1
|
Marjot T, Armstrong MJ, Stine JG. Skeletal muscle and MASLD: Mechanistic and clinical insights. Hepatol Commun 2025; 9:e0711. [PMID: 40408301 DOI: 10.1097/hc9.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is intrinsically linked with widespread metabolic perturbations, including within skeletal muscle. Indeed, MASLD is associated with a range of skeletal muscle abnormalities, including insulin resistance, myosteatosis, and sarcopenia, which all converge on the liver to drive disease progression and adverse patient outcomes. This review explores the mechanistic links between skeletal muscle and MASLD, including the role of abnormal glycemic control, systemic inflammation, and disordered myokine signaling. In turn, we discuss how intrinsic liver pathology can feed back to further exacerbate poor skeletal muscle health. Given the central importance of skeletal muscle in MASLD pathogenesis, it offers clinicians an opportunity to intervene for therapeutic benefit. We, therefore, summarize the role of nutrition and physical activity on skeletal muscle mass, quality, and metabolic function and discuss the knock-on effect this has on the liver. An awareness of these treatment strategies is particularly important in the era of effective pharmacological and surgical weight loss interventions, which can be associated with the development of sarcopenia. Finally, we highlight a number of promising drug agents in the clinical trial pipeline that specifically target skeletal muscle in an attempt to improve metabolic and physical functioning.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew J Armstrong
- Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Jonathan G Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health-Milton S. Hershey Medical Centre, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Kadowaki T, Kiyosue A, Shingaki T, Oura T, Yokote K. Efficacy and safety of once-weekly tirzepatide in Japanese patients with obesity disease (SURMOUNT-J): a multicentre, randomised, double-blind, placebo-controlled phase 3 trial. Lancet Diabetes Endocrinol 2025; 13:384-396. [PMID: 40031941 DOI: 10.1016/s2213-8587(24)00377-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 03/05/2025]
Abstract
BACKGROUND Data on tirzepatide in Asian patients with obesity are limited. This study aimed to gain a better understanding of tirzepatide for treatment of Japanese patients with obesity disease (BMI ≥25 kg/m2 with excessive fat accumulation) as defined by the Japanese Society for the Study of Obesity. METHODS This was a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial of the efficacy and safety of tirzepatide as an adjunct to lifestyle modifications. Japanese adults with obesity disease (BMI ≥27 kg/m2 accompanied by ≥2 obesity-related health disorders or ≥35 kg/m2 accompanied by ≥1 obesity-related health disorders), excluding diabetes, were assigned 1:1:1 via computer-generated random sequence to receive once weekly subcutaneous tirzepatide (10 mg or 15 mg) or placebo. Coprimary endpoints were the mean percent change in bodyweight and the proportion of participants achieving at least 5% bodyweight reduction at week 72, using the efficacy estimand. Efficacy and safety were assessed in the modified intention-to-treat (mITT) population. This study is registered with ClinicalTrials.gov, NCT04844918. FINDINGS Between May 10, 2021, and June 24, 2023, 413 participants were screened, and 267 were randomly assigned. Due to exclusion of one study site, the mITT population was 225 participants (133 [59%] men and 92 [41%] women, mean age 50·8 [SD 10·7] years), with 73 in the tirzepatide 10 mg group, 77 in the tirzepatide 15 mg group, and 75 in the placebo group, of whom 192 (85%) completed both study and treatment. Estimated treatment differences relative to placebo in change in bodyweight at week 72 were -16·1% (95% CI -18·7 to -13·5; p<0·0001) and -21·1% (95% CI -23·6 to -18·5; p<0·0001) following tirzepatide 10 mg and 15 mg, respectively. At week 72, a higher proportion of participants achieved at least 5% bodyweight reduction with tirzepatide 10 mg (67 [94%] of 71) and 15 mg (73 [96%] of 76) compared with placebo (15 [20%] of 75; both p<0·0001). Cardiometabolic and body composition indices were also improved with tirzepatide. Participants treated with tirzepatide experienced treatment-emergent adverse events more frequently (10 mg: n=61 [84%]; 15 mg: n=66 [86%]) than those who received placebo (52 [69%]), most commonly gastrointestinal symptoms. Study discontinuations due to adverse events were infrequent (placebo: n=3 [4%]; tirzepatide 10 mg: n=1 [1%]; tirzepatide 15 mg: n=0). INTERPRETATION In Japanese adults with obesity disease, tirzepatide provided clinically a meaningful reduction in bodyweight compared with placebo over 72 weeks, with a safety profile consistent with that observed in global populations. FUNDING Eli Lilly and Company. TRANSLATION For the Japanese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Takashi Kadowaki
- Toranomon Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Tokyo, Japan
| | - Arihiro Kiyosue
- Moriyama Memorial Hospital, Cardiovascular Center, Tokyo, Japan
| | - Tomotaka Shingaki
- Japan Drug Development and Medical Affairs, Eli Lilly Japan, Kobe, Japan.
| | - Tomonori Oura
- Japan Drug Development and Medical Affairs, Eli Lilly Japan, Kobe, Japan
| | | |
Collapse
|
3
|
Gaspar RC, Macêdo APA, Nakandakari SCBR, Muñoz VR, Abud GF, Vieira RFL, de Sousa Neto IV, Pavan ICB, da Silva LGS, Simabuco FM, da Silva ASR, Junior WS, Marchini JS, Nonino CB, Cintra DE, Ropelle ER, Pajvani UB, de Freitas EC, Pauli JR. Notch1 Signalling Is Downregulated by Aerobic Exercise, Leading to Improvement of Hepatic Metabolism in Obese Mice. Liver Int 2025; 45:e70068. [PMID: 40078075 DOI: 10.1111/liv.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND AND AIMS Notch1 protein plays a significant role in hepatic metabolism, as evidenced by its correlation with insulin resistance in the livers of obese individuals, making it an intriguing research target. Therefore, this study aims to investigate the impact of aerobic exercise on Notch1 pathways in the hepatic tissue of obese mice and its role in controlling hepatic metabolism. METHODS Therefore, we conducted a cross-sectional study utilising liver biopsies from lean and obese humans, as well as an intervention study involving mice subjected to a high-fat diet. The obese-trained mice group underwent a treadmill-running protocol for 4 weeks. RESULTS Our findings revealed that obese individuals exhibited increased NOTCH1 mRNA levels compared to lean subjects. The detrimental effects of Notch1 signalling were confirmed by Notch1-overexpressed HepG2 cell lines. Obese mice with higher hepatic Notch1 signalling demonstrated a reduction in this pathway when subjected to a 4-week treadmill running. Another benefit noticed in this trained group was the amelioration of insulin resistance, as well as a reduction in pyruvate intolerance and gluconeogenic enzymes. Additionally, we observed that these protective findings were accompanied by a decrease in mTORC1 pathway activity and lipid accumulation in the liver. Pharmacological inhibition of Notch1 in obese mice led to an increase in mitochondrial respiration in the liver. CONCLUSIONS We conclude that Notch1 signalling may be a potentially useful therapeutic target in obesity, while aerobic exercise training suppresses the Notch1 pathway in the liver, contributing to the regulation of hepatic glucose and lipid metabolism in obese mice.
Collapse
Affiliation(s)
- Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
| | - Ana Paula Azevêdo Macêdo
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
| | | | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
| | - Gabriela Ferreira Abud
- School of Physical Education and Sport of Ribeirao Preto (EEFERP/USP), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirao Preto (EEFERP/USP), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
- Applied Molecular Signaling Laboratory (LabSIMA), Department of Biochemistry, Federal University of São Paulo, Campinas, Sao Paulo, Brazil
| | - Adelino S R da Silva
- School of Physical Education and Sport of Ribeirao Preto (EEFERP/USP), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Wilson Salgado Junior
- School of Medicine of Ribeirão Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, Brazil
| | - Julio Sergio Marchini
- Department of Internal Medicine, Division of Nutrology, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, Brazil
| | - Carla Barbosa Nonino
- Division of Nutrition and Metabolism, Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, Sao Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Sao Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Sao Paulo, Brazil
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ellen Cristini de Freitas
- School of Physical Education and Sport of Ribeirao Preto (EEFERP/USP), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
4
|
Lee J, Lee DY, Jung JH, Bae E, Yu JA, Yang H. Differential Exercise Requirements for Nonalcoholic Fatty Liver Disease Resolution Across Age Groups: A Longitudinal Study of Korean Military Officers. J Phys Act Health 2025; 22:323-333. [PMID: 39662446 DOI: 10.1123/jpah.2024-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health concern, and despite its high prevalence, lifestyle modifications such as exercise play a pivotal role in resolving this condition. This study aims to identify factors associated with NAFLD resolution, with a focus on the role of exercise, in different age groups. METHODS Longitudinal data from Korean military officers, during the period 2019-2021, were obtained from the National Health Information Database. NAFLD was defined as a hepatic steatosis index ≥36, and NAFLD resolution was defined as individuals achieving hepatic steatosis index <36 in the subsequent year of diagnosis. Information on alcohol consumption, exercise frequency, and family history of diabetes was collected through self-reported questionnaires. RESULTS The analysis included a total of 163,728 individuals, with a mean age of 36.87, predominantly male (91.62%). The prevalence of NAFLD was 27.04%. Favorable factors for NAFLD resolution encompassed moderate-intensity exercise for more than 180 minutes per week, vigorous-intensity exercise for more than 90 minutes per week, female sex, age, and resistance exercise for more than 3 days per week. Hypertension, family history of diabetes, and smoking were identified as factors against NAFLD resolution. The exercise requirements for NAFLD resolution varied among age groups, with those <30 years old requiring more than 180 minutes per week of moderate- or vigorous-intensity exercise and those >50 years old needing only 90 minutes per week of such exercise. CONCLUSION The exercise requirements for NAFLD resolution exhibit age-related differences. Individualized guidance for NAFLD management should consider these variations and be tailored to specific age groups.
Collapse
Affiliation(s)
- Jaejun Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Yeup Lee
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Hyeop Jung
- Remote Reading Team, Armed Forces Capital Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | | | - Jeong A Yu
- Department of Preventive Medicine, Korean Armed Forces Medical Command, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hyun Yang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Medeiros DG, Ferreira LF, Lamp JDS, Telles da Rosa LH. The impact of resistance training in patients diagnosed with metabolic dysfunction-associated steatotic liver disease: a systematic review. Eur J Gastroenterol Hepatol 2025; 37:129-136. [PMID: 39589803 PMCID: PMC11658022 DOI: 10.1097/meg.0000000000002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Resistance training, as a modality of physical exercise, has been recognized as a fundamental pillar in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Current reviews, however, have not given due priority to the specific effects of this type of training on hepatic and clinical markers in individuals with MASLD. This study aimed to compile the available evidence on the impact of resistance training on hepatic and clinical parameters in individuals diagnosed with MASLD. To this end, a systematic search was conducted in the PubMed, Lilacs, Embase, Cochrane, SciELO, and Pedro databases, as well as a manual search, covering the period from January 2011 to December 2023. Randomized clinical trials that evaluated liver fat, insulin resistance, and liver enzymes in individuals with MASLD who were exclusively subjected to resistance training interventions were selected. This study is registered with International Prospective Register of Systematic Reviews (PROSPERO) (CRD4202236638) and the risk of bias in the eligible studies was assessed using ROB 2. Six studies were included, totaling 232 adult participants. Resistance training resulted in a significant reduction in liver fat ( P < 0.001), liver enzymes ( P < 0.05), and insulin resistance ( P < 0.05) in individuals in the strength training group. Furthermore, greater adherence to resistance training (>90%) was observed compared to aerobic training. It is concluded that resistance training can be an easily accepted and consistent option for adults with MASLD, playing an important role in improving the clinical and hepatic markers of these individuals.
