criteria. • Effective treatments are emerging for adults and will likely become available for children. • Identifying children with NAFLD/MASLD has become even more important due to this new treatment perspective.
Collapse
Affiliation(s)
- Anne-Sophie R Stroes
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Miriam Vos
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Marc A Benninga
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart G P Koot
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Lee GY, Lim JH, Joung H, Yoon D. Association Between Ultraprocessed Food Consumption and Metabolic Disorders in Children and Adolescents with Obesity. Nutrients 2024; 16:3524. [PMID: 39458518 PMCID: PMC11510381 DOI: 10.3390/nu16203524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES We investigated the effects of ultraprocessed food (UPF) consumption on metabolic disorders (e.g., adiposity, metabolic associated steatotic liver disease [MASLD], and insulin resistance) in children and adolescents with obesity to improve dietary guidelines and public health strategies. METHODS The dietary intake of 149 participants (aged 8-17 years) was assessed with food diaries. The NOVA classification system was used to classify food according to the degree of processing. Metabolic outcomes, including the fat mass index (FMI), hepatic fat percentage, and insulin resistance, were measured via dual-energy X-ray absorptiometry (DXA), magnetic resonance imaging proton density fat fraction (MRI-PDFF), and biochemical analysis, respectively. RESULTS Greater UPF consumption from baseline to the 6-month follow-up was significantly associated with increased insulin and decreased total cholesterol and LDL-cholesterol. UPF consumption was positively associated with the prevalence of MASLD (liver MRI-PDFF ≥ 5%; odds ratio T3 vs. T1 = 1.75; 95% confidence interval [CI] 1.03, 3.00), moderate-to-severe MASLD (liver MRI-PDFF ≥ 10%; OR T3 vs. T1 = 4.19; 95% CI 1.72, 10.22), and insulin resistance (OR T3 vs. T1 = 2.44; 95% CI 1.33, 4.48), after adjusting for covariates. A linear dose-response relationship was observed between UPF consumption and the odds of moderate-to-severe MASLD and insulin resistance. CONCLUSIONS Greater UPF consumption was strongly associated with MASLD and insulin resistance in children and adolescents with obesity, underscoring the importance of reducing UPF consumption through dietary guidelines and public health interventions to mitigate the risk of obesity-related metabolic conditions in young populations.
Collapse
Affiliation(s)
- Gyeong-yoon Lee
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea; (G.-y.L.); (J.H.L.)
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo Hyun Lim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea; (G.-y.L.); (J.H.L.)
| | - Hyojee Joung
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Dankyu Yoon
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea; (G.-y.L.); (J.H.L.)
| |
Collapse
|
12
|
Faienza MF, Farella I, Khalil M, Portincasa P. Converging Pathways between Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Diabetes in Children. Int J Mol Sci 2024; 25:9924. [PMID: 39337412 PMCID: PMC11432101 DOI: 10.3390/ijms25189924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In the past thirty years, childhood obesity rates have risen significantly worldwide, affecting over 340 million children in affluent nations. This surge is intricately tied to metabolic disorders, notably insulin resistance, type 2 diabetes mellitus (T2DM), and the continually evolving spectrum of metabolic-associated (dysfunction) steatotic liver disease (MASLD). This review underscores the alarming escalation of childhood obesity and delves comprehensively into the evolving and dynamic changes of nomenclature surrounding diverse conditions of hepatic steatosis, from the initial recognition of non-alcoholic fatty liver disease (NAFLD) to the progressive evolution into MASLD. Moreover, it emphasizes the crucial role of pediatric endocrinologists in thoroughly and accurately investigating MASLD onset in children with T2DM, where each condition influences and exacerbates the progression of the other. This review critically highlights the inadequacies of current screening strategies and diagnosis, stressing the need for a paradigm shift. A proposed solution involves the integration of hepatic magnetic resonance imaging assessment into the diagnostic arsenal for children showing insufficient glycemic control and weight loss post-T2DM diagnosis, thereby complementing conventional liver enzyme testing. This holistic approach aims to significantly enhance diagnostic precision, fostering improved outcomes in this vulnerable high-risk pediatric population.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ilaria Farella
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| |
Collapse
|
13
|
Zhang L, El-Shabrawi M, Baur LA, Byrne CD, Targher G, Kehar M, Porta G, Lee WS, Lefere S, Turan S, Alisi A, Weiss R, Faienza MF, Ashraf A, Sundaram SS, Srivastava A, De Bruyne R, Kang Y, Bacopoulou F, Zhou YH, Darma A, Lupsor-Platon M, Hamaguchi M, Misra A, Méndez-Sánchez N, Ng NBH, Marcus C, Staiano AE, Waheed N, Alqahtani SA, Giannini C, Ocama P, Nguyen MH, Arias-Loste MT, Ahmed MR, Sebastiani G, Poovorawan Y, Al Mahtab M, Pericàs JM, Reverbel da Silveira T, Hegyi P, Azaz A, Isa HM, Lertudomphonwanit C, Farrag MI, Nugud AAA, Du HW, Qi KM, Mouane N, Cheng XR, Al Lawati T, Fagundes EDT, Ghazinyan H, Hadjipanayis A, Fan JG, Gimiga N, Kamal NM, Ștefănescu G, Hong L, Diaconescu S, Li M, George J, Zheng MH. An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. MED 2024; 5:797-815.e2. [PMID: 38677287 DOI: 10.1016/j.medj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts. METHODS A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management. FINDINGS In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD. CONCLUSIONS The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD. FUNDING This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).
Collapse
Affiliation(s)
- Le Zhang
- Department of Paediatrics, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Mortada El-Shabrawi
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, Sau Paulo, Brazil
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Sander Lefere
- Hepatology Research Unit, Department Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Serap Turan
- Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ram Weiss
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center and the Bruce Rappaport School of Medicine, Technion, Haifa, Israel
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ambika Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shikha S Sundaram
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Pediatric Liver Center, Children's Hospital Colorado, University of Colorado School of Medicine and Anschutz Medical Campus, Aurora, CO, USA
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Yunkoo Kang
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, Aghia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andy Darma
- Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Monica Lupsor-Platon
- Department of Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation, New Delhi, India
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nicholas Beng Hui Ng
- Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claude Marcus
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nadia Waheed
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Saleh A Alqahtani
- Organ Transplantation Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Ponsiano Ocama
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maria Teresa Arias-Loste
- Hospital Universitario Marqués de Valdecilla, Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Mohamed Rabea Ahmed
- Department of Pediatrics, Jahra Hospital, Kuwait and Department of Pediatrics, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Division of Infectious Diseases, McGill University Health Centre, Montreal, QC, Canada
| | - Yong Poovorawan
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Amer Azaz
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Hasan M Isa
- Pediatric Department, Salmaniya Medical Complex and Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Chatmanee Lertudomphonwanit
- Division of Gastroenterology, Department of Paediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mona Issa Farrag
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Abd Alwahab Nugud
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hong-Wei Du
- Department of Paediatrics, First Hospital of Jilin University, Changchun, China
| | - Ke-Min Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nezha Mouane
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Academic Children's Hospital Ibn Sina, Mohammed V University, Rabat, Morocco
| | - Xin-Ran Cheng
- Department of Paediatric Genetics, Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Eleonora D T Fagundes
- Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hasmik Ghazinyan
- Department of Hepatology, Nikomed Medical Center, Yerevan, Armenia
| | | | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Nicoleta Gimiga
- Clinical Department of Pediatric Gastroenterology, "St. Mary" Emergency Children's Hospital, Iași, Romania; Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Naglaa M Kamal
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt; Pediatric Hepatology and Gastroenterology, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Gabriela Ștefănescu
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Smaranda Diaconescu
- Medical-Surgical Department, Faculty of Medicine, University "Titu Maiorescu", Bucuresti, Romania
| | - Ming Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
14
|
Lee C, Schwimmer JB, Gunderson EP, Goyal NP, Darbinian JA, Greenspan LC, Lo JC. Alanine aminotransferase elevation varies by ethnicity among Asian and Pacific Islander children with overweight or obesity. Pediatr Obes 2024; 19:e13110. [PMID: 38444225 DOI: 10.1111/ijpo.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Limited research on alanine aminotransferase (ALT) screening for metabolic dysfunction-associated steatotic liver disease (MASLD) among US Asian/Pacific Islander (PI) children necessitates investigation in this heterogeneous population. OBJECTIVE Examine ALT elevation among Asian/PI children with overweight or obesity. METHODS Elevated ALT prevalence (clinical threshold) and association with body mass index ≥85th percentile were compared among 18 402 Asian/PI and 25 376 non-Hispanic White (NHW) children aged 9-17 years using logistic regression. RESULTS ALT elevation was more prevalent among Asian/PI (vs. NHW) males with overweight (4.0% vs. 2.7%), moderate (7.8% vs. 5.3%) and severe obesity (16.6% vs. 11.5%), and females with moderate (5.1% vs. 3.0%) and severe obesity (10.2% vs. 5.2%). Adjusted odds of elevated ALT were 1.6-fold and ~2-fold higher for Asian/PI (vs. NHW) males and females (with obesity), respectively. Filipino, Chinese and Southeast Asian males had 1.7-2.1-fold higher odds, but Native Hawaiian/PI (NHPI) and South Asian males did not significantly differ (vs. NHW). Filipina and Chinese females with obesity had >2-fold higher odds, Southeast and South Asian females did not differ and NHPI findings were mixed (vs. NHW). CONCLUSION High elevated ALT prevalence among Asian/PI children with overweight and obesity emphasizes the need for MASLD risk assessment and examination of ethnic subgroups.
