1
|
Chen K, Feng Q, Liu H. Bibliometric visualization of hepatocellular carcinoma and metabolic syndrome research: trends and emerging areas. Discov Oncol 2025; 16:809. [PMID: 40388038 PMCID: PMC12089568 DOI: 10.1007/s12672-025-02518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
A growing body of research has highlighted the increasing relevance of hepatocellular carcinoma (HCC) and metabolic syndrome (MetS). However, a comprehensive bibliometric visualization analysis on this topic remains lacking. In this study, we retrieved 310 related articles from the Web of Science Core Collection, spanning from January 1, 2014, to December 31, 2023. Using VOS viewer and Cite Space software, we analyzed the relationships among authors, journals, institutions, countries, keywords, and citations. Between 2014 and 2023, there has been a steady increase in publications on HCC and MetS, with the United States and China being the leading contributors in terms of publication volume. The visualization analysis revealed that obesity, insulin resistance, MAFLD, and liver cirrhosis are emerging areas in the intersection of HCC and MetS. Additionally, the international community is increasingly adopting the disease diagnosis term MAFLD, which, compared to NAFLD, shows improved diagnostic performance for predicting both hepatic and extra-hepatic outcomes. Furthermore, hypertension and cardiovascular diseases are emerging as promising new research fields.
Collapse
Affiliation(s)
- Kang Chen
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Qianye Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Haipeng Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Rowan-Carroll A, Meier MJ, Yauk CL, Williams A, Leingartner K, Bradford L, Lorusso L, Atlas E. Deciphering per- and polyfluoroalkyl substances mode of action: comparative gene expression analysis in human liver spheroids. Toxicol Sci 2025; 205:124-142. [PMID: 40037795 DOI: 10.1093/toxsci/kfaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Understanding the mechanisms by which environmental chemicals cause toxicity is necessary for effective human health risk assessment. High-throughput transcriptomics (HTTr) can be used to inform risk assessment on toxicological mechanisms, hazards, and potencies. We applied HTTr to elucidate the molecular mechanisms by which per- and polyfluoroalkyl substances (PFAS) cause liver perturbations. We contrasted transcriptomic profiles of PFOA, PFBS, PFOS, and PFDS against transcriptomic profiles from established liver-toxic and non-toxic reference compounds, alongside peroxisome proliferator-activated receptors (PPARs) agonists. Our analysis was conducted on metabolically competent 3-D human liver spheroids produced from primary cells from 10 donors. Pathway analysis showed that PFOS and PFDS perturb many of the same pathways as the known liver-toxic compounds in the spheroids, and that the cholesterol biosynthesis pathways are significantly affected by exposure to these compounds. PFOA alters lipid metabolism-related pathways but its expression profile does not closely match reference compounds. PFBS upregulates many degradation-related pathways and targets many of the same pathways as the PPAR agonists and acetaminophen. Our transcriptional analysis does not support the claim that these PFAS are DNA-damaging in this model. A multidimensional scaling (MDS) analysis revealed that PFOS, PFOA, and PFDS cluster together in the same multidimensional space as liver-damaging compounds, whereas PFBS clusters more closely with the non-liver-damaging compounds. Benchmark concentration-response modeling predicts that all the PFAS are bioactive in the liver. Overall, our results show that these PFAS produce unique transcriptional changes but also alter pathways associated with established liver-toxic chemicals in this liver spheroid model.
Collapse
Affiliation(s)
- Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON K1S 0K9, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON K1S 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON K1S 0K9, Canada
| | - Karen Leingartner
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON K1S 0K9, Canada
| | - Lauren Bradford
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON K1S 0K9, Canada
| | - Luigi Lorusso
- Chemicals and Environmental Health Management Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON K1S 0K9, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON K1S 0K9, Canada
| |
Collapse
|
3
|
Annadurai P, Isaac AE. Prediction of key pathways in hepatocellular carcinoma (HCC): A machine learning approach using a sample pathway information matrix. Comput Biol Chem 2025; 118:108481. [PMID: 40300216 DOI: 10.1016/j.compbiolchem.2025.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/20/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer, accounting for 75 % of all cases. Individuals with metabolic dysfunctions are at risk of developing significant symptoms, including cirrhosis. To address this, we proposed a novel method to find the signalling pathway based on the patient's gene expression. The objective includes examining the predictive biomarkers associated with cirrhosis-related HCC. The study combines gene expression and pathway enrichment data to find the biologically important pathways in disease progression. The differential gene expression analysis showed 58 upregulated and 62 downregulating differentially expressed genes. These DEGs were utilized to construct a protein-protein interaction network, and then the clustered genes were determined. Subsequently, pathway enrichment analysis was performed for the clustered genes and the gene-pathway interaction matrix was developed. The sample-pathway information matrix (SPIM) was obtained by multiplying the gene-expression and gene-pathway matrix. The key pathways were predicted from the SPIM using random forest model and we achieved 94 % of accuracy. The arachidonic acid metabolism was the most important pathway and genes involved in this pathway includes CYP2C9, CYP2C8, CYP2B6. These genes are well known for promoting metabolic disorders in the liver. Hence, our novel method proves that it could distinguish the samples and extract important pathways that are involved in differentiating the diseased samples based on the gene expression. Therefore, integrating gene expression and their enriched biological pathways may effectively help in identifying the key signalling pathways.
Collapse
Affiliation(s)
- Priyadharshini Annadurai
- Bioinformatics Programming Laboratory, Department of Bioscience, School of Bio Science and Technology, Vellore Institute of Technology, Katpadi, Vellore - 632014, Tamil Nadu, India
| | - Arnold Emerson Isaac
- Bioinformatics Programming Laboratory, Department of Bioscience, School of Bio Science and Technology, Vellore Institute of Technology, Katpadi, Vellore - 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Wang SW, Wang C, Cheng YM, Chen CY, Hsieh TH, Wang CC, Kao JH. Genetic predisposition of metabolic dysfunction-associated steatotic liver disease: a population-based genome-wide association study. Hepatol Int 2025; 19:415-427. [PMID: 39755997 DOI: 10.1007/s12072-024-10769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND/PURPOSE Although metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to replace the diagnosis of non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria since 2023, the genetic predisposition of MASLD remains to be explored. METHODS Participants with data of genome-wide association studies (GWAS) in the Taiwan Biobank database were collected. Patients with missing data, positive for HBsAg, anti-HCV, and alcohol drinking history were excluded. MASLD was defined if having hepatic steatosis on ultrasound, plus at least one of cardiometabolic criteria. The Taiwan biobank used two genetic chips during the period of data collection: Taiwan biobank version 1 (TWBv1) as the initial chip and TWBv2 specifically designed for the Taiwanese population. TWBv2 was used as test group and TWBv1 as validation group. NAFLD fibrosis score (NFS) was used to assess the degree of liver fibrosis, and carotid plaques on duplex ultrasound were employed for the diagnosis of atherosclerosis. RESULTS In a total of 16,407 (mean age 55.35 ± 10.41; 29.6% males) participants, 6722 (41.0%) had MASLD. Eleven single-nucleotide polymorphisms (SNP) were identified to be associated with MASLD. Their functions were exonic in two and intronic in nine. They were related to the PNALA3, and SAMM50 genes located on chromosome 22. The linkage disequilibrium showed a high correlation with each other. Four SNPs of PNALA3 and SAMM50 genes had increased risk of MASLD and higher levels of AST/ALT. In addition, there was no association of these two genes with glucose metabolism, but better lipid profiles in SAMM50. CONCLUSIONS This large GWAS study indicates that eleven SNPs of PNPLA3 and SAMM50 genes predispose the development of MASLD in Taiwanese population.
Collapse
Affiliation(s)
- Shao-Wen Wang
- Department of Education, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Ching Wang
- National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Yu-Ming Cheng
- Department of Gastroenterology and Hepatology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chun-Yi Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, 289 Jianguo Rd., Xindian Area, New Taipei City, 23142, Taiwan.
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
5
|
Hu W, Wang Y, Han J, Zhang W, Chen J, Li X, Wang L. Microfluidic organ-on-a-chip models for the gut-liver axis: from structural mimicry to functional insights. Biomater Sci 2025; 13:1624-1656. [PMID: 40019226 DOI: 10.1039/d4bm01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The gut-liver axis plays a crucial role in maintaining metabolic balance and overall human health. It orchestrates various processes, such as blood flow, nutrient transfer, metabolite processing, and immune cell communication between the two organs. Traditional methods, such as animal models and two-dimensional (2D) cell cultures, are insufficient in fully replicating the intricate functions of the gut-liver axis. The emergence of microfluidic technology has revolutionized this field, facilitating the development of organ-on-a-chip (OOC) systems. These systems are capable of mimicking the complex structures and dynamic environments of the gut and liver in vitro and incorporating sensors for real-time monitoring. In this article, we review the latest progress in gut-on-a-chip (GOC) and liver-on-a-chip (LOC) systems, as well as the integrated gut-liver-on-a-chip (GLOC) models. Our focus lies in the simulation of physiological parameters, three-dimensional (3D) structural mimicry, microbiome integration, and multicellular co-culture. All these aspects are essential for constructing accurate in vitro models of the gut and liver. Furthermore, we explore the current applications of OOC technology in the study of the gut and liver, including its use in disease modeling, toxicity testing, and drug screening. Finally, we discuss the challenges that remain and outline potential future directions for advancing GOC and LOC development in vitro.
Collapse
Affiliation(s)
- Wanlin Hu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yushen Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
6
|
Xue F, Liu YK, Chen XY, Chen SS, Yu XR, Li HW, Lu LG, Chen MH. Targeting cGAS-STING: modulating the immune landscape of hepatic diseases. Front Immunol 2025; 16:1498323. [PMID: 40098962 PMCID: PMC11911377 DOI: 10.3389/fimmu.2025.1498323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Liver diseases, including viral hepatitis, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC), represent a significant threat to global health due to their high mortality rates. The cGAS-STING pathway, a critical part of the innate immune system, plays a crucial role in detecting cytoplasmic DNA and initiating immune responses, including autoimmune inflammation and antitumor immunity. Genomic instability during cancer progression can trigger this pathway by releasing DNA into the cytoplasm. Emerging research indicates that cGAS-STING signaling is intricately involved in maintaining liver homeostasis and contributes to the pathogenesis of various liver diseases. This review outlines the cGAS-STING pathway, with a particular focus on its activation mechanism and its roles in several notable liver conditions. Specifically, we explore the complex interplay of cGAS-STING signaling in viral hepatitis, ALD, MASLD, and HCC, and discuss its potential as a therapeutic target. For example, in HCC, strategies targeting cGAS-STING include using nanomaterials to deliver STING agonists, combining radiofrequency ablation (RFA) with cGAS-STING activation, and leveraging radiotherapy to enhance pathway activation. Furthermore, modulating cGAS-STING activity may offer therapeutic avenues for viral hepatitis and chronic liver diseases like MASLD and ALD, either by boosting antiviral responses or mitigating inflammation. This review highlights the complex role of cGAS-STING signaling in these specific liver diseases and underscores the need for further research to fully realize its therapeutic potential.
