1
|
Wu Q, Yang Y, Lin S, Geller DA, Yan Y. The microenvironment in the development of MASLD-MASH-HCC and associated therapeutic in MASH-HCC. Front Immunol 2025; 16:1569915. [PMID: 40370443 PMCID: PMC12074932 DOI: 10.3389/fimmu.2025.1569915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of obesity-related metabolic liver diseases, ranging from relatively benign hepatic steatosis to metabolic-associated steatohepatitis (MASH). With the changes in lifestyle, its incidence and prevalence have risen to epidemic proportions globally. In recent years, an increasing amount of evidence has indicated that the hepatic microenvironment is involved in the pathophysiological processes of MASH-induced liver fibrosis and the formation of hepatocellular carcinoma (HCC). The hepatic microenvironment is composed of various parenchymal and non-parenchymal cells, which communicate with each other through various factors. In this review, we focus on the changes in hepatocytes, cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-associated invariant T cells (MAIT), γδT cells, and gut microbiota during the progression of MASLD. Furthermore, we discuss promising therapeutic strategies targeting the microenvironment of MASLD-MASH-HCC.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixun Lin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Tu S, Jing X, Bu X, Zhang Q, Liao S, Zhu X, Guo Y, Sha W. Identification of pyroptosis-associated gene to predict fibrosis and reveal immune characterization in non-alcoholic fatty liver disease. Sci Rep 2025; 15:14944. [PMID: 40301412 PMCID: PMC12041580 DOI: 10.1038/s41598-025-96158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
Despite advances in research, studies on predictive models for Non-Alcoholic Fatty Liver Disease (NAFLD)-related fibrosis remain limited. Identifying new biomarkers to distinguish Non-Alcoholic Steatohepatitis (NASH) from NAFLD would aid in the treatment of NASH. Gene expression and clinical profiles of NAFL and NASH patients were collected from databases. Differentially expressed genes with prognostic value were used to construct predictive model. Validation of fibrosis stage-related pyroptosis-related genes (PRGs) was performed using Sprague-Dawley rats liver fibrosis models induced by CCl4 or PS. Immune cell infiltration assessment demonstrated that stromal score, immune score, and ESTIMATE score were higher in patients with NASH compared to those with NAFL. BAX, BAK1, PYCARD, and NLRP3 were identified as hub genes that exhibit a strong correlation with fibrosis stage. Additionally, the expression of these genes was increased in fibrotic liver tissues induced by CCl4 and PS. The pyroptosis-associated gene signature effectively predicts the degree of liver fibrosis in NASH patients. Our study indicates that BAX, BAK1, PYCARD, and NLRP3 might serve as biomarkers for NASH-associated fibrosis.
Collapse
Affiliation(s)
- Sha Tu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Bu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Qingfang Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Shanying Liao
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xiaobo Zhu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Ying Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
3
|
Wang J, Gong P, Liu Q, Wang M, Wu D, Li M, Zheng S, Wang H, Long Q. Stimulation of regulatory dendritic cells suppresses cytotoxic T cell function and alleviates DEN-induced liver injury, fibrosis and hepatocellular carcinoma. Front Immunol 2025; 16:1565486. [PMID: 40264769 PMCID: PMC12011597 DOI: 10.3389/fimmu.2025.1565486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
Background Dendritic cells (DCs) are versatile professional antigen-presenting cells and play an instrumental role in the generation of antigen-specific T-cell responses. Modulation of DC function holds promise as an effective strategy to improve anti-tumor immunotherapy efficacy and enhance self-antigen tolerance in autoimmune diseases. Methods Wild-type (WT) and TLR2 knockout (KO) mice at 2 weeks of age were injected intraperitoneally (i.p.) with a single dose of diethylnitrosamine (DEN) to induce hepatocellular carcinoma (HCC). Four weeks later, WT and KO mice were randomly divided into control and treatment groups and treated once every two days for 30 weeks with phosphate buffered saline (PBS) and a mix of 4 TLR2-activating lactic acid-producing probiotics (LAP), respectively. Mice were euthanized after 30 weeks of LAP treatment and their liver tissues were collected for gene expression, histological, flow cytometric and single-cell RNA sequencing analyses. Results We demonstrate here that oral administration of a mix of TLR2-activating LAP triggers a marked accumulation of regulatory DCs (rDCs) in the liver of mice. LAP-treated mice are protected from DEN-induced liver injury, fibrosis and HCC in a TLR2-dependent manner. Single-cell transcriptome profiling revealed that LAP treatment determines an immunosuppressive hepatic T-cell program that is characterized by a significantly reduced cytotoxic activity. The observed functional changes of T cells correlated well with the presence of a hepatic DC subset displaying a regulatory or tolerogenic transcriptional signature. Conclusion Overall, these data suggest that stimulation of regulatory dendritic cells (rDCs) in the liver by LAP suppresses cytotoxic T-cell function and alleviates DEN-induced liver damage, fibrosis and tumorigenesis.
Collapse
Affiliation(s)
- Junjie Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Pixu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qingqing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Menglei Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dengfang Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Mengyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Shujie Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qiaoming Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Song Y, Li N, Jiang S, Wang K, Lv G, Fan Z, Du X, Gao W, Lei L, Wang Z, Liu G, Li X. Microbiota-derived H 2S induces c-kit + cDC1 autophagic cell death and liver inflammation in metabolic dysfunction-associated steatohepatitis. Nat Commun 2025; 16:2222. [PMID: 40044736 PMCID: PMC11882788 DOI: 10.1038/s41467-025-57574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Immune dysregulation-induced inflammation serves as a driving force in the progression of metabolic dysfunction-associated steatohepatitis (MASH), while the underlying cellular and molecular mechanisms remain largely uncharted. A Western diet (WD) is employed to construct mouse models of metabolic dysfunction associated steatotic liver disease (MASLD) or MASH. Mass cytometry identifies a c-kit+ cDC1 subset whose frequency is reduced in the livers of mice and patients with MASH compared with healthy controls. Adoptive cell transfer of c-kit+ cDC1 protects the progression of MASH. Moreover, analysis of gut microbe sequence shows that WD-fed mice and MASLD/MASH patients exhibit gut microbiota dysbiosis, with an elevated abundance of H2S-producing Desulfovibrio_sp. Transplanting of MASH-derived fecal flora, Desulfovibrio_sp., or injecting H2S intraperitoneally into MASLD mice decreases the c-kit+cDC1 population and exacerbates liver inflammation. Mechanistically, H2S induces autophagic cell death of cDC1 in a c-kit-dependent manner in cDC-specific c-kit-/- and Atg5-/- mice. We thus uncover that microbiota-derived H2S triggers the autophagic cell death of c-kit+ cDC1 and ignites the liver inflammatory cascade in MASH.
Collapse
Affiliation(s)
- Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kexin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Zhang LH, Liu ST, Zhao Q, Liu XY, Liu T, Zhang Q, Liu MH, Zhao WX. Role of triggering receptor expressed on myeloid cells 2 in the pathogenesis of non-alcoholic fatty liver disease. World J Hepatol 2025; 17:102328. [PMID: 40027566 PMCID: PMC11866134 DOI: 10.4254/wjh.v17.i2.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease. Without effective interventions, NAFLD can gradually develop to non-alcoholic steatohepatitis, fatty liver fibrosis, liver cirrhosis and even hepatocellular carcinoma. It is still to investigate the precise molecular mechanism behind the pathophysiology of NAFLD. Triggering receptor expressed on myeloid cells 2 (TREM2) can sense tissue injury and mediate immune remodeling, thereby inducing phagocytosis, lipid metabolism, and metabolic transfer, promoting cell survival and combating inflammatory activation. NAFLD might develop as a result of TREM2's regulatory role. We here briefly summarize the biological characteristics of TREM2 and its functions in the disease progression of NAFLD. Moreover, we propose to broaden the therapeutic strategy for NAFLD by targeting TREM2.