Collapse
Affiliation(s)
- Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
| | - Jeffrey B Schwimmer
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, San Diego, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
| | - Nidhi P Goyal
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, San Diego, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Jeanne A Darbinian
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Louise C Greenspan
- The Permanente Medical Group, Oakland, California, USA
- Department of Pediatrics, Division of Pediatric Endocrinology, Kaiser Permanente San Francisco Medical Center, San Francisco, California, USA
| | - Joan C Lo
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
- The Permanente Medical Group, Oakland, California, USA
| |
Collapse
|
15
|
Kumada T, Toyoda H, Ogawa S, Gotoh T, Suzuki Y, Imajo K, Sugimoto K, Kakegawa T, Kuroda H, Yasui Y, Tamaki N, Kurosaki M, Izumi N, Akita T, Tanaka J, Nakajima A. Advanced fibrosis leads to overestimation of steatosis with quantitative ultrasound in individuals without hepatic steatosis. Ultrasonography 2024; 43:121-131. [PMID: 38316132 PMCID: PMC10915114 DOI: 10.14366/usg.23194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
PURPOSE The effect of hepatic fibrosis stage on quantitative ultrasound based on the attenuation coefficient (AC) for liver lipid quantification is controversial. The objective of this study was to determine how the degree of fibrosis assessed by magnetic resonance (MR) elastography affects AC based on the ultrasound-guided attenuation parameter according to the grade of hepatic steatosis, using magnetic resonance imaging (MRI)-derived proton density fat fraction (MRIderived PDFF) as the reference standard. METHODS Between February 2020 and April 2021, 982 patients with chronic liver disease who underwent AC and MRI-derived PDFF measurement as well as MR elastography were enrolled. Multiple regression was used to investigate whether AC was affected by the degree of liver stiffness. RESULTS AC increased as liver stiffness progressed in 344 patients without hepatic steatosis (P=0.009). In multivariable analysis, AC was positively correlated with skin-capsule distance (P<0.001), MR elastography value (P=0.037), and MRI-derived PDFF (P<0.001) in patients without hepatic steatosis. In 52 of 982 patients (5%), the correlation between AC and MRIderived PDFF fell outside the 95% confidence interval for the regression line slope. Patients with MRI-derived PDFF lower than their AC (n=36) had higher fibrosis-4 scores, albumin-bilirubin scores, and MR elastography values than patients with MRI-derived PDFF greater than their AC (n=16; P=0.018, P=0.001, and P=0.011, respectively). CONCLUSION AC is affected by liver fibrosis (MR elastography value ≥6.7 kPa) only in patients without hepatic steatosis (MRI-derived PDFF <5.2%). These values should be interpreted with caution in patients with advanced liver fibrosis.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuaki Suzuki
- Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan
| | - Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Gastroenterology, Shin-yurigaoka General Hospital, Kawasaki, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Calcaterra V, Degrassi I, Taranto S, Porro C, Bianchi A, L’assainato S, Silvestro GS, Quatrale A, Zuccotti G. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) and Thyroid Function in Childhood Obesity: A Vicious Circle? CHILDREN (BASEL, SWITZERLAND) 2024; 11:244. [PMID: 38397356 PMCID: PMC10887660 DOI: 10.3390/children11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a multisystem disorder characterized by the presence of fatty liver degeneration associated with excess adiposity or prediabetes/type 2 diabetes or metabolic dysregulation. An intricate relationship between the liver and thyroid has been reported in both health and disease. Simultaneously, there is a strong correlation between obesity and both MAFLD and thyroid dysfunction. In this narrative review, we highlighted the relationship between MAFLD and thyroid function in children and adolescents with obesity in order to explore how thyroid hormones (THs) act as predisposing factors in the onset, progression, and sustainability of MAFLD. THs are integral to the intricate balance of metabolic activities, ensuring energy homeostasis, and are indispensable for growth and development. Regarding liver homeostasis, THs have been suggested to interact with liver lipid homeostasis through a series of processes, including stimulating the entry of free fatty acids into the liver for esterification into triglycerides and increasing mitochondrial β-oxidation of fatty acids to impact hepatic lipid accumulation. The literature supports a correlation between MAFLD and obesity, THs and obesity, and MAFLD and THs; however, results in the pediatric population are very limited. Even though the underlying pathogenic mechanism involved in the relationship between MAFLD and thyroid function remains not fully elucidated, the role of THs as predisposing factors of MAFLD could be postulated. A potential vicious circle among these three conditions cannot be excluded. Identifying novel elements that may contribute to MAFLD could offer a practical approach to assessing children at risk of developing the condition.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Irene Degrassi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Silvia Taranto
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Cecilia Porro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Sara L’assainato
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Giustino Simone Silvestro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| |
Collapse
|
17
|
Cohen CC, Harrall KK, Hu H, Glueck DH, Perng W, Shankar K, Dabelea D. Associations of infant feeding practices with abdominal and hepatic fat measures in childhood in the longitudinal Healthy Start Study. Am J Clin Nutr 2024; 119:560-568. [PMID: 38000661 PMCID: PMC10884608 DOI: 10.1016/j.ajcnut.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Infant feeding patterns have been linked with obesity risk in childhood, but associations with precise measures of body fat distribution are unclear. OBJECTIVE We examined associations of infant feeding practices with abdominal fat and hepatic fat trajectories in childhood. METHODS This study included 356 children in the Healthy Start Study, a prospective prebirth cohort in Colorado. Infant feeding practices were assessed by postnatal interviews and categorized as any human milk <6 mo compared with ≥6 mo; complementary foods introduced ≤4 mo compared with >4 mo; soda introduced ≤18 mo compared with >18 mo. Abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) areas and hepatic fat (%) were assessed by magnetic resonance imaging in early and middle childhood (median 5 and 9 y old, respectively). We examined associations of infant feeding with adiposity trajectories across childhood using linear mixed models. RESULTS In the sample of children, 67% consumed human milk ≥6 mo, 75% were introduced to complementary foods at >4 mo, and 81% were introduced to soda at >18 mo. We did not find any associations between duration of any human milk consumption and childhood adiposity trajectories. Early introduction to complementary foods (≤4 mo) was associated with faster rates of change for SAT and VAT during childhood (Slope [95% CI]: 15.1 [10.7,19.4] cm2/y for SAT; 2.5 [1.9,2.9] cm2/y for VAT), compared with introduction at >4 mo (5.5 [3.0,8.0] cm2/y and 1.6 [1.3,1.9] cm2/y, respectively). Similarly, early introduction to soda (≤18 mo) was associated with faster rates of change for all 3 outcomes during childhood (Slope [95% CI]: 20.6 [15.0,26.1] cm2/y for SAT, 2.7 [2.0,3.3] cm2/y for VAT, 0.3 [0.1,0.5] %/year for hepatic fat) compared with delayed introduction (5.4 [2.8,8.0] cm2/y, 1.7 [1.3, 2.0] cm2/y, -0.1 [-0.2,0.0] %/y, respectively). CONCLUSIONS The timing of introduction and quality of complementary foods in infancy was associated with rates of abdominal and hepatic fat accrual during childhood. Experimental studies are needed to assess underlying mechanisms.
Collapse
Affiliation(s)
- Catherine C Cohen
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Kylie K Harrall
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Houchun Hu
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kartik Shankar
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
de Groot J, Santos S, Geurtsen ML, Felix JF, Jaddoe VW. Risk factors and cardio-metabolic outcomes associated with metabolic-associated fatty liver disease in childhood. EClinicalMedicine 2023; 65:102248. [PMID: 37855025 PMCID: PMC10579278 DOI: 10.1016/j.eclinm.2023.102248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background Non-Alcoholic Fatty Liver Disease (NAFLD) is defined as increased liver fat percentage, and is the most common chronic liver disease in children. Rather than NAFLD, Metabolic-Associated Fatty Liver Disease (MAFLD), defined as increased liver fat with presence of adverse cardio-metabolic measures, might have more clinical relevance in children. We assessed the prevalence, risk-factors and cardio-metabolic outcomes of MAFLD at school-age. Methods This cross-sectional analysis was embedded in an ongoing population-based prospective cohort study started in 2001, in the Netherlands. In 1910 children of 10 years, we measured liver fat fraction by magnetic resonance imaging (MRI), body mass index (BMI), blood pressure, and lipids, insulin, and glucose concentrations. Childhood lifestyle factors were obtained through questionnaires. MAFLD was defined as ≥2% liver fat in addition to excess adiposity (BMI or visceral adiposity), presence of metabolic risk (blood pressure, triglycerides and HDL-concentrations) or prediabetes (glucose). Findings Of all children, 49.6% had ≥2% liver fat, and 25.2% fulfilled the criteria of MAFLD. Only non-European descent was associated with increased odds of MAFLD at nominal significance (Odds Ratio 1.38, 95% Confidence Interval 1.04, 1.82). Compared to children with <2% liver fat, those with MAFLD had increased odds of cardio-metabolic-risk-factor clustering (Odds Ratio 7.65, 95% Confidence Interval 5.04, 11.62). Interpretation In this study, no NAFLD-associated childhood risk factors were associated with increased odds of childhood MAFLD, yet the findings suggest that ethnicity could be, despite mostly explained by socio-economic factors. Use of MAFLD criteria, rather than NAFLD, may identify children at risk for impaired cardio-metabolic health. Funding Erasmus University MC, the Netherlands Organisation for Health Research and Development, the Ministry of Health, Welfare, and Sport, and the European Research Council.
Collapse
Affiliation(s)
- Jasmin de Groot
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Madelon L. Geurtsen
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Chacón C, Arteaga I, Martínez-Escudé A, Ruiz Rojano I, Lamonja-Vicente N, Caballeria L, Ribatallada Diez AM, Schröder H, Montraveta M, Bovo MV, Ginés P, Pera G, Diez-Fadrique G, Pachón-Camacho A, Alonso N, Graupera I, Torán-Monserrat P, Expósito C. Clinical epidemiology of non-alcoholic fatty liver disease in children and adolescents. The LiverKids: Study protocol. PLoS One 2023; 18:e0286586. [PMID: 37831682 PMCID: PMC10575486 DOI: 10.1371/journal.pone.0286586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/18/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is rapidly increasing alongside overweight and obesity, not only in adults but also in children and adolescents. It is unknown what impact the development of NAFLD in childhood may have in later life. The importance of early detection and treatment lies in its potential for progression to cirrhosis, liver cancer and liver-related death, as well as its associated extrahepatic comorbidities. Vibration-Controlled Transient Elastography (VCTE) with Controlled Attenuation Parameter (CAP) is an effective, non-invasive and safe diagnostic method to estimate the degree of fibrosis and steatosis in the liver, but little is known about its applicability in the paediatric population. AIMS 1) To assess the prevalence of significant liver fibrosis (Liver Stiffness Measurement (LSM) ≥6.5 kPa) using VCTE, and that of non-alcoholic fatty liver disease (≥225 dB/m) using CAP in children and adolescents. 2) To determine the optimal cut-off points of the CAP to achieve maximum concordance with the Magnetic Resonance Imaging (MRI) findings in the diagnosis of mild, moderate and severe NAFLD in children and adolescents. METHODS Cross-sectional population-based study which will include 2,866 subjects aged between 9 and 16 years. Participants will undergo: anamnesis, physical examination, blood extraction, VCTE, MRI and questionnaires on socio-demographic data, personal and family medical history and lifestyle assessment. APPLICABILITY AND RELEVANCE The study aims to establish the foundations for the use of VCTE in children and adolescents in order to achieve early diagnosis of NAFLD. Moreover, it will serve to understand in further detail the disease and to identify the risk groups of children and adolescents who may be at risk of developing it. Ultimately, this will help determine to which subgroups of the population we need to target resources for prevention and early detection of this entity, as well as possible intervention for its treatment. TRIAL REGISTRATION The LiverKids study is registered on Clinicaltrials.gov (NCT05526274).