Collapse
Affiliation(s)
- Feng Xue
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
| | - Yong-Kang Liu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Ying Chen
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Shan-Shan Chen
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Xiang-Rong Yu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Hua-Wen Li
- Department of Gynecology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Li-Gong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mu-He Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Zheng S, Xue T, Xue C, Li S, Zao X, Li X, Cao X, Du H, Qi W, Seetoh WS, Wang W, Zhang P, Ye Y. Regulatory mechanisms of signaling pathways in liver cancer treatment with traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119386. [PMID: 39848414 DOI: 10.1016/j.jep.2025.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), as a longstanding therapeutic approach, offers unique advantages and potential in the treatment of liver cancer. Recent studies have highlighted its role in preventing liver cancer progression by modulating key signaling pathways. TCM's multi-component, multi-target, and multi-pathway mechanisms of action have garnered significant attention in the medical community for their ability to address complex diseases like liver cancer. AIM OF THE STUDY This review examines the current status and challenges in the application of TCM to regulate specific signaling pathways, including PI3K/Akt, NF-κB, TGF-β, Wnt/β-Catenin, and Notch, in liver cancer treatment. The goal is to further elucidate the critical roles of these pathways in liver cancer progression and provide new insights into the modern scientific interpretation of TCM. MATERIALS AND METHODS Literature was retrieved from PubMed and Web of Science databases using keywords such as "traditional Chinese medicine," "Chinese medicine," and "signaling pathway." The articles reviewed span from 2004 to 2024. RESULTS TCM demonstrates significant therapeutic and preventive effects in liver cancer by modulating signaling pathways involved in tumorigenesis. These pathways influence processes such as cell growth, invasion, proliferation, and inflammatory responses, contributing to the anti-cancer effects of TCM. CONCLUSION By modulating key signaling pathways such as PI3K/Akt, NF-κB, TGF-β, Wnt/β-Catenin, and Notch, TCM plays an important role in both the treatment and prevention of liver cancer, offering a promising therapeutic approach grounded in traditional practices and modern scientific understanding.
Collapse
Affiliation(s)
- Shihao Zheng
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Beijing University of Chinese Medicine, 100102, China.
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, 050000, China
| | - Chengyuan Xue
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Beijing University of Chinese Medicine, 100102, China
| | - Size Li
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Beijing University of Chinese Medicine, 100102, China
| | - Xiaobin Zao
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Xiaoke Li
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China
| | - Xu Cao
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China
| | - Hongbo Du
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China
| | - Wenying Qi
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Beijing University of Chinese Medicine, 100102, China
| | - Wei Song Seetoh
- Beijing University of Chinese Medicine, 100102, China; School of Biological Sciences, Nanyang Technological University, 637551, China
| | - Wei Wang
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Beijing University of Chinese Medicine, 100102, China
| | - Peng Zhang
- Department of Spleen and Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, 100078, China.
| | - Yongan Ye
- Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
8
|
Kosekli MA, Aktas G. The systemic immune inflammation index is a reliable and novel risk factor for metabolic dysfunction-associated fatty liver disease. Curr Med Res Opin 2025; 41:247-251. [PMID: 39912740 DOI: 10.1080/03007995.2025.2463952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/12/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) can trigger inflammation, hepatocellular damage, cirrhosis, and hepatocellular carcinoma. There is a need for non-invasive, cost-effective diagnostic markers for MAFLD, as current methods like liver biopsy are invasive. This study investigates the potential of the systemic immune inflammation index (SII) as a useful tool in diagnosis of MAFLD. METHODS A cohort of 806 individuals, including 426 with MAFLD and 380 controls, was analyzed. SII values, along with various biochemical and inflammatory markers, were compared between groups. RESULTS The MAFLD group exhibited significantly higher SII values, which correlated with key markers of liver inflammation and function. Median SII levels of the MAFLD patients (581 (45-4553)) were significantly higher than that of the control group (423 (112-2595)) (p <0.001). SII showed moderate sensitivity (72%) and specificity (56%) in detecting MAFLD. Logistic regression analysis identified SII as an independent risk factor for MAFLD, with a unit increase in SII increasing the risk by 1.21 times. CONCLUSIONS These findings suggest that SII could serve as a useful, noninvasive marker for diagnosing and monitoring MAFLD, warranting further longitudinal studies to explore its role in disease progression and treatment response.
Collapse
Affiliation(s)
- Mehmet Ali Kosekli
- Department of Gastroenterology, Abant Izzet Baysal University Hospital, Bolu, Turkey
| | - Gulali Aktas
- Department of Internal Medicine, Abant Izzet Baysal University Hospital, Bolu, Turkey
| |
Collapse
|
9
|
Liu ZC, Fu HJ, Li NC, Deng FJ, Gan YK, Ye YJ, Huang BH, Liu C, Chen JH, Li XF. Systematic pharmacology and experimental validation to elucidate the inflammation-associated mechanism of Huanglian Wendan (HLWD) decoction in the treatment of MAFLD associated with atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118841. [PMID: 39299361 DOI: 10.1016/j.jep.2024.118841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metabolic-associated fatty liver disease (MAFLD) and atherosclerosis are very common disorders that frequently coexist. The therapeutic efficacy of Huanglian Wendan (HLWD) decoction, a traditional Chinese medicine (TCM) prescription, is satisfactory in treating MAFLD associated with atherosclerosis. However, the underlying mechanisms through which HLWD exerts its effects need to be elucidated. Given the complex composition of HLWD and its multiple therapeutic targets, pharmacological investigation is challenging. AIM OF THIS STUDY This study aimed to identify the effective compounds in HLWD and elucidate the mechanisms involved in its therapeutic effect on MAFLD associated with atherosclerosis. MATERIALS AND METHODS We used a systematic pharmacology method to identify effective compounds present in HLWD and determine the mechanism by which it affects MAFLD associated with atherosclerosis. The effective components of HLWD were identified through ultrahigh-performance liquid chromatography-q exactive-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). Next, a comprehensive in silico method was used to predict potential related targets and disease targets for these compounds to establish corresponding pathways. The accuracy of our assumed systemic pharmacology results was determined by conducting follow-up experiments. RESULTS By conducting UHPLC-Q-Orbitrap HRMS combined with network analysis, we identified 18 potentially active components of HLWD and assessed the inflammatory regulatory mechanism by which it affects MAFLD associated with atherosclerosis on the basis of 52 key targets. We used a high-fat, high-cholesterol (HFHC)-induced mice model of MAFLD associated with atherosclerosis to confirm our results. We found that administering HLWD significantly improved the appearance of their liver and reduced their body weight, liver weight, blood lipids, hepatic damage, and hepatic pathology. HLWD also decreased atherosclerotic lesion areas, foam cells, and inflammatory cells in the aorta. HLWD showed anti-inflammatory effects, suppressed M1 polarization, and promoted M2 polarization in the liver and aorta. HLWD might also regulate peroxisome proliferator-activated receptor-γ (PPARγ)/nuclear factor kappa-B (NF-κB) signaling to influence macrophage polarization and inflammation. CONCLUSIONS Our results showed that HLWD protected against HFHC diet-induced MAFLD associated with atherosclerosis by regulating PPARγ/NF-κB signaling, thus adjusting macrophage polarization and inflammation. Additionally, pharmacochemistry research, network pharmacology analysis, and experimental verification can be combined to form a comprehensive model used in studies on TCM.
Collapse
Affiliation(s)
- Zhi-Chao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Huan-Jie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, PR China.
| | - Ning-Cen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Fang-Jun Deng
- Department of Cardiovascular, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300150, PR China.
| | - Yong-Kang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300150, PR China.
| | - Yu-Jia Ye
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Bing-Hui Huang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Chang Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Jin-Hong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Xiao-Feng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, PR China.
| |
Collapse
|
10
|
Wang J, Du J, Wang M, Jin M, Tang Z, Mao Y. Global, regional, and national burden of NAFLD in youths and young adults aged 15-39 years, 1990-2021, its attributable risk factors, and projections to 2035: a systematic analysis of the Global Burden of Disease Study 2021. Front Nutr 2025; 12:1509232. [PMID: 39935582 PMCID: PMC11810722 DOI: 10.3389/fnut.2025.1509232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in youths and young adults, and the trend toward younger onset of NAFLD is alarming. Utilizing data from the Global Burden of Disease (GBD) 2021 study, this study assessed the burden and trends of NAFLD in youths and young adults aged 15-39 from 1990 to 2021 and extracted data from this study on the incidence, prevalence, death, and disability-adjusted life-years (DALYs) rates of NAFLD. We evaluated the global temporal trend of NAFLD from 1990 to 2021 with estimated annual percentage change (EAPC) and age-standardized rate (ASR). The Bayesian age-period-cohort (BAPC) model was used to predict future trends of the NAFLD burden to 2035. We found that the global burden of NAFLD in youths and young adults has risen steadily from 1990 to 2021, and projects to increase to 2035, which places enormous pressure on society. To alleviate this burden, implementing measures targeting risk factors such as glycemic control and smoking cessation is necessary.
Collapse
Affiliation(s)
- Jiong Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Jiqing Du
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Minxiu Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Mengyun Jin
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Yuqin Mao
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
11
|
Amirkhizi F, Taghizadeh M, Khalese-Ranjbar B, Hamedi-Shahraki S, Asghari S. The clinical value of serum sirtuin-1 concentration in the diagnosis of metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol 2025; 25:27. [PMID: 39844087 PMCID: PMC11753077 DOI: 10.1186/s12876-025-03613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease and can affect individuals without producing any symptoms. We aimed to explore the value of serum sirtuin-1 (Sirt-1) in the diagnosis of MASLD. METHODS This case-control study analyzed data collected from 190 individuals aged 20 to 60 years. Anthropometric parameters, demographic information, and serum biochemical variables-including glycemic parameters, lipid profiles, liver enzymes, and Sirt-1 levels-were assessed. The correlation between serum Sirt-1 and biochemical variables was examined using Pearson's correlation coefficient. Receiver operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic value of serum Sirt-1 in the context of MASLD. RESULTS Serum Sirt-1 levels was significantly lower in the MASLD group (p < 0.001) and was inversely correlated with serum insulin (r = -0.163, p = 0.025), HOMA-IR (r = -0.169, p = 0.020) and triglyceride (r = -0.190, p = 0.009) and positively correlated with serum levels of high-density lipoprotein cholesterol (HDL-C) (r = 0.214, p = 0.003). The area under the curve (AUC) of Sirt-1 to predict the presence of MASLD was 0.76 (p < 0.001, 95% CI: 0.69, 0.82) with a sensitivity of 78.9, specificity of 61.1, positive predictive value (PPV) of 67.0%, and negative predictive value (NPV) of 74.0%. The optimal cutoff, determined using Youden's index, was 23.75 ng/mL. This indicates that serum Sirt-1 levels below 23.75 ng/mL may be indicative of MASLD. CONCLUSIONS The present study demonstrated that serum Sirt-1 levels were significantly lower in patients with MASLD. Furthermore, these levels were correlated with various metabolic parameters, including insulin resistance and the serum lipid profile. A serum Sirt-1 level below the cutoff of 23.75 ng/mL exhibited a significant association with the presence of MASLD, suggesting its potential utility in identifying patients with this condition.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Banafshe Khalese-Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran.
| |
Collapse
|
12
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Guo X, Li H, Zhu B, Wang X, Xu Q, Aquino E, Koo M, Li Q, Cai J, Glaser S, Wu C. HFD feeding for seven months abolishes STING disruption-driven but not female sex-based protection against hepatic steatosis and inflammation in mice. J Nutr Biochem 2025; 135:109770. [PMID: 39284534 PMCID: PMC11620956 DOI: 10.1016/j.jnutbio.2024.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Stimulator of interferon genes (STING) is positively correlated with the degrees of liver inflammation in human metabolic dysfunction-associated steatotic liver disease (MASLD). In addition, STING disruption alleviates MASLD in mice fed a high-fat diet (HFD) for 3 months (3-m-HFD). Here we investigated the role of the duration of dietary feeding in regulating MASLD in mice and explored the involvement of STING in sex differences in MASLD. Both male and female STING-disrupted (STINGgt) and wild-type C57BL/6J mice were fed an HFD for 3 or 7 months (7-m-HFD). Additionally, female STINGgt mice upon ovariectomy (OVX) and 3-m-HFD were analyzed for MASLD. Upon 3-m-HFD, STINGgt mice exhibited decreased severity of MASLD compared to control. However, upon 7-m-HFD, STINGgt mice were comparable with wild-type mice in body weight, fat mass, and MASLD. Regarding regulating the liver RNA transcriptome, 7-m-HFD increased the expression of genes indicating proinflammatory activation of various liver cells. Interestingly, the severity of MASLD in female mice was much lighter than in male mice, regardless of STING disruption. Upon OVX, female STINGgt mice showed significantly increased severity of MASLD relative to sham control but were comparable with male STINGgt mice. Upon treatment with 17-beta estradiol (E2), hepatocytes revealed decreased fat deposition while macrophages displayed decreases in lipopolysaccharide-induced phosphorylation of Nfkb p65 and Jnk p46 independent of STING. These results suggest that 7-m-HFD, without altering female sex-based protection, abolishes STING disruption-driven protection of MASLD, likely through causing proinflammatory activation of multiple types of liver cells to offset the effect of STING disruption.