Collapse
Affiliation(s)
- Li-Hui Zhang
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Su-Tong Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Qing Zhao
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Xiao-Yan Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Tong Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Qiang Zhang
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Ming-Hao Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Wen-Xia Zhao
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Department of Spleen, Stomach, Liver and Gallbladder Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
7
|
Vizioli G, Nicoletti A, Feliciani D, Funaro B, Zileri Dal Verme L, Ponziani FR, Zocco MA, Gasbarrini A, Gabrielli M. Immunotherapy and MASLD-Related HCC: Should We Reconsider the Role of Etiology in the Therapeutic Approach to HCC? APPLIED SCIENCES 2025; 15:2279. [DOI: 10.3390/app15052279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers and typically arises in the context of chronic liver disease. With the increasing prevalence of metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease and the most rapidly increasing cause of HCC. The role of dysfunctional innate and adaptive immune responses in the development and progression of HCC is well-established, prompting numerous trials to evaluate the efficacy of immune checkpoint inhibitors (ICIs) in targeting tumor cells. These trials have yielded promising results, and ICIs, in combination with anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, are now approved as first-line therapy for patients with metastatic or unresectable HCC, irrespective of the underlying liver disease. Notably, MASLD itself is characterized by immune system dysfunction, as metabolic inflammation plays a central role in its onset and progression. However, clinical studies and post-hoc analyses suggest that immunotherapy may be less effective in MASLD-associated HCC compared to viral-related HCC. This emerging evidence raises the question of whether the underlying liver disease influences the therapeutic response to ICIs in HCC. It may be time to consider tailoring therapeutic strategies for HCC based on the specific etiological, histological, and genotypical subgroups.
Collapse
Affiliation(s)
- Giuseppina Vizioli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Feliciani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara Funaro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
8
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
10
|
Klaimi C, Kong W, Blériot C, Haas JT. The immunological interface: dendritic cells as key regulators in metabolic dysfunction-associated steatotic liver disease. FEBS Lett 2024. [PMID: 39668616 DOI: 10.1002/1873-3468.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a broad spectrum of conditions associating fat accumulation in the liver (steatosis) with varying degrees of inflammation (hepatitis) and fibrosis, which can progress to cirrhosis and potentially cancer (hepatocellular carcinoma). The first stages of these diseases are reversible and the immune system, together with metabolic factors (obesity, insulin resistance, Western diet, etc.), can influence the disease trajectory leading to progression or regression. Dendritic cells are professional antigen-presenting cells that constantly sense environmental stimuli and orchestrate immune responses. Herein, we discuss the existing literature on the heterogeneity of dendritic cell lineages, states, and functions, to provide a comprehensive overview of how liver dendritic cells influence the onset and evolution of MASLD.
Collapse
Affiliation(s)
- Camilla Klaimi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Camille Blériot
- Gustave Roussy, CNRS UMR9018, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, Université Paris-Saclay, Villejuif, France
- Institut Necker Enfants Malades, CNRS, INSERM, Université Paris Cité, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
11
|
Feng G, He N, Gao J, Li XC, Zhang FN, Liu CC, Targher G, Byrne CD, Mi M, Zheng MH, Ye F. Causal relationship between key genes and metabolic dysfunction-associated fatty liver disease risk mediated by immune cells: A Mendelian randomization and mediation analysis. Diabetes Obes Metab 2024; 26:5590-5599. [PMID: 39228284 DOI: 10.1111/dom.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
AIM Non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease (MAFLD) remain challenging. We aimed to identify novel key genes as non-invasive biomarkers for MAFLD, elucidate causal relationships between biomarkers and MAFLD and determine the role of immune cells as potential mediators. MATERIALS AND METHODS Utilizing published transcriptome data of patients with biopsy-proven MAFLD, we applied linear models for microarray data, least absolute shrinkage and selector operation (LASSO) regressions and receiver operating characteristic (ROC) curve analyses to identify and validate biomarkers for MAFLD. Using the expression quantitative trait loci database and a cohort of 778 614 Europeans, we used Mendelian randomization to analyse the causal relationships between key biomarkers and MAFLD. Additionally, mediation analysis was performed to examine the involvement of 731 immunophenotypes in these relationships. RESULTS We identified 31 differentially expressed genes, and LASSO regression showed three hub genes, IGFBP2, PEG10, and P4HA1, with area under the receiver operating characteristic (AUROC) curve of 0.807, 0.772 and 0.791, respectively, for identifying MAFLD. The model of these three genes had an AUROC of 0.959 and 0.800 in the development and validation data sets, respectively. This model was also validated using serum-based enzyme-linked immunosorbent assay data from MAFLD patients and control subjects (AUROC: 0.819, 95% confidence interval: 0.736-0.902). PEG10 was associated with an increased MAFLD risk (odds ratio = 1.106, p = 0.032) via inverse variance-weighted analysis, and about 30% of this risk was mediated by the percentage of CD11c + CD62L- monocytes. CONCLUSIONS The MAFLD panels have good diagnostic accuracy, and the causal link between PEG10 and MAFLD was mediated by the percentage of CD11c + CD62L- monocytes.
Collapse
Affiliation(s)
- Gong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Na He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing Gao
- School of Medicine, Xiamen University, Xiamen, China
- Department of Emergency Medicine, Affiliated Hospital of Xizang Minzu University, Xianyang, China
| | - Xiao-Cheng Li
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Fen-Na Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Cheng-Cheng Liu
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Man Mi
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Feng Ye
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Mori T, Yoshio S, Kakazu E, Kanto T. Active role of the immune system in metabolic dysfunction-associated steatotic liver disease. Gastroenterol Rep (Oxf) 2024; 12:goae089. [PMID: 39411101 PMCID: PMC11479709 DOI: 10.1093/gastro/goae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a complex multifactorial disease that progresses from steatohepatitis (MASH) to liver cirrhosis and liver cancer. Recent research has revealed that crosstalk between innate immune cells and hepatic parenchymal and non-parenchymal cells is involved in the pathogenesis of liver disease in MASLD/MASH. Of particular importance, novel inflammatory mechanisms, including macrophage diversity, neutrophil NETosis, B-cell biology, auto-reactive T cells, unconventional T cells, and dendritic cell-T cell interactions, are considered key drivers for disease progression. These mechanisms and factors are potential targets for the therapeutic intervention of MASLD/MASH. In this review, we focus on recent discoveries related to liver inflammation and discuss the role of innate immune cell subsets in MASLD/MASH.