Collapse
Affiliation(s)
- Daniele Gorski Medeiros
- Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Fernando Ferreira
- Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- School of Electronics, Electrical Engineering and Computer Sciences, Queens University of Belfast (QUB), Belfast, Northern Ireland, United Kingdom
| | - Jessica da Silva Lamp
- Postgraduate Program in Human Movement Sciences, Federal University of Rio Grande do Sul
| | - Luis Henrique Telles da Rosa
- Department of Physiotherapy, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Michalopoulou E, Thymis J, Lampsas S, Pavlidis G, Katogiannis K, Vlachomitros D, Katsanaki E, Kostelli G, Pililis S, Pliouta L, Kountouri A, Papanikolaou IS, Lambadiari V, Ikonomidis I. The Triad of Risk: Linking MASLD, Cardiovascular Disease and Type 2 Diabetes; From Pathophysiology to Treatment. J Clin Med 2025; 14:428. [PMID: 39860434 PMCID: PMC11765821 DOI: 10.3390/jcm14020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern, and it is not only the keystone precursor of eventual liver-related morbidity, but it also places patients at considerably higher cardiovascular risk, which is still a leading cause of death in these patients. The most important common underlying pathophysiological mechanisms in these diseases are primarily related to insulin resistance, chronic inflammation and oxidative stress. The presence of MASLD with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) elevates the risk for poor outcomes, thus this review highlights a method to the therapeutic approaches. Given the intertwined nature of MASLD, T2DM, and CVD, there is an urgent need for therapeutic strategies that address all three conditions. Although lifestyle changes are important as treatment, medication plays a crucial role in managing hyperglycemia, enhancing liver function and lowering cardiovascular risk. The onset and progression of MASLD should be addressed through a multifaceted therapeutic approach, targeting inflammatory, immune, metabolic, oxidative stress, hormonal and gutaxis pathways, alongside the treatment strategies for T2DM. In this review, we discuss the effects of antidiabetic drugs with an impact on both liver outcomes and cardiovascular risk in patients affected by MASLD, T2DM and CDV.
Collapse
Affiliation(s)
- Eleni Michalopoulou
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - George Pavlidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Dimitrios Vlachomitros
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Eleni Katsanaki
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Gavriella Kostelli
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ioannis S. Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Rimini 1, Chaidari, 12462 Athens, Greece;
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| |
Collapse
|
7
|
Andersen LL, Calatayud J, Núñez-Cortés R, Polo-López A, López-Bueno R. Graded association of muscle strength with all-cause and cause-specific mortality in older adults with diabetes: Prospective cohort study across 28 countries. Diabetes Obes Metab 2025; 27:312-319. [PMID: 39444141 DOI: 10.1111/dom.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The worldwide prevalence of diabetes is increasing, particularly among older adults. Understanding the association between muscle strength and mortality in this population is crucial for developing targeted exercise recommendations. OBJECTIVES To assess the prospective association of muscle strength with mortality in older adults with diabetes. METHODS From the Survey of Health, Ageing and Retirement in Europe (SHARE) study, spanning 28 countries, we included 16 149 diabetic adults aged 50 years and older (mean age 68.2 [standard deviation, SD, 9.2] years). Participants fulfilled two criteria: (1) diabetes diagnosis (ever) and (2) current use of diabetes medication. Muscle strength was assessed using handgrip dynamometry (unit: kg). Using time-varying Cox regression with restricted cubic splines, we determined the prospective association of muscle strength with all-cause and cause-specific mortality, controlling for various confounders. RESULTS Over a mean follow-up of 5.9 years (SD 3.8), 2754 participants died (17%). Using the median level of muscle strength as reference (30 kg), lower and higher levels were associated in a curvilinear fashion with higher and lower all-cause mortality risk, respectively. The 10th percentile of muscle strength (17 kg) showed a hazard ratio (HR) of 1.65 (95% confidence interval (CI) 1.53-1.79). The 90th percentile (47 kg) of muscle strength showed a HR of 0.55 (95% CI 0.49-0.63). A somewhat similar pattern, with varying strength of associations, was seen for mortality due to cardiovascular disease (CVD), respiratory disease, severe infectious disease, digestive system disease and cancer. CONCLUSION Muscle strength is gradually and inversely associated with all-cause and cause-specific mortality risk in older adults with diabetes. As muscle strength is highly adaptable to resistance training at all ages, the present findings highlight the importance of improving muscle strength in older adults with diabetes.
Collapse
Affiliation(s)
| | - Joaquín Calatayud
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Rodrigo Núñez-Cortés
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ana Polo-López
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Rubén López-Bueno
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Department of Physical Medicine and Nursing, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
9
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
10
|
Costa JSR, Silva G, Guimarães IC, Silva LFR, Silva SSD, Almeida JPDP, Coimbra CC, Parizotto NA, Gripp F, Dias-Peixoto MF, Esteves EA, Amorim FT, Ferraresi C, de Castro Magalhaes F. Photobiomodulation Enhances the Effect of Strength Training on Insulin Resistance Regardless of Exercise Volume in Mice Fed a High-Fat Diet. JOURNAL OF BIOPHOTONICS 2024:e202400274. [PMID: 39419755 DOI: 10.1002/jbio.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
The aim was to investigate the effects of different volumes of strength training (ST) in association with photobiomodulation (PBMt) in mice fed a high-fat diet (HFD) on insulin resistance (IR). Male Swiss albino mice were fed HFD and performed high- or low-volume (one-third) ST (3 days/week), associated with PBMt (660 nm + 850 nm; ~42 J delivered) or not (lights off). ST improved IR, lowered visceral adiposity and circulating cytokines, and increased skeletal muscle hypertrophy and mitochondrial activity. The smaller volume of ST did not interfere with the improvement in IR, mitochondrial activity, or inflammatory profile, but exerted a smaller effect on visceral adiposity and skeletal muscle hypertrophy. Association with PBMt further improved IR, regardless of ST volume, although it did not affect adiposity, mitochondrial activity, and the inflammatory profile. Interestingly, PBMt positively affected quadriceps, but attenuated gluteus maximus hypertrophy. The association with PBMt induced greater improvement than ST alone.
Collapse
Affiliation(s)
- Juliana Sales Rodrigues Costa
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gabriela Silva
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Isabela Carvalho Guimarães
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Luis Filipe Rocha Silva
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Saulo Soares da Silva
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - João Paulo de Paula Almeida
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fernando Gripp
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Elizabethe Adriana Esteves
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Nutrition, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico - UNM. Johnson Center, Albuquerque, New Mexico, USA
| | - Cleber Ferraresi
- Department of Physical Therapy, Federal University of Sao Carlos - UFSCAR. Rodovia Washington Luis, Km 235, Sao Carlos, Sao Paulo, Brazil
| | - Flavio de Castro Magalhaes
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
- Department of Health, Exercise, and Sports Sciences, University of New Mexico - UNM. Johnson Center, Albuquerque, New Mexico, USA
| |
Collapse
|
11
|
Baker C, Hocking SL, Wang X, Gerofi J, Colagiuri S, Sabag A, Molyneaux L, Xu Y, Li M, Bi Y, Min D, Johnson NA, Twigg SM. Effect of low-volume exercise on hepatic steatosis in adults with obesity plus normal glucose, prediabetes or type 2 diabetes: a randomised controlled trial. BMJ Open Sport Exerc Med 2024; 10:e001878. [PMID: 39371414 PMCID: PMC11448222 DOI: 10.1136/bmjsem-2023-001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives This study aimed to evaluate the effects of a novel, low-volume combined high-intensity interval training (HIIT) and progressive resistance training (PRT) in overweight/obese adults. Methods This randomised control trial compared the effect of regular supervised HIIT combined with PRT (Exercise) with an unsupervised stretching intervention (Control), in previously inactive adults with either normal glucose (NG), pre-diabetes or type 2 diabetes (T2DM) with body mass index of >25 kg/m2. Participants were randomly allocated (1:1) to receive low-volume exercise or control by an online randomisation tool. The primary outcome was the difference in change of hepatic steatosis between Exercise and Control. A prespecified sensitivity analysis was undertaken for weight stable participants (<5% change in bodyweight from baseline). Secondary outcomes were change in hepatic steatosis within the glucose groups, glycaemic control, cardiorespiratory fitness, muscle strength and body composition. Results Between June 2018 and May 2021, 162 participants were randomly assigned (NG: 76, pre-diabetes: 60, T2DM: 26) and 144 were included in the final analysis. Mean absolute change in hepatic steatosis was -1.4% (4.9) in Exercise (n=73) and -0.1% (7.2) in Control (n=71)(p=0.25). By preplanned sensitivity analysis, the mean change in hepatic steatosis with Exercise (n=70) was -1.5% (5) compared with 0.7% (4.6) with Control (n=61) (p=0.017). Subgroup analysis within the glucose groups showed that exercise reduced hepatic steatosis in those with pre-diabetes but not NG or T2DM (pre-diabetes: -1.2% (4.4) in Exercise and 1.75% (5.7) in Control, p=0.019). Conclusion These findings show that low-volume HIIT with PRT yields improvements in muscle strength and cardiorespiratory fitness and may have a small effect on hepatic steatosis. Trial registration number The trial was prospectively registered with the ANZCTR (ACTRN12617000552381).
Collapse
Affiliation(s)
- Callum Baker
- Greg Brown Diabetes & Endocrine Research Laboratory, Charles Perkins Centre, The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
- The University of Sydney School of Health Sciences, Sydney, New South Wales, Australia
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
| | - Samantha L Hocking
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Xiaoyu Wang
- Greg Brown Diabetes & Endocrine Research Laboratory, Charles Perkins Centre, The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
| | - James Gerofi
- Greg Brown Diabetes & Endocrine Research Laboratory, Charles Perkins Centre, The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
| | - Stephen Colagiuri
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Boden Initiative, The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Angelo Sabag
- Western Sydney University—NICM Health Research Institute, Penrith, New South Wales, Australia
| | - Lynda Molyneaux
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danqing Min
- Greg Brown Diabetes & Endocrine Research Laboratory, Charles Perkins Centre, The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Nathan A Johnson
- The University of Sydney School of Health Sciences, Sydney, New South Wales, Australia
- Boden Initiative, The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrine Research Laboratory, Charles Perkins Centre, The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
- Faculty of Medicine and Health (Central), The University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
12
|
Chen Y, Zhang Y, Jin X, Hong S, Tian H. Exerkines: Benign adaptation for exercise and benefits for non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 726:150305. [PMID: 38917635 DOI: 10.1016/j.bbrc.2024.150305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Exercise has multiple beneficial effects on human metabolic health and is regarded as a "polypill" for various diseases. At present, the lack of physical activity usually causes an epidemic of chronic metabolic syndromes, including obesity, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Remarkably, NAFLD is emerging as a serious public health issue and is associated with the development of cirrhosis and hepatocellular carcinoma. Unfortunately, specific drug therapies for NAFLD and its more severe form, non-alcoholic steatohepatitis (NASH), are currently unavailable. Lifestyle modification is the foundation of treatment recommendations for NAFLD and NASH, especially for exercise. There are under-appreciated organs that crosstalk to the liver during exercise such as muscle-liver crosstalk. Previous studies have reported that certain exerkines, such as FGF21, GDF15, irisin, and adiponectin, are beneficial for liver metabolism and have the potential to be targeted for NAFLD treatment. In addition, some of exerkines can be modified for the new proteins and get enhanced functions, like IL-6/IC7Fc. Another importance of exercise is the physiological adaptation that combats metabolic diseases. Thus, this review aims to summarize the known exerkines and utilize a multi-omics mining tool to identify more exerkines for the future research. Overall, understanding the mechanisms by which exercise-induced exerkines exert their beneficial effects on metabolic health holds promise for the development of novel therapeutic strategies for NAFLD and related diseases.