Collapse
Affiliation(s)
- Carla Chacón
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- PhD Programme in Medicine and Translational Research, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ingrid Arteaga
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- Centre d’Atenció Primària Palaudàries, Institut Català de la Salut, Lliçà d’Amunt, Barcelona, Spain
| | - Alba Martínez-Escudé
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- Centre d’Atenció Primària La Llagosta, Institut Català de la Salut, La Llagosta, Barcelona, Spain
| | - Irene Ruiz Rojano
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- Centre d’Atenció Primària Dr. Barraquer, Institut Català de la Salut, Sant Adrià del Besos, Barcelona, Spain
| | - Noemí Lamonja-Vicente
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
| | - Llorenç Caballeria
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
| | - Ana María Ribatallada Diez
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- Centre d’Atenció Primària Serraparera, Institut Català de la Salut, Cerdanyola del Vallès, Barcelona, Spain
| | - Helmut Schröder
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Montraveta
- Paediatric Gastroenterology, Hepatology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Maria Victoria Bovo
- Paediatric Gastroenterology, Hepatology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Pere Ginés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
- Liver Unit, Hospital Clínic de Barcelona, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Pera
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
| | - Galadriel Diez-Fadrique
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
| | - Alba Pachón-Camacho
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
| | - Núria Alonso
- Department of Endocrinology and Nutrition, Hospital Universitario Germans Trias I Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Biomedical Research on Diabetes and Associated Metabolic diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Graupera
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
- Liver Unit, Hospital Clínic de Barcelona, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- Direcció d’Atenció Primària Metropolitana Nord Institut Català de Salut, Mataró, Spain
| | - Carmen Expósito
- Unitat de Suport a la Recerca Metropolitana Nord (USR Metro-Nord), Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), Mataró, Barcelona, Spain
- Grup de Recerca en Malalties Hepàtiques a l’Atenció Primària (GRemHAp), IDIAP Jordi Gol, USR Metro-Nord, Mataró, Barcelona, Spain
- Centre d’Atenció Primària Badia del Vallès, Institut Català de la Salut, Badia del Vallès, Barcelona, Spain
| |
Collapse
|
20
|
Ko HJ, Woo S, Han J, Kim YM, Lim HJ, Kim MJ, Park YS, Park KH. Which obesity index is the most useful marker for predicting hepatic steatosis in children and adolescents with obesity? A cross-sectional study using quantitative magnetic resonance imaging. Obes Res Clin Pract 2023; 17:335-342. [PMID: 37336708 DOI: 10.1016/j.orcp.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION We aimed to evaluate the relationships between hepatic steatosis and various indices of obesity, and to identify the most useful index for the prediction of hepatic steatosis in children and adolescents with obesity. METHODS A total of 226 children and adolescents with a mean body mass index (BMI) z-score of 2.65 and a mean age of 11.4 years were subjected to anthropometric and body composition measurements, laboratory testing, abdominal fat mass assessment, and hepatic fat accumulation by magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF). The participants were divided into quartiles according to the severity of their hepatic steatosis, and the presence of hepatic steatosis was defined using an MRI-PDFF ≥ 5%. RESULTS The multivariate ordinal regression analysis showed that the severity of hepatic steatosis was positively associated with BMI, waist circumference, waist-to-hip ratio, waist-to-height ratio, fat mass, fat-free mass, visceral adiposity, and abdominal subcutaneous adiposity. Higher activities of liver enzymes and higher concentrations of triglyceride, C-reactive protein, fasting insulin, and leptin were associated with more severe hepatic steatosis, whereas high-density lipoprotein-cholesterol and adiponectin were negatively associated with hepatic steatosis. The indices of obesity with areas under the receiver operating characteristic curves (AUCs) > 0.8 for the prediction of hepatic steatosis were liver enzymes, visceral adipose tissue area, waist-to-hip ratio, and waist-to-height ratio. CONCLUSION The severity of hepatic steatosis significantly correlated with various indices of obesity and cardiometabolic markers in children and adolescents with obesity. The indices of abdominal obesity would be the most useful for the prediction of hepatic steatosis.
Collapse
Affiliation(s)
- Hae-Jin Ko
- Department of Family Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Sarah Woo
- Department of Medical Sciences, College of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Junhee Han
- Department of Statistics, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Yoon Myung Kim
- University College, Yonsei University International Campus, Incheon 21983, Republic of Korea
| | - Hyun Jung Lim
- Department of Medical Nutrition, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si 14068, Republic of Korea
| | - Yong Soon Park
- Department of Family Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon-si 24253, Republic of Korea
| | - Kyung Hee Park
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang-si 14068, Republic of Korea.
| |
Collapse
|
21
|
Bulakci M, Ercan CC, Karapinar E, Aksakal MZT, Aliyev S, Bicen F, Sahin AY, Salmaslioglu A. Quantitative evaluation of hepatic steatosis using attenuation imaging in a pediatric population: a prospective study. Pediatr Radiol 2023; 53:1629-1639. [PMID: 36881143 DOI: 10.1007/s00247-023-05615-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Obesity and fatty-liver disease are increasingly common in children. Hepatic steatosis is becoming the most common cause of chronic liver disease during childhood. There is a need for noninvasive imaging methods that are easily accessible, safe and do not require sedation in the diagnosis and follow-up of the disease. OBJECTIVE In this study, the diagnostic role of ultrasound attenuation imaging (ATI) in the detection and staging of fatty liver in the pediatric age group was investigated using the magnetic resonance imaging (MRI)-proton density fat fraction as the reference. MATERIALS AND METHODS A total of 140 children with both ATI and MRI constituted the study group. Fatty liver was classified as mild (S1, defined as ≥ 5% steatosis), moderate (S2, defined as ≥ 10% steatosis), or severe (S3, defined as ≥ 20% steatosis) according to MRI-proton density fat fraction values. MRI studies were performed on the same 1.5-tesla (T) MR device without sedation and contrast agent. Ultrasound examinations were performed independently by two radiology residents blinded to the MRI data. RESULTS While no steatosis was detected in half of the cases, S1 steatosis was found in 31 patients (22.1%), S2 in 29 patients (20.7%) and S3 in 10 patients (7.1%). A strong correlation was found between attenuation coefficient and MRI-proton density fat fraction values (r = 0.88, 95% CI 0.84-0.92; P < 0.001). The area under the receiver operating characteristic curve values of ATI were calculated as 0.944 for S > 0, 0.976 for S > 1 and 0.970 for S > 2, based on 0.65, 0.74 and 0.91 dB/cm/MHz cut-off values, respectively. The intraclass correlation coefficient values for the inter-observer agreement and test-retest reproducibility were calculated as 0.90 and 0.91, respectively. CONCLUSION Ultrasound attenuation imaging is a promising noninvasive method for the quantitative evaluation of fatty liver disease.
Collapse
Affiliation(s)
- Mesut Bulakci
- Department of Radiology, Istanbul Faculty of Medicine, Istanbul University, Topkapi Mahallesi, Turgut Ozal Caddesi, No:118, 34093, Fatih, Istanbul, Turkey.
| | - Celal Caner Ercan
- Department of Radiology, Istanbul Faculty of Medicine, Istanbul University, Topkapi Mahallesi, Turgut Ozal Caddesi, No:118, 34093, Fatih, Istanbul, Turkey
| | - Edanur Karapinar
- Department of Radiology, Istanbul Faculty of Medicine, Istanbul University, Topkapi Mahallesi, Turgut Ozal Caddesi, No:118, 34093, Fatih, Istanbul, Turkey
| | | | - Shamil Aliyev
- Department of Radiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Fuat Bicen
- Department of Radiology and Neuroradiology, Klinikum Barnim GmbH, Werner Forssmann Hospital, Eberswalde, Germany
| | - Aylin Yetim Sahin
- Department of Pediatrics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Artur Salmaslioglu
- Department of Radiology, Istanbul Faculty of Medicine, Istanbul University, Topkapi Mahallesi, Turgut Ozal Caddesi, No:118, 34093, Fatih, Istanbul, Turkey
| |
Collapse
|
22
|
Dardanelli EP, Orozco ME, Oliva V, Lutereau JF, Ferrari FA, Bravo MG, Ruvinsky S, Roel M, Barvosa PC, Armeno M, Kaplan JS. Ultrasound attenuation imaging: a reproducible alternative for the noninvasive quantitative assessment of hepatic steatosis in children. Pediatr Radiol 2023; 53:1618-1628. [PMID: 36869263 DOI: 10.1007/s00247-023-05601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Pediatric hepatic steatosis is a global public health concern, as an increasing number of children are affected by this condition. Liver biopsy is the gold standard diagnostic method; however, this procedure is invasive. Magnetic resonance imaging (MRI)-derived proton density fat fraction has been accepted as an alternative to biopsy. However, this method is limited by cost and availability. Ultrasound (US) attenuation imaging is an upcoming tool for noninvasive quantitative assessment of hepatic steatosis in children. A limited number of publications have focused on US attenuation imaging and the stages of hepatic steatosis in children. OBJECTIVE To analyze the usefulness of ultrasound attenuation imaging for the diagnosis and quantification of hepatic steatosis in children. MATERIAL AND METHODS Between July and November 2021, 174 patients were included and divided into two groups: group 1, patients with risk factors for steatosis (n = 147), and group 2, patients without risk factors for steatosis (n = 27). In all cases, age, sex, weight, body mass index (BMI), and BMI percentile were determined. B-mode US (two observers) and US attenuation imaging with attenuation coefficient acquisition (two independent sessions, two different observers) were performed in both groups. Steatosis was classified into four grades (0: absent, 1: mild, 2: moderate and 3: severe) using B-mode US. Attenuation coefficient acquisition was correlated with steatosis score according to Spearman's correlation. Attenuation coefficient acquisition measurements' interobserver agreement was assessed using intraclass correlation coefficients (ICC). RESULTS All attenuation coefficient acquisition measurements were satisfactory without technical failures. The median values for group 1 for the first session were 0.64 (0.57-0.69) dB/cm/MHz and 0.64 (0.60-0.70) dB/cm/MHz for the second session. The median values for group 2 for the first session were 0.54 (0.51-0.56) dB/cm/MHz and 0.54 (0.51-0.56) dB/cm/MHz for the second. The average attenuation coefficient acquisition was 0.65 (0.59-0.69) dB/cm/MHz for group 1 and 0.54 (0.52-0.56) dB/cm/MHz for group 2. There was excellent interobserver agreement at 0.94 (95% CI 0.92-0.96). There was substantial agreement between both observers (κ = 0.77, with a P < 0.001). There was a positive correlation between ultrasound attenuation imaging and B-mode scores for both observers (r = 0.87, P < 0.001 for observer 1; r = 0.86, P < 0.001 for observer 2). Attenuation coefficient acquisition median values were significantly different for each steatosis grade (P < 0.001). In the assessment of steatosis by B-mode US, the agreement between the two observers was moderate (κ = 0.49 and κ = 0.55, respectively, with a P < 0.001 in both cases). CONCLUSION US attenuation imaging is a promising tool for the diagnosis and follow-up of pediatric steatosis, which provides a more repeatable form of classification, especially at low levels of steatosis detectable in B-mode US.
