1
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
2
|
Wang X, Lipiński P, Ogłuszka M, Mazgaj R, Woliński J, Szkopek D, Zaworski K, Kopeć Z, Żelazowska B, Tarantino G, Brilli E, Starzyński RR. Oral supplementation with Sucrosomial® Iron improves the iron status of preterm piglets delivered by cesarean section. Food Funct 2025; 16:3525-3541. [PMID: 40227702 DOI: 10.1039/d4fo04806g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Premature infants are more likely to develop iron deficiency caused by an inadequate iron storage due to shortened pregnancy. Sucrosomial® Iron (SI) is an oral iron formulation of ferric pyrophosphate with high bioavailability and tolerability. This research compared the iron status of preterm and full-term piglets and evaluated the effects of SI on iron homeostasis in the early postnatal period. Eighteen preterm piglets (born via cesarean section on gestation day 109) and twelve full-term piglets (natural birth) were divided into five groups (n = 6 piglets per group): full-term/preterm piglets without iron supplementation, full-term/preterm piglets supplemented with SI (2 mg Fe per piglet per day, days 4-10), and preterm piglets supplemented with ferrous sulfate (2 mg Fe per piglet per day, days 4-10). Samples were collected on day 11. Preterm piglets showed poor growth and low total body iron content, and they developed iron deficiency anemia, as indicated by decreased red blood cell indices and plasma iron parameters. The iron deficiency was partially improved by SI supplementation. Interestingly, higher hepatic and splenic non-heme iron content, accompanied by increased tissue and plasma ferritin, were found in preterm piglets compared to full-term piglets. SI also contributed to tissue iron accumulation in preterm piglets. Functional iron deficiency and iron accumulation in tissues make the regulation of iron metabolism in preterm piglets different from that in full-term ones. SI can alleviate the negative effects of iron imbalances caused by premature birth by regulating the hepcidin-ferroportin axis. In addition, SI did not induce inflammatory or oxidative responses, and its effects are comparable to those of the classic iron supplement, ferrous sulfate. These results indicate that SI is a promising iron supplement for improving the iron status of premature infants.
Collapse
Affiliation(s)
- Xiuying Wang
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Paweł Lipiński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland
| | - Rafał Mazgaj
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Jarosław Woliński
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
| | - Dominika Szkopek
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
| | - Kamil Zaworski
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
| | - Zuzanna Kopeć
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Beata Żelazowska
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | | | - Elisa Brilli
- Scientific Department, Pharmanutra S.p.A., 56122 Pisa, Italy
| | - Rafał Radosław Starzyński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| |
Collapse
|
3
|
He Y, Lin Y, Song J, Song M, Nie X, Sun H, Xu C, Han Z, Cai J. From mechanisms to medicine: Ferroptosis as a Therapeutic target in liver disorders. Cell Commun Signal 2025; 23:125. [PMID: 40055721 PMCID: PMC11889974 DOI: 10.1186/s12964-025-02121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
In recent 10 years, ferroptosis has become a hot research direction in the scientific research community as a new way of cell death. Iron toxicity accumulation and lipotoxicity are unique features. Several studies have found that ferroptosis is involved in the regulation of the hepatic microenvironment and various hepatic metabolisms, thereby mediating the progression of related liver diseases. For example, NRF2 and FSP1, as important regulatory proteins of ferroptosis, are involved in the development of liver tumors and liver failure. In this manuscript, we present the mechanisms involved in ferroptosis, the concern of ferroptosis with the liver microenvironment and the progression of ferroptosis in various liver diseases. In addition, we summarize recent clinical advances in targeted ferroptosis therapy for related diseases. We expect that this manuscript can provide a new perspective for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yuqi He
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfeng Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Mingzhu Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Xiaoxia Nie
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Hong Sun
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Changyun Xu
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Zhongyu Han
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| | - Juan Cai
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| |
Collapse
|
4
|
Meloni A, Restaino G, Positano V, Pistoia L, Keilberg P, Santodirocco M, Spasiano A, Casini T, Serra M, De Marco E, Roberti MG, Bagnato S, Pepe A, Clemente A, Missere M. Pancreatic Volume in Thalassemia: Determinants and Association with Alterations of Glucose Metabolism. Diagnostics (Basel) 2025; 15:568. [PMID: 40075815 PMCID: PMC11899254 DOI: 10.3390/diagnostics15050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Objectives: This study aimed to compare the pancreatic volume between beta-thalassemia major (β-TM) and beta-thalassemia intermedia (β-TI) patients and between thalassemia patients and healthy subjects and to determine the predictors of pancreatic volume and its association with glucose metabolism in β-TM and β-TI patients. Methods: We considered 145 β-TM patients and 19 β-TI patients enrolled in the E-MIOT project and 20 healthy subjects. The pancreatic volume and pancreatic and hepatic iron levels were quantified by magnetic resonance imaging. Results: The pancreatic volume indexed by body surface area (PVI) was significantly lower in both β-TI and β-TM patients compared to healthy subjects and in β-TM patients compared to β-TI patients. The only independent determinants of PVI were pancreatic iron in β-TM and hepatic iron in β-TI. In β-TM, there was an association between alterations of glucose metabolism and PVI, and PVI was a comparable predictor of altered glucose metabolism compared to pancreatic iron. Only one β-TI patient had an altered glucose metabolism and showed a reduced PVI and pancreatic iron overload. Conclusions: Thalassemia syndromes are characterized by a reduced pancreatic volume, associated with iron levels. In β-TM, the pancreatic volume and iron deposition are associated with the development and progression of alterations of glucose metabolism.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Gennaro Restaino
- Radiology Department, Responsible Research Hospital, 86100 Campobasso, Italy; (G.R.); (M.M.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Laura Pistoia
- Unità Operativa Complessa Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Petra Keilberg
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Michele Santodirocco
- Centro Microcitemia—Day Hospital Thalassemia Poliambulatorio “Giovanni Paolo II”, Ospedale Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy;
| | - Anna Spasiano
- Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, 80131 Napoli, Italy;
| | - Tommaso Casini
- SOC Oncologia, Ematologia e Trapianto di Cellule Staminali Emopoietiche, Meyer Children’s Hospital IRCCS, 50139 Firenze, Italy;
| | - Marilena Serra
- Day Hospital di Talassemia, Ospedale “V. Fazzi”, 73100 Lecce, Italy;
| | - Emanuela De Marco
- Unità Operativa Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria Pisana—Stabilimento S. Chiara, 56126 Pisa, Italy;
| | - Maria Grazia Roberti
- Servizio Trasfusionale, Azienda Ospedaliero-Universitaria OO.RR. Foggia, 71100 Foggia, Italy;
| | - Sergio Bagnato
- Ematologia Microcitemia, Ospedale San Giovanni di Dio—ASP Crotone, 88900 Crotone, Italy;
| | - Alessia Pepe
- Institute of Radiology, Department of Medicine, University of Padua, 35128 Padua, Italy;
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Massimiliano Missere
- Radiology Department, Responsible Research Hospital, 86100 Campobasso, Italy; (G.R.); (M.M.)
| |
Collapse
|
5
|
Nyffenegger N, Flace A, Varol A, Altermatt P, Doucerain C, Sundstrom H, Dürrenberger F, Manolova V. The oral ferroportin inhibitor vamifeport prevents liver iron overload in a mouse model of hemochromatosis. Hemasphere 2024; 8:e147. [PMID: 39267817 PMCID: PMC11391117 DOI: 10.1002/hem3.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 09/15/2024] Open
Abstract
Hemochromatosis is an inherited iron overload condition caused by mutations that reduce the levels of the iron-regulatory hormone hepcidin or its binding to ferroportin. The hepcidin-ferroportin axis is pivotal to iron homeostasis, providing opportunities for therapeutic intervention in iron overload disorders like hemochromatosis. The aim of this study was to evaluate the efficacy of the oral ferroportin inhibitor vamifeport in the Hfe C282Y mouse model, which carries the most common mutation found in patients with hemochromatosis. A single oral dose of vamifeport lowered serum iron levels in Hfe C282Y mice, with delayed onset and shorter duration than observed in wild-type mice. Vamifeport induced transient hypoferremia by inhibiting ferroportin and resulted in a feedback regulation of liver Hamp in wild-type mice, which was absent in Hfe C282Y mice, reflecting the dysregulated systemic iron sensing in this hemochromatosis model. Chronic dosing with vamifeport led to sustained serum and liver iron reductions in Hfe C282Y mice, as well as markedly reducing liver Hamp expression in Hfe C282Y mice, suggesting distinct regulation of liver Hamp expression following acute or continuous iron restriction via vamifeport. At the tested dose, vamifeport retained its activity when combined with phlebotomy and did not significantly interfere with liver iron removal by phlebotomy in Hfe C282Y mice. These data demonstrate that chronic vamifeport treatment significantly reduces serum iron levels and prevents liver iron loading in the Hfe C282Y mouse model of hemochromatosis, thus providing preclinical proof of concept for the efficacy of vamifeport in hemochromatosis with or without phlebotomy.
Collapse
Affiliation(s)
| | - Anna Flace
- Research Zurich, CSL R&D Schlieren Switzerland
| | - Ahmet Varol
- Research Zurich, CSL R&D Schlieren Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Sardo U, Perrier P, Cormier K, Sotin M, Personnaz J, Medjbeur T, Desquesnes A, Cannizzo L, Ruiz-Martinez M, Thevenin J, Billoré B, Jung G, Abboud E, Peyssonnaux C, Nemeth E, Ginzburg YZ, Ganz T, Kautz L. The hepatokine FGL1 regulates hepcidin and iron metabolism during anemia in mice by antagonizing BMP signaling. Blood 2024; 143:1282-1292. [PMID: 38232308 PMCID: PMC11103088 DOI: 10.1182/blood.2023022724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
ABSTRACT As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure the adequate supply of iron to the bone marrow for red blood cell production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine fibrinogen-like 1 (FGL1) as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia, and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo. Deletion of Fgl1 in mice results in higher hepcidin levels at baseline and after bleeding. FGL1 exerts its activity by directly binding to bone morphogenetic protein 6 (BMP6), thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription.