Collapse
Affiliation(s)
- Yang Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yan Zhang
- Clinical Laboratory, Suzhou Yong Ding Hospital, Suzhou, 215200, China
| | - Xingsheng Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
13
|
Varmazyar I, Monazzami AA, Moradi M, McAinch AJ. Effects of 12-weeks resistance training and vitamin E supplementation on aminotransferases, CTRP-2, and CTRP-9 levels in males with nonalcoholic fatty liver disease: a double-blind, randomized trial. BMC Sports Sci Med Rehabil 2024; 16:185. [PMID: 39232815 PMCID: PMC11373101 DOI: 10.1186/s13102-024-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) involves excessive liver fat accumulation and is closely linked to oxidative stress, which contributes to liver inflammation and damage. This study aimed to evaluate how interventions such as resistance training (RT) and vitamin E supplementation (VES) can modulate markers of NAFLD and key proteins regulating glucose and lipid metabolism, such as C1Q/TNF-related proteins (CTRPs). METHODS Forty participants with NAFLD (mean age: 32.4 ± 8.2 years) were randomly assigned to one of four groups for 12 weeks: placebo (PLB), VES, PLB + RT, and VES + RT. VES was administered at 800 IU/day in a double-blind manner. The RT regimen included eight exercises at 60-80% of one-repetition maximum (1RM), with three sets of 8-12 repetitions, performed three times per week. Pre- and post-intervention assessments included body composition, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lipid profile, glycemic control, CTRP-2, CTRP-9, and 1RM evaluations. RESULTS Following the interventions, there was a significant improvement in body composition, lipid profile, glycemic control, and 1RM indices in the exercise groups compared to non-exercise groups (p < 0.05). AST and ALT levels decreased in all groups (p < 0.05) compared to the PLB group. There was also a significant difference between the VES + RT group and both the VES and PLB + RT groups (p < 0.05). CTRP-2 and CTRP-9 levels decreased in the exercise groups compared to non-exercise groups (p < 0.05), and their changes showed a marked correlation with body composition, lipid profile, and glycemic control indices (p < 0.05). CONCLUSIONS This study highlights the benefits of RT on various health parameters among NAFLD patients. While adding VES to RT resulted in greater decreases in aminotransferases, it did not provide further improvements in other variables. Additionally, enhancements in body composition, lipid profile, and glycemic control indices were possibly associated with decreased levels of CTRPs. TRIAL REGISTRATION Registered retrospectively in the Iranian Registry of Clinical Trials (IRCT20220601055056N1) on December 21, 2023. Access at https://irct.behdasht.gov.ir/trial/69231 .
Collapse
Affiliation(s)
- Irfan Varmazyar
- Department of Sport Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Amir Abbas Monazzami
- Department of Sport Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Mozhgan Moradi
- Department of Internal Medicine, Faculty of Medicine, University of Medical Sciences, Kermanshah, Iran
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
14
|
Roberts MD, Hornberger TA, Phillips SM. The utility-and limitations-of the rodent synergist ablation model in examining mechanisms of skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2024; 327:C607-C613. [PMID: 39069828 PMCID: PMC11427104 DOI: 10.1152/ajpcell.00405.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
In this issue, Burke et al. discuss the utility of the rodent synergist ablation (SA) model for examining mechanisms associated with skeletal muscle hypertrophy. In this invited perspective, we aim to complement their original perspective by discussing limitations to the model along with alternative mechanical overload models that have strengths and limitations.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Esteves JV, Stanford KI. Exercise as a tool to mitigate metabolic disease. Am J Physiol Cell Physiol 2024; 327:C587-C598. [PMID: 38981607 PMCID: PMC11427015 DOI: 10.1152/ajpcell.00144.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Metabolic diseases, notably obesity and type 2 diabetes (T2D), have reached alarming proportions and constitute a significant global health challenge, emphasizing the urgent need for effective preventive and therapeutic strategies. In contrast, exercise training emerges as a potent intervention, exerting numerous positive effects on metabolic health through adaptations to the metabolic tissues. Here, we reviewed the major features of our current understanding with respect to the intricate interplay between metabolic diseases and key metabolic tissues, including adipose tissue, skeletal muscle, and liver, describing some of the main underlying mechanisms driving pathogenesis, as well as the role of exercise to combat and treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
16
|
Serbis A, Polyzos SA, Paschou SA, Siomou E, Kiortsis DN. Diet, exercise, and supplements: what is their role in the management of the metabolic dysfunction-associated steatotic liver disease in children? Endocrine 2024; 85:988-1006. [PMID: 38519764 DOI: 10.1007/s12020-024-03783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease (NAFLD), is the main cause of chronic liver disease in children and adolescents. Indeed, epidemiological studies have shown that MASLD affects up to 40% of children with obesity. Despite the recent approval of medications that target weight loss in adolescents that could have benefits on pediatric MASLD, lifestyle interventions, such as diet and exercise, remain the mainstay of our therapeutic approach. More specifically, studies on diet alone have focused on the possible role of carbohydrate or fat restriction, albeit without a definite answer on the best approach. Weight loss after dietary intervention in children with obesity and MASLD has a beneficial effect, regardless of the diet used. In relation to the role of exercise in MASLD reversal, indirect evidence comes from studies showing that a sedentary lifestyle leading to poor fitness, and low muscle mass is associated with MASLD. However, research on the direct effect of exercise on MASLD in children is scarce. A combination of diet and exercise seems to be beneficial with several studies showing improvement in surrogate markers of MASLD, such as serum alanine aminotransferase and hepatic fat fraction, the latter evaluated with imaging studies. Several dietary supplements, such as vitamin E, probiotics, and omega-3 fatty acid supplements have also been studied in children and adolescents with MASLD, but with equivocal results. This review aims to critically present available data on the effects of lifestyle interventions, including diet, exercise, and dietary supplements, on pediatric MASLD, thus suggesting a frame for future research that could enhance our knowledge on pediatric MASLD management and optimize clinicians' approach to this vexing medical condition.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, Ioannina, Greece.
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios N Kiortsis
- Laboratory of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
17
|
Mambrini SP, Grillo A, Colosimo S, Zarpellon F, Pozzi G, Furlan D, Amodeo G, Bertoli S. Diet and physical exercise as key players to tackle MASLD through improvement of insulin resistance and metabolic flexibility. Front Nutr 2024; 11:1426551. [PMID: 39229589 PMCID: PMC11370663 DOI: 10.3389/fnut.2024.1426551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) has emerged as a prevalent health concern, encompassing a wide spectrum of liver-related disorders. Insulin resistance, a key pathophysiological feature of MASLD, can be effectively ameliorated through dietary interventions. The Mediterranean diet, rich in whole grains, fruits, vegetables, legumes, and healthy fats, has shown promising results in improving insulin sensitivity. Several components of the Mediterranean diet, such as monounsaturated fats and polyphenols, exert anti-inflammatory and antioxidant effects, thereby reducing hepatic steatosis and inflammation. Furthermore, this dietary pattern has been associated with a higher likelihood of achieving MASLD remission. In addition to dietary modifications, physical exercise, particularly resistance exercise, plays a crucial role in enhancing metabolic flexibility. Resistance exercise training promotes the utilization of fatty acids as an energy source. It enhances muscle glucose uptake and glycogen storage, thus reducing the burden on the liver to uptake excess blood glucose. Furthermore, resistance exercise stimulates muscle protein synthesis, contributing to an improved muscle-to-fat ratio and overall metabolic health. When implemented synergistically, the Mediterranean diet and resistance exercise can elicit complementary effects in combating MASLD. Combined interventions have demonstrated additive benefits, including greater improvements in insulin resistance, increased metabolic flexibility, and enhanced potential for MASLD remission. This underscores the importance of adopting a multifaceted approach encompassing dietary modifications and regular physical exercise to effectively manage MASLD. This narrative review explores the biological mechanisms of diet and physical exercise in addressing MASLD by targeting insulin resistance and decreased metabolic flexibility.
Collapse
Affiliation(s)
- Sara Paola Mambrini
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
| | | | - Santo Colosimo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- PhD School of Nutrition Science, University of Milan, Milan, Italy
| | - Francesco Zarpellon
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giorgia Pozzi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Davide Furlan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Simona Bertoli
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
18
|
Barbhuiya PA, Sen S, Pathak MP. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: a comprehensive review. PHYTOCHEMISTRY REVIEWS 2024; 23:969-996. [DOI: 10.1007/s11101-023-09912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2025]
|
19
|
Wang H, Ma Q, Chen Y, Luo L, Ye J, Zhong B. Optimized strategy among diet, exercise, and pharmacological interventions for nonalcoholic fatty liver disease: A network meta-analysis of randomized controlled trials. Obes Rev 2024; 25:e13727. [PMID: 38509775 DOI: 10.1111/obr.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emerging treatment methods, including exercise, diet, and drugs, for nonalcoholic fatty liver disease have been proposed. However, the differences in their efficacy have not been determined. We aimed to compare the effects of these treatments excluding surgery via a systematic review and network meta-analysis of randomized controlled trials. DATA SOURCE The data sources included PubMed, Embase, Web of Science and Cochrane up to February 1st, 2023. The endpoints consisted of body mass index (BMI), serum markers of metabolism and liver injury markers, liver fat content, and stiffness. RESULTS A total of 174 studies with 10,183 patients were included in this meta-analysis. In terms of improving BMI, Pan-agonist of peroxisome proliferator-activated receptors (PPAR) is the best treatment with the highest SUCRA (surface under the cumulative ranking) of 84.8% (mean = -3.40, 95% CI -5.55, -1.24) by the comparative effectiveness ranking. GLP-1 (glucagon-like peptide-1) has the best effect in improving the liver fat content based on the MRI-PDFF, steatosis score (SUCRA 99.7%, mean = -2.19, 95% CI -2.90, -1.48) and ballooning score (SUCRA 61.2%, mean = -0.82, 95% CI -4.46, 2.83). CONCLUSIONS Pan-agonist of PPAR was the most efficacious regimen in lowering BMIs, whereas GLP-1R agonists achieved the highest efficacy of steatosis improvement in this network meta-analysis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qianqian Ma
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Youpeng Chen
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ling Luo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Mastrototaro L, Roden M. The effects of extracellular vesicles and their cargo on metabolism and its adaptation to physical exercise in insulin resistance and type 2 diabetes. Proteomics 2024; 24:e2300078. [PMID: 37525338 DOI: 10.1002/pmic.202300078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Lifestyle modification represents the first-line strategy for the prevention and treatment of type 2 diabetes mellitus (T2DM), which is frequently associated with obesity and characterized by defective pancreatic insulin secretion and/or insulin resistance. Exercise training is an essential component of lifestyle modification and has been shown to ameliorate insulin resistance by reducing body fat mass and by enhancing skeletal muscle mitochondrial biogenesis and insulin-independent glucose uptake. Additionally, exercising stimulates the release of exerkines such as metabolites or cytokines, but also long non-coding RNA, microRNAs, cell-free DNA (cf-DNA), and extracellular vesicles (EVs), which contribute to inter-tissue communication. There is emerging evidence that EV number and content are altered in obesity and T2DM and may be involved in several metabolic processes, specifically either worsening or improving insulin resistance. This review summarizes the current knowledge on the metabolic effects of exercise training and on the potential role of humoral factors and EV as new biomarkers for early diagnosis and tailored treatment of T2DM.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Qi Z, LE S, Cheng R, DU X, Zhao C, Zhang Z, Zhang X, Feng L, Schumann M, Mao L, Cheng S. Responses of the Serum Lipid Profile to Exercise and Diet Interventions in Nonalcoholic Fatty Liver Disease. Med Sci Sports Exerc 2024; 56:1036-1045. [PMID: 38247038 DOI: 10.1249/mss.0000000000003388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND This study aimed to assess the response patterns of circulating lipids to exercise and diet interventions in nonalcoholic fatty liver disease (NAFLD). METHODS The 8.6-month four-arm randomized controlled study comprised 115 NAFLD patients with prediabetes who were assigned to aerobic exercise (AEx; n = 29), low-carbohydrate diet (Diet; n = 28), AEx plus low-carbohydrate diet (AED; n = 29), and nonintervention (NI, n = 29) groups. Hepatic fat content (HFC) was quantified by proton magnetic resonance spectroscopy. Serum lipidomic analytes were measured using liquid chromatography-mass spectrometry. RESULTS After intervention, the total level of phosphatidylcholine (PC) increased significantly in the AEx group ( P = 0.043), whereas phosphatidylethanolamine (PE) and triacylglycerol decreased significantly in the AED group ( P = 0.046 and P = 0.036, respectively), and phosphatidylserine decreased in the NI group ( P = 0.002). Changes of 21 lipid metabolites were significantly associated with changes of HFC, among which half belonged to PC. Most of the molecules related to insulin sensitivity belonged to sphingomyelin (40 of 79). Controlling for the change of visceral fat, the significant associations between lipid metabolites and HFC remained. In addition, baseline serum lipids could predict the response of HFC to exercise and/or diet interventions (PE15:0/18:0 for AED, area under the curve (AUC) = 0.97; PE22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0 for AEx, AUC = 0.90; and PC14:1(9Z)/19:1(9Z) for Diet, AUC = 0.92). CONCLUSIONS Changes of lipidome after exercise and/or diet interventions were associated with HFC reductions, which are independent of visceral fat reduction, particularly in metabolites belonging to PC. Importantly, baseline PE could predict the HFC response to exercise, and PC predicted the response to diet. These results indicate that a circulating metabolomics panel can be used to facilitate clinical implementation of lifestyle interventions for NAFLD management.