Collapse
Affiliation(s)
- Esteban P Dardanelli
- Department of Radiology, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina.
| | - María Eugenia Orozco
- Department of Radiology, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| | - Vanesa Oliva
- Department of Radiology, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| | - Juan Francisco Lutereau
- Department of Radiology, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| | - Facundo Agustín Ferrari
- Department of Radiology, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| | - Mónica G Bravo
- Department of Radiology, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| | - Silvina Ruvinsky
- Department of Research and Development, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| | - Macarena Roel
- Department of Research and Development, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| | - Pablo C Barvosa
- Department of Pediatrics, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881, Buenos Aires, Argentina
| | - Marisa Armeno
- Department Nutrition, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881, Buenos Aires, Argentina
| | - Julio S Kaplan
- Department of Radiology, Hospital de Pediatría Dr. Juan P. Garrahan, Combate de los Pozos 1881 (C 1245 AAM), Buenos Aires, Argentina
| |
Collapse
|
23
|
Jayasekera D, Hartmann P. Noninvasive biomarkers in pediatric nonalcoholic fatty liver disease. World J Hepatol 2023; 15:609-640. [PMID: 37305367 PMCID: PMC10251277 DOI: 10.4254/wjh.v15.i5.609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide among children and adolescents. It encompasses a spectrum of disease, from its mildest form of isolated steatosis, to nonalcoholic steatohepatitis (NASH) to liver fibrosis and cirrhosis, or end-stage liver disease. The early diagnosis of pediatric NAFLD is crucial in preventing disease progression and in improving outcomes. Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, given its invasive nature, there has been significant interest in developing noninvasive methods that can be used as accurate alternatives. Here, we review noninvasive biomarkers in pediatric NAFLD, focusing primarily on the diagnostic accuracy of various biomarkers as measured by their area under the receiver operating characteristic, sensitivity, and specificity. We examine two major approaches to noninvasive biomarkers in children with NAFLD. First, the biological approach that quantifies serological biomarkers. This includes the study of individual circulating molecules as biomarkers as well as the use of composite algorithms derived from combinations of biomarkers. The second is a more physical approach that examines data measured through imaging techniques as noninvasive biomarkers for pediatric NAFLD. Each of these approaches was applied to children with NAFLD, NASH, and NAFLD with fibrosis. Finally, we suggest possible areas for future research based on current gaps in knowledge.
Collapse
Affiliation(s)
- Dulshan Jayasekera
- Department of Internal Medicine and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Phillipp Hartmann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
24
|
Slusher AL, Hu P, Samuels S, Tokoglu F, Lat J, Li Z, Alguard M, Strober J, Vatner D, Shabanova V, Caprio S. Rising NAFLD and metabolic severity during the Sars-CoV-2 pandemic among children with obesity in the United States. Obesity (Silver Spring) 2023; 31:1383-1391. [PMID: 36694381 PMCID: PMC10186584 DOI: 10.1002/oby.23728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), the most common liver disease among youth with obesity, precedes more severe metabolic and liver diseases. However, the impact of the Sars-CoV-2 global pandemic on the prevalence and severity of NAFLD and the associated metabolic phenotype among youth with obesity is unknown. METHODS Participants were recruited from the Yale Pediatric Obesity Clinic during the Sars-CoV-2 global pandemic (August 2020 to May 2022) and were compared with a frequency-matched control group of youth with obesity studied before the Sars-CoV-2 global pandemic (January 2017 to November 2019). Glucose metabolism differences were assessed during an extended 180-minute oral glucose tolerance test. Magnetic resonance imaging-derived proton density fat fraction (PDFF) was used to determine intrahepatic fat content in those with NAFLD (PDFF ≥ 5.5). RESULTS NAFLD prevalence increased in participants prior to (36.2%) versus during the Sars-CoV-2 pandemic (60.9%), with higher PDFF values observed in participants with NAFLD (PDFF ≥ 5.5%) during versus before the pandemic. An increase in visceral adipose tissue and a hyperresponsiveness in insulin secretion during the oral glucose tolerance test were also observed. CONCLUSIONS Hepatic health differences were likely exacerbated by environmental and behavioral changes associated with the pandemic, which are critically important for clinicians to consider when engaging in patient care to help minimize the future risk for metabolic perturbations.
Collapse
Affiliation(s)
- Aaron L. Slusher
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| | - Pamela Hu
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| | - Stephanie Samuels
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| | - Fuyuze Tokoglu
- Radiology and Biomedical Imaging, Yale University School of
Medicine, New Haven, CT
| | - Jessica Lat
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| | - Zhongyao Li
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| | - Michele Alguard
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| | - Jordan Strober
- Department of Internal Medicine, Yale University School of
Medicine, New Haven, CT
| | - Daniel Vatner
- Department of Internal Medicine, Yale University School of
Medicine, New Haven, CT
| | - Veronika Shabanova
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of
Medicine, New Haven, CT
| |
Collapse
|
25
|
Dybbro E, Vos MB, Kohli R. Special Population: Pediatric Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:471-482. [PMID: 37024219 DOI: 10.1016/j.cld.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Pediatric nonalcoholic fatty liver disease represents the most common liver disease in children and has been shown to carry significant morbidity. Widespread heterogeneity of disease, as well as the limitation of indirect screening modalities, has made true prevalence of disease difficult to estimate as well as hindered ability to identify optimal prognostic factors in the pediatric population. Current therapeutic options are limited in pediatric patients with current mainstay of therapy, lifestyle modifications, has proven to have a limited efficacy in current clinical application. Current research remains needed in improved screening modalities, prognosticating techniques, and therapeutic options in the pediatric population.
Collapse
Affiliation(s)
- Eric Dybbro
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Miriam B Vos
- Division of Gastroenterology, Hepatology, and Nutrition, Emory School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Malki GJ, Goyal NP, Ugalde-Nicalo P, Chun LF, Zhang J, Ding Z, Wei Y, Knott C, Batakis D, Henderson W, Sirlin CB, Middleton MS, Schwimmer JB. Association of Hepatic Steatosis with Adipose and Muscle Mass and Distribution in Children. Metab Syndr Relat Disord 2023; 21:222-230. [PMID: 37083405 PMCID: PMC10181799 DOI: 10.1089/met.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Pediatric studies have shown associations between hepatic steatosis and total body fat, visceral fat, and lean mass. However, these associations have not been assessed simultaneously, leaving their relative importance unknown. Objective: To evaluate associations between hepatic steatosis and total-body adiposity, visceral adiposity, and lean mass in children. Method: In children at risk for fatty liver, hepatic steatosis, adipose, and lean mass were estimated with magnetic resonance imaging and dual-energy X-ray absorptiometry. Results: Two hundred twenty-seven children with mean age 12.1 years had mean percent body fat of 38.9% and mean liver fat of 8.4%. Liver fat was positively associated with total-body adiposity, visceral adiposity, and lean mass (P < 0.001), and negatively associated with lean mass percentage (P < 0.001). After weight adjustment, liver fat was only positively associated with measures of central adiposity (P < 0.001). Visceral adiposity also had the strongest association with liver fat (P < 0.001). Conclusions: In children, hepatic steatosis is more strongly associated with visceral adiposity than total adiposity, and the association of lean mass is not independent of weight or fat mass. These relationships may help guide the choice of future interventions to target hepatic steatosis.
Collapse
Affiliation(s)
- Ghattas J Malki
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Nidhi P Goyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | | | - Lauren F Chun
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Jasen Zhang
- Division of Biostatistics and Bioinformatics, University of California San Diego Herbert Wertheim School of Public Health and Human Longevity Science, San Diego, California, USA
| | - Ziyi Ding
- Division of Biostatistics and Bioinformatics, University of California San Diego Herbert Wertheim School of Public Health and Human Longevity Science, San Diego, California, USA
| | - Yingjia Wei
- Division of Biostatistics and Bioinformatics, University of California San Diego Herbert Wertheim School of Public Health and Human Longevity Science, San Diego, California, USA
| | - Cynthia Knott
- Altman Clinical and Translational Research Institute, School of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Danielle Batakis
- Liver Imaging Group, Department of Radiology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Walter Henderson
- Liver Imaging Group, Department of Radiology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Michael S Middleton
- Liver Imaging Group, Department of Radiology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
27
|
Zou YG, Wang H, Li WW, Dai DL. Challenges in pediatric inherited/metabolic liver disease: Focus on the disease spectrum, diagnosis and management of relatively common disorders. World J Gastroenterol 2023; 29:2114-2126. [PMID: 37122598 PMCID: PMC10130973 DOI: 10.3748/wjg.v29.i14.2114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical scenario of pediatric liver disease is becoming more intricate due to changes in the disease spectrum, in which an increasing number of inherited/ metabolic liver diseases are reported, while infectious diseases show a decreasing trend. The similar clinical manifestations caused by inherited/metabolic diseases might be under-recognized or misdiagnosed due to nonspecific characteristics. A delayed visit to a doctor due to a lack of symptoms or mild symptoms at an early stage will result in late diagnosis and treatment. Moreover, limited diagnostic approaches, especially liver biopsy, are not easily accepted by pediatric patients, leading to challenges in etiological diagnosis. Liver dysfunction due to inherited/metabolic diseases is often caused by a variety of metabolites, so precision treatment is difficult; symptomatic treatment is a compelling option for inherited disorders.