Collapse
Affiliation(s)
- Ugo Sardo
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Prunelle Perrier
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Kevin Cormier
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Manon Sotin
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Jean Personnaz
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Thanina Medjbeur
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Aurore Desquesnes
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Lisa Cannizzo
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | - Julie Thevenin
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Benjamin Billoré
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Elise Abboud
- Institut Cochin, INSERM, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Léon Kautz
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Zhang N, Yang P, Li Y, Ouyang Q, Hou F, Zhu G, Zhang B, Huang J, Jia J, Xu A. Serum Iron Overload Activates the SMAD Pathway and Hepcidin Expression of Hepatocytes via SMURF1. J Clin Transl Hepatol 2024; 12:227-235. [PMID: 38426189 PMCID: PMC10899870 DOI: 10.14218/jcth.2023.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Background and Aims Liver iron overload can induce hepatic expression of bone morphogenic protein (BMP) 6 and activate the BMP/SMAD pathway. However, serum iron overload can also activate SMAD but does not induce BMP6 expression. Therefore, the mechanisms through which serum iron overload activates the BMP/SMAD pathway remain unclear. This study aimed to clarify the role of SMURF1 in serum iron overload and the BMP/SMAD pathway. Methods A cell model of serum iron overload was established by treating hepatocytes with 2 mg/mL of holo-transferrin (Holo-Tf). A serum iron overload mouse model and a liver iron overload mouse model were established by intraperitoneally injecting 10 mg of Holo-Tf into C57BL/6 mice and administering a high-iron diet for 1 week followed by a low-iron diet for 2 days. Western blotting and real-time PCR were performed to evaluate the activation of the BMP/SMAD pathway and the expression of hepcidin. Results Holo-Tf augmented the sensitivity and responsiveness of hepatocytes to BMP6. The E3 ubiquitin-protein ligase SMURF1 mediated Holo-Tf-induced SMAD1/5 activation and hepcidin expression; specifically, SMURF1 expression dramatically decreased when the serum iron concentration was increased. Additionally, the expression of SMURF1 substrates, which are important molecules involved in the transduction of BMP/SMAD signaling, was significantly upregulated. Furthermore, in vivo analyses confirmed that SMURF1 specifically regulated the BMP/SMAD pathway during serum iron overload. Conclusions SMURF1 can specifically regulate the BMP/SMAD pathway by augmenting the responsiveness of hepatocytes to BMPs during serum iron overload.
Collapse
Affiliation(s)
- Ning Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterology, Beijing Shunyi Hospital, Beijing, China
| | - Pengyao Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Hou
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guixin Zhu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bei Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Naito Y, Yasumura S, Okuno K, Asakura M, Tsujino T, Masuyama T, Ishihara M. Hypoxia-inducible factor-prolyl hydroxylase inhibitor Roxadustat (FG-4592) reduces renal fibrosis in Dahl salt-sensitive rats. J Hypertens 2024; 42:497-505. [PMID: 38014420 DOI: 10.1097/hjh.0000000000003623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Although hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitors have been developed for the treatment of renal anemia, their effects on cardiac and renal dysfunction remain unknown. We previously reported on Dahl salt-sensitive rats, in a rat model of salt-sensitive hypertension, that exhibited anemia and impaired expression of duodenal iron transporters after the development of hypertensive cardiac and renal dysfunction. Therefore, we investigated the effects of Roxadustat (FG-4592), an HIF-PH inhibitor, on anemia, iron regulation, and cardiac and renal dysfunction in Dahl salt-sensitive rats. METHODS Six-week-old male Dahl salt-sensitive rats were fed a normal or high-salt diet for 8 weeks. A further subset of Dahl salt-sensitive rats, that were fed a high-salt diet, was administered Roxadustat for 8 weeks. RESULTS Dahl salt-sensitive rats fed a high-salt diet developed hypertension, cardiac and renal dysfunction, and anemia after 8 weeks of feeding. Roxadustat increased hemoglobin and serum erythropoietin levels in Dahl salt-sensitive rats fed a high-salt diet. With regard to the iron-regulating system, Roxadustat lowered hepatic hepcidin gene expression and increased the gene expression of duodenal iron transporters, such as cytochrome b and divalent metal transporter 1 , in Dahl salt-sensitive rats fed a high-salt diet. Roxadustat did not affect the development of hypertension and cardiac hypertrophy in Dahl salt-sensitive rats with a high-salt diet; however, Roxadustat treatment attenuated renal fibrosis in these rats. CONCLUSIONS Roxadustat ameliorated anemia with affecting the gene expression of the iron-regulating system, and did not affect cardiac hypertrophy but attenuated renal fibrosis in Dahl salt-sensitive rats fed a high-salt diet.
Collapse
Affiliation(s)
- Yoshiro Naito
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Seiki Yasumura
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Keisuke Okuno
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Masanori Asakura
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Takeshi Tsujino
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe
| | - Tohru Masuyama
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
- Nishinomiya Watanabe Cardiovascular Center, Nishinomiya, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| |
Collapse
|
9
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 239.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Rodrigues F, Coman T, Fouquet G, Côté F, Courtois G, Trovati Maciel T, Hermine O. A deep dive into future therapies for microcytic anemias and clinical considerations. Expert Rev Hematol 2023; 16:349-364. [PMID: 37092971 DOI: 10.1080/17474086.2023.2206556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Microcytic anemias (MA) have frequent or rare etiologies. New discoveries in understanding and treatment of microcytic anemias need to be reviewed. AREAS COVERED Microcytic anemias with a focus on the most frequent causes and on monogenic diseases that are relevant for understanding biocellular mechanisms of MA. All treatments except gene therapy, with a focus on recent advances. PubMed search with references selected by expert opinion. EXPERT OPINION As the genetic and cellular backgrounds of dyserythropoiesis will continue to be clarified, collaboration with bioengineering of treatments acting specifically at the protein domain level will continue to provide new therapies in hematology as well as oncology and neurology.
Collapse
Affiliation(s)
- François Rodrigues
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | - Tereza Coman
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
- Département d'hématologie, Institut Gustave Roussy, Villejuif, France
| | - Guillemette Fouquet
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Hématologie clinique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Francine Côté
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | | | | | - Olivier Hermine
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| |
Collapse
|
11
|
Sardo U, Perrier P, Cormier K, Sotin M, Desquesnes A, Cannizzo L, Ruiz-Martinez M, Thevenin J, Billoré B, Jung G, Abboud E, Peyssonnaux C, Nemeth E, Ginzburg YZ, Ganz T, Kautz L. The hepatokine FGL1 regulates hepcidin and iron metabolism during the recovery from hemorrhage-induced anemia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535920. [PMID: 37066218 PMCID: PMC10104156 DOI: 10.1101/2023.04.06.535920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure adequate supply of iron to the bone marrow for red blood cells production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine FGL1 as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo . Deletion of Fgl1 in mice results in a blunted repression of hepcidin after bleeding. FGL1 exerts its activity by direct binding to BMP6, thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription. Key points 1/ FGL1 regulates iron metabolism during the recovery from anemia. 2/ FGL1 is an antagonist of the BMP/SMAD signaling pathway.
Collapse
|
12
|
Abstract
Iron overload remains a lethal complication of β-thalassemia and other anemias caused by ineffective erythropoiesis. This review discusses the pathogenetic mechanisms of iron overload in thalassemia, at organismal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA.
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| |
Collapse
|
13
|
Li Y, Ouyang Q, Chen W, Liu K, Zhang B, Yao J, Zhang S, Ding J, Cong M, Xu A. An iron-dependent form of non-canonical ferroptosis induced by labile iron. SCIENCE CHINA. LIFE SCIENCES 2023; 66:516-527. [PMID: 36515861 DOI: 10.1007/s11427-022-2244-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Ferroptosis is a recently identified iron-dependent form of nonapoptotic cell death characterized by reactive oxygen species (ROS) generation and lipid peroxidation. Here, we report a novel iron-dependent form of ferroptosis induced by labile iron and investigate the mechanism underlying this process. We find that labile iron-induced ferroptosis is distinct from canonical ferroptosis and is linked to the mitochondrial pathway. Specifically, the mitochondrial calcium uniporter mediates the ferroptosis induced by labile iron. Interestingly, cells undergoing labile iron-induced ferroptosis exhibit cytoplasmic features of oncosis and nuclear features of apoptosis. Furthermore, labile iron-induced ferroptosis involves a unique set of genes. Finally, labile iron-induced ferroptosis was observed in liver subjected to acute iron overload in vivo. Our study reveals a novel form of ferroptosis that may be implicated in diseases caused by acute injury.
Collapse
Affiliation(s)
- Yanmeng Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qin Ouyang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Chen
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ke Liu
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Bei Zhang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jingyi Yao
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Song Zhang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Anjian Xu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
14
|
Scaramellini N, Fischer D, Agarvas AR, Motta I, Muckenthaler MU, Mertens C. Interpreting Iron Homeostasis in Congenital and Acquired Disorders. Pharmaceuticals (Basel) 2023; 16:ph16030329. [PMID: 36986429 PMCID: PMC10054723 DOI: 10.3390/ph16030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Mammalian cells require iron to satisfy their metabolic needs and to accomplish specialized functions, such as hematopoiesis, mitochondrial biogenesis, energy metabolism, or oxygen transport. Iron homeostasis is balanced by the interplay of proteins responsible for iron import, storage, and export. A misbalance of iron homeostasis may cause either iron deficiencies or iron overload diseases. The clinical work-up of iron dysregulation is highly important, as severe symptoms and pathologies may arise. Treating iron overload or iron deficiency is important to avoid cellular damage and severe symptoms and improve patient outcomes. The impressive progress made in the past years in understanding mechanisms that maintain iron homeostasis has already changed clinical practice for treating iron-related diseases and is expected to improve patient management even further in the future.