Collapse
Affiliation(s)
- Zhen Qi
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, CHINA
| | | | - Runtan Cheng
- Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Xiaming DU
- Department of Orthopedic, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, CHINA
| | - Can Zhao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, CHINA
| | - Zhengyun Zhang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, CHINA
| | - Xiaobo Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, CHINA
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, CHINA
| | | | - Lijuan Mao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai 200438, CHINA
| | | |
Collapse
|
22
|
Nendouvhada LP, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Gabuza KB. Phytonanotherapy for the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:5571. [PMID: 38891759 PMCID: PMC11171778 DOI: 10.3390/ijms25115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.
Collapse
Affiliation(s)
- Livhuwani P. Nendouvhada
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Abram M. Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Kwazikwakhe B. Gabuza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
23
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Wang J, Zeng L, Hong C, Cui H, Wang W, Zhu H, Li Q, Li Y, Li R, He J, Zhu H, Liu L, Xiao L. Lower creatinine to cystatin C ratio is associated with an increased risk of MASLD: A cross-sectional and prospective study of 368,634 UK Biobank participants. Clin Endocrinol (Oxf) 2024; 100:116-123. [PMID: 38146598 DOI: 10.1111/cen.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) affects many populations, and screening out the high-risk populations at an early stage is a challenge. As a sarcopenia index, the relationship between creatinine to cystatin C ratio (CCR) and MASLD remains unclear. This cross-sectional, prospective study aimed to explore the relationship between CCR and MASLD. Design Firstly, explored the correlation between CCR and MASLD in cross-sectional analyses. Then excluded the population with baseeline diagnosis of MASLD and analyzed the association with baseline CCR levels and the onset of MASLD in the population with available follow-up data. Univariate and multivariate logistic regression analyses were used to calculate odds ratios (ORs) to evaluate the association between CCR levels and MASLD. PATIENTS AND MEASUREMENTS This study included 368,634 participants from the UK Biobank for cross-sectional and prospective analyses. The demographic characteristics and laboratory measurements of all participants were obtained from the UK Biobank. MASLD was diagnosed according to the multi-society consensus nomenclature. Hepatic steatosis was defined as FLI ≥60. RESULTS We grouped the study participants according to CCR tertiles. In cross-sectional analyses, participants in CCR tertile 1 had the highest MASLD risk (OR: 1.070, 95% CI: 1.053-1.088, p < .001). And the similar association was observed in the prospective analyses (CCR tertile 1 OR: 1.340, 95% CI: 1.077-1.660, p = .009; CCR tertile 2 OR: 1.217, 95% CI: 1.021-1.450, p = .029, respectively). After stratification by gender, the significant association between CCR and the onset of MASLD was only observed in males (CCR tertile 1 OR: 1.639, 95% CI: 1.160-2.317, p = .005; CCR tertile 2 OR: 1.322, 95% CI: 1.073-1.628, p = .005, respectively). CONCLUSION Our results indicated that lower CCR was significantly associated with higher risk of MASLD, based on which predictive models can be developed to screen populations at high risk of developing MASLD.
Collapse
Affiliation(s)
- Jiaren Wang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zeng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Hong
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Cui
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhen Wang
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Zhu
- Department of Medical Oncology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Qimei Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruining Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingzhe He
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lushan Xiao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Habibullah M, Jemmieh K, Ouda A, Haider MZ, Malki MI, Elzouki AN. Metabolic-associated fatty liver disease: a selective review of pathogenesis, diagnostic approaches, and therapeutic strategies. Front Med (Lausanne) 2024; 11:1291501. [PMID: 38323033 PMCID: PMC10845138 DOI: 10.3389/fmed.2024.1291501] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Background Metabolic associated fatty liver disease (MAFLD) is a novel terminology introduced in 2020 to provide a more accurate description of fatty liver disease associated with metabolic dysfunction. It replaces the outdated term nonalcoholic fatty liver disease (NAFLD) and aims to improve diagnostic criteria and tailored treatment strategies for the disease. NAFLD, the most prevalent liver disease in western industrialized nations, has been steadily increasing in prevalence and is associated with serious complications such as cirrhosis and hepatocellular carcinoma. It is also linked to insulin resistance syndrome and cardiovascular diseases. However, current studies on NAFLD have limitations in meeting necessary histological endpoints. Objective This literature review aims to consolidate recent knowledge and discoveries concerning MAFLD, integrating the diverse aspects of the disease. Specifically, it focuses on analyzing the diagnostic criteria for MAFLD, differentiating it from NAFLD and alcoholic fatty liver disease (AFLD), and exploring the epidemiology, clinical manifestations, pathogenesis, and management approaches associated with MAFLD. The review also explores the associations between MAFLD and other conditions. It discusses the heightened mortality risk associated with MAFLD and its link to chronic kidney disease (CKD), showing that MAFLD exhibits enhanced diagnostic accuracy for identifying patients with CKD compared to NAFLD. The association between MAFLD and incident/prevalent CKD is supported by cohort studies and meta-analyses. Conclusion This literature review highlights the importance of MAFLD as a distinct terminology for fatty liver disease associated with metabolic dysfunction. The review provides insights into the diagnostic criteria, associations with CKD, and management approaches for MAFLD. Further research is needed to develop more accurate diagnostic tools for advanced fibrosis in MAFLD and to explore the underlying mechanisms linking MAFLD with other conditions. This review serves as a valuable resource for researchers and healthcare professionals seeking a comprehensive understanding of MAFLD.
Collapse
Affiliation(s)
| | - Khaleed Jemmieh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | - Abdel-Naser Elzouki
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Internal Medicine Department, Hamad General Hospital, Doha, Qatar
- Weill Cornell Medical Qatar, Doha, Qatar
| |
Collapse
|
26
|
Zeng Y, Zhang X, Luo W, Sheng Y. Effect of exercise intervention on clinical parameters in patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Eur J Gastroenterol Hepatol 2024; 36:1-12. [PMID: 37942754 DOI: 10.1097/meg.0000000000002662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The effect of exercise on clinical parameters in patients with non-alcoholic fatty liver disease (NAFLD) combined with type 2 diabetes mellitus (T2DM) is unknown. In this meta-analysis, we identified and evaluated the effect of exercise on clinical parameters (BMI, ALT, lipid metabolism, glucose metabolism) in patients with NAFLD combined with T2DM. We conducted a comprehensive search of Medline, Embase, Web of Science, Cochrane Database of Systematic Reviews, and CNKI in December 2022. Data from relevant randomized controlled trials were collected according to inclusion and exclusion criteria. 6 eligible studies with 238 subjects were finally included. We used Review Manager 5.3 for meta-analysis. The study found that exercise improved BMI, ALT, TC, LDL-C, HbA1c, and HOMA-IR, TG, but did not significantly improve HDL-C. Subgroup analysis showed that high-intensity interval training significantly improved BMI (SMD: -0.43, 95% CI: -0.80, -0.06), ALT (SMD: -4.63, 95% CI: -8.42, -0.83), TC (SMD: -0.94, 95% CI: -1.82, -0.07), LDL-C (SMD: -0. 87, 95% CI: -1.26, -0.49), HbA1c (SMD: -1.12, 95% CI: -1.75, -0.48), HOMA-IR (SMD: -0.59, 95% CI: -0.94, -0.25); moderate-intensity continuous training improved ALT (SMD: -3.96, 95% CI: -7.71, -0.21), TG (SMD: -1.59, 95% CI: -2.58, -0.61), HbA1c (SMD: -0.71, 95% CI: -1.37, -0.05), HOMA-IR (SMD: -1.73, 95% CI: -3.40, -0. 06), and to some extent HDL-C levels (SMD: 0.53, 95% CI: 0.04, 1.02); resistance training improved LDL-C (SMD: -2.06, 95% CI: -3.14, -0.98). In conclusion, exercise improved indicators in patients with NAFLD combined with T2DM, but the improvement indicators varied by type of exercise.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University
| | - Xuemei Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University
| | - Wenling Luo
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University
- Infection & Immunity Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Zhou T, Ye J, Luo L, Wang W, Feng S, Dong Z, Zhuo S, Zhong B. Restoring skeletal muscle mass as an independent determinant of liver fat deposition improvement in MAFLD. Skelet Muscle 2023; 13:23. [PMID: 38115119 PMCID: PMC10731792 DOI: 10.1186/s13395-023-00333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
AIMS Cross-sectional studies have demonstrated the association of skeletal muscle mass with metabolic-associated fatty liver disease (MAFLD), while longitudinal data are scarce. We aimed to explore the impact of changes in relative skeletal muscle mass on the MAFLD treatment response. METHODS MAFLD patients undergoing magnetic resonance imaging-based proton density fat fraction for liver fat content (LFC) assessments and bioelectrical impedance analysis before and after treatment (orlistat, meal replacement, lifestyle modifications) were enrolled. Appendicular muscle mass (ASM) was adjusted by weight (ASM/W). RESULTS Overall, 256 participants were recruited and divided into two groups: with an ASM/W increase (n=166) and without an ASM/W increase (n=90). There was a great reduction in LFC in the group with an ASM/W increase (16.9% versus 8.2%, P < 0.001). However, the change in LFC in the group without an ASM/W increase showed no significant difference (12.5% versus 15.0%, P > 0.05). △ASM/W Follow-up-Baseline [odds ratio (OR)=1.48, 95% confidence interval (CI) 1.05-2.07, P = 0.024] and △total fat mass (OR=1.45, 95% CI 1.12-1.87, P = 0.004) were independent predictors for steatosis improvement (relative reduction of LFC ≥ 30%). The subgroup analysis showed that, despite without weight loss, decrease in HOMA-IR (OR=6.21, 95% CI 1.28-30.13, P=0.023), △total fat mass Baseline -Follow-up (OR=3.48, 95% CI 1.95-6.21, P <0.001 and △ASM/W Follow-up-Baseline (OR=2.13, 95% CI 1.12-4.05, P=0.022) independently predicted steatosis improvement. CONCLUSIONS ASM/W increase and loss of total fat mass benefit the resolution of liver steatosis, independent of weight loss for MAFLD.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China
| | - Ling Luo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Shiting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Shuyu Zhuo
- Department of Nutrition, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Guimarães TCM, Taranto DODL, Couto CA, Nardelli MJ, Cândido AL, Hott CDA, Anastácio LR, Reis FM, Rocha ALL, Faria LC. Dietary pattern in women with polycystic ovary syndrome with and without associated non-alcoholic fatty liver disease: A cross-sectional study. Clinics (Sao Paulo) 2023; 78:100288. [PMID: 38052105 PMCID: PMC10746390 DOI: 10.1016/j.clinsp.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
INTRODUCTION Women with Polycystic Ovary Syndrome (PCOS) have a higher prevalence of Nonalcoholic Fatty Liver Disease (NAFLD) than the general population. PCOS and NAFLD have common metabolic risk factors, however, the role of diet in NAFLD development is still uncertain in PCOS women. OBJECTIVE To evaluate and compare the dietary patterns and nutritional intake in patients with PCOS with and without NAFLD. METHOD Cross-sectional study that included patients with PCOS diagnosed according to Rotterdam criteria. All participants were submitted to abdominal ultrasound to investigate liver steatosis. Dietary profile was assessed by 24-hour food recall (24hR), and Food Frequency Questionnaire (FFQ). Diet quality was assessed by the Healthy Eating Index (HEI) adapted for the Brazilian population. Physical activity practice was also assessed. RESULTS 87 participants were included (average age 35.2 ± 5.7 years), among whom, 67 (77%) had NAFLD. The group with PCOS and NAFLD presented higher body mass index (BMI) (34.9 ± 4.5 vs. 30.4 ± 4.9 kg/m2; p = 0.001), Waist Circumference (WC) (103 [97‒113] vs. 95 [87.5‒100] cm; p < 0.001) and were considered physically active less frequently than those without NAFLD (34.3% vs. 60%; p = 0.04). Food intake and dietary patterns assessed by 24hR, FFQ and HEI presented no difference between the groups. CONCLUSIONS PCOS women with coexistent NAFLD had higher BMI, WC and were less physically active than those without NAFLD. Dietary evaluation showed that PCOS women with NAFLD had no significant difference in macro and micronutrients or food group intake and diet quality in comparison to those without NAFLD.