Collapse
Affiliation(s)
- Yi-Gui Zou
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Huan Wang
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Wen-Wen Li
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Dong-Ling Dai
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| |
Collapse
|
28
|
Strobel KM, Kafali SG, Shih SF, Artura AM, Masamed R, Elashoff D, Wu HH, Calkins KL. Pregnancies complicated by gestational diabetes and fetal growth restriction: an analysis of maternal and fetal body composition using magnetic resonance imaging. J Perinatol 2023; 43:44-51. [PMID: 36319757 PMCID: PMC9840659 DOI: 10.1038/s41372-022-01549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Maternal body composition may influence fetal body composition. OBJECTIVE The objective of this pilot study was to investigate the relationship between maternal and fetal body composition. METHODS Three pregnant women cohorts were studied: healthy, gestational diabetes (GDM), and fetal growth restriction (FGR). Maternal body composition (visceral adipose tissue volume (VAT), subcutaneous adipose tissue volume (SAT), pancreatic and hepatic proton-density fat fraction (PDFF) and fetal body composition (abdominal SAT and hepatic PDFF) were measured using MRI between 30 to 36 weeks gestation. RESULTS Compared to healthy and FGR fetuses, GDM fetuses had greater hepatic PDFF (5.2 [4.2, 5.5]% vs. 3.2 [3, 3.3]% vs. 1.9 [1.4, 3.7]%, p = 0.004). Fetal hepatic PDFF was associated with maternal SAT (r = 0.47, p = 0.02), VAT (r = 0.62, p = 0.002), and pancreatic PDFF (r = 0.54, p = 0.008). When controlling for maternal SAT, GDM increased fetal hepatic PDFF by 0.9 ([0.51, 1.3], p = 0.001). CONCLUSION In this study, maternal SAT, VAT, and GDM status were positively associated with fetal hepatic PDFF.
Collapse
Affiliation(s)
- Katie M. Strobel
- Department of Pediatrics, Division of Neonatology & Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sevgi Gokce Kafali
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Shu-Fu Shih
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Rinat Masamed
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - David Elashoff
- University of California Los Angeles, Los Angeles, CA, USA
| | - Holden H. Wu
- Department of Medicine, Biostatistics and Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kara L. Calkins
- Department of Pediatrics, Division of Neonatology & Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
29
|
Moylan CA, Mavis AM, Jima D, Maguire R, Bashir M, Hyun J, Cabezas MN, Parish A, Niedzwiecki D, Diehl AM, Murphy SK, Abdelmalek MF, Hoyo C. Alterations in DNA methylation associate with fatty liver and metabolic abnormalities in a multi-ethnic cohort of pre-teenage children. Epigenetics 2022; 17:1446-1461. [PMID: 35188871 PMCID: PMC9586600 DOI: 10.1080/15592294.2022.2039850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022] Open
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Epigenetic alterations, such as through DNA methylation (DNAm), may link adverse childhood exposures and fatty liver and provide non-invasive methods for identifying children at high risk for NAFLD and associated metabolic dysfunction. We investigated the association between differential DNAm and liver fat content (LFC) and liver injury in pre-adolescent children. Leveraging data from the Newborn Epigenetics Study (NEST), we enrolled 90 mother-child dyads and used linear regression to identify CpG sites and differentially methylated regions (DMRs) in peripheral blood associated with LFC and alanine aminotransferase (ALT) levels in 7-12yo children. DNAm was measured using Infinium HumanMethylationEPIC BeadChips (Illumina). LFC and fibrosis were quantified by magnetic resonance imaging proton density fat fraction and elastography. Median LFC was 1.4% (range, 0.3-13.4%) and MRE was 2.5 kPa (range, 1.5-3.6kPa). Three children had LFC ≥ 5%, while six (7.6%) met our definition of NAFLD (LFC ≥ 3.7%). All children with NAFLD were obese and five were Black. LFC was associated with 88 DMRs and 106 CpGs (FDR<5%). The top two CpGs, cg25474373 and cg07264203, mapped to or near RFTN2 and PRICKLE2 genes. These two CpG sites were also significantly associated with a NAFLD diagnosis. As higher LFC associates with an adverse cardiometabolic profile already in childhood, altered DNAm may identify these children early in disease course for targeted intervention. Larger, longitudinal studies are needed to validate these findings and determine mechanistic relevance.
Collapse
Affiliation(s)
- Cynthia A. Moylan
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alisha M. Mavis
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Dereje Jima
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mustafa Bashir
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Jeongeun Hyun
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Melanie N. Cabezas
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alice Parish
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Donna Niedzwiecki
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Susan K. Murphy
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Manal F. Abdelmalek
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
30
|
Bischoff SC, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2022; 41:2364-2405. [PMID: 35970666 DOI: 10.1016/j.clnu.2022.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for ESPEN guidelines, following the Scottish Intercollegiate Guidelines Network (SIGN) grading system (A, B, 0, and good practice point (GPP)). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France; Department of Clinical Nutrition, Paul-Brousse-Hospital, Villejuif, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim GGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
31
|
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM. How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review. World J Clin Cases 2022; 10:8906-8921. [PMID: 36157636 PMCID: PMC9477046 DOI: 10.12998/wjcc.v10.i25.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease. Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the quantitative analysis of fatty liver, and is suitable for monitoring the therapeutic effect on fatty liver. However, many packaging methods and postprocessing functions have puzzled radiologists in clinical applications. Therefore, selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging. AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver. METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, Embase, and Cochrane Library databases, and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https:// www.referencecitationanalysis.com) was used to analyze citation of articles which were included in this review. RESULTS Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed. CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
Collapse
Affiliation(s)
- You-Wei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yu-Kun Chen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yuan-Fang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qi-Ping Wen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zong-Ming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China
| |
Collapse
|
32
|
Abrams GA, Ware D, Byrne MM, Hecht EM. Risk stratification of adolescents for the screening of non-alcoholic fatty liver disease. Pediatr Obes 2022; 17:e12924. [PMID: 35501286 DOI: 10.1111/ijpo.12924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver conditions in adolescence are associated with premature mortality in adulthood. Effective screening could impact the population burden of this disease. OBJECTIVES We sought to determine which adolescents should be screened for non-alcoholic fatty liver using vibration-controlled transient elastography. METHODS We simulated a non-alcoholic fatty liver screening program of 938 adolescents from the National Health and Nutritional Examination Survey of 2017/2018. We stratified subjects by body mass index and metabolic parameters and analyzed our data using standard diagnostic statistical measures. RESULTS The weighted prevalence of non-alcoholic fatty liver and non-alcoholic fatty liver disease was 24.4%, and 3.8%, respectively. For all subjects with obesity (21.8% of the population), screening identified 61.8% of the non-alcoholic fatty liver cases. In a category of all subjects with obesity and overweight subjects with metabolic abnormalities (26.7% of the population), screening identified 71.2% of non-alcoholic fatty liver cases. CONCLUSIONS The two groups most likely to benefit by transient elastography screening are adolescents with obesity and overweight adolescents with one metabolic abnormality. These criteria reduce the number of individuals to be tested by approximately 80% (from an approximate 32 million adolescents to 6-7.5 million adolescents), while retaining a diagnostic accuracy of 84%-85%.
Collapse
Affiliation(s)
- Gary A Abrams
- Prisma Health, Department of Medicine, Division of Gastroenterology and Liver Disease, University of South Carolina-SOM Greenville, Greenville, South Carolina, USA
| | - Deanna Ware
- Department of Infectious Diseases, Georgetown University Medical Center, Washington, District of Columbia, USA.,Institute of Etiological Research, Boca Raton, Florida, USA
| | - Margaret M Byrne
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eric M Hecht
- Institute of Etiological Research, Boca Raton, Florida, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Integrated Medical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
33
|
Bischoff SC, Barazzoni R, Busetto L, Campmans‐Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon‐Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint European Society for Clinical Nutrition and Metabolism / United European Gastroenterology guideline. United European Gastroenterol J 2022; 10:663-720. [PMID: 35959597 PMCID: PMC9486502 DOI: 10.1002/ueg2.12280] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for European Society for Clinical Nutrition and Metabolism guidelines, following the Scottish Intercollegiate Guidelines Network grading system (A, B, 0, and good practice point [GPP]). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational SciencesUniversity of TriesteTriesteItaly
| | - Luca Busetto
- Department of MedicineUniversity of PadovaPadovaItaly
| | - Marjo Campmans‐Kuijpers
- Department of Gastroenterology and HepatologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Vincenzo Cardinale
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Irit Chermesh
- Department of GastroenterologyRambam Health Care CampusAffiliated with Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Ahad Eshraghian
- Department of Gastroenterology and HepatologyAvicenna HospitalShirazIran
| | - Haluk Tarik Kani
- Department of GastroenterologyMarmara UniversitySchool of MedicineIstanbulTurkey
| | - Wafaa Khannoussi
- Hepato‐Gastroenterology DepartmentMohammed VI University HospitalOujdaMorocco
- Laboratoire de Recherche des Maladies Digestives (LARMAD)Mohammed the First UniversityOujdaMorocco
| | - Laurence Lacaze
- Department of NutritionRennes HospitalRennesFrance
- Department of general surgeryMantes‐la‐Jolie HospitalFrance
- Department of clinical nutritionPaul Brousse‐Hospital, VillejuifFrance
| | - Miguel Léon‐Sanz
- Department of Endocrinology and NutritionUniversity Hospital Doce de OctubreMedical SchoolUniversity ComplutenseMadridSpain
| | - Juan M. Mendive
- La Mina Primary Care Academic Health Centre. Catalan Institute of Health (ICS)University of BarcelonaBarcelonaSpain
| | - Michael W. Müller
- Department of General and Visceral SurgeryRegionale Kliniken HoldingKliniken Ludwigsburg‐Bietigheim gGmbHBietigheim‐BissingenGermany
| | - Johann Ockenga
- Medizinische Klinik IIKlinikum Bremen‐MitteBremenGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin BerlinCampus Virchow‐Klinikum and Campus Charité MitteBerlinGermany
| | - Anders Thorell
- Department of Clinical ScienceDanderyds HospitalKarolinska InstitutetStockholmSweden
- Department of SurgeryErsta HospitalStockholmSweden
| | - Darija Vranesic Bender
- Department of Internal MedicineUnit of Clinical NutritionUniversity Hospital Centre ZagrebZagrebCroatia
| | - Arved Weimann
- Department of General, Visceral and Oncological SurgerySt. George HospitalLeipzigGermany
| | - Cristina Cuerda
- Departamento de MedicinaUniversidad Complutense de MadridNutrition UnitHospital General Universitario Gregorio MarañónMadridSpain
| |
Collapse
|
34
|
Siler SQ. Applications of Quantitative Systems Pharmacology (QSP) in Drug Development for NAFLD and NASH and Its Regulatory Application. Pharm Res 2022; 39:1789-1802. [PMID: 35610402 PMCID: PMC9314276 DOI: 10.1007/s11095-022-03295-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a widely prevalent disease, but approved pharmaceutical treatments are not available. As such, there is great activity within the pharmaceutical industry to accelerate drug development in this area and improve the quality of life and reduce mortality for NASH patients. The use of quantitative systems pharmacology (QSP) can help make this overall process more efficient. This mechanism-based mathematical modeling approach describes both the pathophysiology of a disease and how pharmacological interventions can modify pathophysiologic mechanisms. Multiple capabilities are provided by QSP modeling, including the use of model predictions to optimize clinical studies. The use of this approach has grown over the last 20 years, motivating discussions between modelers and regulators to agree upon methodologic standards. These include model transparency, documentation, and inclusion of clinical pharmacodynamic biomarkers. Several QSP models have been developed that describe NASH pathophysiology to varying extents. One specific application of NAFLDsym, a QSP model of NASH, is described in this manuscript. Simulations were performed to help understand if patient behaviors could help explain the relatively high rate of fibrosis stage reductions in placebo cohorts. Simulated food intake and body weight fluctuated periodically over time. The relatively slow turnover of liver collagen allowed persistent reductions in predicted fibrosis stage despite return to baseline for liver fat, plasma ALT, and the NAFLD activity score. Mechanistic insights such as this that have been derived from QSP models can help expedite the development of safe and effective treatments for NASH patients.