Collapse
Affiliation(s)
- Natalia Scaramellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dania Fischer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Anand R. Agarvas
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Martina U. Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Side, 69120 Heidelberg, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221564582; Fax: +49-6221564580
| |
Collapse
|
15
|
Abstract
The cardiovascular system requires iron to maintain its high energy demands and metabolic activity. Iron plays a critical role in oxygen transport and storage, mitochondrial function, and enzyme activity. However, excess iron is also cardiotoxic due to its ability to catalyze the formation of reactive oxygen species and promote oxidative damage. While mammalian cells have several redundant iron import mechanisms, they are equipped with a single iron-exporting protein, which makes the cardiovascular system particularly sensitive to iron overload. As a result, iron levels are tightly regulated at many levels to maintain homeostasis. Iron dysregulation ranges from iron deficiency to iron overload and is seen in many types of cardiovascular disease, including heart failure, myocardial infarction, anthracycline-induced cardiotoxicity, and Friedreich's ataxia. Recently, the use of intravenous iron therapy has been advocated in patients with heart failure and certain criteria for iron deficiency. Here, we provide an overview of systemic and cellular iron homeostasis in the context of cardiovascular physiology, iron deficiency, and iron overload in cardiovascular disease, current therapeutic strategies, and future perspectives.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
16
|
Xiao X, Moschetta GA, Xu Y, Fisher AL, Alfaro-Magallanes VM, Dev S, Wang CY, Babitt JL. Regulation of iron homeostasis by hepatocyte TfR1 requires HFE and contributes to hepcidin suppression in β-thalassemia. Blood 2023; 141:422-432. [PMID: 36322932 PMCID: PMC9936306 DOI: 10.1182/blood.2022017811] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Transferrin receptor 1 (TfR1) performs a critical role in cellular iron uptake. Hepatocyte TfR1 is also proposed to influence systemic iron homeostasis by interacting with the hemochromatosis protein HFE to regulate hepcidin production. Here, we generated hepatocyte Tfrc knockout mice (Tfrcfl/fl;Alb-Cre+), either alone or together with Hfe knockout or β-thalassemia, to investigate the extent to which hepatocyte TfR1 function depends on HFE, whether hepatocyte TfR1 impacts hepcidin regulation by serum iron and erythropoietic signals, and its contribution to hepcidin suppression and iron overload in β-thalassemia. Compared with Tfrcfl/fl;Alb-Cre- controls, Tfrcfl/fl;Alb-Cre+ mice displayed reduced serum and liver iron; mildly reduced hematocrit, mean cell hemoglobin, and mean cell volume; increased erythropoietin and erythroferrone; and unchanged hepcidin levels that were inappropriately high relative to serum iron, liver iron, and erythroferrone levels. However, ablation of hepatocyte Tfrc had no impact on iron phenotype in Hfe knockout mice. Tfrcfl/fl;Alb-Cre+ mice also displayed a greater induction of hepcidin by serum iron compared with Tfrcfl/fl;Alb-Cre- controls. Finally, although acute erythropoietin injection similarly reduced hepcidin in Tfrcfl/fl;Alb-Cre+ and Tfrcfl/fl;Alb-Cre- mice, ablation of hepatocyte Tfrc in a mouse model of β-thalassemia intermedia ameliorated hepcidin deficiency and liver iron loading. Together, our data suggest that the major nonredundant function of hepatocyte TfR1 in iron homeostasis is to interact with HFE to regulate hepcidin. This regulatory pathway is modulated by serum iron and contributes to hepcidin suppression and iron overload in murine β-thalassemia.
Collapse
Affiliation(s)
- Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A. Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Som Dev
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Li Y, Ouyang Q, Chen Z, Chen W, Zhang B, Zhang S, Cong M, Xu A. Intracellular labile iron is a key regulator of hepcidin expression and iron metabolism. Hepatol Int 2022; 17:636-647. [DOI: 10.1007/s12072-022-10452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
|
18
|
Ferritin Increase in Hemochromatosis Subjects After Discontinuing Their Regular Maintenance Treatment: A Longitudinal Analysis Performed During the COVID-19 Imposed Hospital Lockdown. Hemasphere 2022; 6:e770. [PMID: 36034093 PMCID: PMC9400946 DOI: 10.1097/hs9.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
|
19
|
Clinical and Molecular Aspects of Iron Metabolism in Failing Myocytes. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081203. [PMID: 36013382 PMCID: PMC9409945 DOI: 10.3390/life12081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) is a common disease that causes significant limitations on the organism's capacity and, in extreme cases, leads to death. Clinically, iron deficiency (ID) plays an essential role in heart failure by deteriorating the patient's condition and is a prognostic marker indicating poor clinical outcomes. Therefore, in HF patients, supplementation of iron is recommended. However, iron treatment may cause adverse effects by increasing iron-related apoptosis and the production of oxygen radicals, which may cause additional heart damage. Furthermore, many knowledge gaps exist regarding the complex interplay between iron deficiency and heart failure. Here, we describe the current, comprehensive knowledge about the role of the proteins involved in iron metabolism. We will focus on the molecular and clinical aspects of iron deficiency in HF. We believe that summarizing the new advances in the translational and clinical research regarding iron deficiency in heart failure should broaden clinicians' awareness of this comorbidity.
Collapse
|
20
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
21
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
22
|
Supplementation with High or Low Iron Reduces Colitis Severity in an AOM/DSS Mouse Model. Nutrients 2022; 14:nu14102033. [PMID: 35631174 PMCID: PMC9147005 DOI: 10.3390/nu14102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
The relationship between colitis-associated colorectal cancer (CAC) and the dysregulation of iron metabolism has been implicated. However, studies on the influence of dietary iron deficiency on the incidence of CAC are limited. This study investigated the effects of dietary iron deficiency and dietary non-heme iron on CAC development in an azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. The four-week-old mice were divided into the following groups: iron control (IC; 35 ppm iron/kg) + normal (NOR), IC + AOM/DSS, iron deficient (ID; <5 ppm iron/kg diet) + AOM/DSS, and iron overload (IOL; approximately 2000 ppm iron/kg) + AOM/DSS. The mice were fed the respective diets for 13 weeks, and the AOM/DSS model was established at week five. FTH1 expression increased in the mice’s colons in the IC + AOM/DSS group compared with that observed in the ID and IOL + AOM/DSS groups. The reduced number of colonic tumors in the ID + AOM/DSS and IOL + AOM/DSS groups was accompanied by the downregulated expression of cell proliferation regulators (PCNA, cyclin D1, and c-Myc). Iron overload inhibited the increase in the expression of NF-κB and its downstream inflammatory cytokines (IL-6, TNFα, iNOS, COX2, and IL-1β), likely due to the elevated expression of antioxidant genes (SOD1, TXN, GPX1, GPX4, CAT, HMOX1, and NQO1). ID + AOM/DSS may hinder tumor development in the AOM/DSS model by inhibiting the PI3K/AKT pathway by increasing the expression of Ndrg1. Our study suggests that ID and IOL diets suppress AOM/DSS-induced tumors and that long-term iron deficiency or overload may negate CAC progression.
Collapse
|
23
|
Li Y, Miller I, Prasad P, George NA, Parrow NL, Fleming RE. Effects of Exogenous Transferrin on the Regulation of Iron Metabolism and Erythropoiesis in Iron Deficiency With or Without Anemia. Front Physiol 2022; 13:893149. [PMID: 35634155 PMCID: PMC9132588 DOI: 10.3389/fphys.2022.893149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Erythropoietic response is controlled not only by erythropoietin but also by iron. In addition to its role in iron delivery, transferrin also functions as a signaling molecule, with effects on both iron homeostasis and erythropoiesis. We investigated hematologic parameters, iron status and expression of key proteins, including the hepatic iron regulatory protein hepcidin and the suppressive erythroid factor Erfe, in mice subject to dietary iron deficiency with and without anemia. The acute effect of iron on these parameters was investigated by administration of exogenous iron-loaded transferrin (holoTf) in each of the mouse models. Serum iron in mice with iron deficiency (ID) is modestly lower with hematologic parameters maintained by utilization of iron stores in mice with ID. As expected, erythropoietin expression and concentration, along with marrow Erfe are unaffected in ID mice. Administration of holoTf restores serum iron and Tf saturation levels to those observed in control mice and results in an increase in hepcidin compared to ID mice not treated with holoTf. The expression of the Bmp signaling molecule Bmp6 is not significantly increased following Tf treatment in ID mice. Thus, the expression level of the gene encoding hepcidin, Hamp1, is increased relative to Bmp6 expression in ID mice following treatment with holoTf, leading us to speculate that Tf saturation may influence Bmp sensitivity. In mice with iron deficiency anemia (IDA), decreased hematologic parameters were accompanied by pronounced decreases in serum and tissue iron concentrations, and an increase in serum erythropoietin. In the absence of exogenous holoTf, the greater serum erythropoietin was not reflected by an increase in marrow Erfe expression. HoloTf administration did not acutely change serum Epo in IDA mice. Marrow Erfe expression was, however, markedly increased in IDA mice following holoTf, plausibly accounting for the lack of an increase in Hamp1 following holoTf treatment in the IDA mice. The increase in Erfe despite no change in erythropoietin suggests that Tf acts to increase erythropoietin sensitivity. These observations underscore the importance of Tf in modulating the erythropoietic response in recovery from iron deficiency anemia, with implications for other stress erythropoiesis conditions.
