Copyright ©The Author(s) 2019.
World J Stem Cells. Nov 26, 2019; 11(11): 920-936
Published online Nov 26, 2019. doi: 10.4252/wjsc.v11.i11.920
Figure 2
Figure 2 Epigenetic programming and reprogramming of cancer cells and consequences for therapeutic strategies. New therapeutics will have to combine the targeting of the bulk of the tumor, pre-existing CSCs, and iCSCs through inhibition of cancer cell reprogramming. Epigenetic therapies could inhibit CSCs to sensitize cancer cells to conventional therapies (A, C), inhibit cancer cells reprogramming (B), and inhibit relapse through inhibition of self-renewal (D). CSC: Cancer stem cell; iCSC: Induced CSCs; DNMTi: DNA methyltransferase inhibitor; HDACi: Histone deacetylase inhibitor; TET2i: Ten-eleven-translocation 2 inhibitor; SETD7i: SET domain containing 7 inhibitor; H3K4me3: Trimethylation of lysine 4 on histone 3; H3K9me3: Trimethylation of lysine 9 on Histone 3; H3K27me3: Trimethylation of lysine 27 on histone 3.