Collapse
Affiliation(s)
- Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
13
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
14
|
Bojmar L, Zambirinis CP, Hernandez JM, Chakraborty J, Shaashua L, Kim J, Johnson KE, Hanna S, Askan G, Burman J, Ravichandran H, Zheng J, Jolissaint JS, Srouji R, Song Y, Choubey A, Kim HS, Cioffi M, van Beek E, Sigel C, Jessurun J, Velasco Riestra P, Blomstrand H, Jönsson C, Jönsson A, Lauritzen P, Buehring W, Ararso Y, Hernandez D, Vinagolu-Baur JP, Friedman M, Glidden C, Firmenich L, Lieberman G, Mejia DL, Nasar N, Mutvei AP, Paul DM, Bram Y, Costa-Silva B, Basturk O, Boudreau N, Zhang H, Matei IR, Hoshino A, Kelsen D, Sagi I, Scherz A, Scherz-Shouval R, Yarden Y, Oren M, Egeblad M, Lewis JS, Keshari K, Grandgenett PM, Hollingsworth MA, Rajasekhar VK, Healey JH, Björnsson B, Simeone DM, Tuveson DA, Iacobuzio-Donahue CA, Bromberg J, Vincent CT, O'Reilly EM, DeMatteo RP, Balachandran VP, D'Angelica MI, Kingham TP, Allen PJ, Simpson AL, Elemento O, Sandström P, Schwartz RE, Jarnagin WR, Lyden D. Multi-parametric atlas of the pre-metastatic liver for prediction of metastatic outcome in early-stage pancreatic cancer. Nat Med 2024; 30:2170-2180. [PMID: 38942992 PMCID: PMC11416063 DOI: 10.1038/s41591-024-03075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches. Patients were followed prospectively (median 3 years) and classified into four recurrence groups; early (<6 months after resection) or late (>6 months after resection) liver metastasis (LiM); extrahepatic metastasis (EHM); and disease-free survivors (no evidence of disease (NED)). Overall, PaC livers exhibited signs of augmented inflammation compared to controls. Enrichment of neutrophil extracellular traps (NETs), Ki-67 upregulation and decreased liver creatine significantly distinguished those with future metastasis from NED. Patients with future LiM were characterized by scant T cell lobular infiltration, less steatosis and higher levels of citrullinated H3 compared to patients who developed EHM, who had overexpression of interferon target genes (MX1 and NR1D1) and an increase of CD11B+ natural killer (NK) cells. Upregulation of sortilin-1 and prominent NETs, together with the lack of T cells and a reduction in CD11B+ NK cells, differentiated patients with early-onset LiM from those with late-onset LiM. Liver profiles of NED closely resembled those of controls. Using the above parameters, a machine-learning-based model was developed that successfully predicted the metastatic outcome at the time of surgery with 78% accuracy. Therefore, multi-parametric profiling of liver biopsies at the time of PaC diagnosis may determine metastatic risk and organotropism and guide clinical stratification for optimal treatment selection.
Collapse
Affiliation(s)
- Linda Bojmar
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Constantinos P Zambirinis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jonathan M Hernandez
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jayasree Chakraborty
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lee Shaashua
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kofi Ennu Johnson
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Samer Hanna
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonas Burman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zheng
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua S Jolissaint
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rami Srouji
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Song
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ankur Choubey
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Han Sang Kim
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Michele Cioffi
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Elke van Beek
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlie Sigel
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Hakon Blomstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Carolin Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anette Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pernille Lauritzen
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Weston Buehring
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Yonathan Ararso
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Dylanne Hernandez
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Jessica P Vinagolu-Baur
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Madison Friedman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Caroline Glidden
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Laetitia Firmenich
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Grace Lieberman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Dianna L Mejia
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Naaz Nasar
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anders P Mutvei
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Doru M Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Bruno Costa-Silva
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Olca Basturk
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Boudreau
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Irina R Matei
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Ayuko Hoshino
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - David Kelsen
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jason S Lewis
- Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kayvan Keshari
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinagolu K Rajasekhar
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John H Healey
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bergthor Björnsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | | | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ronald P DeMatteo
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter J Allen
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber L Simpson
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Per Sandström
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - William R Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Lyden
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Wu S, Ren W, Hong J, Yang Y, Lu Y. Ablation of histone methyltransferase Suv39h2 in hepatocytes attenuates NASH in mice. Life Sci 2024; 343:122524. [PMID: 38401627 DOI: 10.1016/j.lfs.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AIMS Non-alcoholic steatohepatitis (NASH) is characterized by aberrant lipid metabolism in hepatocytes. We investigated the involvement of a histone H3K9 methyltransferase Suv39h2 in the pathogenesis of NASH. METHODS AND MATERIALS NASH is induced by feeding the mice with a high-fat high-carbohydrate (HFHC) diet or a high-fat choline-deficient amino acid defined (HFD-CDAA) diet. The Suv39h2f/f mice were crossbred with the Alb-Cre mice to specifically delete Suv39h2 in hepatocytes. KEY FINDINGS Ablation of Suv39h2 in hepatocytes improved insulin sensitivity of the mice fed either the HFHC diet or the CDAA-HFD diet. Importantly, Suv39h2 deletion significantly ameliorated NAFLD as evidenced by reduced lipid accumulation, inflammation, and fibrosis in the liver. RNA-seq uncovered Vanin-1 (Vnn1) as a novel transcriptional target for Suv39h2. Mechanistically, Suv39h2 repressed Vnn1 transcription in hepatocytes exposed to free fatty acids. Consistently, Vanin-1 knockdown normalized lipid accumulation in Suv39h2-null hepatocytes. Importantly, a significant correlation between Suv39h2, Vanin-1, and hepatic triglyceride levels was identified in NASH patients. SIGNIFICANCE Our study uncovers a novel mechanism whereby Suv39h2 may contribute to NASH pathogenesis and suggests that targeting the Suv39h2-Vanin-1 axis may yield novel therapeutic solutions against NASH.
Collapse
Affiliation(s)
- Shiqiang Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiameng Hong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yunjie Lu
- Suzhou Medical College, Soochow University, Suzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the third Affiliated Hospital of Soochow University, Changzhou, China; Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, USA.
| |
Collapse
|
16
|
Pinto AT, Lukacs-Kornek V. The role of dendritic cells in MASH: friends or foes? Front Immunol 2024; 15:1379225. [PMID: 38650949 PMCID: PMC11033439 DOI: 10.3389/fimmu.2024.1379225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that connect innate and adaptive immunity. Hepatic DCs are less activated and contribute to maintain the tolerogenic environment of the liver under steady state. Several studies indicated DCs in metabolic dysfunction-associated steatohepatitis (MASH), representing a substantial burden on healthcare systems due to its association with liver-related morbidity and mortality. Studies highlighted the potential disease-promoting role of liver DCs in the development of MASH while other experimental systems suggested their protective role. This review discusses this controversy and the current understanding of how DCs affect the pathogenesis of MASH.
Collapse
Affiliation(s)
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
17
|
Li Z, Wang S, Xu Q, Su X, Wang Y, Wang L, Zhang Y. The double roles of T cell-mediated immune response in the progression of MASLD. Biomed Pharmacother 2024; 173:116333. [PMID: 38479177 DOI: 10.1016/j.biopha.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.
Collapse
Affiliation(s)
- Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Shujun Wang
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yong Zhang
- Shandong Provincial Third Hospital Affiliated to Shandong University, Jinan, Shandong Province 250031, China.
| |
Collapse
|
18
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Huang Z, Luo L, Wu Z, Xiao Z, Wen Z. Identification of m6A-associated autophagy genes in non-alcoholic fatty liver. PeerJ 2024; 12:e17011. [PMID: 38436022 PMCID: PMC10909346 DOI: 10.7717/peerj.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Background Studies had shown that autophagy was closely related to nonalcoholic fat liver disease (NAFLD), while N6-methyladenosine (m6A) was involved in the regulation of autophagy. However, the mechanism of m6A related autophagy in NAFLD was unclear. Methods The NAFLD related datasets were gained via the Gene Expression Omnibus (GEO) database, and we also extracted 232 autophagy-related genes (ARGs) and 37 m6A. First, differentially expressed ARGs (DE-ARGs) and differentially expressed m6A (DE-m6A) were screened out by differential expression analysis. DE-ARGs associated with m6A were sifted out by Pearson correlation analysis, and the m6A-ARGs relationship pairs were acquired. Then, autophagic genes in m6A-ARGs pairs were analyzed for machine learning algorithms to obtain feature genes. Further, we validated the relationship between feature genes and NAFLD through quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB). Finally, the immuno-infiltration analysis was implement, and we also constructed the TF-mRNA and drug-gene networks. Results There were 19 DE-ARGs and four DE-m6A between NAFLD and normal samples. The three m6A genes and five AGRs formed the m6A-ARGs relationship pairs. Afterwards, genes obtained from machine learning algorithms were intersected to yield three feature genes (TBK1, RAB1A, and GOPC), which showed significant positive correlation with astrocytes, macrophages, smooth muscle, and showed significant negative correlation with epithelial cells, and endothelial cells. Besides, qRT-PCR and WB indicate that TBK1, RAB1A and GOPC significantly upregulated in NAFLD. Ultimately, we found that the TF-mRNA network included FOXP1-GOPC, ATF1-RAB1A and other relationship pairs, and eight therapeutic agents such as R-406 and adavosertib were predicted based on the TBK1. Conclusion The study investigated the potential molecular mechanisms of m6A related autophagy feature genes (TBK1, RAB1A, and GOPC) in NAFLD through bioinformatic analyses and animal model validation. However, it is critical to note that these findings, although consequential, demonstrate correlations rather than cause-and-effect relationships. As such, more research is required to fully elucidate the underlying mechanisms and validate the clinical relevance of these feature genes.