Collapse
Affiliation(s)
- Yihang Li
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ian Miller
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Princy Prasad
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Nisha Ajit George
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Nermi L. Parrow
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Robert E. Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
24
|
Sangkhae V, Nemeth E. Quantitating Iron Transport across the Mouse Placenta In Vivo using Nonradioactive Iron Isotopes. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/63378. [PMID: 35635455 PMCID: PMC9927870 DOI: 10.3791/63378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Iron is essential for maternal and fetal health during pregnancy, with approximately 1 g of iron needed in humans to sustain a healthy pregnancy. Fetal iron endowment is entirely dependent on iron transfer across the placenta, and perturbations of this transfer can lead to adverse pregnancy outcomes. In mice, measurement of iron fluxes across the placenta traditionally relied on radioactive iron isotopes, a highly sensitive but burdensome approach. Stable iron isotopes (57Fe and 58Fe) offer a nonradioactive alternative for use in human pregnancy studies. Under physiological conditions, transferrin-bound iron is the predominant form of iron taken up by the placenta. Thus, 58Fe-transferrin was prepared and injected intravenously in pregnant dams to directly assess placental iron transport and bypass maternal intestinal iron absorption as a confounding variable. Isotopic iron was quantitated in the placenta and mouse embryonic tissues by inductively coupled plasma mass spectrometry (ICP-MS). These methods can also be employed in other animal model systems of physiology or disease to quantify in vivo iron dynamics.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles;
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
25
|
Hemojuvelin deficiency promotes liver mitochondrial dysfunction and predisposes mice to hepatocellular carcinoma. Commun Biol 2022; 5:153. [PMID: 35194137 PMCID: PMC8863832 DOI: 10.1038/s42003-022-03108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022] Open
Abstract
Hemojuvelin (HJV) enhances signaling to the iron hormone hepcidin and its deficiency causes iron overload, a risk factor for hepatocellular carcinoma (HCC). We utilized Hjv−/− mice to dissect mechanisms for hepatocarcinogenesis. We show that suboptimal treatment with diethylnitrosamine (DEN) triggers HCC only in Hjv−/− but not wt mice. Liver proteomics data were obtained by mass spectrometry. Hierarchical clustering analysis revealed that Hjv deficiency and DEN elicit similar liver proteomic responses, including induction of mitochondrial proteins. Dietary iron overload of wt mice does not recapitulate the liver proteomic phenotype of Hjv−/− animals, which is only partially corrected by iron depletion. Consistent with these data, primary Hjv−/− hepatocytes exhibit mitochondrial hyperactivity, while aged Hjv−/− mice develop spontaneous HCC. Moreover, low expression of HJV or hepcidin (HAMP) mRNAs predicts poor prognosis in HCC patients. We conclude that Hjv has a hepatoprotective function and its deficiency in mice promotes mitochondrial dysfunction and hepatocarcinogenesis. Hemojuvelin (HJV), a BMP co-receptor promoting hepcidin expression in the liver, has a hepatoprotective function and its deficiency in mice triggers mitochondrial dysfunction and hepatocarcinogenesis.
Collapse
|
26
|
Erythroid overproduction of erythroferrone causes iron overload and developmental abnormalities in mice. Blood 2022; 139:439-451. [PMID: 34614145 PMCID: PMC8777203 DOI: 10.1182/blood.2021014054] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
The hormone erythroferrone (ERFE) is produced by erythroid cells in response to hemorrhage, hypoxia, or other erythropoietic stimuli, and it suppresses the hepatic production of the iron-regulatory hormone hepcidin, thereby mobilizing iron for erythropoiesis. Suppression of hepcidin by ERFE is believed to be mediated by interference with paracrine bone morphogenetic protein (BMP) signaling that regulates hepcidin transcription in hepatocytes. In anemias with ineffective erythropoiesis, ERFE is pathologically overproduced, but its contribution to the clinical manifestations of these anemias is not well understood. We generated 3 lines of transgenic mice with graded erythroid overexpression of ERFE and found that they developed dose-dependent iron overload, impaired hepatic BMP signaling, and relative hepcidin deficiency. These findings add to the evidence that ERFE is a mediator of iron overload in conditions in which ERFE is overproduced, including anemias with ineffective erythropoiesis. At the highest levels of ERFE overexpression, the mice manifested decreased perinatal survival, impaired growth, small hypofunctional kidneys, decreased gonadal fat depots, and neurobehavioral abnormalities, all consistent with impaired organ-specific BMP signaling during development. Neutralizing excessive ERFE in congenital anemias with ineffective erythropoiesis may not only prevent iron overload but may have additional benefits for growth and development.
Collapse
|
27
|
Fisher AL, Babitt JL. Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Dev Dyn 2022; 251:26-46. [PMID: 33993583 PMCID: PMC8594283 DOI: 10.1002/dvdy.372] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Jodie L Babitt
- Corresponding author: Jodie L Babitt, Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Mailing address: 185 Cambridge St., CPZN-8208, Boston, MA 02114. Telephone: +1 (617) 643-3181.
| |
Collapse
|
28
|
Wang S, Chen C, Yu L, Mueller J, Rausch V, Mueller S. Bone morphogenetic protein 6-mediated crosstalk between endothelial cells and hepatocytes recapitulates the iron-sensing pathway in vitro. J Biol Chem 2021; 297:101378. [PMID: 34740612 PMCID: PMC8637636 DOI: 10.1016/j.jbc.2021.101378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Liver sinusoidal endothelial cell–derived bone morphogenetic protein 6 (BMP6) and the BMP6–small mothers against decapentaplegic homolog (SMAD) signaling pathway are essential for the expression of hepcidin, the secretion of which is considered the systemic master switch of iron homeostasis. However, there are continued controversies related to the strong and direct suppressive effect of iron on hepatocellular hepcidin in vitro in contrast to in vivo conditions. Here, we directly studied the crosstalk between endothelial cells (ECs) and hepatocytes using in vitro coculture models that mimic hepcidin signaling in vivo. Huh7 cells were directly cocultured with ECs, and EC conditioned media (CM) were also used to culture Huh7 cells and primary mouse hepatocytes. To explore the reactions of ECs to surrounding iron, they were grown in the presence of ferric ammonium citrate and heme, two iron-containing molecules. We found that both direct coculture with ECs and EC-CM significantly increased hepcidin expression in Huh7 cells. The upstream SMAD pathway, including phosphorylated SMAD1/5/8, SMAD1, and inhibitor of DNA binding 1, was induced by EC-CM, promoting hepcidin expression. Efficient blockage of this EC-mediated hepcidin upregulation by an inhibitor of the BMP6 receptor ALK receptor tyrosine kinase 2/3 or BMP6 siRNA identified BMP6 as a major hepcidin regulator in this coculture system, which highly fits the model of hepcidin regulation by iron in vivo. In addition, EC-derived BMP6 and hepcidin were highly sensitive to levels of not only ferric iron but also heme as low as 500 nM. We here establish a hepatocyte–endothelial coculture system to fully recapitulate iron regulation by hepcidin using EC-derived BMP6.
Collapse
Affiliation(s)
- Shijin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Linna Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Yu LN, Wang SJ, Chen C, Rausch V, Elshaarawy O, Mueller S. Direct modulation of hepatocyte hepcidin signaling by iron. World J Hepatol 2021; 13:1378-1393. [PMID: 34786173 PMCID: PMC8568584 DOI: 10.4254/wjh.v13.i10.1378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver-secreted hepcidin is the systemic master switch of iron homeostasis and decreased levels of hepcidin are considered to cause iron overload not only in hereditary hemochromatosis but also in hemolytic anemia and chronic liver diseases. The regulation of hepcidin is complex and its response to iron is still not completely understood.
AIM To study the direct effect of iron on various established hepcidin signaling pathways in hepatoma cells or primary hepatocytes.
METHODS Hepcidin mRNA expression was studied by quantitative real-time (qRT)-PCR in the presence of various forms of iron including ferric ammonium citrate (FAC) in hepatoma cells (Huh7), murine primary hepatocytes and an established co-culture model of phorbol myristate acetate-differentiated THP-1 monocytes and Huh7 cells. To analyze hepcidin signaling, the response to bone morphogenetic protein 6 (BMP6), interleukin (IL)-6, IL-1β, hypoxia and lipopolysaccharide (LPS) were studied. Hepcidin and small mothers against decapentaplegic 6 (SMAD6) mRNA levels were assessed by qRT-PCR and the expression of phosphorylated signal transducer and activator of transcription 3 (phospho-STAT3), STAT3, phospho-SMAD1/5/8 and SMAD1 proteins were analyzed by western blot.
RESULTS All iron III forms including FAC efficiently blocked hepcidin mRNA expression at non-toxic dosages in Huh7 cells or primary hepatocytes in a time and dose-dependent manner (P < 0.001; P < 0.05). Hepcidin blockage could be efficiently blunted by iron chelators salicylaldehyde isonicotinoyl hydrazone (SIH) and Desferal (P < 0.001). FAC also inhibited BMP6, hypoxia, IL-1β and IL-6-mediated hepcidin induction (P < 0.001; P < 0.001; P < 0.05; P < 0.001), and FAC also inhibited LPS-mediated hepatic hepcidin induction in co-culture model (P < 0.001). Moreover, FAC reduced SMAD6 mRNA and p-SMAD1/5/8 protein expression at basal or upon stimulation by BMP6 (P < 0.05; P < 0.01), and FAC also reduced SMAD6 and p-SMAD1/5/8 expression under hypoxia (P < 0.01; P < 0.05). However, FAC has no significant effect on p-STAT3 protein expression at basal or upon stimulation by various stimuli. Notably, in the presence of the BMP/SMAD signaling pathway inhibitor LDN193189 Hydrochloride (LDN), FAC was unable to further decrease hepcidin, SMAD6 and p-SMAD1/5/8 expression compared with LDN alone.
CONCLUSION Iron directly blocks hepatocellular hepcidin signaling through the BMP/SMAD pathway but independent of STAT3. This mechanism may contribute to continued iron overload in many pathophysiological conditions ultimately causing a vicious cycle of continued hepcidin suppression.