Collapse
Affiliation(s)
- Scott Q Siler
- DILIsym Services, a Division of Simulations Plus, 510-862-6027, 6 Davis Drive, PO Box 12317, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
35
|
Theel W, Boxma-de Klerk BM, Dirksmeier-Harinck F, van Rossum EFC, Kanhai DA, Apers J, van Dalen BM, de Knegt RJ, Holleboom AG, Tushuizen ME, Grobbee DE, Wiebolt J, Castro Cabezas M. Evaluation of nonalcoholic fatty liver disease (NAFLD) in severe obesity using noninvasive tests and imaging techniques. Obes Rev 2022; 23:e13481. [PMID: 35692179 DOI: 10.1111/obr.13481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) and the more severe and inflammatory type, nonalcoholic steatohepatitis (NASH), is increasing rapidly. Especially in high-risk patients, that is those with obesity, metabolic syndrome, and type 2 diabetes mellitus, the prevalence of NAFLD can be as high as 80% while NASH may be present in 20% of these subjects. With the worldwide increase of obesity, it is most likely that these numbers will rise. Since advanced stages of NAFLD and NASH are strongly associated with morbidity and mortality-in particular, cardiovascular disease, liver cirrhosis, and hepatocellular carcinoma-it is of great importance to identify subjects at risk. A great variety of noninvasive tests has been published to diagnose NAFLD and NASH, especially using blood- and imaging-based tests. Liver biopsy remains the gold standard for NAFLD/NASH. This review aims to summarize the different mechanisms leading to NASH and liver fibrosis, the different noninvasive liver tests to diagnose and evaluate patients with severe obesity.
Collapse
Affiliation(s)
- Willy Theel
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Bianca M Boxma-de Klerk
- Department of Statistics and Education, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Femme Dirksmeier-Harinck
- Department of Gastroenterology and Hepatology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny A Kanhai
- Department of Pediatrics, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Jan Apers
- Department of Bariatric Surgery, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden UMC, Leiden, The Netherlands
| | - Diederick E Grobbee
- Julius Centre for Health Science and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| | - Janneke Wiebolt
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| |
Collapse
|
36
|
Wang C, Pai AK, Putra J. Paediatric non-alcoholic fatty liver disease: an approach to pathological evaluation. J Clin Pathol 2022; 75:443-451. [PMID: 35414523 DOI: 10.1136/jclinpath-2022-208246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an increasingly important healthcare issue along with the rising rates of obesity worldwide. It is the most common chronic liver disease in the paediatric population and the fastest growing indication for liver transplant in young adults. The pathogenesis is complex with contributions from multiple factors and genetic predisposition. While non-invasive laboratory tests and imaging modalities are being increasingly used, the liver biopsy continues to play a crucial role in the diagnosis and prognosis of NAFLD. Histologically, the assessment of paediatric fatty liver disease requires special considerations with respect to a periportal predominant pattern seen in prepubertal patients, as well as a different set of disease processes in the differential diagnosis. In this review, we provide a summary of current knowledge on the epidemiology, pathogenesis and clinical course of paediatric NAFLD as well as the clinical guidelines on diagnosis and management. We discuss the indications and limitations of liver biopsy, histological patterns seen in paediatric NAFLD, other entities to be considered in the differential diagnosis, and conclude with appropriate triaging of liver biopsies and essential elements of pathology reporting.
Collapse
Affiliation(s)
- Chiyun Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Anita K Pai
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan Putra
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Yoon H, Kim J, Lim HJ, Kamiyama N, Oguri T, Koh H, Lee MJ. Attenuation Coefficient Measurement Using a High-Frequency (2-9 MHz) Convex Transducer for Children Including Fatty Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1070-1077. [PMID: 35296397 DOI: 10.1016/j.ultrasmedbio.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
We evaluated the measurement feasibility and diagnostic ability of an ultrasound-guided attenuation parameter (UGAP) using a high-frequency convex transducer in children. This retrospective study included all consecutive children who underwent abdomen ultrasonography from July to December 2020. Attenuation coefficients (ACs) of the liver were measured using both 1- to 6-MHz (AC1-6) and 2- to 9-MHz (AC2-9) probes of the LOGIQ E10 system (GE Healthcare). t-Tests and Pearson's or partial correlation analyses were performed, and AC cutoff values for diagnosing fatty liver were obtained from receiver operating characteristic curve analyses. Finally, 118 patients (M:F = 83:35, mean age: 10.2 ± 4.1 y) were evaluated, and the measurement success rate was 98.3% (116/118) for AC2-9. AC1-6 was available in children with a liver depth greater than 9 cm. The ratio of interquartile range to median of the AC2-9 was lower than that of the AC1-6 (4.3 vs. 8.5, p < 0.001). In the normal group (n = 41), the AC2-9 values were not associated with age, sex or body mass index. For the evaluation of steatosis, the AC2-9 values exhibited a positive correlation with the MR fat fraction (coefficient = 0.498, p < 0.001). The cutoff value of 0.699 dB/cm/MHz had 90.2% sensitivity and 100% specificity for diagnosing fatty liver. In conclusion, measurements of ACs using a high-frequency convex transducer are feasible even in small children, with lower measurement variability. The AC2-9 values also had good diagnostic performance for pediatric fatty liver.
Collapse
Affiliation(s)
- Haesung Yoon
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jisoo Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ji Lim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Takuma Oguri
- Ultrasound General Imaging, GE Healthcare, Hino, Tokyo, Japan
| | - Hong Koh
- Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea; Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Jung Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
38
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 542] [Impact Index Per Article: 180.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
39
|
Ramírez-Vélez R, García-Hermoso A, Correa-Rodríguez M, Izquierdo M. Defining values for controlled attenuation parameter and liver stiffness in youth without liver disease. Pediatr Res 2022; 91:912-920. [PMID: 33846557 DOI: 10.1038/s41390-021-01441-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND We aimed to determine the reference values to define an age-specific normal range of controlled attenuation parameter (CAP, a measure of liver steatosis) and liver stiffness measurement (LSM) values assessed by ultrasound-based transient elastography in adolescents without underlying liver disease. METHODS A total of 462 participants were included in this cross-sectional study using data from NHANES 2017-2018. LSM and CAP were carried out using the FibroScan® M-probe. Anthropometric, metabolic and hematological parameters were measured. RESULTS The median CAP was 199.0 dB/m (150.0-245.0 dB/m, 10th to 90th percentiles) and the median LSM was 4.7 kPa (3.4-6.3 kPa, 10th to 90th percentiles) for ages 12-19.9 years. Regression analyses show that the CAP and LSM were not positively correlated with age (boys CAP R2 = 0.001, p = 0.576 and LSM R2 = 0.012, p = 0.096; girls CAP R2 = 0.011, p = 0.113 and LSM R2 = 0.006, p = 0.236). Finally, CAP was positively associated with LSM in girls (β = 0.189, p = 0.005) but not in boys (β = -0.083, p = 0.202). CONCLUSIONS The reference values indicated here for LSM and CAP will help in the screening of adolescents between ages 12 and 19.9 years and might serve as a useful method for identifying those youth at high risk of nonalcoholic fatty liver disease. IMPACT The reference values indicated in this study for liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) will help in the screening of adolescents between ages 12 and 19.9 years in clinical practice. The cutoffs of LSM and CAP might serve as a useful method for identifying those youth at high risk of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Department of Health Sciences, Public University of Navarra, Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra (CHN), Pamplona, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio García-Hermoso
- Department of Health Sciences, Public University of Navarra, Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra (CHN), Pamplona, Spain.,Universidad de Santiago de Chile (USACH), Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Santiago, Chile
| | - María Correa-Rodríguez
- Instituto de Investigación Biosanitaria Granada (IBIS Granada), Granada, Spain. .,Department of Nursing, Faculty of Health Sciences, University of Granada (UGR), Granada, Spain.
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarra, Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra (CHN), Pamplona, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Brancato V, Della Pepa G, Bozzetto L, Vitale M, Annuzzi G, Basso L, Cavaliere C, Salvatore M, Rivellese AA, Monti S. Evaluation of a Whole-Liver Dixon-Based MRI Approach for Quantification of Liver Fat in Patients with Type 2 Diabetes Treated with Two Isocaloric Different Diets. Diagnostics (Basel) 2022; 12:diagnostics12020514. [PMID: 35204604 PMCID: PMC8871286 DOI: 10.3390/diagnostics12020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Dixon-based methods for the detection of fatty liver have the advantage of being non-invasive, easy to perform and analyze, and to provide a whole-liver coverage during the acquisition. The aim of the study was to assess the feasibility of a whole-liver Dixon-based approach for liver fat quantification in type 2 diabetes (T2D) patients who underwent two different isocaloric dietary treatments: a diet rich in monosaturated fatty acids (MUFA) and a multifactorial diet. Thirty-nine T2D patients were randomly assigned to MUFA diet (n = 21) and multifactorial diet (n = 18). The mean values of the proton density fat fraction (PDFF) over the whole liver and over the ROI corresponding to that chosen for MRS were compared to MRS-PDFF using Spearman’s correlation (ρ). Before–after changes in percentage of liver volume corresponding to MRI-PDFF above thresholds associated with hepatic steatosis (LV%TH, with TH = 5.56%, 7.97% and 8.8%) were considered to assess the proposed approach and compared between diets using Wilcoxon rank-sum test. Statistical significance set at p < 0.05. A strong linear relationship was found between MRS-PDFF and MRI-PDFFs (ρ = 0.85, p < 0.0001). Changes in LV%TH% were significantly higher (p < 0.05) in the multifactorial diet than in MUFA diet (25% vs. 9%, 35% vs. 12%, and 38% vs. 13% decrease, respectively, for TH = 5.56%, 7.97%, and 8.8%) and this was reproducible compared to results obtained using the standard liver fat analysis. A volumetric approach based on Dixon method could be an effective, non-invasive technique that could be used for the quantitative analysis of hepatic steatosis in T2D patients.