Collapse
Affiliation(s)
| | - Daniela Oliveira de Lima Taranto
- Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Serviço de Diagnóstico por Imagem do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudia Alves Couto
- Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Ambulatório de Doença Hepática Gordurosa Não Alcoólica, Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mateus Jorge Nardelli
- Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Lucia Cândido
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Ambulatório de Doença Hepática Gordurosa Não Alcoólica, Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina de Almeida Hott
- Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucilene Rezende Anastácio
- Departamento de Alimentos, Faculdade de Farmácia da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando M Reis
- Ambulatório de Hiperandrogenismo, Serviço de Endocrinologia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Luiza Lunardi Rocha
- Ambulatório de Hiperandrogenismo, Serviço de Endocrinologia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana Costa Faria
- Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Ambulatório de Doença Hepática Gordurosa Não Alcoólica, Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
29
|
Keating SE, Sabag A, Hallsworth K, Hickman IJ, Macdonald GA, Stine JG, George J, Johnson NA. Exercise in the Management of Metabolic-Associated Fatty Liver Disease (MAFLD) in Adults: A Position Statement from Exercise and Sport Science Australia. Sports Med 2023; 53:2347-2371. [PMID: 37695493 PMCID: PMC10687186 DOI: 10.1007/s40279-023-01918-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease worldwide, affecting 25% of people globally and up to 80% of people with obesity. MAFLD is characterised by fat accumulation in the liver (hepatic steatosis) with varying degrees of inflammation and fibrosis. MAFLD is strongly linked with cardiometabolic disease and lifestyle-related cancers, in addition to heightened liver-related morbidity and mortality. This position statement examines evidence for exercise in the management of MAFLD and describes the role of the exercise professional in the context of the multi-disciplinary care team. The purpose of these guidelines is to equip the exercise professional with a broad understanding of the pathophysiological underpinnings of MAFLD, how it is diagnosed and managed in clinical practice, and to provide evidence- and consensus-based recommendations for exercise therapy in MAFLD management. The majority of research evidence indicates that 150-240 min per week of at least moderate-intensity aerobic exercise can reduce hepatic steatosis by ~ 2-4% (absolute reduction), but as little as 135 min/week has been shown to be effective. While emerging evidence shows that high-intensity interval training (HIIT) approaches may provide comparable benefit on hepatic steatosis, there does not appear to be an intensity-dependent benefit, as long as the recommended exercise volume is achieved. This dose of exercise is likely to also reduce central adiposity, increase cardiorespiratory fitness and improve cardiometabolic health, irrespective of weight loss. Resistance training should be considered in addition to, and not instead of, aerobic exercise targets. The information in this statement is relevant and appropriate for people living with the condition historically termed non-alcoholic fatty liver disease (NAFLD), regardless of terminology.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Room 534, Bd 26B, St Lucia, Brisbane, QLD, 4067, Australia.
| | - Angelo Sabag
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Kate Hallsworth
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ingrid J Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nathan A Johnson
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
30
|
Jangjo-Borazjani S, Dastgheib M, Kiyamarsi E, Jamshidi R, Rahmati-Ahmadabad S, Helalizadeh M, Iraji R, Cornish SM, Mohammadi-Darestani S, Khojasteh Z, Azarbayjani MA. Effects of resistance training and nigella sativa on type 2 diabetes: implications for metabolic markers, low-grade inflammation and liver enzyme production. Arch Physiol Biochem 2023; 129:913-921. [PMID: 33612031 DOI: 10.1080/13813455.2021.1886117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023]
Abstract
CONTEXT Proper nutrition and exercise are effective strategies to improve overall metabolic health in diabetic patients. OBJECTIVE This study evaluated the effects of Nigella sativa (NS) supplementation during resistance training (RT) on some biochemical variables in type 2 diabetes patients. METHODS Forty patients were assigned to groups: RT + NS (RN), NS, RT + placebo (RP), and control (CO). RT was performed and NS was consumed for 8 weeks. Blood samples were collected at rest immediately before and after the 8 week intervention. RESULTS RT or NS by themselves reduced HOMA-IR, insulin, glucose, TG, TC, LDL, ESR, CRP, AST, ALT and ALP, and increased HDL and HOMA-S. The combination of RT and NS, rather than each intervention alone, had significant effects on reduction of HOMA-IR, insulin, ESR and CRP as well as increases in HDL, HOMA-β/S. CONCLUSION RT combined with NS is sometimes a better strategy compared to single interventions for improving diabetes related biomarkers in type 2 diabetic patients.
Collapse
Affiliation(s)
- Soheila Jangjo-Borazjani
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maryam Dastgheib
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Efat Kiyamarsi
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Roghayeh Jamshidi
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | | | - Masoumeh Helalizadeh
- Department of Exercise Physiology, Sport Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran
| | - Roya Iraji
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | | | - Zohreh Khojasteh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
31
|
Damasceno de Lima R, Fudoli Lins Vieira R, Rosetto Muñoz V, Chaix A, Azevedo Macedo AP, Calheiros Antunes G, Felonato M, Rosseto Braga R, Castelo Branco Ramos Nakandakari S, Calais Gaspar R, Ramos da Silva AS, Esper Cintra D, Pereira de Moura L, Mekary RA, Rochete Ropelle E, Pauli JR. Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2023; 325:E513-E528. [PMID: 37755454 PMCID: PMC10864020 DOI: 10.1152/ajpendo.00129.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a condition characterized by the accumulation of fat in the liver, is estimated to be the most common liver disease worldwide. Obesity is a major risk factor and contributor, and, accordingly, weight loss can improve NAFLD. Previous studies in preclinical models of diet-induced obesity and fatty liver disease have shown the independent benefits of resistance exercise training (RT) and time-restricted feeding (TRF) in preventing weight gain and hepatic build-up of fat. Here, we tested the combined effect of TRF and RT on obesity and NAFLD in mice fed a high-fat diet. Our results showed that both TRF-8-h food access in the active phase-and RT-consisting of three weekly sessions of ladder climbing-attenuated body weight gain, improved glycemic homeostasis, and decreased the accumulation of lipids in the liver. TRF combined with RT improved the respiratory exchange rate, energy expenditure, and mitochondrial respiration in the liver. Furthermore, gene expression analysis in the liver revealed lower mRNA expression of lipogenesis and inflammation genes along with increased mRNA of fatty acid oxidation genes in the TRF + RT group. Importantly, combined TRF + RT was shown to be more efficient in preventing obesity and metabolic disorders. In conclusion, TRF and RT exert complementary actions compared with isolated interventions, with significant effects on metabolic disorders and NAFLD in mice.NEW & NOTEWORTHY Whether time-restricted feeding (TRF) combined with resistance exercise training (RT) may be more efficient compared with these interventions alone is still unclear. We show that when combined with RT, TRF provided additional benefits, being more effective in increasing energy expenditure, preventing weight gain, and regulating glycemic homeostasis than each intervention alone. Thus, our results demonstrate that TRF and RT have complementary actions on some synergistic pathways that prevented obesity and hepatic liver accumulation.
Collapse
Affiliation(s)
- Robson Damasceno de Lima
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Ana Paula Azevedo Macedo
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maíra Felonato
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | | | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Rania A Mekary
- Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, Massachusetts, United States
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
32
|
Ingersen A, Schmücker M, Alexandersen C, Graungaard B, Thorngreen T, Borch J, Holst JJ, Helge JW, Dela F. Effects of Aerobic Training and Semaglutide Treatment on Pancreatic β-Cell Secretory Function in Patients With Type 2 Diabetes. J Clin Endocrinol Metab 2023; 108:2798-2811. [PMID: 37265222 DOI: 10.1210/clinem/dgad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
CONTEXT Prior to this study, it is known that type 2 diabetes is linked to obesity and a sedentary lifestyle, leading to inadequate β-cell function and insulin resistance. Limited research has explored the metabolic effects of combining exercise training with antidiabetic medications, particularly focusing on insulin secretion in patients with type 2 diabetes and moderately preserved β-cell function. OBJECTIVE The effect of the interaction of semaglutide and physical training on pancreatic β-cell secretory function is unknown in patients with type 2 diabetes. METHODS Thirty-one patients with type 2 diabetes underwent 12 weeks of aerobic training alone or concurrent to treatment with semaglutide. Patients randomly allocated to concurrent semaglutide and training were treated with semaglutide for 20 weeks before the training and evaluated at inclusion and again before and after the training intervention. Patients randomized to training were evaluated before and after training. The primary outcome was a change in insulin secretory capacity with training, evaluated by a 2-stepped hyperglycemic (20 and 30 mM) clamp. RESULTS Training increased the incremental area under the curve for insulin from 21 to 27 nM × 2 hours (ratio 1.28, 95% CI 1.02-1.60) during clamp step 1 and from 40 to 64 nM × 2 hours (ratio 1.61, 95% CI 1.25-2.07) during step 2. Semaglutide treatment increased insulin secretion from 16 to 111 nM × 2 hours (ratio 7.10, 95% CI 3.68-13.71), and from 35 to 447 nM × 2 hours (ratio 12.74, 95% CI 5.65-28.71), correspondingly. Semaglutide and training increased insulin secretion from 130 to 171 nM × 2 hours (ratio 1.31, 95% CI 1.06-1.63), and from 525 to 697 nM × 2 hours (ratio 1.33, 95% CI 1.02-1.72), correspondingly. The median increase in total insulin secretion with the combination was 134 nM × 2 hours greater (95% CI 108-232) than with training. CONCLUSION The combination of aerobic training and semaglutide treatment synergistically improved β-cell secretory function. (ClinicalTrials.gov number, ID NCT04383197).