Collapse
Affiliation(s)
- Lin-Na Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Shi-Jin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Omar Elshaarawy
- Department of Hepatology, Gastroenterology and Liver Transplantation, National Liver Institute, Menoufia University, Shebine Elkom 35121, El Salvador
- Department of Gastroenterology, Royal Liverpool University Hospital, Liverpool L7 8XP, United Kingdom
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| |
Collapse
|
30
|
Katsarou A, Gkouvatsos K, Fillebeen C, Pantopoulos K. Tissue-Specific Regulation of Ferroportin in Wild-Type and Hjv-/- Mice Following Dietary Iron Manipulations. Hepatol Commun 2021; 5:2139-2150. [PMID: 34558857 PMCID: PMC8631100 DOI: 10.1002/hep4.1780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
Hepcidin is a liver‐derived peptide hormone that limits iron egress from tissues to the bloodstream. It operates by binding to the iron exporter ferroportin, which blocks iron transport and tags ferroportin for degradation. Genetic hepcidin inactivation leads to hereditary hemochromatosis, a disease of iron overload. We used wild‐type and Hjv‐/‐ mice, a model of hemochromatosis, to examine the expression of ferroportin and other proteins of iron metabolism in hepcidin target tissues. The animals were previously subjected to dietary iron manipulations. In Hjv‐/‐ mice, hepcidin messenger RNA correlated significantly with hepatic iron load (r = 0.8211, P < 0.001), but was substantially lower compared with wild‐type controls. Duodenal ferroportin and divalent metal transporter 1 (DMT1), as well as splenic and hepatic ferroportin, were overexpressed in these animals. A high‐iron diet (2% carbonyl iron) suppressed duodenal DMT1 levels in both wild‐type and Hjv‐/‐ mice; however, it did not affect duodenal ferroportin expression in Hjv‐/‐ mice, and only reduced it in wild‐type mice. In contrast, the high‐iron diet decreased splenic ferroportin exclusively in Hjv‐/‐ mice, whereas it induced hepatic ferroportin exclusively in wild‐type mice. Conclusion: Our data show that dietary iron differentially affects ferroportin expression in mouse tissues and are consistent with hepcidin‐dependent and hepcidin‐independent mechanisms for ferroportin regulation. In the Hjv‐/‐ mouse model of hemochromatosis, duodenal ferroportin remains unresponsive to iron but DMT1 is appropriately iron‐regulated.
Collapse
Affiliation(s)
- Angeliki Katsarou
- Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Konstantinos Gkouvatsos
- Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Carine Fillebeen
- Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Kostas Pantopoulos
- Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Iron loading induces cholesterol synthesis and sensitizes endothelial cells to TNFα-mediated apoptosis. J Biol Chem 2021; 297:101156. [PMID: 34480898 PMCID: PMC8463868 DOI: 10.1016/j.jbc.2021.101156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
In plasma, iron is normally bound to transferrin, the principal protein in blood responsible for binding and transporting iron throughout the body. However, in conditions of iron overload when the iron-binding capacity of transferrin is exceeded, non-transferrin-bound iron (NTBI) appears in plasma. NTBI is taken up by hepatocytes and other parenchymal cells via NTBI transporters and can cause cellular damage by promoting the generation of reactive oxygen species. However, how NTBI affects endothelial cells, the most proximal cell type exposed to circulating NTBI, has not been explored. We modeled in vitro the effects of systemic iron overload on endothelial cells by treating primary human umbilical vein endothelial cells (HUVECs) with NTBI (ferric ammonium citrate [FAC]). We showed by RNA-Seq that iron loading alters lipid homeostasis in HUVECs by inducing sterol regulatory element-binding protein 2-mediated cholesterol biosynthesis. We also determined that FAC increased the susceptibility of HUVECs to apoptosis induced by tumor necrosis factor-α (TNFα). Moreover, we showed that cholesterol biosynthesis contributes to iron-potentiated apoptosis. Treating HUVECs with a cholesterol chelator hydroxypropyl-β-cyclodextrin demonstrated that depletion of cholesterol was sufficient to rescue HUVECs from TNFα-induced apoptosis, even in the presence of FAC. Finally, we showed that FAC or cholesterol treatment modulated the TNFα pathway by inducing novel proteolytic processing of TNFR1 to a short isoform that localizes to lipid rafts. Our study raises the possibility that iron-mediated toxicity in human iron overload disorders is at least in part dependent on alterations in cholesterol metabolism in endothelial cells, increasing their susceptibility to apoptosis.
Collapse
|
32
|
Lakhal-Littleton S. Advances in understanding the crosstalk between mother and fetus on iron utilization. Semin Hematol 2021; 58:153-160. [PMID: 34389107 DOI: 10.1053/j.seminhematol.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
A full-term pregnancy comes with significant demand for iron. Not meeting this demand has adverse effects on maternal health and on the intrauterine and postnatal development of the infant. In the infant, some of these adverse effects cannot be reversed by postnatal iron supplementation, highlighting the need to tackle iron deficiency in utero. Achieving this requires sound understanding of the pathways that govern iron transfer at the fetomaternal interface. Two pathways are emerging as key players in this context; the hepcidin/ferroportin axis pathway and the iron regulatory protein (IRPs) pathway. In late gestation, suppression of maternal hepcidin, by as yet unknown factors, is required for increasing iron availability to the growing fetus. In the placenta, the rate of iron uptake by transferrin receptor TfR1 at the apical/maternal side and of iron release by ferroportin FPN at the basal/fetal side is controlled by IRP1. In fetal hepatocytes, build up of fetal iron stores requires post-translational inhibition of FPN by the cell-autonomous action of hepcidin. In the fetal liver, FPN is also subject to additional control at the transcriptional level, possibly by the action of hypoxia-inducible factor HIF2α. The rates of apical iron uptake and basal iron release in the placenta are modulated according to iron availability in the maternal blood and the placenta's own needs. This placental modulation ensures that the amount of iron delivered to the fetal circulation is maintained within a normal range, even in the face of mild maternal iron deficiency or overload. However, when maternal iron deficiency or overload are extreme, placental modulation is not sufficient to maintain normal iron supply to the fetus, resulting in fetal iron deficiency and overload respectively. Thus, the rate of iron transfer at the fetomaternal interface is subject to several regulatory signals operating simultaneously in the maternal liver, the placenta and the fetal liver. These regulatory signals act in concert to maintain normal iron supply to the fetus within a wide range of maternal iron states, but fail to do so when maternal iron deficiency or overload are extreme. The limitations of existing experimental models must be overcome if we are to gain better understanding of the role of these regulatory signals in normal and complicated pregnancy. Ultimately, that understanding could help identify better markers of fetal iron demand and underpin novel iron replacement strategies to treat maternal and fetal iron deficiency.
Collapse
|
33
|
Iron overload inhibits BMP/SMAD and IL-6/STAT3 signaling to hepcidin in cultured hepatocytes. PLoS One 2021; 16:e0253475. [PMID: 34161397 PMCID: PMC8221488 DOI: 10.1371/journal.pone.0253475] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepcidin is a peptide hormone that targets the iron exporter ferroportin, thereby limiting iron entry into the bloodstream. It is generated in hepatocytes mainly in response to increased body iron stores or inflammatory cues. Iron stimulates expression of bone morphogenetic protein 6 (BMP6) from liver sinusoidal endothelial cells, which in turn binds to BMP receptors on hepatocytes and induces the SMAD signaling cascade for transcriptional activation of the hepcidin-encoding HAMP mRNA. SMAD signaling is also essential for inflammatory HAMP mRNA induction by the IL-6/STAT3 pathway. Herein, we utilized human Huh7 hepatoma cells and primary murine hepatocytes to assess the effects of iron perturbations on signaling to hepcidin. Iron chelation appeared to slightly impair signaling to hepcidin. Subsequent iron supplementation not only failed to reverse these effects, but drastically reduced basal HAMP mRNA and inhibited HAMP mRNA induction by BMP6 and/or IL-6. Thus, treatment of cells with excess iron inhibited basal and BMP6-mediated SMAD5 phosphorylation and induction of HAMP, ID1 and SMAD7 mRNAs in a dose-dependent manner. Iron also inhibited IL-6-mediated STAT3 phosphorylation and induction of HAMP and SOCS3 mRNAs. These responses were accompanied by induction of GCLC and HMOX1 mRNAs, known markers of oxidative stress. We conclude that hepatocellular iron overload suppresses hepcidin by inhibiting the SMAD and STAT3 signaling pathways downstream of their respective ligands.
Collapse
|
34
|
Guo HH, Xiong L, Pan JX, Lee D, Liu K, Ren X, Wang B, Yang X, Cui S, Mei L, Xiong WC. Hepcidin contributes to Swedish mutant APP-induced osteoclastogenesis and trabecular bone loss. Bone Res 2021; 9:31. [PMID: 34108442 PMCID: PMC8190093 DOI: 10.1038/s41413-021-00146-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Patients with Alzheimer's disease (AD) often have lower bone mass than healthy individuals. However, the mechanisms underlying this change remain elusive. Previously, we found that Tg2576 mice, an AD animal model that ubiquitously expresses Swedish mutant amyloid precursor protein (APPswe), shows osteoporotic changes, reduced bone formation, and increased bone resorption. To understand how bone deficits develop in Tg2576 mice, we used a multiplex antibody array to screen for serum proteins that are altered in Tg2576 mice and identified hepcidin, a master regulator of iron homeostasis. We further investigated hepcidin's function in bone homeostasis and found that hepcidin levels were increased not only in the serum but also in the liver, muscle, and osteoblast (OB) lineage cells in Tg2576 mice at both the mRNA and protein levels. We then generated mice selectively expressing hepcidin in hepatocytes or OB lineage cells, which showed trabecular bone loss and increased osteoclast (OC)-mediated bone resorption. Further cell studies suggested that hepcidin increased OC precursor proliferation and differentiation by downregulating ferroportin (FPN) expression and increasing intracellular iron levels. In OB lineage cells, APPswe enhanced hepcidin expression by inducing ER stress and increasing OC formation, in part through hepcidin. Together, these results suggest that increased hepcidin expression in hepatocytes and OB lineage cells in Tg2576 mice contributes to enhanced osteoclastogenesis and trabecular bone loss, identifying the hepcidin-FPN-iron axis as a potential therapeutic target to prevent AD-associated bone loss.