Collapse
Affiliation(s)
- Ziqing Huang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linfei Luo
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengqiang Wu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhihua Xiao
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhili Wen
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
21
|
Luo M, Wang Y, Ma Y, Li J, Wang J, Liu C. Celastrol Stabilizes Glycolipid Metabolism in Hepatic Steatosis by Binding and Regulating the Peroxisome Proliferator-Activated Receptor γ Signaling Pathway. Metabolites 2024; 14:64. [PMID: 38276299 PMCID: PMC10818689 DOI: 10.3390/metabo14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing. Obesity, insulin resistance, and lipid metabolic dysfunction are always accompanied by NAFLD. Celastrol modulates the Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) signaling pathways, thereby promoting lipolysis in 3T3-L1 adipocytes. In the present study, oleic-acid-induced NAFLD and differentiated 3T3-L1 preadipocytes were used as models of NAFLD and obesity to investigate the protective effect of celastrol. We investigated the impact of celastrol on hepatic steatosis caused by oleic acid (OA), as well as the associated underlying molecular pathways. To address the aforementioned questions, we used a cellular approach to analyze the signaling effects of celastrol on various aspects. These factors include the improvement in fatty liver in HepG2 cells, the differentiation of 3T3-L1 preadipocytes, glucose uptake, and the modulation of key transcriptional pathways associated with PPARγ. The administration of celastrol effectively mitigated lipid accumulation caused by OA in HepG2 cells, thereby ameliorating fatty liver conditions. Furthermore, celastrol suppressed the impacts on adipocyte differentiation in 3T3-L1 adipocytes. Additionally, celastrol exhibited the ability to bind to PPARγ and modulate its transcriptional activity. Notably, the ameliorative effects of celastrol on hepatic steatosis were reversed by rosiglitazone. According to our preliminary findings from in vitro celastrol signaling studies, PPARγ is likely to be the direct target of celastrol in regulating hepatic steatosis in HepG2 cells and adipocyte differentiation in 3T3-L1 cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Changzhen Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (M.L.); (Y.W.); (Y.M.); (J.L.); (J.W.)
| |
Collapse
|
22
|
Szafranska K, Sørensen KK, Lalor PF, McCourt P. Sinusoidal cells and liver immunology. SINUSOIDAL CELLS IN LIVER DISEASES 2024:53-75. [DOI: 10.1016/b978-0-323-95262-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Sawada K, Chung H, Softic S, Moreno-Fernandez ME, Divanovic S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab 2023; 35:1852-1871. [PMID: 37939656 PMCID: PMC10680147 DOI: 10.1016/j.cmet.2023.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
24
|
Lian X, Tang X. Use of a ferroptosis-related gene signature to construct diagnostic and prognostic models for assessing immune infiltration in metabolic dysfunction-associated fatty liver disease. Front Cell Dev Biol 2023; 11:1199846. [PMID: 37928903 PMCID: PMC10622674 DOI: 10.3389/fcell.2023.1199846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Metabolic dysfunction-associated fatty liver disease (MAFLD), a serious health problem worldwide, can involve ferroptosis. This study aimed to comprehensively analyze the ferroptosis-related genes associated with MAFLD. Methods: Ferroptosis-related differentially expressed genes (FRDEGs) were identified in patients with MAFLD and healthy individuals. Gene ontology functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and gene set enrichment analysis (GSEA) were used to analyze the relevant action pathways of the FRDEGs. The Encyclopedia of RNA Interactomes, CHIPBase, and comparative toxicogenomics databases were used to build mRNA-miRNA, mRNA-transcription factor (TF), and mRNA-drug interaction networks, respectively. A diagnostic model was constructed and bioinformatics analysis methods, such as least absolute shrinkage and selection operator regression analysis, Cox regression analysis, nomogram-based analysis, consensus clustering analysis, and single-sample GSEA, were used to systematically investigate the prognostic values and immunologic characteristics. Results: A total of 13 FRDEGs were obtained and eight were used to construct a diagnostic model and perform a prognostic analysis. Hub genes were also used to construct mRNA-miRNA and mRNA-TF interaction networks and potential drug or molecular compounds. Two MAFLD subtypes were identified: cluster2, which represents an "immunoactive" type, and cluster1, which represents an "immunosuppressive" type; a significant correlation was observed between the immune cell contents and the expression of three FRDEGs (NR4A1, FADS2, and SCD). Conclusion: A ferroptosis-related gene signature was constructed to diagnose MAFLD-associated steatohepatitis, predict the prognosis of MAFLD patients, and analyze the immunologic characteristics of MAFLD. Our findings may provide insights into developing innovative MAFLD treatment techniques.
Collapse
Affiliation(s)
- Xin Lian
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xulei Tang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Zhong X, Lv M, Ma M, Huang Q, Hu R, Li J, Yi J, Sun J, Zhou X. State of CD8 + T cells in progression from nonalcoholic steatohepatitis to hepatocellular carcinoma: From pathogenesis to immunotherapy. Biomed Pharmacother 2023; 165:115131. [PMID: 37429231 DOI: 10.1016/j.biopha.2023.115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinyu Yi
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Petagine L, Zariwala MG, Patel VB. Non-alcoholic fatty liver disease: Immunological mechanisms and current treatments. World J Gastroenterol 2023; 29:4831-4850. [PMID: 37701135 PMCID: PMC10494768 DOI: 10.3748/wjg.v29.i32.4831] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) causes significant global disease burden and is a leading cause of mortality. NAFLD induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of NAFLD is widely recognised, the precise triggers for disease progression are still to be fully elucidated. Furthermore, the propagation to cirrhosis is poorly understood. Whilst some progress in terms of treatment options have been explored, an incomplete understanding of the hepatic cellular and molecular alterations limits their clinical utility. We have therefore reviewed some of the key pathways responsible for the pathogenesis of NAFLD such as innate and adaptative immunity, lipotoxicity and fibrogenesis, and highlighted current trials and treatment options for NAFLD patients.