Collapse
Affiliation(s)
- Arthur Ingersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, DK-2400 Copenhagen, Denmark
| | - Malte Schmücker
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, DK-2400 Copenhagen, Denmark
| | - Christina Alexandersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Benjamin Graungaard
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tobias Thorngreen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob Borch
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, DK-2400 Copenhagen, Denmark
| |
Collapse
|
33
|
Al Ozairi E, Alsaeed D, Al Roudhan D, Jalali M, Mashankar A, Taliping D, Abdulla A, Gill JMR, Sattar N, Welsh P, Gray SR. The effect of home-based resistance exercise training in people with type 2 diabetes: A randomized controlled trial. Diabetes Metab Res Rev 2023; 39:e3677. [PMID: 37330638 DOI: 10.1002/dmrr.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
AIMS To evaluate the effects of pragmatic home-based resistance exercise training on glycated haemoglobin (HbA1c) as well as muscle strength and body composition in people with type 2 diabetes. MATERIALS AND METHODS People with type 2 diabetes were randomized (1:1) to usual care or usual care plus home-based resistance exercise for 32 weeks. The changes in HbA1c, body composition, physical function, quality of life, continuous glucose monitoring and liver fat were compared by randomized group using linear regression. RESULTS This study recruited 120 participants (female: n = 46 [38%], age 60.2 (9.4) years, BMI 31.1 (5.4) kg.m-2 ), 64 to intervention and 56 to usual care. Intention to treat analysis revealed no effect on HbA1c (difference in difference: -0.4 mmol/mol, 95% confidence interval [CI]: -3.26, 2.47; p = 0.78) but the intervention increased the number of push-ups (3.6 push-ups, 95% CI: 0.8, 6.4), arm lean mass (116 g, 95% CI: 6, 227) and leg lean mass (438 g, 95% CI 65, 810) and decreased liver fat (-1.27%, 95% CI -2.17, -0.38), with no differences in other outcomes. Per-protocol analysis revealed similar results. CONCLUSIONS Home-based resistance exercise is unlikely to lower HbA1c in people with type 2 diabetes but may be of benefit for maintaining muscle mass and function and reducing liver fat.
Collapse
Affiliation(s)
- Ebaa Al Ozairi
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dalal Alsaeed
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dherar Al Roudhan
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammed Jalali
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Anant Mashankar
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dennis Taliping
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Amal Abdulla
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jason M R Gill
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Paul Welsh
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Stuart R Gray
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
D’Haese S, Verboven M, Evens L, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, Bito V. Moderate- and High-Intensity Endurance Training Alleviate Diabetes-Induced Cardiac Dysfunction in Rats. Nutrients 2023; 15:3950. [PMID: 37764732 PMCID: PMC10535416 DOI: 10.3390/nu15183950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Exercise training is an encouraging approach to treat cardiac dysfunction in type 2 diabetes (T2DM), but the impact of its intensity is not understood. We aim to investigate whether and, if so, how moderate-intensity training (MIT) and high-intensity interval training (HIIT) alleviate adverse cardiac remodeling and dysfunction in rats with T2DM. Male rats received standard chow (n = 10) or Western diet (WD) to induce T2DM. Hereafter, WD rats were subjected to a 12-week sedentary lifestyle (n = 8), running MIT (n = 7) or HIIT (n = 7). Insulin resistance and glucose tolerance were assessed during the oral glucose tolerance test. Plasma advanced glycation end-products (AGEs) were evaluated. Echocardiography and hemodynamic measurements evaluated cardiac function. Underlying cardiac mechanisms were investigated by histology, western blot and colorimetry. We found that MIT and HIIT lowered insulin resistance and blood glucose levels compared to sedentary WD rats. MIT decreased harmful plasma AGE levels. In the heart, MIT and HIIT lowered end-diastolic pressure, left ventricular wall thickness and interstitial collagen deposition. Cardiac citrate synthase activity, mitochondrial oxidative capacity marker, raised after both exercise training modalities. We conclude that MIT and HIIT are effective in alleviating diastolic dysfunction and pathological cardiac remodeling in T2DM, by lowering fibrosis and optimizing mitochondrial capacity.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maxim Verboven
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Lize Evens
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - BO Eijnde
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
- UHasselt, SMRC Sports Medical Research Center, Agoralaan, 3590 Diepenbeek, Belgium
- Division of Sport Science, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Dominique Hansen
- UHasselt, REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Agoralaan, 3590 Diepenbeek, Belgium
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| |
Collapse
|
35
|
Hadefi A, Arvanitakis M, Trépo E, Zelber‐Sagi S. Dietary strategies in non-alcoholic fatty liver disease patients: From evidence to daily clinical practice, a systematic review. United European Gastroenterol J 2023; 11:663-689. [PMID: 37491835 PMCID: PMC10493364 DOI: 10.1002/ueg2.12443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 07/27/2023] Open
Abstract
Lifestyle modification comprising calorie restriction (CR) and increased physical activity enabling weight loss is the first-line of treatment for non-alcoholic fatty liver disease (NAFLD). However, CR alone is not optimal and evidence suggests that dietary pattern and composition are also critical in NAFLD management. Accordingly, high consumption of red and processed meat, saturated fat, added sugar, and sweetened beverages are associated with an increased risk of developing NAFLD and hepatocellular carcinoma, while other foods and compounds such as fish, olive oil, and polyphenols are, in contrast, beneficial for metabolic disorders. Therefore, several dietary interventions have been studied in order to determine which strategy would be the most beneficial for NAFLD. The evidence regarding the effectiveness of different dietary interventions such as low carbohydrate/low-fat diet, time-restricted eating diet, CR, and the well-studied Mediterranean diet is summarized.
Collapse
Affiliation(s)
- Alia Hadefi
- Department of Gastroenterology, Hepatopancreatology, and Digestive OncologyCUB Hôpital ErasmeUniversité Libre de BruxellesHôpital Universitaire de Bruxelles (HUB)BrusselsBelgium
- Laboratory of Experimental GastroenterologyUniversité Libre de BruxellesBrusselsBelgium
| | - Marianna Arvanitakis
- Department of Gastroenterology, Hepatopancreatology, and Digestive OncologyCUB Hôpital ErasmeUniversité Libre de BruxellesHôpital Universitaire de Bruxelles (HUB)BrusselsBelgium
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology, and Digestive OncologyCUB Hôpital ErasmeUniversité Libre de BruxellesHôpital Universitaire de Bruxelles (HUB)BrusselsBelgium
- Laboratory of Experimental GastroenterologyUniversité Libre de BruxellesBrusselsBelgium
| | - Shira Zelber‐Sagi
- Faculty of Social Welfare and Health SciencesSchool of Public HealthUniversity of HaifaHaifaIsrael
- Department of GastroenterologyTel‐Aviv Medical CentreTel‐AvivIsrael
| |
Collapse
|
36
|
Stine JG, Long MT, Corey KE, Sallis RE, Allen AM, Armstrong MJ, Conroy DE, Cuthbertson DJ, Duarte-Rojo A, Hallsworth K, Hickman IJ, Kappus MR, Keating SE, Pugh CJA, Rotman Y, Simon TL, Vilar-Gomez E, Wai-Sun Wong V, Schmitz KH. Physical Activity and Nonalcoholic Fatty Liver Disease: A Roundtable Statement from the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:1717-1726. [PMID: 37126039 PMCID: PMC10524517 DOI: 10.1249/mss.0000000000003199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
ABSTRACT Although physical activity (PA) is crucial in the prevention and clinical management of nonalcoholic fatty liver disease, most individuals with this chronic disease are inactive and do not achieve recommended amounts of PA. There is a robust and consistent body of evidence highlighting the benefit of participating in regular PA, including a reduction in liver fat and improvement in body composition, cardiorespiratory fitness, vascular biology, and health-related quality of life. Importantly, the benefits of regular PA can be seen without clinically significant weight loss. At least 150 min of moderate or 75 min of vigorous intensity PA are recommended weekly for all patients with nonalcoholic fatty liver disease, including those with compensated cirrhosis. If a formal exercise training program is prescribed, aerobic exercise with the addition of resistance training is preferred. In this roundtable document, the benefits of PA are discussed, along with recommendations for 1) PA assessment and screening; 2) how best to advise, counsel, and prescribe regular PA; and 3) when to refer to an exercise specialist.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey PA
| | - Michelle T. Long
- Section of Gastroenterology, Evans Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Kathleen E. Corey
- Division of Gastroenterology and Hepatology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Robert E. Sallis
- Department of Family Medicine and Sports Medicine, Kaiser Permanente Medical Center, Fontana, CA
| | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Matthew J. Armstrong
- Liver Transplant Unit, Queen Elizabeth University Hospitals Birmingham, and NIHR Birmingham Biomedical Research Centre, Birmingham, UNITED KINGDOM
| | - David E. Conroy
- Department of Kinesiology, The Pennsylvania State University, University Park, PA
| | - Daniel J. Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UNITED KINGDOM
| | - Andres Duarte-Rojo
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University, Chicago, IL
| | - Kate Hallsworth
- Newcastle NIHR Biomedical Research Centre and the Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UNITED KINGDOM
| | - Ingrid J. Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Queensland, AUSTRALIA
| | - Matthew R. Kappus
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC
| | - Shelley E. Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, AUSTRALIA
| | - Christopher J. A. Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UNITED KINGDOM
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tracey L. Simon
- Division of Gastroenterology and Hepatology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology. Indiana University School of Medicine. Indianapolis
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, CHINA
| | | |
Collapse
|
37
|
Nam H, Yoo JJ, Cho Y, Kang SH, Ahn SB, Lee HW, Jun DW, Song DS, Choi M. Effect of exercise-based interventions in nonalcoholic fatty liver disease: A systematic review with meta-analysis. Dig Liver Dis 2023; 55:1178-1186. [PMID: 37716859 DOI: 10.1016/j.dld.2022.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The global burden of nonalcoholic fatty liver disease (NAFLD) is rapidly increasing. AIMS This study aimed to evaluate the effect of exercise on intrahepatic lipid (IHL), serum alanine aminotransferase (ALT), body mass index (BMI), and insulin resistance in NAFLD patients. METHODS We searched MEDLINE, Embase, Cochrane CENTRAL, KMbase, and the Korean Studies Information Service System through April 2022. The included studies were randomised control trials (RCTs) of exercise, in which IHL was measured using magnetic resonance imaging in adult NAFLD patients. RESULTS Eleven RCTs with 577 participants were included in this meta-analysis. Exercise was significantly associated with a reduction in IHL (mean difference (MD), -2.03; 95% CI, -3.26 to -0.79; P = 0.001) and a decrease in ALT (MD, -4.17; 95% CI, -6.60 to -1.73; P = 0.0008). Regarding the duration of exercise, maintaining exercise for more than 3 months significantly improved IHL (MD, -3.62; 95% CI, -5.76 to -1.48; P = 0.0009), while exercise for less than 3 months did not (MD, -1.23; 95% CI, -2.74 to 0.29; P = 0.11). BMI and insulin resistance did not improve significantly with exercise. CONCLUSIONS We found that exercise improved IHL and ALT levels in NAFLD patients. The effect of exercise is particularly increased when one engages in exercises that last longer than 3 months.