Collapse
Affiliation(s)
- Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kevin Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bo Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shun Cui
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
35
|
Zhang Y, Lu X, Tai B, Li W, Li T. Ferroptosis and Its Multifaceted Roles in Cerebral Stroke. Front Cell Neurosci 2021; 15:615372. [PMID: 34149358 PMCID: PMC8209298 DOI: 10.3389/fncel.2021.615372] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a unique regulated cell death defined by the intracellular iron overload and distinct biological features compared with other well-known programmed cell death. Ferroptosis can be triggered by many causes including decreased expression of glutathione (GSH), inhibition of the function of glutathione-dependent peroxidase 4 (GPX4), and system xc–, all of which finally lead to the over-accumulation of lipid peroxides in the cell. Ferroptosis has been reported to play an important role in the pathophysiological process of various cancers. In recent years, much evidence also proved that ferroptosis is involved in the progress of cerebral stroke. In this review, we summarized the characteristics of ferroptosis and the potential relationship between ferroptosis and ischemic and hemorrhagic stroke, to provide new targets and ideas for the therapy of stroke.
Collapse
Affiliation(s)
- Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyang Lu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Bai Tai
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Weijia Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
36
|
Varga E, Pap R, Jánosa G, Sipos K, Pandur E. IL-6 Regulates Hepcidin Expression Via the BMP/SMAD Pathway by Altering BMP6, TMPRSS6 and TfR2 Expressions at Normal and Inflammatory Conditions in BV2 Microglia. Neurochem Res 2021; 46:1224-1238. [PMID: 33835366 PMCID: PMC8053173 DOI: 10.1007/s11064-021-03322-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
The hormone hepcidin plays a central role in controlling iron homeostasis. Iron-mediated hepcidin synthesis is triggered via the BMP/SMAD pathway. At inflammation, mainly IL-6 pro-inflammatory cytokine mediates the regulation of hepcidin via the JAK/STAT signalling pathway. Microglial cells of the central nervous system are able to recognize a broad spectrum of pathogens via toll-like receptors and initiate inflammatory response. Although the regulation of hepcidin synthesis is well described in many tissues, little is known about the inflammation mediated hepcidin regulation in microglia. In this study, we investigated the pathways, which are involved in HAMP regulation in BV2 microglia due to inflammatory mediators and the possible relationships between the iron regulatory pathways. Our results showed that IL-6 produced by resting BV2 cells was crucial in maintaining the basal HAMP expression and hepcidin secretion. It was revealed that IL-6 neutralization decreased both STAT3 and SMAD1/5/9 phosphorylation suggesting that IL-6 proinflammatory cytokine is necessary to maintain SMAD1/5/9 activation. We revealed that IL-6 influences BMP6 and TMPRSS6 protein levels, moreover it modified TfR2 expression, as well. In this study, we revealed that BV2 microglia increased their hepcidin secretion upon IL-6 neutralization although the major regulatory pathways were inhibited. Based on our results it seems that both at inflammation and at normal condition the absence of IL-6 triggered HAMP transcription and hepcidin secretion via the NFκB pathway and possibly by the autocrine effect of TNFα cytokine on BV2 microglia.
Collapse
Affiliation(s)
- Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary.
| |
Collapse
|
37
|
Hanudel MR, Wong S, Jung G, Qiao B, Gabayan V, Zuk A, Ganz T. Amelioration of chronic kidney disease-associated anemia by vadadustat in mice is not dependent on erythroferrone. Kidney Int 2021; 100:79-89. [PMID: 33811979 DOI: 10.1016/j.kint.2021.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Vadadustat is an investigational hypoxia-inducible factor prolyl hydroxylase inhibitor that increases endogenous erythropoietin production and has been shown to decrease hepcidin levels, ameliorate iron restriction, and increase hemoglobin concentrations in anemic patients with chronic kidney disease (CKD). In studies of physiological responses to other erythropoietic stimuli, erythropoietin induced erythroblast secretion of erythroferrone (ERFE), which acts on the liver to suppress hepcidin production and mobilize iron for erythropoiesis. We therefore investigated whether vadadustat effects on erythropoiesis and iron metabolism are dependent on ERFE. Wild type and ERFE knockout mice with and without CKD were treated with vadadustat or vehicle. In both wild type and ERFE knockout CKD models, vadadustat was similarly effective, as evidenced by normalized hemoglobin concentrations, increased expression of duodenal iron transporters, lower serum hepcidin levels, and decreased tissue iron concentrations. This is consistent with ERFE-independent increased iron mobilization. Vadadustat treatment also lowered serum urea nitrogen and creatinine concentrations and decreased expression of kidney fibrosis markers. Lastly, vadadustat affected fibroblast growth factor 23 (FGF23) profiles: in non-CKD mice, vadadustat increased plasma total FGF23 out of proportion to intact FGF23, consistent with the known effects of hypoxia-inducible factor-1α and erythropoietin on FGF23 production and metabolism. However, in the mice with CKD, vadadustat markedly decreased both total and intact FGF23, effects likely contributed to by the reduced loss of kidney function. Thus, in this CKD model, vadadustat ameliorated anemia independently of ERFE, improved kidney parameters, and decreased FGF23. How vadadustat affects CKD progression in humans warrants future studies.
Collapse
Affiliation(s)
- Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| | - Shirley Wong
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Bo Qiao
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Victoria Gabayan
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Anna Zuk
- Research and Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
38
|
Pauk M, Kufner V, Rumenovic V, Dumic-Cule I, Farkas V, Milosevic M, Bordukalo-Niksic T, Vukicevic S. Iron overload in aging Bmp6‑/‑ mice induces exocrine pancreatic injury and fibrosis due to acinar cell loss. Int J Mol Med 2021; 47:60. [PMID: 33649802 PMCID: PMC7910010 DOI: 10.3892/ijmm.2021.4893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
The relationship between hemochromatosis and diabetes has been well established, as excessive iron deposition has been reported to result in impaired function of the endocrine and exocrine pancreas. Therefore, the objective of the present study was to analyze the effects of iron accumulation on the pancreata and glucose homeostasis in a bone morphogenetic protein 6-knockout (Bmp6−/−) mouse model of hemochromatosis. The sera and pancreatic tissues of wild-type (WT) and Bmp6−/− mice (age, 3 and 10 months) were subjected to biochemical and histological analyses. In addition, 18F-fluorodeoxyglucose biodistribution was evaluated in the liver, muscle, heart, kidney and adipose tissue of both animal groups. The results demonstrated that 3-month-old Bmp6−/− mice exhibited iron accumulation preferentially in the exocrine pancreas, with no signs of pancreatic injury or fibrosis. No changes were observed in the glucose metabolism, as pancreatic islet diameter, insulin and glucagon secretion, blood glucose levels and glucose uptake in the liver, muscle and adipose tissue remained comparable with those in the WT mice. Aging Bmp6−/− mice presented with progressive iron deposits in the exocrine pancreas, leading to pancreatic degeneration and injury that was characterized by acinar atrophy, fibrosis and the infiltration of inflammatory cells. However, the aging mice exhibited unaltered blood glucose levels and islet structure, normal insulin secretion and moderately increased α-cell mass compared with those in the age-matched WT mice. Additionally, iron overload and pancreatic damage were not observed in the aging WT mice. These results supported a pathogenic role of iron overload in aging Bmp6−/− mice leading to iron-induced exocrine pancreatic deficiency, whereas the endocrine pancreas retained normal function.
Collapse
Affiliation(s)
- Martina Pauk
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Ivo Dumic-Cule
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vladimir Farkas
- Molecular Biology Department, Rudjer Boskovic Institute, HR‑10000 Zagreb, Croatia
| | - Milan Milosevic
- Andrija Stampar School of Public Health, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| |
Collapse
|
39
|
Mleczko‐Sanecka K, Silvestri L. Cell-type-specific insights into iron regulatory processes. Am J Hematol 2021; 96:110-127. [PMID: 32945012 DOI: 10.1002/ajh.26001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Despite its essential role in many biological processes, iron is toxic when in excess due to its propensity to generate reactive oxygen species. To prevent diseases associated with iron deficiency or iron loading, iron homeostasis must be tightly controlled. Intracellular iron content is regulated by the Iron Regulatory Element-Iron Regulatory Protein (IRE-IRP) system, whereas systemic iron availability is adjusted to body iron needs chiefly by the hepcidin-ferroportin (FPN) axis. Here, we aimed to review advances in the field that shed light on cell-type-specific regulatory mechanisms that control or modify systemic and local iron balance, and how shifts in cellular iron levels may affect specialized cell functions.