Collapse
Affiliation(s)
- Lucy Petagine
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Vinood B Patel
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| |
Collapse
|
28
|
Chen X, Yu Z, Nong C, Xue R, Zhang M, Zhang Y, Sun L, Zhang L, Wang X. Activation of cDCs and iNKT cells contributes to triptolide-induced hepatotoxicity via STING signaling pathway and endoplasmic reticulum stress. Cell Biol Toxicol 2023; 39:1753-1772. [PMID: 36520315 DOI: 10.1007/s10565-022-09782-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Triptolide (TP) exhibits therapeutic potential against multiple diseases. However, its application in clinics is limited by TP-induced hepatoxicity. TP can activate invariant natural killer T (iNKT) cells in the liver, shifting Th1 cytokine bias to Th2 cytokine bias. The damaging role of iNKT cells in TP-induced hepatoxicity has been established, and iNKT cell deficiency can mitigate hepatotoxicity. However, the activation of iNKT cells in vitro by TP requires the presence of antigen-presenting cells. Therefore, we hypothesized that TP could induce dendritic cells (DCs) to activate iNKT cells, thereby leading to hepatotoxicity. The hepatic conventional DCs (cDCs) exhibited immunogenic activities after TP administration, upregulating the expression of CD1d, co-stimulatory molecules, and IL-12. Neutralization with IL-12p40 antibody extenuated TP-induced hepatotoxicity and reduced iNKT cell activation, suggesting that IL-12 could cause liver injury by activating iNKT cells. TP triggered the activation and upregulation of STING signaling pathway and increased endoplasmic reticulum (ER) stress. Downregulation of STING reduced cDC immunogenicity, inhibiting the activation of iNKT cells and hepatic damage. These indicated the regulatory effects of STING pathway on cDCs and iNKT cells, and the important roles it plays in hepatoxicity. ER stress inhibitor, 4-phenylbutyrate (4-PBA), also suppressed iNKT cell activation and liver injury, which might be regulated by the STING signaling pathway. Our results demonstrated the possible mechanisms underlying TP-induced hepatoxicity, where the activation of cDCs and iNKT cells was stimulated by upregulated STING signaling and increased ER stress as a result of TP administration.
Collapse
Affiliation(s)
- Xin Chen
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Zixun Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Nong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingxuan Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Lixin Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
30
|
Eilam Y, Khattib H, Pintel N, Avni D. Microalgae-Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200177. [PMID: 37205927 PMCID: PMC10190620 DOI: 10.1002/gch2.202200177] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Dietary proteins derived from animal sources, although containing well-balanced profiles of essential amino acids, have considerable environmental and adverse health effects associated with the intake of some animal protein-based products. Consuming foods based on animal proteins carries a higher risk of developing non-communicable diseases such as cancer, heart disease, non-alcoholic fatty liver disease (NAFLD), and inflammatory bowel disease (IBD). Moreover, dietary protein consumption is increasing due to population growth, posing a supply challenge. There is, therefore, growing interest in discovering novel alternative protein sources. In this context, microalgae have been recognized as strategic crops that can provide a sustainable source of protein. Compared to conventional high-protein crops, using microalgal biomass for protein production presents several advantages in food and feed in terms of productivity, sustainability, and nutritional value. Moreover, microalgae positively impact the environment by not exploiting land or causing water pollution. Many studies have revealed the potential of microalgae as an alternative protein source with the added value of positive effects on human health due to their anti-inflammatory, antioxidant, and anti-cancer properties. The main emphasis of this review is on the potential health-promoting applications of microalgae-based proteins, peptides, and bioactive substances for IBD and NAFLD.
Collapse
Affiliation(s)
- Yahav Eilam
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
- Department of BiotechnologyTel Hai CollegeUpper GalileeNorth1220800Israel
| | - Hamdan Khattib
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
| | - Noam Pintel
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
| | - Dorit Avni
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
- Department of BiotechnologyTel Hai CollegeUpper GalileeNorth1220800Israel
| |
Collapse
|
31
|
Ma DW, Ha J, Yoon KS, Kang I, Choi TG, Kim SS. Innate Immune System in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:2068. [PMID: 37432213 DOI: 10.3390/nu15092068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by lipid accumulation in hepatocytes with low alcohol consumption. The development of sterile inflammation, which occurs in response to a range of cellular stressors or injuries, has been identified as a major contributor to the pathogenesis of NAFLD. Recent studies of the pathogenesis of NAFLD reported the newly developed roles of damage-associated molecular patterns (DAMPs). These molecules activate pattern recognition receptors (PRRs), which are placed in the infiltrated neutrophils, dendritic cells, monocytes, or Kupffer cells. DAMPs cause the activation of PRRs, which triggers a number of immunological responses, including the generation of cytokines that promote inflammation and the localization of immune cells to the site of the damage. This review provides a comprehensive overview of the impact of DAMPs and PRRs on the development of NAFLD.
Collapse
Affiliation(s)
- Dae Won Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
32
|
Hildreth AD, Padilla ET, Tafti RY, Legala AR, O'Sullivan TE. Sterile liver injury induces a protective tissue-resident cDC1-ILC1 circuit through cDC1-intrinsic cGAS-STING-dependent IL-12 production. Cell Rep 2023; 42:112141. [PMID: 36807146 PMCID: PMC10435668 DOI: 10.1016/j.celrep.2023.112141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tissue-resident immune cells are critical to the initiation and potentiation of inflammation. However, the tissue-protective cellular communication networks initiated by resident immunity during sterile inflammation are not well understood. Using single-cell transcriptomic analysis, we show the liver-resident cell connectome and signalome during acute liver injury. These analyses identify Il12b as a central regulator of liver injury-associated changes in gene expression. Interleukin (IL)-12 produced by conventional type 1 dendritic cells (cDC1s) is required for protection during acute injury through activation of interferon (IFN)-γ production by liver-resident type 1 innate lymphoid cells (ILC1s). Using a targeted in vivo CRISPR-Cas9 screen of innate immune sensing pathways, we find that cDC1-intrinsic cGAS-STING signaling acts upstream of IL-12 production to initiate early protective immune responses. Our study identifies the core communication hubs initiated by tissue-resident innate immune cells during sterile inflammation in vivo and implicates cDC1-derived IL-12 as an important regulator of this process.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rana Yakhshi Tafti
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Akshara R Legala
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Guo Z, Liang J. Role of ubiquitin regulatory X domain‑containing protein 3B in the development of hepatocellular carcinoma (Review). Oncol Rep 2023; 49:57. [PMID: 36799187 PMCID: PMC9942258 DOI: 10.3892/or.2023.8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
The majority of new cases and fatalities from hepatocellular carcinoma (HCC) occur in China; however, the overall morbidity and mortality rates are decreasing. A major risk factor due to the evolving epidemiology is improper lipid metabolism. Although investigations on aberrant lipid metabolism are numerous, there are only a limited number of studies available on proteasomal degradation processes. The degradation process is mainly involved in endoplasmic reticulum stabilization, the balance of lipid metabolism, and physiological functions of Golgi apparatus, endoplasmic reticulum, lysosomes and other organelles, however, this process has been little studied in the development of tumorigenesis. In order to provide some theoretical support for future research on ubiquitin regulatory X domain‑containing protein 3B (UBXN3B), the present review focuses on the role of UBXN3B, which is involved in the stabilization of the endoplasmic reticulum and the maintenance of lipid homeostasis, as well as in the promotion and development of non‑alcoholic fatty liver disease and HCC.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Jun Liang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China,Correspondence to: Professor Jun Liang, Department of Medical Oncology, Peking University International Hospital, Life Park Road, Life Science Park of Zhong Guancun Chang Ping, Beijing 102206, P.R. China, E-mail:
| |
Collapse
|
34
|
Screening of Biomarkers in Liver Tissue after Bariatric Surgery Based on WGCNA and SVM-RFE Algorithms. DISEASE MARKERS 2023; 2023:2970429. [PMID: 36755803 PMCID: PMC9902125 DOI: 10.1155/2023/2970429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
As the most common chronic liver disease around the world, nonalcoholic fatty liver disease (NAFLD) has a close connection with obesity, diabetes, and metabolic syndrome. Bariatric surgery (BS) is considered to be the most effective treatment for NAFLD. However, the regulatory mechanism of hepatic lipid metabolism after BS remains poorly elucidated. By analyzing two transcriptome datasets regarding liver tissues after BS, namely, GSE83452 and GSE106737, we acquired 110 differentially expressed genes (DEGs). By further analysis of DEGs in terms of the weighted gene coexpression network analysis (WGCNA) and support vector machine-recursive feature elimination (SVM-RFE) algorithms, we identified four crucial genes participating in the regulation of hepatic lipid metabolism: SRGN, THEMIS2, SGK1, and FPR3. In addition, the results of gene set enrichment analysis (GSEA) showed that BS can activate immune-related regulatory pathways and change immune cell infiltration levels. Finally, through cellular level studies, we found that the silencing of SRGN affects the expression of SREBP-1, SIRT1, and FAS during adipogenesis in the liver and the formation of lipid droplets in the liver. In summary, the immune system in the liver is activated after BS, and SRGN participates in the regulation of hepatic lipid metabolism.