Collapse
Affiliation(s)
- Heechul Nam
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, 11765, Republic of Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Seong Hee Kang
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, 26426, Gangwon-do, Republic of Korea
| | - Sang Bong Ahn
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University College of Medicine, Seoul, 01830, Republic of Korea
| | - Hye-Won Lee
- Department of Internal Medicine, Yonsei University College of medicine, Seoul, 03722, Republic of Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, 16247, Republic of Korea.
| | - Miyoung Choi
- Clinical Evidence Research, National Evidence-based Healthcare Collaborating Agency, Seoul, 04933, Republic of Korea.
| |
Collapse
|
38
|
McDonough DJ, Mathew M, Pope ZC, Schreiner PJ, Jacobs DR, VanWagner LB, Carr JJ, Terry JG, Gabriel KP, Reis JP, Pereira MA. Aerobic and Muscle-Strengthening Physical Activity, Television Viewing, and Nonalcoholic Fatty Liver Disease: The CARDIA Study. J Clin Med 2023; 12:5603. [PMID: 37685671 PMCID: PMC10488389 DOI: 10.3390/jcm12175603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The prevalence of non-alcoholic fatty liver disease (NAFLD) in U.S. adults is over 30%, yet the role of lifestyle factors in the etiology of NAFLD remains understudied. We examined the associations of physical activity, by intensity and type, and television viewing with prevalent NAFLD. METHODS Cross-sectional analysis of a population-based sample of 2726 Black (49%) and White (51%) adults (Mean (SD) age, 50 (3.6) years; 57.3% female) from the CARDIA study. Exposures were aerobic activity by intensity (moderate, vigorous; hours/week); activity type (aerobic, muscle-strengthening; hours/week); and television viewing (hours/week), examined concurrently in all models and assessed by validated questionnaires. Our outcome was NAFLD (liver attenuation < 51 Hounsfield Units), measured by non-contrast computed tomography, after exclusions for other causes of liver fat. Covariates were sex, age, race, study center, education, diet quality, smoking status, alcohol consumption, and body mass index or waist circumference. RESULTS 648 participants had NAFLD. In the fully adjusted modified Poisson regression model, the risk ratios per interquartile range of each exposure were moderate-intensity aerobic activity, 1.10 (95% CI, 0.97-1.26); vigorous-intensity aerobic activity, 0.72 (0.63-0.82); muscle-strengthening activity, 0.89 (0.80-1.01); and television viewing, 1.20 (1.10-1.32). Relative to less active participants with higher levels of television viewing, those who participated in ≥2 h/week of both vigorous-intensity aerobic and muscle-strengthening activity and <7 h/week of television viewing had 65% lower risk of NAFLD (risk ratio = 0.35, 95% CI = 0.23-0.51). CONCLUSION Adults who follow public health recommendations for vigorous-aerobic and muscle-strengthening activity, as well as minimize television viewing, are considerably less likely to have NAFLD than those who do not follow the recommendations and who have relatively high levels of television viewing.
Collapse
Affiliation(s)
- Daniel J. McDonough
- Division of Epidemiology & Community Health, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (M.M.); (P.J.S.); (D.R.J.J.); (M.A.P.)
| | - Mahesh Mathew
- Division of Epidemiology & Community Health, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (M.M.); (P.J.S.); (D.R.J.J.); (M.A.P.)
| | - Zachary C. Pope
- Well Living Lab, Rochester, NY 55902, USA;
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, NY 14625, USA
| | - Pamela J. Schreiner
- Division of Epidemiology & Community Health, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (M.M.); (P.J.S.); (D.R.J.J.); (M.A.P.)
| | - David R. Jacobs
- Division of Epidemiology & Community Health, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (M.M.); (P.J.S.); (D.R.J.J.); (M.A.P.)
| | - Lisa B. VanWagner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - John Jeffrey Carr
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.)
| | - James G. Terry
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.)
| | - Kelley Pettee Gabriel
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jared P. Reis
- National Heart Lung and Blood Institute, Bethesda, MD 20892, USA;
| | - Mark A. Pereira
- Division of Epidemiology & Community Health, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (M.M.); (P.J.S.); (D.R.J.J.); (M.A.P.)
| |
Collapse
|
39
|
Chun HS. Aerobic and Resistance Exercise: Synergistic Influence for Nonalcoholic Fatty Liver Disease. Gut Liver 2023; 17:485-486. [PMID: 37449428 PMCID: PMC10352059 DOI: 10.5009/gnl230236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Ho Soo Chun
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Bril F, Sanyal A, Cusi K. Metabolic Syndrome and Its Association with Nonalcoholic Steatohepatitis. Clin Liver Dis 2023; 27:187-210. [PMID: 37024202 DOI: 10.1016/j.cld.2023.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The relationship between insulin resistance, metabolic syndrome (MetS), and nonalcoholic fatty liver disease (NAFLD) is complicated. Although insulin resistance is almost universal in people with NAFLD and MetS, NAFLD may be present without features of MetS and vice versa. While NAFLD has a strong correlation with cardiometabolic risk factors, these are not intrinsic components of this condition. Taken together, our knowledge gaps call for caution regarding the common assertion that NAFLD is the hepatic manifestation of the MetS, and for defining NAFLD in broad terms as a "metabolic dysfunction" based on a diverse and poorly understood constellation of cardiometabolic features.
Collapse
Affiliation(s)
- Fernando Bril
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Arun Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine Internal Medicine, Virginia Commonwealth University
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Cinque F, Cespiati A, Lombardi R, Guaraldi G, Sebastiani G. Nutritional and Lifestyle Therapy for NAFLD in People with HIV. Nutrients 2023; 15:nu15081990. [PMID: 37111209 PMCID: PMC10140991 DOI: 10.3390/nu15081990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
HIV infection and nonalcoholic fatty liver disease (NAFLD) are two major epidemics affecting millions of people worldwide. As people with HIV (PWH) age, there is an increased prevalence of metabolic comorbidities, along with unique HIV factors, such as HIV chronic inflammation and life-long exposure to antiretroviral therapy, which leads to a high prevalence of NAFLD. An unhealthy lifestyle, with a high dietary intake of refined carbohydrates, saturated fatty acids, fructose added beverages, and processed red meat, as well as physical inactivity, are known to trigger and promote the progression of NAFLD to nonalcoholic steatohepatitis, liver fibrosis, and hepatocellular carcinoma. Furthermore, with no currently approved pharmacotherapy and a lack of clinical trials that are inclusive of HIV, nutritional and lifestyle approaches still represent the most recommended treatments for PWH with NAFLD. While sharing common features with the general population, NAFLD in PWH displays its own peculiarities that may also reflect different impacts of nutrition and exercise on its onset and treatment. Therefore, in this narrative review, we aimed to explore the role of nutrients in the development of NAFLD in PWH. In addition, we discussed the nutritional and lifestyle approaches to managing NAFLD in the setting of HIV, with insights into the role of gut microbiota and lean NAFLD.
Collapse
Affiliation(s)
- Felice Cinque
- Division of Gastroenterology and Hepatology, and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Annalisa Cespiati
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Rosa Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Giovanni Guaraldi
- Modena HIV Metabolic Clinic, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
42
|
Mahgoub S, Newsome PN. Bariatric-metabolic surgery versus lifestyle intervention in non-alcoholic steatohepatitis. Lancet 2023; 401:1747-1749. [PMID: 37088095 DOI: 10.1016/s0140-6736(23)00773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Sara Mahgoub
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Philip N Newsome
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
43
|
Park Y, Sinn DH, Kim K, Gwak GY. Associations of physical activity domains and muscle strength exercise with non-alcoholic fatty liver disease: a nation-wide cohort study. Sci Rep 2023; 13:4724. [PMID: 36959316 PMCID: PMC10036618 DOI: 10.1038/s41598-023-31686-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
It is unclear if various types and domains of exercise have an identical effect on non-alcoholic fatty liver disease (NAFLD). Thus, this study aimed to investigate associations of different physical activity domains and muscle strength exercise with NAFLD using a nation-wide cohort database. Adults aged 20-79 years who participated in the Korean National Health and Nutrition Examination Survey between 2014 and 2018 were analyzed. Hepatic steatosis index was used to identify NAFLD. Physical activity was assessed with the Global Physical Activity Questionnaire. Of 21,015 participants, 4942 (23.5%) had NAFLD. Participants with ≥ 150 min/week of total physical activity had a lower risk of NAFLD than those with < 150 min/week (the fully adjusted OR: 0.86, 95% CI 0.78-0.95). When the individual domain of physical activity was assessed, ≥ 150 min/week of recreation activity was associated with a reduced risk of NAFLD (OR: 0.77, 95% CI 0.67-0.88), whereas ≥ 150 min/week of travel or work activity was not. The fully adjusted OR for NAFLD comparing participants with ≥ 2/week to those with < 2/week of muscle strength exercise was 0.83 (95% CI 0.73-0.94). Muscle strength exercise ≥ 2/week showed a lower risk of NAFLD for all levels of total and each specific domains of physical activity except for ≥ 150 min/week of work activity. An increased level of physical activity and muscle strength exercise was associated with a reduced risk of NAFLD, albeit the effect varied depending on domains of physical activity. Thus, physical activity should be differentiated by domains for the management of NAFLD. Muscle strength exercise could also be a good option for individuals who could not perform moderate-to-vigorous physical activity.
Collapse
Affiliation(s)
- Yewan Park
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyunga Kim
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Geum-Youn Gwak
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
44
|
Stefano JT, Duarte SMB, Ribeiro Leite Altikes RG, Oliveira CP. Non-pharmacological management options for MAFLD: a practical guide. Ther Adv Endocrinol Metab 2023; 14:20420188231160394. [PMID: 36968655 PMCID: PMC10031614 DOI: 10.1177/20420188231160394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Lifestyle changes should be the main basis for any treatment for metabolic dysfunction-associated fatty liver disease (MAFLD), aiming to increase energy expenditure, reduce energy intake and improve the quality of nutrients consumed. As it is a multifactorial disease, approaches such as physical exercise, a better dietary pattern, and possible pharmacological intervention are shown to be more efficient when used simultaneously to the detriment of their applications. The main treatment for MAFLD is a lifestyle change consisting of diet, activity, exercise, and weight loss. The variables for training prescription such as type of physical exercise (aerobic or strength training), the weekly frequency, and the intensity most indicated for the treatment of MAFLD remain uncertain, that is, the recommendations must be adapted to the clinical conditions comorbidities, and preferences of each subject in a way individual. This review addresses recent management options for MAFLD including diet, nutrients, gut microbiota, and physical exercise.