Collapse
Affiliation(s)
- Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Xiaoxiao Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Eduardo Aquino
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Minji Koo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Byran, Texas, USA.
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
14
|
Ha YS, Kim TK, Heo J, Oh J, Kim SK, Kim J, Lee J, Yang SR, Hwang S, Kim SJ. Rocaglamide-A mitigates LPS-induced hepatic inflammation by modulating JNK/AP-1 signaling cascade and ROS production in hepatocytes. Toxicol Res 2025; 41:47-59. [PMID: 39802115 PMCID: PMC11717754 DOI: 10.1007/s43188-024-00263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025] Open
Abstract
Lipopolysaccharide (LPS), a gut-derived endotoxin, is a recognized risk factor for both Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Rocaglamide-A (Roc-A), a natural compound derived from the genus Aglaia, is known for its pharmacological and immunosuppressive effects on various cell types. Although our recent investigations have unveiled Roc-A's anti-adipogenic role in adipocytes, its mechanism in hepatic inflammation remains elusive. This study delves into Roc-A's protective effects on LPS-induced hepatic inflammation. Our results demonstrated that Roc-A treatment significantly reduced the LPS-induced production of inflammatory cytokines in hepatocytes. Intriguingly, Roc-A decreased LPS-induced production of reactive oxygen species (ROS), upregulated antioxidant gene expression, and downregulated endoplasmic reticulum (ER) stress-related gene expression. Mechanistically, Roc-A significantly attenuated LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1). Notably, this effect was abolished by the JNK activator Anisomycin, while the JNK inhibitor SP600125 enhanced it. Furthermore, Roc-A suppressed the expression of NF-κB target genes, including inducible nitric oxide synthase (iNOS), thereby alleviating iNOS-derived nitric oxide (NO) production. These findings collectively indicate that Roc-A has the potential to alleviate LPS-induced nitrosative/oxidative stress and hepatic inflammation by inhibiting JNK phosphorylation. Thus, Roc-A emerges as a promising anti-inflammatory intervention for LPS-induced hepatic inflammation. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00263-y.
Collapse
Affiliation(s)
- Yoon-su Ha
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Taek-Kyong Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Jun Heo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Jintaek Oh
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Seung-Kyoon Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 34134 Daejeon, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Jeonghyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Se-Ran Yang
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
- Department of Medicine, Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, 46241 Busan, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Jennemann R, Volz M, Frias-Soler RC, Schulze A, Richter K, Kaden S, Sandhoff R. Glucosylceramide Synthase Inhibition in Combination with Aripiprazole Sensitizes Hepatocellular Cancer Cells to Sorafenib and Doxorubicin. Int J Mol Sci 2024; 26:304. [PMID: 39796160 PMCID: PMC11720485 DOI: 10.3390/ijms26010304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth. Single and combinatorial treatments with both drugs at 5 µM concentration led to efficient cell cycle arrest, reduced expression of cyclins A and E, increased lipid storage in lysosomal compartments, accompanied by increased uptake of lysotracker, and elevated expression of the autophagy marker Lc3 II. Both drugs affected mitochondrial function, indicated by altered mitotracker uptake and impaired mitochondrial respiration. Aripiprazole in monotherapy, or even more pronounced in combination with Genz, also potentiated the effect of the cytostatic drugs sorafenib and doxorubicin on tumor cell- and tumor spheroid-growth inhibition. Targeting GCS with Genz with the parallel application of cationic amphiphilic drugs such as aripiprazole in combination with cytostatic drugs may thus represent a potent therapeutic approach in the treatment of HCC and potentially other cancer types.
Collapse
Affiliation(s)
- Richard Jennemann
- Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany (R.S.)
| | - Martina Volz
- Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany (R.S.)
| | - Roberto Carlos Frias-Soler
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Karsten Richter
- Core Facility Electron Microscopy, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sylvia Kaden
- Core Facility Electron Microscopy, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany (R.S.)
| |
Collapse
|
16
|
Lee CH, Huang YH, Hsu TJ, Yen TH, Hsieh SY. Statin Monotherapy Not Inferior to Aspirin or Combined Aspirin and Statins Reducing the Incidences of Cirrhosis, HCC, and Mortality in MAFLD/MASH Patients: A Population Cohort Study. Int J Gen Med 2024; 17:6495-6511. [PMID: 39742030 PMCID: PMC11687094 DOI: 10.2147/ijgm.s481724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/07/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Metabolic dysfunction-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatohepatitis (MASH) pose significant risks for liver cirrhosis and hepatocellular carcinoma (HCC). Daily aspirin and statins could reduce HCC in patients with MAFLD/MASH. We aimed to clarify whether combined aspirin and statins exert a synergistic effect on prevention of cirrhosis and HCC in patients with MAFLD/MASH. Patients and Methods Patients and their clinical data were collected from the National Health Insurance Research Database (NHIRD), encompassing about 20 million population. A total of 735,574 MAFLD/MASH patients between January 1, 2009, and December 31, 2020 were identified. After applying exclusion criteria, 662,004 cases were enrolled, with a follow-up period of 3 years. Propensity score matching was employed for comparative analysis. Results Our findings indicate that combined statin and aspirin use significantly reduced the incidence of liver cirrhosis (p < 0.001) compared to statin or aspirin alone, or non-use of both drugs. However, the combined therapy did not confer additional benefits in reducing mortality rates and HCC. Furthermore, statin monotherapy exhibited a more pronounced effect in reducing mortality and HCC compared to aspirin alone or combined therapy. Conclusion Our study underscores that statin monotherapy was not inferior to aspirin or aspirin-statin combined therapies in terms of chemoprevention of cirrhosis, HCC, and overall mortality in MAFLD/MASH patients.
Collapse
Affiliation(s)
- Chern-Horng Lee
- Department of Geriatric Medicine and General Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, 333, Taiwan
| | - Yu-Han Huang
- Department of Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan, College of Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Ju Hsu
- Management Office for Health Data (DryLab), Clinical Trial Research Center (CTC), China Medical University Hospital, Taichung, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuanm, 333, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| |
Collapse
|
17
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I exerts its anticancer effects by inducing cell cycle arrest via the KAT2a-ube2C/E2F1 pathway and inhibiting HepG2-induced macrophage M2 polarization. Biochem Biophys Res Commun 2024; 738:150508. [PMID: 39151295 DOI: 10.1016/j.bbrc.2024.150508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, particularly prevalent in China, where it accounts for nearly half of the world's new cases and deaths each year, but has limited therapeutic options. This study systematically investigated the impact of cucurbitacin I on HCC cell lines including SK-Hep-1, Huh-7, and HepG2. The results revealed that cucurbitacin I not only inhibited cell proliferation, cell migration and colony formation, but also induced apoptosis in HCC cells. The apoptotic induction was accompanied by a decrease in the expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl2), and an elevation in the expression levels of pro-apoptotic factors, including tumor protein p53 (P53), bcl2 associated X-apoptosis regulator (Bax), and caspase3 (Cas3). Additionally, cucurbitacin I caused cell cycle arrest by modulating the lysine acetyltransferase 2A (KAT2A)-E2F transcription factor 1 (E2F1)/Ubiquitin-conjugating enzyme E2 C (UBE2C) signaling axis. In terms of regulation on tumor microenvironment, cucurbitacin I was demonstrated the ability to inhibit HCC cell-induced M2 polarization of macrophages. This comprehensive study unveils the multifaceted anti-cancer mechanisms of cucurbitacin I, providing robust support for its potential application in the treatment of HCC, offering new avenues for the future development of HCC treatment strategies.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Yunfei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
18
|
Fan H, Wang R, Wen B, Xiong J. Biomarkers and potential therapeutic targets driving progression of non-alcoholic steatohepatitis to hepatocellular carcinoma predicted through transcriptomic analysis. Front Immunol 2024; 15:1502263. [PMID: 39697329 PMCID: PMC11652351 DOI: 10.3389/fimmu.2024.1502263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is the most prevalent chronic liver condition globally, with potential progression to cirrhosis, and even hepatocellular carcinoma (HCC). The increasing prevalence of NASH underscores the urgent need for advanced diagnostic and therapeutic strategies. Despite its widespread impact, effective treatments to prevent the progression of NASH remain elusive, highlighting the critical importance of innovative molecular techniques in both the diagnosis and management of this disease. Methods Six microarray datasets available in GEO were used to perform Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs).We identified 62 robust upregulated genes and 24 robust downregulated genes. These genes were undergone Gene Ontology enrichment analysis and further examination for expression correlation with NAS score. Molecular subtypes were generated using "ConsensusClusterPlus" on identified genes, which were further assessed for tumor stage relevance, expression differences in adjacent and tumor tissues, and impact on survival in TCGA liver cancer patients. Single-cell analysis was then used to explore the genes across different cell types and subgroups as well as cell-type interactions. The clinical utility of predicted core genes was highlighted through decision curve analysis, with emphasis on HCC prognosis. The GDSC database was used to evaluate the relationship between the predicted core genes and drug sensitivity, while the TIDE database was used to evaluate their relationship with immunotherapy. Results Four core genes, TREM2, GDF15, TTC39A, and ANXA2, were identified as key to influencing HCC prognosis and therapy responsiveness, especially immune treatment efficacy in NASH-associated HCC. Conclusion The core genes may act as critical biomarkers driving the progression of NASH to HCC. They are potential novel targets for the diagnosis and treatment of NASH progression, offering innovative perspectives for its clinical management.
Collapse
Affiliation(s)
- Hui Fan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bin Wen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Chen J, Lu RS, Diaz-Canestro C, Song E, Jia X, Liu Y, Wang C, Cheung CK, Panagiotou G, Xu A. Distinct changes in serum metabolites and lipid species in the onset and progression of NAFLD in Obese Chinese. Comput Struct Biotechnol J 2024; 23:791-800. [PMID: 38318437 PMCID: PMC10839226 DOI: 10.1016/j.csbj.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Metabolic disturbances are major contributors to the onset and progression of non-alcoholic fatty liver disease (NAFLD), which includes a histological spectrum ranging from single steatosis (SS) to non-alcoholic steatohepatitis (NASH). This study aimed to identify serum metabolites and lipids enriched in different histological stages of NAFLD and to explore metabolites/lipids as non-invasive biomarkers in risk prediction of NAFLD and NASH in obese Chinese. METHODS Serum samples and liver biopsies were obtained from 250 NAFLD subjects. Untargeted metabolomic and lipidomic profiling were performed using Liquid Chromatography-Mass Spectrometry. Significantly altered metabolites and lipids were identified by MaAsLin2. Pathway enrichment was conducted with MetaboAnalyst and LIPEA. WGCNA was implemented to construct the co-expression network. Logistic regression models were developed to classify different histological stages of NAFLD. RESULTS A total of 263 metabolites and 550 lipid species were detected in serum samples. Differential analysis and pathway enrichment analysis revealed the progressive patterns in metabolic mechanisms during the transition from normal liver to SS and to NASH, including N-palmitoyltaurine, tridecylic acid, and branched-chain amino acid signaling pathways. The co-expression network showed a distinct correlation between different triglyceride and phosphatidylcholine species with disease severity. Multiple models classifying NAFLD versus normal liver and NASH versus SS identified important metabolic features associated with significant improvement in disease prediction compared to conventional clinical parameters. CONCLUSION Different histological stages of NAFLD are enriched with distinct sets of metabolites, lipids, and metabolic pathways. Integrated algorithms highlight the important metabolic and lipidomic features for diagnosis and staging of NAFLD in obese individuals.