Collapse
|
35
|
Heinrich B. [Innate and adaptive immunity in the context of non-alcoholic fatty liver disease]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:76-82. [PMID: 36623545 DOI: 10.1055/a-1993-3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing health problem. Understanding the immunological processes in the liver during the development and progression of fatty liver disease to fatty liver inflammation (NASH), liver cirrhosis or hepatocellular carcinoma (HCC) can be used to better understand the disease, identify clinically relevant subgroups and therapeutic approaches. The interaction between innate and acquired immune systems seems to be of great importance. This review article highlights the various immunological processes in NAFLD leading up to progression to HCC, organized according to the major cell groups of the innate and acquired immune systems.
Collapse
Affiliation(s)
- Bernd Heinrich
- Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Wiering L, Tacke F. Treating inflammation to combat non-alcoholic fatty liver disease. J Endocrinol 2023; 256:JOE-22-0194. [PMID: 36259984 DOI: 10.1530/joe-22-0194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) with its more progressive form non-alcoholic steatohepatitis (NASH) has become the most common chronic liver disease, thereby representing a great burden for patients and healthcare systems. Specific pharmacological therapies for NAFLD are still missing. Inflammation is an important driver in the pathogenesis of NASH, and the mechanisms underlying inflammation in NAFLD represent possible therapeutic targets. In NASH, various intra- and extrahepatic triggers involved in the metabolic injury typically lead to the activation of different immune cells. This includes hepatic Kupffer cells, i.e. liver-resident macrophages, which can adopt an inflammatory phenotype and activate other immune cells by releasing inflammatory cytokines. As inflammation progresses, Kupffer cells are increasingly replaced by monocyte-derived macrophages with a distinct lipid-associated and scar-associated phenotype. Many other immune cells, including neutrophils, T lymphocytes - such as auto-aggressive cytotoxic as well as regulatory T cells - and innate lymphoid cells balance the progression and regression of inflammation and subsequent fibrosis. The detailed understanding of inflammatory cell subsets and their activation pathways prompted preclinical and clinical exploration of potential targets in NAFLD/NASH. These approaches to target inflammation in NASH include inhibition of immune cell recruitment via chemokine receptors (e.g. cenicriviroc), neutralization of CD44 or galectin-3 as well as agonism to nuclear factors like peroxisome proliferator-activated receptors and farnesoid X receptor that interfere with the activation of immune cells. As some of these approaches did not demonstrate convincing efficacy as monotherapies, a rational and personalized combination of therapeutic interventions may be needed for the near future.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
37
|
Magee N, Ahamed F, Eppler N, Jones E, Ghosh P, He L, Zhang Y. Hepatic transcriptome profiling reveals early signatures associated with disease transition from non-alcoholic steatosis to steatohepatitis. LIVER RESEARCH 2022; 6:238-250. [PMID: 36864891 PMCID: PMC9977163 DOI: 10.1016/j.livres.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and aim Non-alcoholic fatty liver disease (NAFLD) is becoming a leading cause of chronic liver disease worldwide. The molecular events that influence disease progression from non-alcoholic fatty liver (NAFL) to aggressive non-alcoholic steatohepatitis (NASH) remain incompletely understood, leading to lack of mechanism-based targeted treatment options for NASH. This study aims to identify early signatures associated with disease progression from NAFL to NASH in mice and humans. Materials and methods Male C57BL/6J mice were fed a high-fat, -cholesterol, and - fructose (HFCF) diet for up to 9 months. The extent of steatosis, inflammation, and fibrosis was evaluated in liver tissues. Total RNA sequencing (RNA-seq) was conducted to determine liver transcriptomic changes. Results After being fed the HFCF diet, mice sequentially developed steatosis, early steatohepatitis, steatohepatitis with fibrosis, and eventually spontaneous liver tumor. Hepatic RNA-seq revealed that the key signatures during steatosis progression to early steatohepatitis were pathways related to extracellular matrix organization and immune responses such as T cell migration, arginine biosynthesis, C-type lectin receptor signaling, and cytokine-cytokine receptor interaction. Genes regulated by transcription factors forkhead box M1 (FOXM1) and negative elongation factor complex member E (NELFE) were significantly altered during disease progression. This phenomenon was also observed in patients with NASH. Conclusions In summary, we identified early signatures associated with disease progression from NAFL to early NASH in a mouse model that recapitulated key metabolic, histologic, and transcriptomic changes seen in humans. The findings from our study may shed light on the development of novel preventative, diagnostic, and therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Nancy Magee
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Priyanka Ghosh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lily He
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Liver Center, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
38
|
Ortiz-López N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol 2022; 13:954869. [PMID: 36300120 PMCID: PMC9589255 DOI: 10.3389/fimmu.2022.954869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex and heterogeneous disorder considered a liver-damaging manifestation of metabolic syndrome. Its prevalence has increased in the last decades due to modern-day lifestyle factors associated with overweight and obesity, making it a relevant public health problem worldwide. The clinical progression of NAFLD is associated with advanced forms of liver injury such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). As such, diverse pharmacological strategies have been implemented over the last few years, principally focused on metabolic pathways involved in NAFLD progression. However, a variable response rate has been observed in NAFLD patients, which is explained by the interindividual heterogeneity of susceptibility to liver damage. In this scenario, it is necessary to search for different therapeutic approaches. It is worth noting that chronic low-grade inflammation constitutes a central mechanism in the pathogenesis and progression of NAFLD, associated with abnormal composition of the intestinal microbiota, increased lymphocyte activation in the intestine and immune effector mechanisms in liver. This review aims to discuss the current knowledge about the role of the immune response in NAFLD development. We have focused mainly on the impact of altered gut-liver-microbiota axis communication on immune cell activation in the intestinal mucosa and the role of subsequent lymphocyte homing to the liver in NAFLD development. We further discuss novel clinical trials that addressed the control of the liver and intestinal immune response to complement current NAFLD therapies.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Fuenzalida
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Araceli Pinto-León
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
40
|
Yu S, Wang J, Zheng H, Wang R, Johnson N, Li T, Li P, Lin J, Li Y, Yan J, Zhang Y, Zhu Z, Ding X. Pathogenesis from Inflammation to Cancer in NASH-Derived HCC. J Hepatocell Carcinoma 2022; 9:855-867. [PMID: 36051860 PMCID: PMC9426868 DOI: 10.2147/jhc.s377768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. As opposed to the majority of patients with HCC, approximately 20–30% of cases of non-alcoholic steatohepatitis (NASH)-derived HCC develop malignant tumours in the absence of liver cirrhosis. NASH is characterized by metabolic dysregulation, chronic inflammation and cell death in the liver, which provide a favorable setting for the transformation of inflammation into cancer. This review aims to describe the pathogenesis and the underlying mechanism of the transition from inflammation to cancer in NASH.