Collapse
Affiliation(s)
- Valentina Brancato
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
- Correspondence:
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Luca Basso
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Carlo Cavaliere
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Angela Albarosa Rivellese
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Serena Monti
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy;
| |
Collapse
|
41
|
Anand A, Shalimar, Jana M, Kandasamy D, Kumar B, Singh G, Jain V. Usefulness of Controlled Attenuation Parameter for Identification and Grading of Nonalcoholic Fatty Liver Disease in Adolescents with Obesity. Indian J Pediatr 2022; 89:52-58. [PMID: 34324132 DOI: 10.1007/s12098-021-03842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To identify controlled attenuation parameter (CAP) based cutoffs for diagnosing and grading hepatic steatosis in adolescents with overweight/obesity, using magnetic resonance imaging-proton density fat fraction (MRI-PDFF) as the reference method. METHODS Adolescents with overweight/obesity were included. Fasting glucose, insulin, aspartate aminotransferase, and alanine aminotransferase were estimated. Hepatic steatosis (S) was assessed by MRI-PDFF, and graded as S0, S1, S2, and S3 with fat fraction cutoffs of < 6.0%, ≥ 6.0% to < 17.5%, ≥ 17.5% to < 23.3%, and ≥ 23.3%, respectively. CAP and liver stiffness measure (LSM) were assessed using FibroScan. Receiver operating characteristic (ROC) curves were used to estimate the CAP scores predicting various grades of hepatic steatosis. RESULTS A total of 108 adolescents aged 12.4 ± 1.9 y, with mean BMI of 26.7 ± 4.9 kg/m2 were included. S0, S1, S2, and S3 steatosis by MRI-PDFF was identified in 15, 70, 13, and 10 adolescents, respectively. A moderate positive correlation was observed between CAP score and MRI-estimated hepatic fat (r = 0.528, p < 0.001). The optimal CAP cutoffs for identifying ≥ S1, ≥ S2, and S3 steatosis were 271 [area under ROC (AUROC) 0.745 (0.630-0.859)], 296 [AUROC 0.820 (0.728-0.911)], and 309 dB/m [AUROC 0.836 (0.729-0.944)], respectively. CONCLUSION CAP score had a good discriminative ability to diagnose fatty liver in adolescents with overweight or obesity.
Collapse
Affiliation(s)
- Abhinav Anand
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | | | - Brijesh Kumar
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gajendra Singh
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vandana Jain
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
42
|
Chen BR, Pan CQ. Non-invasive assessment of fibrosis and steatosis in pediatric non-alcoholic fatty liver disease. Clin Res Hepatol Gastroenterol 2022; 46:101755. [PMID: 34311134 DOI: 10.1016/j.clinre.2021.101755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Non-Alcoholic Fatty Liver Disease (NAFLD) has become one of the most common causes of chronic liver disease in the pediatric population. Recent advances have been made in developing non-invasive measures for NAFLD assessment. This review presents an analysis of these latest developments and also proposes an algorithm for screening pediatric patients at risk for NAFLD. METHODS A systematic literature search on PUBMED and EMBASE was conducted. Guidelines for clinical care of pediatric NAFLD were also reviewed. RESULTS In imaging tests, transient elastography (TE) combined with controlled attenuation parameter (CAP) is a promising, relatively low-cost method offering an intermediate level of accuracy on accessing patient's fibrosis and steatosis in a singular package. Liver biopsy remains the gold standard for diagnosis and/or evaluation of NAFLD, but with our proposed algorithm on utilizing non-invasive testing, the number of liver biopsies required could decrease. The current evidence supports the implementation of TE and CAP in an evaluation algorithm for pediatric NAFLD. CONCLUSIONS Current data support the use of TE and CAP as a first-line tool in the diagnosis and evaluation of adolescent NAFLD, to better stratify high-risk patients and cut down on the number of liver biopsies needed.
Collapse
Affiliation(s)
- Bryan R Chen
- University of California, Los Angeles, Los Angeles, CA 90025 USA.
| | - Calvin Q Pan
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Division of Gastroenterology and Hepatology, Department of Medicine, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
43
|
Yu Q, Liu Y, Hu P, Gao F, Huang G. Performance of Imaging Techniques in Non-invasive Diagnosis of Non-alcoholic Fatty Liver Disease in Children: A Systematic Review and Meta-Analysis. Front Pediatr 2022; 10:837116. [PMID: 35899133 PMCID: PMC9311375 DOI: 10.3389/fped.2022.837116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in children. With the continuous emergence of various non-invasive diagnostic methods, imaging techniques have always been considered as potential alternative methods to liver biopsy. This study aimed to evaluate the diagnostic performance of imaging techniques so as to search for the most promising technology. METHODS We searched English and Chinese databases. English databases included Cochran library, Embase, PubMed, and Web of Science, while Chinese databases included the Wanfang database and China National Knowledge Internet. RESULTS Finally, 11 articles were included (12 studies, one of which included studies on both fibrosis and steatosis). Further, 26.2% of the participants had mild steatosis, 34.1% had moderate steatosis, and 34.9% had severe steatosis. Also, 64.0% had any fibrosis, 29.1% had significant fibrosis, 13.8% had advanced fibrosis, and 2.8% had cirrhosis. Irrespective of the grade of fibrosis, transient elastography (TE) had higher sensitivity (97-100%), whereas magnetic resonance elastography (MRE) had the lowest sensitivity (58-63%). The pooled sensitivity and specificity of imaging techniques in diagnosing steatosis were 89% (95% CI, 71-96) and 89% (95% CI, 72-96), and AUROC 0.95 (95% CI, 93-97), multifrequency magnetic resonance elastography-hepatic fat fraction (mMRE-HFF) had the highest sensitivity (87%, 95% CI 77-97), ultrasonography (US) had the lowest specificity (96%, 95% CI 92-98%). CONCLUSION Imaging techniques have a good diagnostic performance for children with NAFLD, especially the diagnosis of liver fibrosis based on ultrasound or magnetic resonance elastography. Compared with different imaging techniques, TE has the best performance in diagnosing significant fibrosis. Liver stiffness measurement (LSM) is expected to become a biological indicator for routine screening, dynamic monitoring of disease changes, and prognostic evaluation.
Collapse
Affiliation(s)
- Qun Yu
- Department of Ultrasound, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Hangzhou Normal University, Hangzhou, China
| | - Yiwei Liu
- Department of Ultrasound, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Hangzhou Normal University, Hangzhou, China
| | - Peipei Hu
- Department of Ultrasound, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Feng Gao
- Department of Ultrasound, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Guoqing Huang
- Department of Ultrasound, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
44
|
Furthner D, Anderwald CH, Bergsten P, Forslund A, Kullberg J, Ahlström H, Manell H, Ciba I, Mangge H, Maruszczak K, Koren P, Schütz S, Brunner SM, Schneider AM, Weghuber D, Mörwald K. Single Point Insulin Sensitivity Estimator in Pediatric Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2022; 13:830012. [PMID: 35185803 PMCID: PMC8848352 DOI: 10.3389/fendo.2022.830012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Attenuated insulin-sensitivity (IS) is a central feature of pediatric non-alcoholic fatty liver disease (NAFLD). We recently developed a new index, single point insulin sensitivity estimator (SPISE), based on triglycerides, high-density-lipoprotein and body-mass-index (BMI), and validated by euglycemic-hyperinsulinemic clamp-test (EHCT) in adolescents. This study aims to assess the performance of SPISE as an estimation of hepatic insulin (in-)sensitivity. Our results introduce SPISE as a novel and inexpensive index of hepatic insulin resistance, superior to established indices in children and adolescents with obesity. MATERIALS AND METHODS Ninety-nine pubertal subjects with obesity (13.5 ± 2.0 years, 59.6% males, overall mean BMI-SDS + 2.8 ± 0.6) were stratified by MRI (magnetic resonance imaging) into a NAFLD (>5% liver-fat-content; male n=41, female n=16) and non-NAFLD (≤5%; male n=18, female n=24) group. Obesity was defined according to WHO criteria (> 2 BMI-SDS). EHCT were used to determine IS in a subgroup (n=17). Receiver-operating-characteristic (ROC)-curve was performed for diagnostic ability of SPISE, HOMA-IR (homeostatic model assessment for insulin resistance), and HIRI (hepatic insulin resistance index), assuming null hypothesis of no difference in area-under-the-curve (AUC) at 0.5. RESULTS SPISE was lower in NAFLD (male: 4.8 ± 1.2, female: 4.5 ± 1.1) than in non-NAFLD group (male 6.0 ± 1.6, female 5.6 ± 1.5; P< 0.05 {95% confidence interval [CI]: male NAFLD 4.5, 5.2; male non-NAFLD 5.2, 6.8; female NAFLD 4.0, 5.1, female non-NAFLD 5.0, 6.2}). In males, ROC-AUC was 0.71 for SPISE (P=0.006, 95% CI: 0.54, 0.87), 0.68 for HOMA-IR (P=0.038, 95% CI: 0.48, 0.88), and 0.50 for HIRI (P=0.543, 95% CI: 0.27, 0.74). In females, ROC-AUC was 0.74 for SPISE (P=0.006), 0.59 for HOMA-IR (P=0.214), and 0.68 for HIRI (P=0.072). The optimal cutoff-level for SPISE between NAFLD and non-NAFLD patients was 5.18 overall (Youden-index: 0.35; sensitivity 0.68%, specificity 0.67%). CONCLUSION SPISE is significantly lower in juvenile patients with obesity-associated NAFLD. Our results suggest that SPISE indicates hepatic IR in pediatric NAFLD patients with sensitivity and specificity superior to established indices of hepatic IR.