Collapse
Affiliation(s)
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| |
Collapse
|
40
|
Krygier A, Szczepanek-Parulska E, Cieślewicz M, Wrotkowska E, Chanaj-Kaczmarek J, Ruchała M. Iron Homeostasis and Hepcidin Concentration in Patients With Acromegaly. Front Endocrinol (Lausanne) 2021; 12:788247. [PMID: 35211089 PMCID: PMC8863047 DOI: 10.3389/fendo.2021.788247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hepcidin is a protein responsible for maintaining iron (Fe) homeostasis. Data regarding the role of hepcidin in the pathomechanism of Fe balance disturbances associated with acromegaly (AG) are scarce. The aim of the study was to assess the impact of alterations in complete blood count parameters, Fe homeostasis, gonadal status and GH/IGF-1 on the level of hepcidin in AG patients. The study evaluated the differences in hepcidin concentration and iron homeostasis between patients newly diagnosed with AG in comparison to healthy control subjects (CS). We prospectively enrolled 25 adult patients newly diagnosed with AG and 25 healthy volunteers who served as CS. The level of hepcidin was measured using the Hepcidin 25 (bioactive) hs ELISA, which is a highly sensitive enzyme immunoassay for the quantitative in vitro diagnostic measurement (DRG Instruments GmbH, Germany). The median of hepcidin concentration in the serum of patients with AG was significantly lower 9.8 (6.2-18.2) ng/ml as compared to CS 21.3 (14.3-34.0) ng/ml (p = 0.003). In the AG group, a statistically significant negative correlation between hepcidin and IGF-1 (rho = -0.441) was observed. Our study demonstrated a decreased hepcidin level in AG patients in comparison to CS what may have a potentially protective effect against anemia through an increased bioavailability of Fe. Additionally, GH may have a positive direct or indirect effect on erythropoiesis. Further studies on larger patient groups are necessary in order to clarify the exact role of hepcidin in the regulation of erythropoiesis in the excess of GH/IGF-1.
Collapse
Affiliation(s)
- Aleksandra Krygier
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Maja Cieślewicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
41
|
Mohamed G, Aboelhassan S, Zaki MES, Wahba Y. Iron Deficiency Anemia and Serum Hepcidin Level in Children with Typhoid Fever: A Case–Control Study. J PEDIAT INF DIS-GER 2020; 15:288-292. [DOI: 10.1055/s-0040-1715856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Objective Typhoid fever is a common systemic bacterial infection in children with a complex interplay between serum hepcidin and iron. We investigated the relationship between iron deficiency anemia (IDA) and serum hepcidin level in children with acute typhoid fever.
Methods We conducted a preliminary case–control study in Mansoura University Children's Hospital, Egypt from April 2017 to May 2019 including 30 children aged 5 to 15 years with confirmed acute typhoid fever. We recruited 15 healthy nonanemic children, of comparable ages and sex as controls from the same hospital while attending for nonfebrile complaints. Typhoid fever cases were subdivided according to IDA existence into 16 cases with IDA and 14 non-IDA cases. We excluded all children having diseases which may affect serum iron and hepcidin levels, for example, liver, blood, gastrointestinal, and kidney diseases, and patients receiving drugs interfering with iron metabolism. All participants were subjected to complete blood count, serum ferritin, iron, hepcidin levels, and total iron-binding capacity (TIBC).
Results In non-IDA typhoid fever group, serum iron level was significantly low, while serum hepcidin level was significantly high when compared with controls (p < 0.001 and p = 0.02, respectively). In IDA typhoid fever group, no statistically significant difference existed as regards serum hepcidin level when compared with controls (p = 0.53). No significant correlations were detected between serum hepcidin levels and hemoglobin, serum iron, ferritin, and TIBC values in each group.
Conclusion Preexisting iron status could affect serum hepcidin level in patients with acute typhoid fever. Coexistence of IDA might oppose the up-regulatory effect of acute typhoid fever on serum hepcidin level.
Collapse
Affiliation(s)
- Ghada Mohamed
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samir Aboelhassan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yahya Wahba
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
42
|
Xiao X, Alfaro-Magallanes VM, Babitt JL. Bone morphogenic proteins in iron homeostasis. Bone 2020; 138:115495. [PMID: 32585319 PMCID: PMC7453787 DOI: 10.1016/j.bone.2020.115495] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic protein (BMP)-SMAD signaling pathway plays a central role in regulating hepcidin, which is the master hormone governing systemic iron homeostasis. Hepcidin is produced by the liver and acts on the iron exporter ferroportin to control iron absorption from the diet and iron release from body stores, thereby providing adequate iron for red blood cell production, while limiting the toxic effects of excess iron. BMP6 and BMP2 ligands produced by liver endothelial cells bind to BMP receptors and the coreceptor hemojuvelin (HJV) on hepatocytes to activate SMAD1/5/8 signaling, which directly upregulates hepcidin transcription. Most major signals that influence hepcidin production, including iron, erythropoietic drive, and inflammation, intersect with the BMP-SMAD pathway to regulate hepcidin transcription. Mutation or inactivation of BMP ligands, BMP receptors, HJV, SMADs or other proteins that modulate the BMP-SMAD pathway result in hepcidin dysregulation, leading to iron-related disorders, such as hemochromatosis and iron refractory iron deficiency anemia. Pharmacologic modulators of the BMP-SMAD pathway have shown efficacy in pre-clinical models to regulate hepcidin expression and treat iron-related disorders. This review will discuss recent insights into the role of the BMP-SMAD pathway in regulating hepcidin to control systemic iron homeostasis.
Collapse
Affiliation(s)
- Xia Xiao
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Víctor M Alfaro-Magallanes
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Xiao X, Dev S, Canali S, Bayer A, Xu Y, Agarwal A, Wang CY, Babitt JL. Endothelial Bone Morphogenetic Protein 2 (Bmp2) Knockout Exacerbates Hemochromatosis in Homeostatic Iron Regulator (Hfe) Knockout Mice but not Bmp6 Knockout Mice. Hepatology 2020; 72:642-655. [PMID: 31778583 PMCID: PMC7253321 DOI: 10.1002/hep.31048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Bone morphogenetic proteins BMP2 and BMP6 play key roles in systemic iron homeostasis by regulating production of the iron hormone hepcidin. The homeostatic iron regulator (HFE) also regulates hepcidin through a mechanism that intersects with the BMP-mothers against decapentaplegic homolog 1/5/8 (SMAD1/5/8) pathway. However, the relative roles of BMP2 compared with BMP6 and whether HFE regulates hepcidin through a BMP2-dependent mechanism remain uncertain. APPROACH AND RESULTS We therefore examined the iron phenotype of mice deficient for both Bmp2 and Bmp6 or both Bmp2 and Hfe compared with single knockout (KO) mice and littermate controls. Eight-week-old double endothelial Bmp6/Bmp2 KO mice exhibited a similar degree of hepcidin deficiency, serum iron overload, and tissue iron overload compared with single KO mice. Notably, dietary iron loading still induced liver SMAD5 phosphorylation and hepcidin in double Bmp6/endothelial Bmp2 KO mice, although no other BMP ligand mRNAs were increased in the livers of double KO mice, and only Bmp6 and Bmp2 mRNA were induced by dietary iron loading in wild-type mice. In contrast, double Hfe/endothelial Bmp2 KO mice exhibited reduced hepcidin and increased extrahepatic iron loading compared to single Hfe or endothelial Bmp2 KO mice. Liver phosphorylated SMAD5 and the SMAD1/5/8 target inhibitor of DNA binding 1 (Id1) mRNA were also reduced in double Hfe/endothelial Bmp2 KO compared with single endothelial Bmp2 KO female mice. Finally, hepcidin and Id1 mRNA induction by homodimeric BMP2, homodimeric BMP6, and heterodimeric BMP2/6 were blunted in Hfe KO primary hepatocytes. CONCLUSIONS These data suggest that BMP2 and BMP6 work collaboratively to regulate hepcidin expression, that BMP2-independent and BMP6-independent SMAD1/5/8 signaling contributes a nonredundant role to hepcidin regulation by iron, and that HFE regulates hepcidin at least in part through a BMP2-independent but SMAD1/5/8-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jodie L. Babitt
- Contact Information Jodie L. Babitt MD, Massachusetts General Hospital, 185 Cambridge St., CPZN-8208, Boston, MA 02114, Phone: (617)-643-3181, Fax: (617)-643-3182,
| |
Collapse
|
44
|
Supplemental Microalgal Iron Helps Replete Blood Hemoglobin in Moderately Anemic Mice Fed a Rice-Based Diet. Nutrients 2020; 12:nu12082239. [PMID: 32727043 PMCID: PMC7468699 DOI: 10.3390/nu12082239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Iron deficiency anemia affects 1.2 billion people globally. Our objectives were to determine if (1) supplemental iron extracted from defatted microalgae (Nannochloropsis oceanica, DGM) and (2) a combination of minute amount of plant phytase and inulin could help replete hemoglobin in anemic mice. Mice (7 weeks old) were fed a control diet (6 mg Fe/kg). After 10 weeks, the mice were assigned to three treatments: control, control + DGM iron (Fe-DGM, 39 mg Fe/kg), or control + 1% inulin + 250 units of phytase/kg (INU−PHY, 6 mg Fe/kg). The mice had free access to diets and water for 6 weeks. The Fe-DGM group had elevated blood hemoglobin (p < 0.01) and a two-fold greater (p < 0.0001) liver non-heme iron over the control. Strikingly, the INU-PHY group had 34% greater non-heme iron than the control, despite the same concentrations of iron in their diets. Fe-DGM group had altered (p < 0.05) mRNA levels of hepcidin, divalent metal transporter 1, transferrin and transferrin receptor 1. Iron extracted from defatted microalgae seemed to be effective in alleviating moderate anemia, and INU-PHY enhanced utilization of intrinsic iron present in the rice diet. Our findings may lead to a novel formulation of these ingredients to develop safer and bioavailable iron supplements for iron-deficient populations.
Collapse
|
45
|
Regulation of Iron Homeostasis and Related Diseases. Mediators Inflamm 2020; 2020:6062094. [PMID: 32454791 PMCID: PMC7212278 DOI: 10.1155/2020/6062094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The liver is the organ for iron storage and regulation; it senses circulating iron concentrations in the body through the BMP-SMAD pathway and regulates the iron intake from food and erythrocyte recovery into the bloodstream by secreting hepcidin. Under iron deficiency, hypoxia, and hemorrhage, the liver reduces the expression of hepcidin to ensure the erythropoiesis but increases the excretion of hepcidin during infection and inflammation to reduce the usage of iron by pathogens. Excessive iron causes system iron overload; it accumulates in never system and damages neurocyte leading to neurodegenerative diseases such as Parkinson's syndrome. When some gene mutations affect the perception of iron and iron regulation ability in the liver, then they decrease the expression of hepcidin, causing hereditary diseases such as hereditary hemochromatosis. This review summarizes the source and utilization of iron in the body, the liver regulates systemic iron homeostasis by sensing the circulating iron concentration, and the expression of hepcidin regulated by various signaling pathways, thereby understanding the pathogenesis of iron-related diseases.