Collapse
Affiliation(s)
- Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ruilin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jin Yan
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Centre of Research for Traditional Chinese Medicine Digestive, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
41
|
Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y, Zheng F. CD4 + T cell activation and inflammation in NASH-related fibrosis. Front Immunol 2022; 13:967410. [PMID: 36032141 PMCID: PMC9399803 DOI: 10.3389/fimmu.2022.967410] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end stage liver failure, a severe life-threatening disease worldwide. Nonalcoholic fatty liver disease (NAFLD), especially its more severe form with steatohepatitis (NASH), results from obesity, type 2 diabetes and metabolic syndrome and becomes a leading cause of liver fibrosis. Genetic factor, lipid overload/toxicity, oxidative stress and inflammation have all been implicated in the development and progression of NASH. Both innate immune response and adaptive immunity contribute to NASH-associated inflammation. Innate immunity may cause inflammation and subsequently fibrosis via danger-associated molecular patterns. Increasing evidence indicates that T cell-mediated adaptive immunity also provokes inflammation and fibrosis in NASH via cytotoxicity, cytokines and other proinflammatory and profibrotic mediators. Recently, the single-cell transcriptome profiling has revealed that the populations of CD4+ T cells, CD8+ T cells, γδ T cells, and TEMs are expanded in the liver with NASH. The activation of T cells requires antigen presentation from professional antigen-presenting cells (APCs), including macrophages, dendritic cells, and B-cells. However, since hepatocytes express MHCII molecules and costimulators, they may also act as an atypical APC to promote T cell activation. Additionally, the phenotypic switch of hepatocytes to proinflammatory cells in NASH contributes to the development of inflammation. In this review, we focus on T cells and in particular CD4+ T cells and discuss the role of different subsets of CD4+ T cells including Th1, Th2, Th17, Th22, and Treg in NASH-related liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Haibo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yao Yao
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyan Zhang
- Wuhu Hospital & Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Barranco-Fragoso B, Pal SC, Díaz-Orozco LE, Dorantes-Heredia R, Qi X, Méndez-Sánchez N. Identification of Hepatic Dendritic Cells in Liver Biopsies Showing Steatosis in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Associated with Obesity. Med Sci Monit 2022; 28:e937528. [PMID: 35934868 PMCID: PMC9373829 DOI: 10.12659/msm.937528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is now the term used for hepatic steatosis in patients who are overweight or obese, have type 2 diabetes mellitus (T2DM), or evidence of metabolic dysregulation. The prevalence of MAFLD among morbidly obese subjects is 65-93%. Hepatic dendritic cells (hDCs) are antigen-presenting cells that induce T cell-mediated immunity. MAFLD pathogenesis involves numerous immune cell-mediated inflammatory processes, while the particular role of hDCs is yet to be well defined. This study aimed to identify hDCs in liver biopsies from 128 patients with MAFLD associated with obesity. MATERIAL AND METHODS In this cross-sectional study, 128 liver biopsies from 128 patients with MAFLD (diagnosed as presence of hepatic steatosis, plus T2DM, metabolic dysregulation or overweight/obesity) were collected and assessed for CD11c⁺ immunoreactivity degree (CD11c as dendritic cell biomarker), through antigen retrieval, reaction with CD11c antibodies (primary), and marking with diaminobenzidine chromogen. RESULTS Among the 128 patients with MAFLD, 64 (50%) had MAFLD and fibrosis and 72 (56.2%) positively expressed hDCs (CD11c⁺). Among morbidly obese patients, 49 (64.5%) positively expressed hDCs (CD11c⁺) in liver tissue; from patients with obesity grade I- grade II (GI-II), 18 (54.5%) positively expressed hDCs (CD11c⁺) in liver tissue; and from non-obese patients with MAFLD, 5 (26.3%) positively expressed hDCs (CD11c⁺) in liver tissue. CONCLUSIONS hDC expression increases significantly in morbidly obese patients with MAFLD compared with non-obese patients, independent of the degree of fibrosis, suggesting the role of adaptive changes within hDCs in the perpetuation of inflammatory insults in chronic liver diseases.
Collapse
Affiliation(s)
- Beatriz Barranco-Fragoso
- Department of Gastroenterology, National Medical Center “20 de Noviembre”, ISSSTE, Mexico City, Mexico
- University’s Program of Research in Health (Programa Universitario de Investigación en Salud (PUIS), National Autonomous University of Mexico, Mexico City, Mexico
| | - Shreya C. Pal
- Liver Research Unit, Medica Sur Clinic Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Luis E. Díaz-Orozco
- Liver Research Unit, Medica Sur Clinic Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, PR China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
43
|
Wallace SJ, Tacke F, Schwabe RF, Henderson NC. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep 2022; 4:100524. [PMID: 35845296 PMCID: PMC9284456 DOI: 10.1016/j.jhepr.2022.100524] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has become the leading indication for liver transplantation in both Europe and the USA. Liver fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of outcomes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress when the injurious agent is removed, thus providing opportunities to alter long-term outcomes through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis resolution. The constituents of this cellular interactome, and how the various subpopulations within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important cellular components of the fibrotic niche include endothelial cells, macrophages, passaging immune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how this new, high-resolution information is being leveraged to develop rational new therapies for patients with NASH.
Collapse
Key Words
- BAs, bile acids
- CCL, C-C motif chemokine ligand
- CCR, C-C motif chemokine receptor
- CLD, chronic liver disease
- CTGF, connective tissue growth factor
- CXCL, C-X-C motif chemokine ligand
- CXCR, C-X-C motif chemokine receptor
- DAMP, damage-associated molecular pattern
- ECM, extracellular matrix
- ER, endoplasmic reticulum
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- HSCs, hepatic stellate cells
- IL, interleukin
- ILC, innate lymphoid cell
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MAIT, mucosal-associated invariant T
- MAMPS, microbiota-associated molecular patterns
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NK(T), natural killer (T)
- NLR, Nod like receptors
- Non-alcoholic fatty liver disease (NAFLD)
- PDGF, platelet-derived growth factor
- PFs, portal fibroblasts
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- VEGF, vascular endothelial growth factor
- antifibrotic therapies
- cellular interactome
- cirrhosis
- fibrosis
- single-cell genomics
Collapse
Affiliation(s)
- Sebastian J. Wallace
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Robert F. Schwabe
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| |
Collapse
|
44
|
Kandhi R, Variya B, Ramanathan S, Ilangumaran S. An improved method for isolation and flow cytometric characterization of intrahepatic leukocytes from fatty and fibrotic liver tissues. Anat Rec (Hoboken) 2022; 306:1011-1030. [PMID: 35848859 DOI: 10.1002/ar.25039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022]
Abstract
Flow cytometry is an imperative tool to characterize alterations in a wide range of immune cell populations during inflammatory conditions and disease states that affect the liver such as the obesity-induced non-alcoholic fatty liver disease and liver fibrosis. Identification and quantification of immune cell subsets from the liver is critically dependent on efficient isolation of intrahepatic leukocytes. The isolation of leukocytes from fatty and fibrotic livers and processing the cells for flow cytometry can be challenging with respect to cell yields, purity and most importantly, the level of autofluorescence resulting from fat deposition. Here, we describe an efficient method for isolating intrahepatic leukocytes from mice fed with high fat diet and propose a strategy to alleviate autofluorescence during phenotyping by multicolor flowcytometry. We also describe a gating strategy for robust identification of granulocytes, pro-inflammatory, anti-inflammatory and transitional state monocyte subsets, dendritic cells, B cell, T lymphocyte subpopulations and NK cell subsets. Overall, the procedures described here will allow simultaneous processing of several samples while ensuring reproducible cell isolation and efficient noise reduction required for reliable characterization of intrahepatic leukocytes from the fatty liver tissues.