Collapse
Affiliation(s)
- Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
| | - Ronald Siyi Lu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xi Jia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cynthia K.Y. Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Gianni Panagiotou
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
20
|
Lv X, Nie C, Shi Y, Qiao Q, Gao J, Zou Y, Yang J, Chen L, Hou X. Ergothioneine ameliorates metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) by enhancing autophagy, inhibiting oxidative damage and inflammation. Lipids Health Dis 2024; 23:395. [PMID: 39609792 PMCID: PMC11604011 DOI: 10.1186/s12944-024-02382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatosis liver disease (MASLD) is one of the most common metabolic liver diseases around the world, whose prevalence continues to increase. Currently, there are few medications to treat MASLD. Ergothioneine is a natural compound derived from mushrooms whose sulfhydryl groups confer unique antioxidant, anti-inflammatory and detoxifying effects. Currently, research on the therapeutic effects of ergothioneine in MASLD is unknown. Therefore, this study explored the effect and mechanism of EGT in MASLD. METHODS The ameliorative effects and mechanisms of ergothioneine on MASLD were evaluated using HFD mice and PA-treated AML12 cells. Mouse body weight, body fat, IPGTT, IPITT, immunohistochemistry, serum biochemical indices, and staining of liver sections were assayed to verify the protective role of ergothioneine in MASLD. RNA-seq was applied to explore the mechanism of action of ergothioneine. The role of ergothioneine in AML12 was confirmed by western blotting, qPCR, ELISA, Oil Red O staining, flow cytometry, and ROS assays. Subsequently, the 3-methyladenine (3-MA, an autophagy inhibitor) was subsequently used to confirm that ergothioneine alleviated MASLD by promoting autophagy. RESULTS Ergothioneine reduced body weight, body fat and blood lipids, and improved insulin resistance and lipid and glycogen deposition in MASLD mice. Furthermore, ergothioneine was found to increase autophagy levels and attenuate oxidative damage, inflammation, and apoptosis. In contrast, intervention with 3-MA abrogated these effects, suggesting that ergothioneine ameliorated effects by promoting autophagy. CONCLUSION Ergothioneine may be a drug with great therapeutic potential for MASLD. Furthermore, this protective effect was mediated through the activation of autophagy.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Chenyu Nie
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Yihan Shi
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Qincheng Qiao
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Jing Gao
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Ying Zou
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, 250012, China
| | - Xinguo Hou
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, 250012, China.
| |
Collapse
|
21
|
Chang JS, Ahn JH, Kim MY, Park KS. Elevated serum growth differentiation factor 15 and decorin predict the fibrotic progression of metabolic dysfunction-associated steatotic liver disease. Sci Rep 2024; 14:27527. [PMID: 39528512 PMCID: PMC11554648 DOI: 10.1038/s41598-024-77719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondrial dysfunction with oxidative stress contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) progression. We aimed to evaluate the fibrosis predictive efficacy of a novel non-invasive diagnostic panel using metabolic stress biomarkers. From a population-based general cohort, 144 subjects with MASLD were recruited in the development group and underwent magnetic resonance imaging-based liver examinations, anthropometric and laboratory tests. As an external validation group, 41 patients enrolled in a biopsy-evaluated MASLD cohort participated in this study. Liver fat content and stiffness were measured by magnetic resonance (MR) imaging-proton density fat fraction and MR elastography (MRE), respectively. Serologic stress biomarkers were quantitated by ELISA. Multivariate regression showed that waist-to-height ratio, growth differentiation factor-15 (GDF15), γ-glutamyltransferase, decorin, and alkaline-phosphatase were independent predictors of hepatic fibrosis (rank-ordered by Wald). The area under receiver-operator characteristics curve [AUROC (95% CI)) of the metabolic stress index for fibrosis (MSI-F) was 0.912 (0.85‒0.98) and 0.977 (0.92‒1.00) in development and validation groups, respectively. MSI-F also had better diagnostic accuracy (82.6‒92.4%) than other fibrosis indices in the both study cohorts. MSI-F consistently differentiated fibrosis severities across cohorts of MRE-evaluated general population and biopsy-proven patients with MASLD, while other indices showed no or less discrimination. MSI-F, as a novel non-invasive index based on a stress-stimulated protective hormone GDF15 and decorin, effectively predicted hepatic fibrosis. Furthermore, MSI-F may serve as pre-screening tool to increase the population that could be excluded from further evaluation, reducing unnecessary invasive investigations more effectively than other indices.
Collapse
Affiliation(s)
- Jae Seung Chang
- Department of Sports Science, College of Life Science and Nano Technology, Hannam University, Daejeon, South Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea
- Department of Physiology, Yonsei University Wonju College of Medicine, Lsan-ro 20, Wonju, 26426, South Korea
| | - Jhii-Hyun Ahn
- Department of Radiology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Moon Young Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea.
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, 26426, South Korea.
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| | - Kyu-Sang Park
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea.
- Department of Physiology, Yonsei University Wonju College of Medicine, Lsan-ro 20, Wonju, 26426, South Korea.
| |
Collapse
|
22
|
Arai T, Atsukawa M, Tsubota A, Oikawa T, Tada T, Matsuura K, Ishikawa T, Abe H, Kato K, Morishita A, Tani J, Okubo T, Nagao M, Iwabu M, Iwakiri K. Beneficial effect of oral semaglutide for type 2 diabetes mellitus in patients with metabolic dysfunction-associated steatotic liver disease: A prospective, multicentre, observational study. Diabetes Obes Metab 2024; 26:4958-4965. [PMID: 39223865 DOI: 10.1111/dom.15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
AIMS To evaluate the efficacy and safety of oral semaglutide for type 2 diabetes mellitus (T2DM) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). MATERIALS AND METHODS This was a single-arm, multicentre, prospective study. Among 80 consecutive patients with MASLD and T2DM who newly received oral semaglutide, 70 completed 48-week oral semaglutide treatment as scheduled and were included in an efficacy analysis. Dose adjustments of oral semaglutide were determined by each physician while monitoring efficacy and adverse events. RESULTS Significant improvements in body weight, liver enzymes, lipid profile, and glycaemic control were found at 48 weeks compared with baseline values (all p < 0.01). Controlled attenuation parameter values significantly decreased from baseline to 48 weeks (p < 0.01). Changes in alanine aminotransferase concentrations (r = 0.37, p < 0.01) and controlled attenuation parameter values (r = 0.44, p < 0.01) were significantly correlated with changes in body weight. Liver fibrosis markers, such as type IV collagen 7S, Wisteria floribunda agglutinin-positive Mac-2-binding protein, fibrosis-4 index, and liver stiffness measurement, significantly decreased from baseline to 48 weeks (all p < 0.01). The most common adverse events were Grades 1-2 transient gastrointestinal symptoms, such as nausea (23 patients, 28.8%), dyspepsia (12, 15.0%) and appetite loss (4, 5.0%). CONCLUSIONS Oral semaglutide treatment for T2DM in patients with MASLD leads to an improvement in liver steatosis and injury, surrogate markers of fibrosis, diabetic status, and lipid profile, and reduces body weight.
Collapse
Affiliation(s)
- Taeang Arai
- Division of Gastroenterology and Hepatology, Nippon Medical School, Tokyo, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Nippon Medical School, Tokyo, Japan
| | - Akihito Tsubota
- Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Hiroshi Abe
- Division of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Keizo Kato
- Division of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tomomi Okubo
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Mototsugu Nagao
- Division of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Tokyo, Japan
| | - Masato Iwabu
- Division of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Tokyo, Japan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and Hepatology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
23
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
24
|
Watanabe Y, Aikawa M, Oshima Y, Kato T, Takase K, Watanabe Y, Okada K, Okamoto K, Koyama I. Outcomes after laparoscopic or open liver resection for nonalcoholic fatty liver disease-associated hepatocellular carcinoma: a propensity score-matching study. Surg Endosc 2024; 38:3887-3904. [PMID: 38831217 DOI: 10.1007/s00464-024-10937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Laparoscopic liver resection (LLR) is rapidly gaining popularity; however, its efficacy for nonalcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) (NAFLD-HCC) has been not evaluated. The purpose of this study was to compare short- and long-term outcomes between LLR and open liver resection (OLR) among patients with NAFLD-HCC. METHODS We used a single-institution database to analyze data for patients who underwent LLR or OLR for NAFLD-HCC from January 2007 to December 2022. We performed propensity score-matching analyses to compare overall postoperative complications, major morbidities, duration of surgery, blood loss, transfusion, length of stay, recurrence, and survival between the two groups. RESULTS Among 210 eligible patients, 46 pairs were created by propensity score matching. Complication rates were 28% for OLR and 11% for LLR (p = 0.036). There were no significant differences in major morbidities (15% vs. 8.7%, p = 0.522) or duration of surgery (199 min vs. 189 min, p = 0.785). LLR was associated with a lower incidence of blood transfusion (22% vs. 4.4%, p = 0.013), less blood loss (415 vs. 54 mL, p < 0.001), and shorter postoperative hospital stay (9 vs. 6 days, p < 0.001). Differences in recurrence-free survival and overall survival between the two groups were not statistically significant (p = 0.222 and 0.301, respectively). CONCLUSIONS LLR was superior to OLR for NAFLD-HCC in terms of overall postoperative complications, blood loss, blood transfusion, and postoperative length of stay. Moreover, recurrence-free survival and overall survival were comparable between LLR and OLR. Although there is a need for careful LLR candidate selection according to tumor size and location, LLR can be regarded as a preferred treatment for NAFLD-HCC over OLR.