Collapse
|
46
|
Mehta KJ, Busbridge M, Patel VB, Farnaud SJ. Hepcidin secretion was not directly proportional to intracellular iron-loading in recombinant-TfR1 HepG2 cells: short communication. Mol Cell Biochem 2020; 468:121-128. [PMID: 32185675 PMCID: PMC7145775 DOI: 10.1007/s11010-020-03716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
Hepcidin is the master regulator of systemic iron homeostasis and its dysregulation is observed in several chronic liver diseases. Unlike the extracellular iron-sensing mechanisms, the intracellular iron-sensing mechanisms in the hepatocytes that lead to hepcidin induction and secretion are incompletely understood. Here, we aimed to understand the direct role of intracellular iron-loading on hepcidin mRNA and peptide secretion using our previously characterised recombinant HepG2 cells that over-express the cell-surface iron-importer protein transferrin receptor-1. Gene expression of hepcidin (HAMP) was determined by real-time PCR. Intracellular iron levels and secreted hepcidin peptide levels were measured by ferrozine assay and immunoassay, respectively. These measurements were compared in the recombinant and wild-type HepG2 cells under basal conditions at 30 min, 2 h, 4 h and 24 h. Data showed that in the recombinant cells, intracellular iron content was higher than wild-type cells at 30 min (3.1-fold, p < 0.01), 2 h (4.6-fold, p < 0.01), 4 h (4.6-fold, p < 0.01) and 24 h (1.9-fold, p < 0.01). Hepcidin (HAMP) mRNA expression was higher than wild-type cells at 30 min (5.9-fold; p = 0.05) and 24 h (6.1-fold; p < 0.03), but at 4 h, the expression was lower than that in wild-type cells (p < 0.05). However, hepcidin secretion levels in the recombinant cells were similar to those in wild-type cells at all time-points, except at 4 h, when the level was lower than wild-type cells (p < 0.01). High intracellular iron in recombinant HepG2 cells did not proportionally increase hepcidin peptide secretion. This suggests a limited role of elevated intracellular iron in hepcidin secretion.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- School of Life Sciences, University of Westminster, London, UK.
| | - Mark Busbridge
- Department of Clinical Biochemistry, Northwest London Pathology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London, UK
| | - Sebastien Je Farnaud
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
47
|
Chen YL, Gomes T, Hardman CS, Vieira Braga FA, Gutowska-Owsiak D, Salimi M, Gray N, Duncan DA, Reynolds G, Johnson D, Salio M, Cerundolo V, Barlow JL, McKenzie AN, Teichmann SA, Haniffa M, Ogg G. Re-evaluation of human BDCA-2+ DC during acute sterile skin inflammation. J Exp Med 2020; 217:e20190811. [PMID: 31845972 PMCID: PMC7062525 DOI: 10.1084/jem.20190811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) produce type I interferon (IFN-I) and are traditionally defined as being BDCA-2+CD123+. pDCs are not readily detectable in healthy human skin, but have been suggested to accumulate in wounds. Here, we describe a CD1a-bearing BDCA-2+CD123int DC subset that rapidly infiltrates human skin wounds and comprises a major DC population. Using single-cell RNA sequencing, we show that these cells are largely activated DCs acquiring features compatible with lymph node homing and antigen presentation, but unexpectedly express both BDCA-2 and CD123, potentially mimicking pDCs. Furthermore, a third BDCA-2-expressing population, Axl+Siglec-6+ DCs (ASDC), was also found to infiltrate human skin during wounding. These data demonstrate early skin infiltration of a previously unrecognized CD123intBDCA-2+CD1a+ DC subset during acute sterile inflammation, and prompt a re-evaluation of previously ascribed pDC involvement in skin disease.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tomas Gomes
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Clare S. Hardman
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Felipe A. Vieira Braga
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Open Targets, Wellcome Trust Genome Campus, Hinxton, UK
| | - Danuta Gutowska-Owsiak
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- University of Gdańsk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Maryam Salimi
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - David A. Duncan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - David Johnson
- Department of Plastic and Reconstructive Surgery, John Radcliffe Hospital, Oxford University Hospitals National Health Services Foundation Trust, Oxford, UK
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jillian L. Barlow
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Sarah A. Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Institute of Cellular Medicine, Newcastle, UK
- Department of Dermatology and National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Hospitals National Health Services Foundation Trust, Newcastle upon Tyne, UK
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Donker AE, Galesloot TE, Laarakkers CM, Klaver SM, Bakkeren DL, Swinkels DW. Standardized serum hepcidin values in Dutch children: Set point relative to body iron changes during childhood. Pediatr Blood Cancer 2020; 67:e28038. [PMID: 31724793 DOI: 10.1002/pbc.28038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Use of serum hepcidin measurements in pediatrics would benefit from standardized age- and sex-specific reference ranges in children, in order to enable the establishment of clinical decision limits that are universally applicable. PROCEDURE We measured serum hepcidin-25 levels in 266 healthy Dutch children aged 0.3-17 years, using an isotope dilution mass spectrometry assay, standardized with our commutable secondary reference material (RM), assigned by a candidate primary RM. RESULTS We constructed age- and sex-specific values for serum hepcidin and its ratio with ferritin and transferrin saturation (TSAT). Serum hepcidin levels and hepcidin/ferritin and TSAT/hepcidin ratios were similar for both sexes. Serum hepcidin and hepcidin/ferritin ratio substantially declined after the age of 12 years and TSAT/hepcidin ratio gradually increased with increasing age. Serum hepcidin values for Dutch children <12 years (n = 170) and >12 years (n = 96) were 1.9 nmol/L (median); 0.1-13.1 nmol/L (p2.5-p97.5) and 0.9 nmol/L; 0.0-9.1 nmol/L, respectively. Serum ferritin was the most significant correlate of serum hepcidin in our study population, explaining 15.1% and 7.9% of variance in males and females, respectively. Multivariable linear regression analysis including age, blood sampling time, iron parameters, ALT, CRP, and body mass index as independent variables showed a statistically significant negative association between age as a dichotomous variable (≤12 vs >12 years) and log-transformed serum hepcidin levels in both sexes. CONCLUSIONS We demonstrate that serum hepcidin relative to indicators of body iron is age dependent in children, suggesting that the set point of serum hepcidin relative to stored and circulating iron changes during childhood.
Collapse
Affiliation(s)
- Albertine E Donker
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pediatrics, Máxima Medical Center, Veldhoven, The Netherlands
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coby M Laarakkers
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Translational Metabolic Laboratory (TML, 830), Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Siem M Klaver
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Translational Metabolic Laboratory (TML, 830), Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk L Bakkeren
- Department of Clinical Chemistry, Máxima Medical Center , Veldhoven, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Translational Metabolic Laboratory (TML, 830), Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
DUAN L, YIN X, MENG H, FANG X, MIN J, WANG F. [Progress on epigenetic regulation of iron homeostasis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:58-70. [PMID: 32621410 PMCID: PMC8800797 DOI: 10.3785/j.issn.1008-9292.2020.02.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(DMT1), transferrin receptor 1(TFR1), transferrin receptor 2(TFR2), ferroportin(FPN), hepcidin(HAMP), hemojuvelin(HJV) and Ferritin H. Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of FPN, TFR2, HAMP, HJV and bone morphogenetic protein 6 (BMP6) genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses HAMP gene expression. On the contrary, HADC inhibitor upregulates HAMP gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of DMT1, FPN, TFR1, TFR2, Ferritin H and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.
Collapse
|
50
|
Wortham AM, Goldman DC, Chen J, Fleming WH, Zhang AS, Enns CA. Extrahepatic deficiency of transferrin receptor 2 is associated with increased erythropoiesis independent of iron overload. J Biol Chem 2020; 295:3906-3917. [PMID: 32054685 DOI: 10.1074/jbc.ra119.010535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Transferrin receptor 2 (TFR2) is a transmembrane protein expressed mainly in hepatocytes and in developing erythroid cells and is an important focal point in systemic iron regulation. Loss of TFR2 function results in a rare form of the iron-overload disease hereditary hemochromatosis. Although TFR2 in the liver has been shown to be important for regulating iron homeostasis in the body, TFR2's function in erythroid progenitors remains controversial. In this report, we analyzed TFR2-deficient mice in the presence or absence of iron overload to distinguish between the effects caused by a high iron load and those caused by loss of TFR2 function. Analysis of bone marrow from TFR2-deficient mice revealed a reduction in the early burst-forming unit-erythroid and an expansion of late-stage erythroblasts that was independent of iron overload. Spleens of TFR2-deficient mice displayed an increase in colony-forming unit-erythroid progenitors and in all erythroblast populations regardless of iron overload. This expansion of the erythroid compartment coincided with increased erythroferrone (ERFE) expression and serum erythropoietin (EPO) levels. Rescue of hepatic TFR2 expression normalized hepcidin expression and the total cell count of the bone marrow and spleen, but it had no effect on erythroid progenitor frequency. On the basis of these results, we propose a model of TFR2's function in murine erythropoiesis, indicating that deficiency in this receptor is associated with increased erythroid development and expression of EPO and ERFE in extrahepatic tissues independent of TFR's role in the liver.
Collapse
Affiliation(s)
- Aaron M Wortham
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Devorah C Goldman
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239
| | - Juxing Chen
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - William H Fleming
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Caroline A Enns
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|