Collapse
Affiliation(s)
- Rajani Kandhi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Bhavesh Variya
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| |
Collapse
|
45
|
Fiorucci S, Zampella A, Ricci P, Distrutti E, Biagioli M. Immunomodulatory functions of FXR. Mol Cell Endocrinol 2022; 551:111650. [PMID: 35472625 DOI: 10.1016/j.mce.2022.111650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
The Farnesoid-x-receptor (FXR) is a bile acids sensor activated in humans by primary bile acids. FXR is mostly expressed in liver, intestine and adrenal glands but also by cells of innate immunity, including macrophages, liver resident macrophages, the Kupffer cells, natural killer cells and dendritic cells. In normal physiology and clinical disorders, cells of innate immunity mediate communications between liver, intestine and adipose tissues. In addition to FXR, the G protein coupled receptor (GPBAR1), that is mainly activated by secondary bile acids, whose expression largely overlaps FXR, modulates chemical communications from the intestinal microbiota and the host's immune system, integrating epithelial cells and immune cells in the entero-hepatic system, providing a mechanism for development of a tolerogenic state toward the intestinal microbiota. Disruption of FXR results in generalized inflammation and disrupted bile acids metabolism. While FXR agonism in preclinical models provides counter-regulatory signals that attenuate inflammation-driven immune dysfunction in a variety of liver and intestinal disease models, the clinical relevance of these mechanisms in the setting of FXR-related disorders remain poorly defined.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy. http://www.gastroenterologia.unipg.it
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Patrizia Ricci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
46
|
Zhang X, Li J, Liu T, Zhao M, Liang B, Chen H, Zhang Z. Identification of Key Biomarkers and Immune Infiltration in Liver Tissue after Bariatric Surgery. DISEASE MARKERS 2022; 2022:4369329. [PMID: 35789605 PMCID: PMC9250435 DOI: 10.1155/2022/4369329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Few drugs are clearly available for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH); nevertheless, mounting studies have provided sufficient evidence that bariatric surgery is efficient for multiple metabolic diseases, including NAFLD and NASH, while the molecular mechanisms are still poorly understood. Methods The mRNA expression profiling of GSE48452 and GSE83452 were retrieved and obtained from the Gene Expression Omnibus (GEO) database. The limma package was employed for identifying differentially expressed genes (DEGs), followed by clusterProfiler for performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and GSEA software for performing GSEA analyses. The PPI network analyses were constructed using Metascape online analyses. WGCNA was also utilized to identify and verify the hub genes. CIBERSORT tools contributed to the analysis of immune cell infiltration of liver diseases. Results We identify coexpressed differential genes including 10 upregulated and 55 downregulated genes in liver tissue after bariatric surgery. GO and KEGG enrichment analyses indicated that DEGs were remarkably involved in the immune response. GSEA demonstrated that DEGs were markedly enriched in the immune response before surgery, while most were enriched in metabolism after surgery. Seven genes were screened through the MCC algorithm and KME values, including SRGN, CD53, EVI2B, MPEG1, NCKAP1L, LCP1, and TYROBP. The mRNA levels of these genes were verified in the Attie Lab Diabetes Database, and only LCP1 was found to have significant differences and correlation with certain immune cells. Conclusion Our knowledge of the mechanisms by which bariatric surgery benefits the liver and the discovery of LCP1 is expected to serve as potential biomarkers or therapeutic targets for NAFLD and NASH.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingxin Li
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Min Zhao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baozhu Liang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Moayedfard Z, Sani F, Alizadeh A, Bagheri Lankarani K, Zarei M, Azarpira N. The role of the immune system in the pathogenesis of NAFLD and potential therapeutic impacts of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2022; 13:242. [PMID: 35672797 PMCID: PMC9175371 DOI: 10.1186/s13287-022-02929-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by intra-hepatocyte triglyceride accumulation and concomitant involvement of the immune system with subsequent histological changes, tissue damage, and clinical findings. There are various molecular pathways involved in the progression of NAFLD including lipotoxicity, endoplasmic reticulum stress, and the immune response. Both innate and adaptive immune systems are involved in the NAFLD pathogenesis, and crosstalk between the immune cells and liver cells participates in its initiation and progression. Among the various treatments for this disease, new cell based therapies have been proposed. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC) (MSC-EVs) are new cell-free vehicles with low immunogenicity, which can suppress detrimental immune responses in inflamed tissues. This review aimed to express the immune system's molecular pathways associated with the initiation and progression of NAFLD. Then, the possible role of MSC-EVs in the treatment of this entity through immune response modulation was discussed. Finally, engineered EVs enhanced by specific therapeutic miRNA were suggested for alleviating the pathological cellular events in liver disease.
Collapse
Affiliation(s)
- Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Zarei
- Renal Division, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, USA
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
48
|
Wu H, Lei Y, Mao J. Non-alcoholic fatty liver disease and intestinal immune status: a narrative review. Scand J Gastroenterol 2022; 57:642-649. [PMID: 35188038 DOI: 10.1080/00365521.2022.2032320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Background and objectives: Non-alcoholic fatty liver disease (NAFLD) interacts with the gut immunity. However, the mechanisms underlying alternations of intestinal immune system in NAFLD remains unclear. To date, no effective medical interventions exist that completely reverse the disease. In this review, we mainly elaborates on the impact of NAFLD on intestinal immune cells and briefly summarize the new treatment methods for NAFLD targeting at intestinal immune cells.Methods: We searched MEDLINE, EMBASE and Web of Science for English-language sources. The preferred citations were meta-analyses and systematic or narrative reviews. Citation tracking was completed for all identified studies included in the refined library, using Google Scholar. No restriction was placed on the year of publication for the included reports.Results: The intestinal immune imbalance promotes liver inflammation and fibrosis in the process of NAFLD, and meanwhile, NAFLD influences disorders of immune cells in the liver and intestinal tract. Biological agents targeting at intestinal immunity has been shown in preclinical studies to be an effective method for systemic immune modulation and alleviates immune-mediated injury.Conclusions: Intestinal immune disorder plays an important role in triggering and amplifying hepatic inflammation in NAFLD. Advances in knowledge of the gut-liver axis are driving the development of diagnostic, prognostic and therapeutic tools based on intestine immunity for the management of NAFLD.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yalan Lei
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Gastroenterology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Jingwei Mao
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
49
|
Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022; 45:229-244. [PMID: 35391713 DOI: 10.1007/s12272-022-01379-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and has become prevalent in the adult population worldwide, given the ongoing obesity pandemic. NAFLD comprises several hepatic disorders, ranging from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and carcinoma. Excessive fat accumulation in the liver can induce the development of fatty liver, whereas the progression of fatty liver to NASH involves various complex factors. The crucial difference between fatty liver and NASH is the presence of inflammation and fibrosis, the emergence of which is closely associated with the action of immune cells and immunological factors, such as chemokines and cytokines. Thus, expanding our understanding of immunological mechanisms contributing to NASH pathogenesis will lead to the identification of therapeutic targets and the development of viable therapeutics against NASH.
Collapse
Affiliation(s)
- Ki Wung Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
50
|
Millar CL, Anto L, Garcia C, Kim MB, Jain A, Provatas AA, Clark RB, Lee JY, Nichols FC, Blesso CN. Gut microbiome-derived glycine lipids are diet-dependent modulators of hepatic injury and atherosclerosis. J Lipid Res 2022; 63:100192. [PMID: 35278409 PMCID: PMC9020096 DOI: 10.1016/j.jlr.2022.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr-/- model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr-/- mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe-/- mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr-/- mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr-/- were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.
Collapse
Affiliation(s)
- Courtney L Millar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA; The Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| | - Liya Anto
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Anisha Jain
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Anthony A Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Robert B Clark
- Department of Immunology, UConn Health, Farmington, CT, USA; Department of Medicine, UConn Health, Farmington, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Frank C Nichols
- Department of Periodontology, UConn Health, Farmington, CT, USA
| | | |
Collapse
|