Collapse
Affiliation(s)
- Dieter Furthner
- Department of Pediatrics, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christian-Heinz Anderwald
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Direction, Arnoldstein Healthcare Centre, Arnoldstein, Austria
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Forslund
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Iris Ciba
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Pia Koren
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sebastian Schütz
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Maria Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- *Correspondence: Daniel Weghuber,
| | - Katharina Mörwald
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
45
|
Cohen CC, Li KW, Alazraki AL, Beysen C, Carrier CA, Cleeton RL, Dandan M, Figueroa J, Knight-Scott J, Knott CJ, Newton KP, Nyangau EM, Sirlin CB, Ugalde-Nicalo PA, Welsh JA, Hellerstein MK, Schwimmer JB, Vos MB. Dietary sugar restriction reduces hepatic de novo lipogenesis in adolescent boys with fatty liver disease. J Clin Invest 2021; 131:150996. [PMID: 34907907 PMCID: PMC8670836 DOI: 10.1172/jci150996] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDHepatic de novo lipogenesis (DNL) is elevated in nonalcoholic fatty liver disease (NAFLD). Improvements in hepatic fat by dietary sugar reduction may be mediated by reduced DNL, but data are limited, especially in children. We examined the effects of 8 weeks of dietary sugar restriction on hepatic DNL in adolescents with NAFLD and correlations between DNL and other metabolic outcomes.METHODSAdolescent boys with NAFLD (n = 29) participated in an 8-week, randomized controlled trial comparing a diet low in free sugars versus their usual diet. Hepatic DNL was measured as percentage contribution to plasma triglyceride palmitate using a 7-day metabolic labeling protocol with heavy water. Hepatic fat was measured by magnetic resonance imaging-proton density fat fraction.RESULTSHepatic DNL was significantly decreased in the treatment group (from 34.6% to 24.1%) versus the control group (33.9% to 34.6%) (adjusted week 8 mean difference: -10.6% [95% CI: -19.1%, -2.0%]), which was paralleled by greater decreases in hepatic fat (25.5% to 17.9% vs. 19.5% to 18.8%) and fasting insulin (44.3 to 34.7 vs. 35.5 to 37.0 μIU/mL). Percentage change in DNL during the intervention correlated significantly with changes in free-sugar intake (r = 0.48, P = 0.011), insulin (r = 0.40, P = 0.047), and alanine aminotransferase (ALT) (r = 0.39, P = 0.049), but not hepatic fat (r = 0.13, P = 0.532).CONCLUSIONOur results suggest that dietary sugar restriction reduces hepatic DNL and fasting insulin, in addition to reductions in hepatic fat and ALT, among adolescents with NAFLD. These results are consistent with the hypothesis that hepatic DNL is a critical metabolic abnormality linking dietary sugar and NAFLD.TRIAL REGISTRYClinicalTrials.gov NCT02513121.FUNDINGThe Nutrition Science Initiative (made possible by gifts from the Laura and John Arnold Foundation, Ambrose Monell Foundation, and individual donors), the UCSD Altman Clinical and Translational Research Institute, the NIH, Children's Healthcare of Atlanta and Emory University's Children's Clinical and Translational Discovery Core, Children's Healthcare of Atlanta and Emory University Pediatric Biostatistical Core, the Georgia Clinical and Translational Science Alliance, and the NIH National Institute of Diabetes, Digestive, and Kidney Disease.
Collapse
Affiliation(s)
- Catherine C. Cohen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Kelvin W. Li
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Adina L. Alazraki
- Department of Radiology, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Carissa A. Carrier
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA
| | - Rebecca L. Cleeton
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mohamad Dandan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Janet Figueroa
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jack Knight-Scott
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Cynthia J. Knott
- Altman Clinical and Translational Research Institute, School of Medicine, UCSD, La Jolla, California, USA
| | - Kimberly P. Newton
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Edna M. Nyangau
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Claude B. Sirlin
- Liver Imaging Group, Department of Radiology, UCSD, La Jolla, California, USA
| | - Patricia A. Ugalde-Nicalo
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Jean A. Welsh
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Gastroenterology, Hepatology, and Nutrition, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Jeffrey B. Schwimmer
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Miriam B. Vos
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Gastroenterology, Hepatology, and Nutrition, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Abstract
Image-guided percutaneous biopsy is the cornerstone of solid tissue diagnosis. The ability to safely sample tissue in locations that previously required surgery or necessitated empiric therapy has allowed for more personalized treatment options, as well as more rapid development of novel therapeutics. In children, these same advantages are accompanied by a smaller margin for error and rapidly expanding indications. The intent of this review is to outline the role of image-guided biopsy in the management of childhood disease, how this role is changing, and the practical aspects of managing and performing pediatric biopsies.
Collapse
|
47
|
Metabolic Associated Fatty Liver Disease in Children-From Atomistic to Holistic. Biomedicines 2021; 9:biomedicines9121866. [PMID: 34944682 PMCID: PMC8698557 DOI: 10.3390/biomedicines9121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease has become the most common chronic liver disease in children due to the alarmingly increasing incidence of pediatric obesity. It is well-documented that MAFLD prevalence is directly related to an incremental increase in BMI. The multiple hits theory was designed for providing insights regarding the pathogenesis of steatohepatitis and fibrosis in MAFLD. Recent evidence suggested that the microbiome is a crucial contributor in the pathogenesis of MAFLD. Aside from obesity, the most common risk factors for pediatric MAFLD include male gender, low-birth weight, family history of obesity, MAFLD, insulin resistance, type 2 diabetes mellitus, obstructive sleep apnea, and polycystic ovarium syndrome. Usually, pediatric patients with MAFLD have nonspecific symptoms consisting of fatigue, malaise, or diffuse abdominal pain. A wide spectrum of biomarkers was proposed for the diagnosis of MAFLD and NASH, as well as for quantifying the degree of fibrosis, but liver biopsy remains the key diagnostic and staging tool. Nevertheless, elastography-based methods present promising results in this age group as potential non-invasive replacers for liver biopsy. Despite the lack of current guidelines regarding MAFLD treatment in children, lifestyle intervention was proven to be crucial in the management of these patients.
Collapse
|
48
|
Sweeny KF, Lee CK. Nonalcoholic Fatty Liver Disease in Children. Gastroenterol Hepatol (N Y) 2021; 17:579-587. [PMID: 35465068 PMCID: PMC9021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. It represents a spectrum of disease from simple hepatic steatosis to steatohepatitis that may develop into progressive hepatic fibrosis and even cirrhosis. NAFLD is the most rapidly increasing indication for liver transplantation in adults. In children, the incidence of NAFLD has also increased over the past decade. Although the majority of children with NAFLD are overweight or obese, there is an increasing subset of children with normal body mass index with so-called lean NAFLD. NAFLD in children is associated with several extrahepatic manifestations, including hyperlipidemia, insulin resistance, and obstructive sleep apnea. The pathogenesis of NAFLD in children involves a multifactorial interaction among genetics, in utero exposures, early childhood exposures, and ongoing nutritional exposures. Although there are some similarities between pediatric NAFLD and adult NAFLD, liver biopsies in children show histologic differences between the two. The current standard-of-care treatment of NAFLD in children is lifestyle change to decrease caloric intake and increase physical activity. There are no medications currently approved for the treatment of NAFLD in children. This article aims to summarize the current understanding of pediatric NAFLD and future directions for intervention and therapeutic aims.
Collapse
Affiliation(s)
- Katherine F. Sweeny
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Christine K. Lee
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
49
|
Kohut T, Serai S, Panganiban J. Utilization of Topiramate as an Adjunct to Lifestyle Intervention for Weight Loss in Pediatric Nonalcoholic Fatty Liver Disease. JPGN REPORTS 2021; 2:e126. [PMID: 37206463 PMCID: PMC10191479 DOI: 10.1097/pg9.0000000000000126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/02/2021] [Indexed: 05/21/2023]
Abstract
Nonalcoholic fatty liver disease is the most common chronic liver disease in children and has become the leading indication for liver transplantation in adults. The primary treatment modality is lifestyle modification to promote weight loss, which is challenging to achieve and maintain. Adjunctive weight loss medications, such as topiramate, are commonly used off-label in adults and children with obesity and found to be safe and effective. We report an adolescent male with severe obesity and nonalcoholic steatohepatitis refractory to aggressive lifestyle intervention. He was safely treated with topiramate with resultant weight loss, reduction in body mass index z-score, improvement in liver enzymes, and resolution of hepatic steatosis. This is the first report of using topiramate in a pediatric patient with obesity and nonalcoholic steatohepatitis. Topiramate should be considered in pediatric nonalcoholic fatty liver disease to help curb emotional eating and promote satiety in cases refractory to lifestyle intervention alone.
Collapse
Affiliation(s)
- Taisa Kohut
- From the Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Suraj Serai
- Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jennifer Panganiban
- From the Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
50
|
Shapiro WL, Noon SL, Schwimmer JB. Recent advances in the epidemiology of nonalcoholic fatty liver disease in children. Pediatr Obes 2021; 16:e12849. [PMID: 34498413 PMCID: PMC8807003 DOI: 10.1111/ijpo.12849] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022]
Abstract
Children with obesity are at risk for numerous health problems, including nonalcoholic fatty liver disease (NAFLD). This review focuses on progress made in the epidemiology of NAFLD in children for the years 2015-2020. The estimated prevalence of NAFLD in children with obesity is 26%. The incidence of NAFLD in children has risen rapidly over the past decade. An understanding of the reasons for this rise is incomplete, but over the past 5 years, many studies have provided additional insight into the complexity of risk factors, diagnostic approaches, and associated comorbidities. Risk factors for NAFLD are wide-ranging, including perinatal factors involving both the mother and newborn, as well as environmental toxin exposure. Progress made in the noninvasive assessment will be critical to improving issues related to variability in approach to screening and diagnosis of NAFLD in children. The list of serious comorbidities observed in children with NAFLD continues to grow. Notably, for many of these conditions, such as diabetes and depression, the rates observed have exceeded the rates reported in children with obesity without NAFLD. Recent advancements reviewed show an increased awareness of this problem, while also calling attention to the need for additional research to guide successful efforts at prevention and treatment.
Collapse
Affiliation(s)
- Warren L. Shapiro
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California,Department of Gastroenterology, Rady Children’s Hospital, San Diego, California,Southern California Permanente Medical Group, Pasadena, California
| | - Sheila L. Noon
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California
| | - Jeffrey B. Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California,Department of Gastroenterology, Rady Children’s Hospital, San Diego, California
| |
Collapse
|