Collapse
Affiliation(s)
- Yukihiro Watanabe
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Masayasu Aikawa
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yuhei Oshima
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Tomotaka Kato
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Kenichiro Takase
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yuichiro Watanabe
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Katsuya Okada
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Kojun Okamoto
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Isamu Koyama
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
25
|
Hassan MM, Li D, Han Y, Byun J, Hatia RI, Long E, Choi J, Kelley RK, Cleary SP, Lok AS, Bracci P, Permuth JB, Bucur R, Yuan JM, Singal AG, Jalal PK, Ghobrial RM, Santella RM, Kono Y, Shah DP, Nguyen MH, Liu G, Parikh ND, Kim R, Wu HC, El-Serag H, Chang P, Li Y, Chun YS, Lee SS, Gu J, Hawk E, Sun R, Huff C, Rashid A, Amin HM, Beretta L, Wolff RA, Antwi SO, Patt Y, Hwang LY, Klein AP, Zhang K, Schmidt MA, White DL, Goss JA, Khaderi SA, Marrero JA, Cigarroa FG, Shah PK, Kaseb AO, Roberts LR, Amos CI. Genome-wide association study identifies high-impact susceptibility loci for HCC in North America. Hepatology 2024; 80:87-101. [PMID: 38381705 PMCID: PMC11191046 DOI: 10.1097/hep.0000000000000800] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Despite the substantial impact of environmental factors, individuals with a family history of liver cancer have an increased risk for HCC. However, genetic factors have not been studied systematically by genome-wide approaches in large numbers of individuals from European descent populations (EDP). APPROACH AND RESULTS We conducted a 2-stage genome-wide association study (GWAS) on HCC not affected by HBV infections. A total of 1872 HCC cases and 2907 controls were included in the discovery stage, and 1200 HCC cases and 1832 controls in the validation. We analyzed the discovery and validation samples separately and then conducted a meta-analysis. All analyses were conducted in the presence and absence of HCV. The liability-scale heritability was 24.4% for overall HCC. Five regions with significant ORs (95% CI) were identified for nonviral HCC: 3p22.1, MOBP , rs9842969, (0.51, [0.40-0.65]); 5p15.33, TERT , rs2242652, (0.70, (0.62-0.79]); 19q13.11, TM6SF2 , rs58542926, (1.49, [1.29-1.72]); 19p13.11 MAU2 , rs58489806, (1.53, (1.33-1.75]); and 22q13.31, PNPLA3 , rs738409, (1.66, [1.51-1.83]). One region was identified for HCV-induced HCC: 6p21.31, human leukocyte antigen DQ beta 1, rs9275224, (0.79, [0.74-0.84]). A combination of homozygous variants of PNPLA3 and TERT showing a 6.5-fold higher risk for nonviral-related HCC compared to individuals lacking these genotypes. This observation suggests that gene-gene interactions may identify individuals at elevated risk for developing HCC. CONCLUSIONS Our GWAS highlights novel genetic susceptibility of nonviral HCC among European descent populations from North America with substantial heritability. Selected genetic influences were observed for HCV-positive HCC. Our findings indicate the importance of genetic susceptibility to HCC development.
Collapse
Affiliation(s)
- Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Rikita I Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robin Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Roxana Bucur
- Princess Margaret Cancer Center and Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jian-Min Yuan
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit G Singal
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prasun K Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - R Mark Ghobrial
- J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Yuko Kono
- Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, California, USA
| | - Dimpy P Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Hashem El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Shin Chun
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel O Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Yehuda Patt
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lu-Yu Hwang
- Department of Epidemiology, Human Genetics, and Environment Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Karen Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Mikayla A Schmidt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Donna L White
- Sections of Gastroenterology and Hepatology and Health Services Research, Baylor College of Medicine, Houston, Texas, USA
| | - John A Goss
- Division of Abdominal Transplantation, Michael E. DeBakey School of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Saira A Khaderi
- Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas, USA
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Francisco G Cigarroa
- Transplant Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pankil K Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Kaewdech A, Assawasuwannakit S, Churuangsuk C, Chamroonkul N, Sripongpun P. Effect of smartphone-assisted lifestyle intervention in MASLD patients: a randomized controlled trial. Sci Rep 2024; 14:13961. [PMID: 38886203 PMCID: PMC11183044 DOI: 10.1038/s41598-024-64988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging globally as a significant problem. The mainstay of treatment is lifestyle intervention (LSI). We hypothesized that providing information regarding LSI and MASLD through a social media application generally used in the respective society would improve clinical outcomes in MASLD more than standard of care (SOC). This is a randomized controlled study in noncirrhotic MASLD patients aged 18-65 years in Thailand. Eligible patients were randomly assigned to either the control (SOC) or intervention arm. Patients in both groups received standard LSI advice. Infographics about MASLD and LSI information were sent to the intervention group every 3-7 days via the LINE official account. The outcomes are changes in liver steatosis and liver stiffness by FIBROSCAN at 24 weeks, as well as weight loss, body composition, and serum alanine aminotransferase (ALT) level between the two groups. A total of 122 patients were enrolled. The median age of eligible participants was 53 years, 64.7% were female, and median body mass index was 27.3 kg/m2. After a complete 24-week study period, both groups had an improvement in weight, ALT level, liver steatosis, and fat mass, but the differences in those changes between groups were not statistically significant. Interestingly, a significant improvement in liver stiffness was observed in the intervention group than in the control group (- 0.7 ± 1.8 kPa vs. 0.1 ± 2.4 kPa, P = 0.035). Encouraging LSI and delivering MASLD information via a social media application (LINE official account) to patients with MASLD demonstrated a better outcome of liver stiffness measurement than SOC.Clinical trial number: TCTR20210304002 (04/03/2021) ( http://www.thaiclinicaltrials.org/show/TCTR20210304002 ).
Collapse
Affiliation(s)
- Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suraphon Assawasuwannakit
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, 11120, Thailand
| | - Chaitong Churuangsuk
- Clinical Nutrition and Obesity Medicine Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Naichaya Chamroonkul
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Pimsiri Sripongpun
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
27
|
Shi Y, Taherifard E, Saeed A, Saeed A. MASLD-Related HCC: A Comprehensive Review of the Trends, Pathophysiology, Tumor Microenvironment, Surveillance, and Treatment Options. Curr Issues Mol Biol 2024; 46:5965-5983. [PMID: 38921027 PMCID: PMC11202630 DOI: 10.3390/cimb46060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant burden on global healthcare systems due to its considerable incidence and mortality rates. Recent trends indicate an increase in the worldwide incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) and a shift in the etiology of HCC, with MASLD replacing the hepatitis B virus as the primary contributor to new cases of HCC. MASLD-related HCC exhibits distinct characteristics compared to viral HCC, including unique immune cell profiles resulting in an overall more immunosuppressive or exhausted tumor microenvironment. Furthermore, MASLD-related HCC is frequently identified in older age groups and among individuals with cardiometabolic comorbidities. Additionally, a greater percentage of MASLD-related HCC cases occur in noncirrhotic patients compared to those with viral etiologies, hindering early detection. However, the current clinical practice guidelines lack specific recommendations for the screening of HCC in MASLD patients. The evolving landscape of HCC management offers a spectrum of therapeutic options, ranging from surgical interventions and locoregional therapies to systemic treatments, for patients across various stages of the disease. Despite ongoing debates, the current evidence does not support differences in optimal treatment modalities based on etiology. In this study, we aimed to provide a comprehensive overview of the current literature on the trends, characteristics, clinical implications, and treatment modalities for MASLD-related HCC.
Collapse
Affiliation(s)
- Yuming Shi
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
| | - Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
28
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
29
|
Das M, Kumar D, Sauceda C, Oberg A, Ellies LG, Zeng L, Jih LJ, Newton IG, Webster NJG. Time-Restricted Feeding Attenuates Metabolic Dysfunction-Associated Steatohepatitis and Hepatocellular Carcinoma in Obese Male Mice. Cancers (Basel) 2024; 16:1513. [PMID: 38672595 PMCID: PMC11048121 DOI: 10.3390/cancers16081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has surpassed the hepatitis B virus and hepatitis C virus as the leading cause of chronic liver disease in most parts of the Western world. MASLD (formerly known as NAFLD) encompasses both simple steatosis and more aggressive metabolic dysfunction-associated steatohepatitis (MASH), which is accompanied by inflammation, fibrosis, and cirrhosis, and ultimately can lead to hepatocellular carcinoma (HCC). There are currently very few approved therapies for MASH. Weight loss strategies such as caloric restriction can ameliorate the harmful metabolic effect of MASH and inhibit HCC; however, it is difficult to implement and maintain in daily life, especially in individuals diagnosed with HCC. In this study, we tested a time-restricted feeding (TRF) nutritional intervention in mouse models of MASH and HCC. We show that TRF abrogated metabolic dysregulation induced by a Western diet without any calorie restriction or weight loss. TRF improved insulin sensitivity and reduced hyperinsulinemia, liver steatosis, inflammation, and fibrosis. Importantly, TRF inhibited liver tumors in two mouse models of obesity-driven HCC. Our data suggest that TRF is likely to be effective in abrogating MASH and HCC and warrant further studies of time-restricted eating in humans with MASH who are at higher risk of developing HCC.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Deepak Kumar
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Consuelo Sauceda
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexis Oberg
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
| | - Lesley G. Ellies
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liping Zeng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Lily J. Jih
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Isabel G. Newton
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Prasad M, Tamil Selvan S, Shanmugam R, Murugan R, Fareed M. Analysing the Anticancer Properties of Pterostilbene Through Absorption, Distribution, Metabolism, and Excretion (ADME) and Molecular Docking Studies. Cureus 2024; 16:e58425. [PMID: 38756274 PMCID: PMC11097614 DOI: 10.7759/cureus.58425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Aim The aim of this study is to examine the possible therapeutic effect of pterostilbene (PTS), a chemical present in grapes and blueberries, in the treatment of liver cancer by analysing its interactions with important proteins linked to the wingless/integrated (Wnt) signaling system. Objective Using computational techniques like molecular docking and absorption, distribution, metabolism, and excretion (ADME) studies, this research focuses on examining the pharmacokinetics and molecular interactions of PTS with proteins such as vimentin (Vim), glycogen synthase kinase 3 beta (GSK3-β), epithelial cadherin (E-cadherin), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), c-Jun N-terminal kinase (JNK), and Wnt, all of which are connected to the Wnt signaling pathway in liver cancer. Methods The study includes the synthesis of proteins and ligands, ADME investigations for PTS, and AutoDock Vina molecular docking simulations to evaluate binding affinities and interactions. PTS is obtained from PubChem, while protein structures are obtained from the Protein Data Bank. Results Strong binding affinities between PTS and essential proteins in the Wnt signaling cascade are shown by molecular docking, which also highlights noteworthy hydrogen bonds, hydrophobic interactions, and electrostatic contacts. According to an ADME study, PTS has advantageous pharmacokinetic properties, such as moderate solubility, membrane permeability, and a minimal chance of drug interactions. Conclusion The extensive study highlights PTS's potential as a viable treatment option for liver cancer. The study promotes its investigation in cutting-edge liver cancer therapy approaches and urges more investigation into the molecular mechanisms, underpinning its anticancer properties. This paper sheds important light on the role of natural chemicals in cancer therapy and emphasizes the need for computational methods in drug discovery.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Silambarasan Tamil Selvan
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Ramadurai Murugan
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Mohammad Fareed
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
31
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
32
|
Qi J, Guo Z, Zhu S, Jiang X, Wu Y, Chen Y, Hu F, Xiong J, Wu Y, Ye X, Liang X. Therapeutic effect of long-acting FGF21 with controlled site-specific modification on nonalcoholic steatohepatitis. Int J Biol Macromol 2024; 261:129797. [PMID: 38290625 DOI: 10.1016/j.ijbiomac.2024.129797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
FGF21 plays an active role in the treatment of type 2 diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). However, the short half-life and poor stability of wild-type FGF21 limit its clinical application. Previous studies found that PEGylation can significantly increase the stability of FGF21. However, the uneven distribution of PEGylation sites in FGF21 makes it difficult to purify PEG-FGF21, thereby affecting its yield, purity, and activity. To obtain long-acting FGF21 with controlled site-specific modification, we mutated lysine residues in FGF21, resulting in PEGylation only at the N-terminus of FGF21 (mFGF21). In addition, we modified mFGF21 molecules with different PEG molecules and selected the PEG-mFGF21 moiety with the highest activity. The yield of PEG-mFGF21 in this study reached 1 g/L (purity >99 %), and the purification process was simple and efficient with strong quality controllability. The half-life of PEG-mFGF21 in rats reached 40.5-67.4 h. Pharmacodynamic evaluation in mice with high-fat, high-cholesterol- and methionine and choline deficiency-induced NASH illustrated that PEG-mFGF21 exhibited long-term efficacy in improving liver steatosis and reducing liver cell damage, inflammation, and fibrosis. Taken together, PEG-mFGF21 could represent a potential therapeutic drug for the treatment of NASH.