Collapse
Affiliation(s)
- José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sebastião Mauro Bezerra Duarte
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar no
255, Instituto Central, # 9159, Sao Paulo 05403-000, Brazil
- Departament of Gastroenterology, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Nandula SR, Nylen ES, Sen S. Novel Therapeutics in Nonalcoholic Fatty Liver Disease: A Focus on Adult Stem Cells. Metab Syndr Relat Disord 2023; 21:71-78. [PMID: 36625898 DOI: 10.1089/met.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder that is associated with abnormal accumulation of fat in the liver, which can lead to a wide variety of pathological liver defects and associated insulin resistance (IR), obesity, hypertension, dyslipidemia, diabetes, and cardiovascular disease. The molecular mechanisms that cause the initiation and progression of NAFLD are not fully understood. Increased lipolysis and de novo hepatic lipid synthesis lead to oxidative stress induced by reactive oxygen species and inflammation. Both these two entities could be interrelated and be an important mechanistic pathway, which can lead to tissue injury and hepatic cell death. Mechanisms for worsening of NAFLD include mitochondrial abnormalities, downregulation of glutathione (GSH), decreased activity of GSH-dependent antioxidants, accumulation of activated macrophages, hepatic inflammation, systemic inflammation, IR, and poorly controlled type 2 diabetes mellitus. Although no specific therapy has been approved for NAFLD, we review the latest medical therapeutics with emphasis on stem cell-based possibilities based on the presumed pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Seshagiri Rao Nandula
- Division of Endocrinology, Department of Medicine, Veterans Affairs Medical Center, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Eric S Nylen
- Division of Endocrinology, Department of Medicine, Veterans Affairs Medical Center, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sabyasachi Sen
- Division of Endocrinology, Department of Medicine, Veterans Affairs Medical Center, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
46
|
Huang W, Ruan W, Huo C, Lin Y, Wang T, Dai X, Zhai H, Ma J, Zhang J, Lu J, Zhuang J. The effect of 12 weeks of combined training on hepatic fat content and metabolic flexibility of individuals with non-alcoholic fatty liver disease: Protocol of an open-label, single-center randomized control trial. Front Nutr 2023; 9:1065188. [PMID: 36726820 PMCID: PMC9884837 DOI: 10.3389/fnut.2022.1065188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Metabolic flexibility (MetF) is the capacity of an organism to oxidate substrate according to substrate availability or demand. The mismatch of substrate availability and oxidation may cause ectopic fat accumulation in the muscle and the liver. The objectives of the study are to examine the effect of 12 weeks of combined exercise on hepatic fat reduction and investigate metabolites related to MetF before and after the high-fat diet between individuals with NAFLD and healthy control with an active lifestyle. Methods This study is an open-label, single-center trial randomized controlled clinical study plus a cross-sectional comparison between individuals with NAFLD and healthy control. Individuals with NAFLD were allocated into two groups receiving resistance training (RT) combined with high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). Anthropometric indicators, clinical blood markers about glucose, lipid metabolism, and hepatic fat content (HFC) were assessed before and after the intervention. The metabolomics was also used to investigate the discrepant metabolites and mechanisms related to MetF. Discussion Metabolic flexibility reflects the capacity of an organism to switch the oxidation substrates flexibly, which is associated with ectopic fat accumulation. Our study aimed to explore the discrepant metabolites related to MetF before and after a high-fat diet between individuals with NAFLD and healthy control. In addition, the study also examined the effectiveness of RT combined with HIIT or MICT on hepatic fat reduction and quantificationally analyzed the metabolites related to MetF before and after the intervention. Our results provided a perspective on fatty liver-associated metabolic inactivity. Trial registration ClinicalTrials.gov: ChiCTR2200055110; Registered 31 December 2021, http://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Wei Huang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weiqi Ruan
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Cuilan Huo
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Yanyu Lin
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Tian Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiangdi Dai
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Haonan Zhai
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Jiasheng Ma
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
| | - Jingyi Zhang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jin Lu
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China,*Correspondence: Jin Lu ✉
| | - Jie Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China,Jie Zhuang ✉
| |
Collapse
|
47
|
Chai XN, Zhou BQ, Ning N, Pan T, Xu F, He SH, Chen NN, Sun M. Effects of lifestyle intervention on adults with metabolic associated fatty liver disease: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1081096. [PMID: 36875459 PMCID: PMC9978774 DOI: 10.3389/fendo.2023.1081096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION This systematic review and meta-analysis evaluates the overall effects of lifestyle interventions upon hepatic fat content and metabolism-related indicators among adults with metabolic associated fatty liver disease. METHODS It was registered under PROSPERO (CRD42021251527). We searched PubMed, EMBASE, MEDLINE, Cochrane, CINAHL, Scopus, CNKI, Wan-fang, VIP, and CBM from the inception of each database to May 2021 for RCT studies of lifestyle interventions on hepatic fat content and metabolism-related indicators. We used Review Manager 5.3 for meta-analysis and used text and detailed tabular summaries when heterogeneity existed. RESULTS Thirty-four RCT studies with 2652 participants were included. All participants were obesity, 8% of whom also had diabetes, and none was lean or normal weight. Through subgroup analysis, we found low carbohydrate diet, aerobic training and resistance training significantly improved the level of HFC, TG, HDL, HbA1c, and HOMA-IR. Moreover, low carbohydrate diet is more effective in improving HFC than low fat diet and resistance training is better than aerobic training in reduction in HFC and TG (SMD, -0.25, 95% CI, -0.45 to -0.06; SMD, 0.24, 95% CI, 0.03 to 0.44, respectively). DISCUSSION Overall, this is the first review that systematically synthesizes studies focused on the effects of various lifestyle on adults with MAFLD. The data generated in this systematic review were more applicable to obesity MAFLD rather than lean or normal weight MAFLD. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier (CRD42021251527).
Collapse
Affiliation(s)
- Xiao-Ni Chai
- Xiangya Nursing School, Central South University, Changsha, China
| | - Bing-Qian Zhou
- Xiangya Nursing School, Central South University, Changsha, China
| | - Ni Ning
- Xiangya Nursing School, Central South University, Changsha, China
| | - Ting Pan
- Xiangya Nursing School, Central South University, Changsha, China
| | - Fan Xu
- Xiangya Nursing School, Central South University, Changsha, China
| | - Si-Han He
- School of Nursing, Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Ni-Ni Chen
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mei Sun
- Xiangya Nursing School, Central South University, Changsha, China
- School of Nursing, Changsha Medical University, Changsha, China
- *Correspondence: Mei Sun,
| |
Collapse
|
48
|
Allman BR, McDonald S, May L, Børsheim E. Resistance Training as a Countermeasure in Women with Gestational Diabetes Mellitus: A Review of Current Literature and Future Directions. Sports Med 2022; 52:2871-2888. [PMID: 35810251 PMCID: PMC10043826 DOI: 10.1007/s40279-022-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
Gestational diabetes mellitus (GDM) poses a significant health concern for both mother and offspring. Exercise has emerged as a cornerstone of glycemic management in GDM. However, most research regarding this topic examines aerobic training (AT), despite substantial evidence for the effectiveness of resistance training (RT) in improving dysregulated glucose in other groups of people with diabetes, such as in type 2 diabetes mellitus (T2DM). Thus, the purpose of this paper is to review research that examined the impact of RT on markers of glucose management in GDM, and to discuss future research directions to determine the benefits of RT in GDM. Based on the current evidence, RT is effective in reducing insulin requirement, especially in overweight women, reducing fasting glucose concentrations, and improving short-term postprandial glycemic control. However, the number of studies and findings limit conclusions about the impact of RT on risk of GDM, fasting insulin concentrations, insulin resistance, β-cell function, and intra-exercise glucose management. Overall, current evidence is accumulating to suggest that RT is a promising non-pharmacological tool to regulate circulating glucose concentrations in women with GDM, and a potential alternative or supplement to AT.
Collapse
Affiliation(s)
- Brittany R Allman
- Arkansas Children's Nutrition Center, Little Rock, AR, USA.
- Arkansas Children's Research Institute, Little Rock, AR, USA.
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Samantha McDonald
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA
| | - Linda May
- Department of Obstetrics and Gynecology, East Carolina University (ECU), Greenville, NC, USA
- Department of Kinesiology, ECU, Greenville, NC, USA
- Department of Foundational Sciences and Research, ECU, Greenville, NC, USA
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Departments of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
49
|
Josloff K, Beiriger J, Khan A, Gawel RJ, Kirby RS, Kendrick AD, Rao AK, Wang RX, Schafer MM, Pearce ME, Chauhan K, Shah YB, Marhefka GD, Halegoua-DeMarzio D. Comprehensive Review of Cardiovascular Disease Risk in Nonalcoholic Fatty Liver Disease. J Cardiovasc Dev Dis 2022; 9:419. [PMID: 36547416 PMCID: PMC9786069 DOI: 10.3390/jcdd9120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is a growing global phenomenon, and its damaging effects in terms of cardiovascular disease (CVD) risk are becoming more apparent. NAFLD is estimated to affect around one quarter of the world population and is often comorbid with other metabolic disorders including diabetes mellitus, hypertension, coronary artery disease, and metabolic syndrome. In this review, we examine the current evidence describing the many ways that NAFLD itself increases CVD risk. We also discuss the emerging and complex biochemical relationship between NAFLD and its common comorbid conditions, and how they coalesce to increase CVD risk. With NAFLD's rising prevalence and deleterious effects on the cardiovascular system, a complete understanding of the disease must be undertaken, as well as effective strategies to prevent and treat its common comorbid conditions.
Collapse
Affiliation(s)
- Kevan Josloff
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Jacob Beiriger
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Adnan Khan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Richard J. Gawel
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Richard S. Kirby
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Aaron D. Kendrick
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Abhinav K. Rao
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Roy X. Wang
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michelle M. Schafer
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Margaret E. Pearce
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Kashyap Chauhan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Yash B. Shah
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Gregary D. Marhefka
- Department of Internal Medicine, Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
50
|
Goyal Mehra C, Raymond AM, Prabhu R. A personalized multi-interventional approach focusing on customized nutrition, progressive fitness, and lifestyle modification resulted in the reduction of HbA1c, fasting blood sugar and weight in type 2 diabetes: a retrospective study. BMC Endocr Disord 2022; 22:290. [PMID: 36419152 PMCID: PMC9685833 DOI: 10.1186/s12902-022-01212-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a chronic, progressive lifestyle disease and the most rapidly growing health challenge of the twenty-first century. The American Diabetes Association recommends that T2D reversal can be achieved through an organized, and systematic approach focusing on nutrition, fitness, and lifestyle management. AIM This study aimed to evaluate the effectiveness of a comprehensive and multi-interventional diabetes care program called Sugar. Fit Diabetes Reversal Programme (SDRP) on glycosylated haemoglobin (HbA1c), fasting blood sugar (FBS), and body weight for T2D reversal. METHODOLOGY SDRP is a personalized intervention study that uses technology-enabled medical management, dedicated coach-led diabetes, and nutrition experts. The study involved 150 patients living with type 2 diabetes in the age group of 20 to 80 years and having HbA1c of > 6.5%. In SDRP, the participants were assigned personal medical doctors specializing in diabetes, along with health coaches for providing customized nutrition, personalized fitness routines, relevant lifestyle modifications to holistically reverse type 2 diabetes. The HbA1c level, fasting blood sugar, and weight of the participants were measured at baseline and the end of the study (90th day). The effectiveness of SDRP was analyzed by comparing it with a control group that involved 110 individuals with type 2 diabetes managed by conventional pharmacotherapy and regular dietary advice but not participating in the SDRP. RESULTS All 150 participants adhered to the program for 90 days. The analysis was performed on participants and represented as mean ± standard deviation (mean ± SD). At the end of SDRP, a significant reduction in HbA1c level, FBS, and weight was observed as compared to the control group. The results showed that Hba1c levels dropped from 9.0 ± 1.5% to 7.1 ± 1.3% with a mean change of 1.9 ± 1.5%; FBS levels decreased from 178.3 ± 57.1 mg/dL to 116.1 ± 24.2 mg/dL with a mean loss of 62.2 ± 51.8 mg/dL, and the weight decreased from 76.7 ± 12.7 kg to 73.8 ± 11.8 kg with a mean weight loss of 2.8 ± 1.6 kg. The results also showed that participants between 20 to 35 years showed the highest drop in HbA1c, FBS, and weight. CONCLUSION The findings indicate that a comprehensive and multi-interventional diabetes care program involving personalized nutrition, fitness, and lifestyle modification such as SDRP, help in significant and sustained improvements in HbA1c level, glycaemic control, and weight loss in adults with type 2 diabetes.
Collapse
Affiliation(s)
- Chhavi Goyal Mehra
- Ragus Healthcare Pvt Ltd, Sugar.Fit, HSR Layout, Sector 3, Bengaluru, Karnataka, 560102, India.
| | - Annie Mattilda Raymond
- Ragus Healthcare Pvt Ltd, Sugar.Fit, HSR Layout, Sector 3, Bengaluru, Karnataka, 560102, India
| | - Rekha Prabhu
- Ragus Healthcare Pvt Ltd, Sugar.Fit, HSR Layout, Sector 3, Bengaluru, Karnataka, 560102, India
| |
Collapse
|