Collapse
Affiliation(s)
- Jianying Qi
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhimou Guo
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xuan Jiang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yuanyuan Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yingli Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Fei Hu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Jingjing Xiong
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - YunZhou Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
33
|
Hou C, Huang M, Wang P, Zhang Q, Wang G, Gao S. Chronic exposure to 3,6-dichlorocarbazole exacerbates non-alcoholic fatty liver disease in zebrafish by disrupting lipid metabolism and inducing special lipid biomarker accumulation. CHEMOSPHERE 2024; 352:141442. [PMID: 38346516 DOI: 10.1016/j.chemosphere.2024.141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Most previous studies have focused primarily on the adverse effects of environmental chemicals on organisms of good healthy. Although global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached approximately 25%, the impact of environmentally persistent organic chemicals on organisms with NAFLD is substantially unknown. Polyhalogenated carbazoles (PHCZs) as emerging contaminants have been frequently detected in the environment and organisms. In this study, we investigated the impact of the most frequently detected PHCZs, 3,6-dichlorocarbazole (36-CCZ), on zebrafish with high-fat diet (HFD)-induced NAFLD. After 4 weeks exposure to environmentally relevant concentrations of 36-CCZ (0.16-0.45 μg/L), the accumulation of lipid in zebrafish liver dramatically increased, and the transcription of genes involved in lipid synthesis, transport and oxidation was significantly upregulated, demonstrating that 36-CCZ had exacerbated the NAFLD in zebrafish. Lipidomic analysis indicated that 36-CCZ had significantly affected liver lipid metabolic pathways, mainly including glycerolipids and glycerophospholipids. Additionally, fifteen lipids were identified as potential lipid biomarkers for 36-CCZ exacerbation of NAFLD, including diacylglycerols (DGs), triglycerides (TGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidic acid (PA), and phosphatidylinositol (PI). These findings demonstrate that long-term exposure to 36-CCZ can promote the progression of NAFLD, which will contribute to raising awareness of the health risks of PHCZs.
Collapse
Affiliation(s)
- Cunchuang Hou
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Mengyao Huang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Pingping Wang
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Qiaoyun Zhang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guowei Wang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
34
|
Basheer M, Boulos M, Basheer A, Loai A, Nimer A. Olive Oil's Attenuating Effects on Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:869-882. [PMID: 39287875 DOI: 10.1007/978-3-031-63657-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Dietary fatty acids play a role in the pathogenesis of obesity-associated nonalcoholic fatty liver disease. Lipotoxicity in obesity mediates insulin resistance, endothelial dysfunction, atherosclerosis, and gut microbiota dysbiosis. Cardiovascular complications are the main cause of morbidity and mortality in obese, insulin-resistant, and type 2 diabetes mellitus patients.Interventions targeting lipotoxicity are the main issue in preventing its multiple insults. Lifestyle modifications including healthy eating and regular exercise are the primary recommendations. Treatments also include drugs targeting energy intake, energy disposal, lipotoxic liver injury, and the resulting inflammation, fibrogenesis, and cirrhosis.Diet and nutrition have been linked to insulin resistance, an increased risk of developing type 2 diabetes, and impaired postprandial lipid metabolism. Low-fat diets are associated with higher survival. The Mediterranean diet includes an abundance of olive oil. Extra-virgin olive oil is the main source of monounsaturated fatty acids in Mediterranean diets. An olive oil-rich diet decreases triglyceride accumulation in the liver, improves postprandial triglyceride levels, improves glucose and insulin secretions, and upregulates GLUT-2 expression in the liver. The exact molecular mechanisms of olive oil's effects are unknown, but decreasing NF-kB activation, decreasing LDL oxidation, and improving insulin resistance by reducing the production of inflammatory cytokines (TNF-α and IL-6) and upregulating kinases and JNK-mediated phosphorylation of IRS-1 are possible principal mechanisms. Olive oil phenolic compounds also modulate gut microbiota diversity, which also affects lipotoxicity.In this review, we document lipotoxicity in obesity manifestations and the beneficial health effects of the Mediterranean diet derived from monounsaturated fatty acids, mainly from olive oil.
Collapse
Affiliation(s)
- Maamoun Basheer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Mariana Boulos
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Areej Basheer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
- Nutrition and Diet Services, Hillel Yaffe, Hadera, Israel
| | - Arraf Loai
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Assy Nimer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel.
- Faculty of Medicine at Galilee, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
35
|
Nazeer B, Khawar MB, Khalid MU, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Ali A, Fatima H, Ahmad S. Emerging role of lipophagy in liver disorders. Mol Cell Biochem 2024; 479:1-11. [PMID: 36943663 DOI: 10.1007/s11010-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.
Collapse
Affiliation(s)
- Bismillah Nazeer
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Muhammad Usman Khalid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ahmad Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hooriya Fatima
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sadia Ahmad
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
36
|
Gao Y, Li Y, Zhu Y, Luo Q, Lu Y, Wen K, Du B, Xi X, Li G. Emodin is a Potential Drug Targeting CD44-positive Hepatocellular Cancer. Curr Cancer Drug Targets 2024; 24:510-518. [PMID: 38099524 DOI: 10.2174/0115680096256913231101103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND Liver cancer is one of the most prevalent forms of cancer of the digestive system in our country. The most common subtype of this disease is hepatocellular carcinoma (HCC). Currently, treatment options for HCC patients include surgical resection, liver transplantation, radiofrequency ablation, chemoembolization, and biologic-targeted therapy. However, the efficacy of these treatments is suboptimal, as they are prone to drug resistance, metastasis, spread, and recurrence. These attributes are closely related to cancer stem cells (CSCs). Therefore, the utilization of drugs targeting CSCs may effectively inhibit the development and recurrence of HCC. METHODS HepG2 and Huh7 cells were used to analyze the antitumor activity of emodin by quantifying cell growth and metastasis, as well as to study its effect on stemness. RESULTS Emodin effectively suppressed the growth and movement of HCC cells. Emodin also significantly inhibited the proliferation of CD44-positive hepatoma cells. CONCLUSION Emodin shows promise as a potential therapeutic agent for HCC by targeting CD44-- positive hepatoma cells.
Collapse
Affiliation(s)
- Yuan Gao
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Youling Li
- Department of Nuclear Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Yunhe Zhu
- Department of Nuclear Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Qiao Luo
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Yifeng Lu
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Ke Wen
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Boyu Du
- Department of Nuclear Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Xueyan Xi
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan City, Hubei Province, 442000, P.R. China
| | - Gang Li
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| |
Collapse
|
37
|
Cheng PN, Chen WJ, Hou CJY, Lin CL, Chang ML, Wang CC, Chang WT, Wang CY, Lin CY, Hung CL, Peng CY, Yu ML, Chao TH, Huang JF, Huang YH, Chen CY, Chiang CE, Lin HC, Li YH, Lin TH, Kao JH, Wang TD, Liu PY, Wu YW, Liu CJ. Taiwan Association for the Study of the Liver-Taiwan Society of Cardiology Taiwan position statement for the management of metabolic dysfunction- associated fatty liver disease and cardiovascular diseases. Clin Mol Hepatol 2024; 30:16-36. [PMID: 37793641 PMCID: PMC10776290 DOI: 10.3350/cmh.2023.0315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly common liver disease worldwide. MAFLD is diagnosed based on the presence of steatosis on images, histological findings, or serum marker levels as well as the presence of at least one of the three metabolic features: overweight/obesity, type 2 diabetes mellitus, and metabolic risk factors. MAFLD is not only a liver disease but also a factor contributing to or related to cardiovascular diseases (CVD), which is the major etiology responsible for morbidity and mortality in patients with MAFLD. Hence, understanding the association between MAFLD and CVD, surveillance and risk stratification of MAFLD in patients with CVD, and assessment of the current status of MAFLD management are urgent requirements for both hepatologists and cardiologists. This Taiwan position statement reviews the literature and provides suggestions regarding the epidemiology, etiology, risk factors, risk stratification, nonpharmacological interventions, and potential drug treatments of MAFLD, focusing on its association with CVD.
Collapse
Affiliation(s)
- Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chih-Lin Lin
- Department of Gastroenterology, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Ting Chang
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Lieh Hung
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiang Huang
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chern-En Chiang
- General Clinical Research Center, and Cardiovascular Center, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzung-Dau Wang
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Medical College, New Taipei City, Taiwan
| | - Ping-Yen Liu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Chun-Jen Liu
- Hepatitis Research Center, Department of Internal Medicine and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Cheng KL, Wang SW, Cheng YM, Hsieh TH, Wang CC, Kao JH. Prevalence and clinical outcomes in subtypes of metabolic associated fatty liver disease. J Formos Med Assoc 2024; 123:36-44. [PMID: 37491179 DOI: 10.1016/j.jfma.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND/PURPOSE In 2020, metabolic Associated Fatty Liver Disease (MAFLD) was proposed to replace non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria. The prevalence and clinical outcomes of MAFLD subtypes remained unclear. METHODS The participants from Taiwan bio-bank cohort were included. MAFLD was defined as the presence of fatty liver, plus any of the following three conditions: overweight/obesity, diabetes mellitus (DM), or metabolic dysfunction. The patients with positive HBsAg or anti-HCV were considered as chronic HBV or HCV infection. NAFLD fibrosis score (NFS) > 0.676 plus fibrosis 4 (FIB-4) score > 2.67 was defined as advanced liver fibrosis. Atherosclerosis was diagnosed as having carotid plaques on duplex ultrasounds. The clinical outcomes were assessed among four subtypes of MAFLD including DM, obesity, chronic HBV infection, and chronic HCV infection. RESULTS A total of 21,885 participants (mean age 55.34 ± 10.31; 35.69% males) were included in the final analysis. Among them, 38.83% were diagnosed with MAFLD. The prevalence of MAFLD was 66.95% in DM patients, 65.07% in obese participants, 33.74% in chronic HBV patients, and 30.23% in chronic HCV patients. Logistic regression analysis showed that the subtypes of DM and chronic HCV infection were associated with an increased risk of advanced liver fibrosis in MAFLD patients. Additionally, the subtypes of DM and lean were associated with an increased risk of atherosclerosis, but a decreased risk of atherosclerosis in the subtype of chronic HBV infection. CONCLUSION This population-based study proves the concept that subtypes of MAFLD can help risk stratification of clinical outcomes.
Collapse
Affiliation(s)
- Kun-Lin Cheng
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shao-Wen Wang
- Department of Gastroenterology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Ming Cheng
- Department of Gastroenterology and Hepatology, Tung's Taichung MetroHarbor Hospital, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
39
|
Wakamatsu S, Jojima T, Hashiguchi M, Kishi H, Niitani T, Sakurai S, Iijima T, Kogai T, Tomaru T, Usui I, Aso Y. Inhibition of IL-33 signaling ameliorate hepatic fibrosis with decreasing MCP-1 in a mouse model of diabetes and non-alcoholic steatohepatitis; comparison for luseogliflozin, an SGLT2 inhibitor. J Diabetes Complications 2024; 38:108650. [PMID: 38035640 DOI: 10.1016/j.jdiacomp.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasing globally, and seeking therapeutic molecule targets is urgent. Several studies have demonstrated that IL-33 plays an important role in the progression of Non-alcoholic steatohepatitis (NASH) with fibrosis and the proliferation of hepatocellular carcinoma (HCC). However, whether the inhibition of IL-33 signaling prevents NAFLD from progressing to NASH and HCC has not been clarified. We investigated the effects of a novel antibody, IL-33RAb, and luseogliflozin, a SGLT2 inhibitor, when administered to a model mouse for NASH and HCC, and their effects were compared to investigate the mechanisms of how IL-33 is involved in the pathogenesis of NASH progression. Compared with the positive control of luseogliflozin, inhibition of IL-33 signaling ameliorated decreasing hepatic fibrosis via decreasingαSMA and MCP-1, and also partially suppressed the progression of the HCC cell line in in vitro experiments. These findings suggest that inhibition of IL-33 possibly prevents progression from NASH to HCC, and their effect may be a newly arrived therapeutic agent.
Collapse
Affiliation(s)
- Sho Wakamatsu
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Masaaki Hashiguchi
- Department of Cell Biology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Tokyo 113-8602, Japan
| | - Haruka Kishi
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takafumi Niitani
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shintaro Sakurai
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshie Iijima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takahiko Kogai
- Department of Infection Control and Clinical Laboratory Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takuya Tomaru
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
40
|
Yu H, Zhang X, Li J, Wang K, Yin C, Li X, Li L, Shao G, Jin S. Design, Synthesis and Evaluation of a Novel Teoptinib Derivative as an Effective Anti-hepatocellular Carcinoma Agent. Curr Pharm Des 2024; 30:2167-2178. [PMID: 38919077 DOI: 10.2174/0113816128314500240621071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND & PURPOSE Hepatocellular Carcinoma (HCC) is a type of liver cancer known for its poor prognosis and high mortality. Teoptinib is a highly selective MET inhibitor that has been used in the treatment of liver cancer. Although good progress has been made in clinical treatment, further improvement is still needed. In this study, a series of novel Teoptinib derivatives were synthesized and evaluated as anti-cancer agents for the treatment of liver cancer, and an oral nanodrug delivery system was also explored. METHODS A series of novel Teoptinib derivatives were synthesized, and an oral nanodrug delivery system was also explored. HPLC, high-resolution mass spectrometer and NMR were used to determine the structure and molecular formula of the synthesized compounds. Zeta potential assay was used to access the particle size distribution and zeta potential of the nanoparticles. MTT assay, cell colony formation assay, cell apoptosis inhibition assay, cell scratch assay, and the MHCC-97H xenograft model of nude mice assay were used to evaluate the in vitro and in vivo anti-tumor activity of the synthesized compounds. RESULTS Compound (R)-10 showed the best antitumor activity with 0.010 μM of the IC50 value against MHCC-97H, a human liver cancer cell line with high c-Met expression. The MHCC-97H xenograft model of nude mice assay showed that nano-prodrug of compound (R)-10 exhibited good in vivo activity with 87.67% of the TGI at the dosage of 8 mg/kg. CONCLUSION We designed and synthesized a series of c-Met inhibitors containing different side chains and chiral centers as anti-liver cancer agents. Among them, compound (R)-10 shows a promising effect as a lead molecule for further study in the treatment of liver cancer. The successful incorporation of (R)-10 into a novel oral nanodrug delivery system highlights the importance of effective drug delivery systems for enhanced therapeutic efficacy.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Drug Design
- Mice
- Mice, Nude
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Structure-Activity Relationship
- Molecular Structure
- Dose-Response Relationship, Drug
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/metabolism
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Mice, Inbred BALB C
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Cell Line, Tumor
- Nanoparticles/chemistry
Collapse
Affiliation(s)
- Huijuan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510275, China
| | - Xiaodong Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiayu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510275, China
| | - Kaimei Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Changjun Yin
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xinshu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lianyun Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guang Shao
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaowen Jin
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
41
|
Mi X, Lou Y, Wang Y, Dong M, Xue H, Li S, Lu J, Chen X. Glycyrrhetinic Acid Receptor-Mediated Zeolitic Imidazolate Framework-8 Loaded Doxorubicin as a Nanotherapeutic System for Liver Cancer Treatment. Molecules 2023; 28:8131. [PMID: 38138618 PMCID: PMC10745904 DOI: 10.3390/molecules28248131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we designed and developed a DOX nanodrug delivery system (PEG-GA@ZIF-8@DOX) using ZIF-8 as the carrier and glycyrrhetinic acid (GA) as the targeting ligand. We confirmed that DOX was loaded and PEG-GA was successfully modified on the surface of the nanoparticles. The in vitro release profile of the system was investigated at pH 5.0 and 7.4. The cellular uptake, in vitro cytotoxicity, and lysosomal escape characteristics were examined using HepG2 cells. We established an H22 tumor-bearing mouse model and evaluated the in vivo antitumor activity. The results showed that the system had a uniform nanomorphology. The drug loading capacity was 11.22 ± 0.87%. In acidic conditions (pH 5.0), the final release rate of DOX was 57.73%, while at pH 7.4, it was 25.12%. GA-mediated targeting facilitated the uptake of DOX by the HepG2 cells. PEG-GA@ZIF-8@DOX could escape from the lysosomes and release the drug in the cytoplasm, thus exerting its antitumor effect. When the in vivo efficacy was analyzed, we found that the tumor inhibition rate of PEG-GA@ZIF-8@DOX was 67.64%; it also alleviated the loss of the body weight of the treated mice. This drug delivery system significantly enhanced the antitumor effect of doxorubicin in vitro and in vivo, while mitigating its toxic side effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (X.M.); (Y.L.); (Y.W.); (M.D.); (H.X.); (S.L.)
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (X.M.); (Y.L.); (Y.W.); (M.D.); (H.X.); (S.L.)
| |
Collapse
|
42
|
Lin H, Qiu S, Yang Y, Yang C, Shen Z, Chen Y, Zhang Z, Feng Y, Yan F. Three-dimensional magnetic resonance elastography combining proton-density fat fraction precisely identifies metabolic dysfunction-associated steatohepatitis with significant fibrosis. Magn Reson Imaging 2023; 104:1-8. [PMID: 37553044 DOI: 10.1016/j.mri.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Patients with metabolic dysfunction-associated steatohepatitis (MASH) and significant fibrosis (fibrosis stage≥2), known as Fibro-MASH, are at increased risk of liver-related outcomes and lower rates of spontaneous disease regression. The aim was to investigate three-dimensional MR elastography (3D-MRE) combining proton-density fat fraction (PDFF) as a means of identifying Fibro-MASH. METHODS Forty-eight New Zealand rabbits were fed a high-fat/cholesterol or standard diet to obtain different disease activity and fibrosis stages. Shear stiffness (SS) and Damping Ratio (DR) were derived from 3D-MRE, whereas PDFF was from a volumetric 3D imaging sequence. Steatosis grade, metabolic dysfunction-associated steatotic liver disease activity score (MAS), and fibrosis stage were diagnosed histologically. Serum markers of fibrosis and inflammation were also measured. Correlation and comparison analysis, Receiver operating characteristic curves (ROC), Delong test, logistic regression analysis, and Net reclassification improvement (NRI) were performed. RESULTS PDFF correlated with steatosis grade (rho = 0.853). SS increased with developed liver fibrosis (rho = 0.837). DR correlated with MAS grade (rho = 0.678). The areas under the ROC (AUROCs) of SS for fibrosis grading were 0.961 and 0.953 for ≥F2, and ≥ F3, respectively. All the biochemical parameters were considered but excluded from the logistic regression analysis to identify Fibro-MASH. FF, SS, and DR were finally included in the further analysis. The three-parameter model combining PDFF, SS, and DR showed significant improvement in NRI over the model combining SS and PDFF (AUROC 0.973 vs. 0.906, P = 0.081; NRI 0.28, P < 0.05). CONCLUSION 3D-MRE combining PDFF may characterize the state of fat content, disease activity and fibrosis, thus precisely identify Fibro-MASH.
Collapse
Affiliation(s)
- Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Suhao Qiu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yanzhao Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chunxue Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhehan Shen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhihan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
43
|
Malladi N, Alam MJ, Maulik SK, Banerjee SK. The role of platelets in non-alcoholic fatty liver disease: From pathophysiology to therapeutics. Prostaglandins Other Lipid Mediat 2023; 169:106766. [PMID: 37479133 DOI: 10.1016/j.prostaglandins.2023.106766] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Platelets are one of the key mediators in thrombosis as well as in the progression of many diseases. An increase in platelet activation and a decrease in platelet count is associated with a plethora of liver diseases. In non-alcoholic fatty liver disease (NAFLD), platelets are highly activated and participate in the disease progression by enhancing the pro-thrombotic and pro-inflammatory state. Some altered platelet parameters such as mean platelet volume, plateletcrits, and platelet distribution width, aspartate transaminase to platelet ratio index, liver stiffness to platelet ratio and red cell distribution width to platelet ratio were found to be associated with NAFLD disease. Further, platelet contributes to the progression of cardiovascular complications in NAFLD is gaining the researcher's attention. An elevated mean platelet volume is known to enhance the risk of stroke, atherosclerosis, thrombosis, and myocardial infarction in NAFLD. Evidence also suggested that modulation in platelet function using aspirin, ticlopidine, and cilostazol help in controlling the NAFLD progression. Future research should focus on antiplatelet therapy as a treatment strategy that can control platelet activation in NAFLD as well as its cardiovascular risk. In the present review, we have detailed the role of platelets in NAFLD and its cardiovascular complications. We further aimed to highlight the growing need for antiplatelet therapy in NAFLD.
Collapse
Affiliation(s)
- Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subir K Maulik
- Indian Council of Medical Research, Ministry of Health, New Delhi 110029, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
44
|
Watanabe Y, Aikawa M, Oshima Y, Kato T, Takase K, Watanabe Y, Okada K, Okamoto K, Koyama I. Short- and long-term outcomes of laparoscopic liver resection for non-alcoholic fatty liver disease-associated hepatocellular carcinoma: a retrospective cohort study. HPB (Oxford) 2023; 25:1573-1586. [PMID: 37758580 DOI: 10.1016/j.hpb.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND We compared the recurrence-free survival (RFS), overall survival (OS), and safety of laparoscopic liver resection (LLR) between non-alcoholic fatty liver disease (NAFLD) and non-NAFLD hepatocellular carcinoma (HCC) patients. METHODS Patients with HCC (n = 349) were divided into four groups based on the HCC etiology (NAFLD [n = 71], hepatitis B [n = 27], hepatitis C [n = 187], alcohol/autoimmune hepatitis [AIH] [n = 64]). RFS and OS were assessed by multivariate analysis after adjustment for clinicopathological variables. A subgroup analysis was performed based on the presence (n = 248) or absence (n = 101) of cirrhosis. RESULTS Compared with the NAFLD group, the hazard ratios (95% confidence intervals) for RFS in the hepatitis B, hepatitis C, and alcohol/AIH groups were 0.49 (0.22-1.09), 0.90 (0.54-1.48), and 1.08 (0.60-1.94), respectively. For OS, the values were 0.28 (0.09-0.84), 0.52 (0.28-0.95), and 0.59 (0.27-1.30), respectively. With cirrhosis, NAFLD was associated with worse OS than hepatitis C (P = 0.010). Without cirrhosis, NAFLD had significantly more complications (P = 0.034), but comparable survival than others. DISCUSSION Patients with NAFLD-HCC have some disadvantages after LLR. In patients with cirrhosis, LLR is safe, but survival is poor. In patients without cirrhosis, the complication risk is high.
Collapse
Affiliation(s)
- Yukihiro Watanabe
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan.
| | - Masayasu Aikawa
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Yuhei Oshima
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Tomotaka Kato
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Kenichiro Takase
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Yuichiro Watanabe
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Katsuya Okada
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Kojun Okamoto
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Isamu Koyama
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| |
Collapse
|
45
|
Zamanian MY, Sadeghi Ivraghi M, Khachatryan LG, Vadiyan DE, Bali HY, Golmohammadi M. A review of experimental and clinical studies on the therapeutic effects of pomegranate ( Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation. Food Sci Nutr 2023; 11:7485-7503. [PMID: 38107091 PMCID: PMC10724645 DOI: 10.1002/fsn3.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Diana E. Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and OrthodonticsI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | | | | |
Collapse
|
46
|
Kumar A, Narang RK, Bhatia R. Recent advancements in NS5B inhibitors (2011-2021): Structural insights, SAR studies and clinical status. J Mol Struct 2023; 1293:136272. [DOI: 10.1016/j.molstruc.2023.136272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
47
|
Berardi G, Ivanics T, Sapisochin G, Ratti F, Sposito C, Nebbia M, D’Souza DM, Pascual F, Tohme S, D’Amico F, Alessandris R, Panetta V, Simonelli I, Del Basso C, Russolillo N, Fiorentini G, Serenari M, Rotellar F, Zimitti G, Famularo S, Hoffman D, Onkendi E, Lopez Ben S, Caula C, Rompianesi G, Chopra A, Abu Hilal M, Torzilli G, Corvera C, Alseidi A, Helton S, Troisi RI, Simo K, Conrad C, Cescon M, Cleary S, Kwon CHD, Ferrero A, Ettorre GM, Cillo U, Geller D, Cherqui D, Serrano PE, Ferrone C, Mazzaferro V, Aldrighetti L, Kingham PT. Minimally Invasive Versus Open Liver Resections for Hepatocellular Carcinoma in Patients With Metabolic Syndrome. Ann Surg 2023; 278:e1041-e1047. [PMID: 36994755 PMCID: PMC11218006 DOI: 10.1097/sla.0000000000005861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To compare minimally invasive (MILR) and open liver resections (OLRs) for hepatocellular carcinoma (HCC) in patients with metabolic syndrome (MS). BACKGROUND Liver resections for HCC on MS are associated with high perioperative morbidity and mortality. No data on the minimally invasive approach in this setting exist. MATERIAL AND METHODS A multicenter study involving 24 institutions was conducted. Propensity scores were calculated, and inverse probability weighting was used to weight comparisons. Short-term and long-term outcomes were investigated. RESULTS A total of 996 patients were included: 580 in OLR and 416 in MILR. After weighing, groups were well matched. Blood loss was similar between groups (OLR 275.9±3.1 vs MILR 226±4.0, P =0.146). There were no significant differences in 90-day morbidity (38.9% vs 31.9% OLRs and MILRs, P =0.08) and mortality (2.4% vs 2.2% OLRs and MILRs, P =0.84). MILRs were associated with lower rates of major complications (9.3% vs 15.3%, P =0.015), posthepatectomy liver failure (0.6% vs 4.3%, P =0.008), and bile leaks (2.2% vs 6.4%, P =0.003); ascites was significantly lower at postoperative day 1 (2.7% vs 8.1%, P =0.002) and day 3 (3.1% vs 11.4%, P <0.001); hospital stay was significantly shorter (5.8±1.9 vs 7.5±1.7, P <0.001). There was no significant difference in overall survival and disease-free survival. CONCLUSIONS MILR for HCC on MS is associated with equivalent perioperative and oncological outcomes to OLRs. Fewer major complications, posthepatectomy liver failures, ascites, and bile leaks can be obtained, with a shorter hospital stay. The combination of lower short-term severe morbidity and equivalent oncologic outcomes favor MILR for MS when feasible.
Collapse
Affiliation(s)
- Giammauro Berardi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Tommy Ivanics
- Department of Surgery, University of Toronto, Canada
| | | | - Francesca Ratti
- Hepatobiliary Surgery Division, San Raffaele Hospital, Milan, Italy
| | - Carlo Sposito
- Department of Oncology and Hemato-Oncology, University of Milan and Department of Surgery, HPB Surgery and Liver Transplantation; Istituto Nazionale Tumori IRCCS, Milan, Italy
| | - Martina Nebbia
- Department of Surgery, Massachusetts General Hospital, Boston, USA
| | | | - Franco Pascual
- Department of Surgery, Paul Brousse Hospital, Villejuif, Paris, France
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, USA
| | | | | | - Valentina Panetta
- Laltrastatistica Consultancy and Training, Biostatistics Department, Rome, Italy
| | - Ilaria Simonelli
- Laltrastatistica Consultancy and Training, Biostatistics Department, Rome, Italy
| | | | | | - Guido Fiorentini
- Hepatobiliary Surgery Division, San Raffaele Hospital, Milan, Italy
- Department of Surgery, Mayo Clinic, Rochester, USA
| | - Matteo Serenari
- Hepato-biliary Surgery and Transplant Unit, IRCCS Sant’Orsola Hospital, University of Bologna, Italy
| | | | - Giuseppe Zimitti
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Simone Famularo
- Department of General Surgery, Humanitas University and Research Hospital, IRCCS, Milan, Italy
| | - Daniel Hoffman
- Department of Surgery, University of California San Francisco, USA
| | - Edwin Onkendi
- Department of Surgery, Texas Tech University Health Sciences Center, USA
| | - Santiago Lopez Ben
- Department of Surgery, Hospital Universitari Dr Josep Trueta de Girona, Spain
| | - Celia Caula
- Department of Surgery, Hospital Universitari Dr Josep Trueta de Girona, Spain
| | - Gianluca Rompianesi
- Department of Clinical Medicine and Surgery, Università Federico Secondo, Naples, Italy
| | | | - Mohammed Abu Hilal
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Guido Torzilli
- Department of General Surgery, Humanitas University and Research Hospital, IRCCS, Milan, Italy
| | - Carlos Corvera
- Department of Surgery, University of California San Francisco, USA
| | - Adnan Alseidi
- Department of Surgery, University of California San Francisco, USA
| | - Scott Helton
- Department of Surgery, Virginia Mason Hospital and Seattle Medical Center, USA
| | - Roberto I. Troisi
- Department of Clinical Medicine and Surgery, Università Federico Secondo, Naples, Italy
| | - Kerri Simo
- Department of Surgery, Promedica Toledo Ohio, USA
| | - Claudius Conrad
- Department of Surgery, Saint Elizabeth Medical Center, Boston, USA
| | - Matteo Cescon
- Hepato-biliary Surgery and Transplant Unit, IRCCS Sant’Orsola Hospital, University of Bologna, Italy
| | - Sean Cleary
- Department of Surgery, Mayo Clinic, Rochester, USA
| | | | | | | | | | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, USA
| | - Daniel Cherqui
- Department of Surgery, Paul Brousse Hospital, Villejuif, Paris, France
| | | | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, USA
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, University of Milan and Department of Surgery, HPB Surgery and Liver Transplantation; Istituto Nazionale Tumori IRCCS, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, San Raffaele Hospital, Milan, Italy
| | - Peter T. Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
48
|
Zhang Z, Zhang T, Zhang R, Zhang Z, Tan S. Migrasomes and tetraspanins in hepatocellular carcinoma: current status and future prospects. Future Sci OA 2023; 9:FSO890. [PMID: 37752917 PMCID: PMC10518826 DOI: 10.2144/fsoa-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, many studies have attempted to clarify the formation, structure and biological function of migrasomes, which are defined as specialized organelles formed by the tips and intersections of Retraction Fibrils during cell migration. It has confirmed that migrasomes were involved in various critical biological processes and diseases, and has became a new research hotspot. In this paper, we reviewed the formation and biological functions of migrasomes, explored the relationship between migrasomes, tetraspanins and hepatocellular carcinoma and discussed the potential applications of migrasomes in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Tianmiao Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Rongcheng Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| |
Collapse
|
49
|
Arvanitakis K, Papadakos SP, Lekakis V, Koufakis T, Lempesis IG, Papantoniou E, Kalopitas G, Georgakopoulou VE, Stergiou IE, Theocharis S, Germanidis G. Meeting at the Crossroad between Obesity and Hepatic Carcinogenesis: Unique Pathophysiological Pathways Raise Expectations for Innovative Therapeutic Approaches. Int J Mol Sci 2023; 24:14704. [PMID: 37834153 PMCID: PMC10572430 DOI: 10.3390/ijms241914704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The escalating global prevalence of obesity and its intricate association with the development of hepatocellular carcinoma (HCC) pose a substantial challenge to public health. Obesity, acknowledged as a pervasive epidemic, is linked to an array of chronic diseases, including HCC, catalyzing the need for a comprehensive understanding of its molecular underpinnings. Notably, HCC has emerged as a leading malignancy with rising incidence and mortality. The transition from viral etiologies to the prominence of metabolic dysfunction-associated fatty liver disease (MAFLD)-related HCC underscores the urgent need to explore the intricate molecular pathways linking obesity and hepatic carcinogenesis. This review delves into the interwoven landscape of molecular carcinogenesis in the context of obesity-driven HCC while also navigating using the current therapeutic strategies and future prospects for combating obesity-related HCC. We underscore the pivotal role of obesity as a risk factor and propose an integrated approach encompassing lifestyle interventions, pharmacotherapy, and the exploration of emerging targeted therapies. As the obesity-HCC nexus continues to challenge healthcare systems globally, a comprehensive understanding of the intricate molecular mechanisms and innovative therapeutic strategies is imperative to alleviate the rising burden of this dual menace.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (S.T.)
| | - Vasileios Lekakis
- Department of Gastroenterology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Ioannis G. Lempesis
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Eleni Papantoniou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
| | - Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (S.T.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
50
|
Yang F, Yuan C. KNTC1 knockdown inhibits proliferation and metastases of liver cancer. 3 Biotech 2023; 13:309. [PMID: 37621322 PMCID: PMC10444909 DOI: 10.1007/s13205-023-03722-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
To investigate the mechanism of kinetochore-associated protein 1 (KNTC1) in hepatocellular carcinoma. To query the TCGA database for KNTC1 expression in hepatocellular carcinoma. Detection of protein and mRNA levels of KNTC1 in hepatocellular carcinoma cell lines SK-Hep-1, Huh7, HepG2 and SNU449. Cell proliferation, migration and invasion ability were examined after KNTC1 knockdown in SK-Hep-1 and Huh7. Proteins related to KNTC1 were identified through protein interregulation, and their role in hepatocellular carcinoma was investigated. Our results showed that KNTC1 was significantly upregulated in hepatocellular carcinoma tissues and was associated with poorer prognostic survival. The expression of KNTC1 in hepatocellular carcinoma cell lines SK-Hep-1, Huh7, HepG2 and SNU449 was significantly higher than that in normal hepatocyte line L02. Knockdown of KNTC1 in SK-Hep-1 and Huh7 significantly inhibited cell viability, migration ability and invasion ability. KNTC1 is involved in the regulation of hepatocellular carcinoma through its interaction with cyclin-dependent kinase 1 (CDK1). Knockdown of KNTC1 inhibited CDK1 expression, while CDK1 overexpression was able to rescue the regulation of KNTC1 on the viability, migration and invasive ability of hepatocellular carcinoma cell lines. Knockdown of KNTC1 was found to resulted a cell cycle arrest at the S-phase, potentially through the modulation of CDK1, leading to decreased migration and invasion of hepatocellular carcinoma cells. Moreover, knockdown of KNTC1 in mouse transplanted tumors significantly inhibits tumor growth. Inhibition of high expression of KNTC1 in hepatocellular carcinoma was effective in suppressing the progression of hepatocellular carcinoma cells after knockdown. It may be a potential target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fan Yang
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26 Shengli Street, Jiangan District, Wuhan, 430014 Hubei China
| | - Changjin Yuan
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26 Shengli Street, Jiangan District, Wuhan, 430014 Hubei China
| |
Collapse
|