1
|
Harwalkar K, Yamanaka N, Pacis AS, Zhao S, Teng K, Pitman W, Taskar M, Lynn V, Thornton AF, Ford MJ, Yamanaka Y. Aging-Associated Vacuolation of Multi-Ciliated Cells in the Distal Mouse Oviduct Reflects Unique Cell Identity and Luminal Microenvironment. Aging Cell 2025:e70051. [PMID: 40310729 DOI: 10.1111/acel.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 05/03/2025] Open
Abstract
The female reproductive organs present with the earliest aging characteristics, such as a decline in fertility and estrous cyclicity. While age-related changes in the ovary are well documented, it is unclear if any age-associated changes occur in the other female reproductive organs, such as the oviduct/Fallopian tube. At the distal end of aged oviducts in mice, we found vacuolated multi-ciliated cells (MCCs) with a severely apically displaced and deformed nucleus. This phenotype was unique to the distal oviduct epithelium-the infundibulum (INF) and ampulla (AMP). Ovariectomy did not affect the timeline of MCC vacuolation, suggesting little involvement of ovulation and hormonal regulation. MCC vacuolation was induced in hypoxia or hydroxyurea treatments in in vitro organotypic culture of all oviduct regions, not limited to the INF/AMP epithelium. This suggests a high oxygen demand in MCCs, compared to other cell types, and a uniquely stressed INF/AMP epithelial microenvironment in vivo. We found that the blood circulation of INF/AMP depended on the ovarian artery, different from the rest of the oviduct epithelium, and its circulation declined along with ovarian activities. We conclude that a decline in local blood circulation and distinct cellular identity of the INF/AMP epithelium caused age-associated MCC vacuolation, reflecting its mild, chronically stressed microenvironment.
Collapse
Affiliation(s)
- Keerthana Harwalkar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
- McGill's Integrated Core of Animal Modeling (MICAM), McGill University, Montreal, Quebec, Canada
| | - Alain S Pacis
- Canadian Centre for Computational Genomics (C3G), McGill Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Selina Zhao
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Katie Teng
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Warwick Pitman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Mitaali Taskar
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Vera Lynn
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Alex Frances Thornton
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Matthew J Ford
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
- McGill's Integrated Core of Animal Modeling (MICAM), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Miranda-Cervantes A, Fritzen AM, Raun SH, Hodek O, Møller LLV, Johann K, Deisen L, Gregorevic P, Gudiksen A, Artati A, Adamski J, Andersen NR, Sigvardsen CM, Carl CS, Voldstedlund CT, Kjøbsted R, Hauck SM, Schjerling P, Jensen TE, Cebrian-Serrano A, Jähnert M, Gottmann P, Burtscher I, Lickert H, Pilegaard H, Schürmann A, Tschöp MH, Moritz T, Müller TD, Sylow L, Kiens B, Richter EA, Kleinert M. Pantothenate kinase 4 controls skeletal muscle substrate metabolism. Nat Commun 2025; 16:345. [PMID: 39746949 PMCID: PMC11695632 DOI: 10.1038/s41467-024-55036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic flexibility in skeletal muscle is essential for maintaining healthy glucose and lipid metabolism, and its dysfunction is closely linked to metabolic diseases. Exercise enhances metabolic flexibility, making it an important tool for discovering mechanisms that promote metabolic health. Here we show that pantothenate kinase 4 (PanK4) is a new conserved exercise target with high abundance in muscle. Muscle-specific deletion of PanK4 impairs fatty acid oxidation which is related to higher intramuscular acetyl-CoA and malonyl-CoA levels. Elevated acetyl-CoA levels persist regardless of feeding state and are associated with whole-body glucose intolerance, reduced insulin-stimulated glucose uptake in glycolytic muscle, and impaired glucose uptake during exercise. Conversely, increasing PanK4 levels in glycolytic muscle lowers acetyl-CoA and enhances glucose uptake. Our findings highlight PanK4 as an important regulator of acetyl-CoA levels, playing a key role in both muscle lipid and glucose metabolism.
Collapse
Affiliation(s)
- Adriana Miranda-Cervantes
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Andreas M Fritzen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen H Raun
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Swedish Metabolomics Centre, Umeå, Sweden
| | - Lisbeth L V Møller
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kornelia Johann
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Luisa Deisen
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Vic, Australia
- Centre for Muscle Research, University of Melbourne, Melbourne, Vic, Australia
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna Artati
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Nicoline R Andersen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), Munich, Germany
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, Germany
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg-Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Cebrian-Serrano
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Jähnert
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ingo Burtscher
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo D Müller
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian University Munich (LMU), Munich, Germany
| | - Lykke Sylow
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany.
| |
Collapse
|
3
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
4
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
6
|
Bangera M, Dungdung A, Prabhu S, Sirajuddin M. Doublet microtubule inner junction protein FAP20 recruits tubulin to the microtubule lattice. Structure 2023; 31:1535-1544.e4. [PMID: 37816351 PMCID: PMC7615566 DOI: 10.1016/j.str.2023.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023]
Abstract
Doublet microtubules of eukaryotic cilia and flagella are made up of a complete A- and an incomplete B-tubule that are fused together. Of the two fusion points, the outer junction is made of tripartite tubulin connections, while the inner junction contains non-tubulin elements. The latter includes flagellar-associated protein 20 (FAP20) and Parkin co-regulated gene protein (PACRG) that together link the A- and B-tubule at the inner junction. While structures of doublet microtubules reveal molecular details, their assembly is poorly understood. In this study, we purified recombinant FAP20 and characterized its effects on microtubule dynamics. We use in vitro reconstitution and cryo-electron microscopy to show that FAP20 recruits free tubulin to the existing microtubule lattice. Our cryo-electron microscopy reconstruction of microtubule:FAP20:tubulin complex reveals the mode of tubulin recruitment by FAP20 onto microtubules, providing insights into assembly steps of B-tubule closure during doublet microtubule formation.
Collapse
Affiliation(s)
- Mamata Bangera
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru 560065, India
| | - Archita Dungdung
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru 560065, India
| | - Sujana Prabhu
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru 560065, India
| | - Minhajuddin Sirajuddin
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru 560065, India.
| |
Collapse
|
7
|
Brugmans AK, Walter C, Moreno N, Göbel C, Holdhof D, de Faria FW, Hotfilder M, Jeising D, Frühwald MC, Skryabin BV, Rozhdestvensky TS, Wachsmuth L, Faber C, Dugas M, Varghese J, Schüller U, Albert TK, Kerl K. A Carboxy-terminal Smarcb1 Point Mutation Induces Hydrocephalus Formation and Affects AP-1 and Neuronal Signalling Pathways in Mice. Cell Mol Neurobiol 2023; 43:3511-3526. [PMID: 37219662 PMCID: PMC10477118 DOI: 10.1007/s10571-023-01361-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.
Collapse
Affiliation(s)
- Aliska K Brugmans
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Carolin Walter
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalia Moreno
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Carolin Göbel
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Dörthe Holdhof
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Flavia W de Faria
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Marc Hotfilder
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Daniela Jeising
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatrics and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany
| | - Boris V Skryabin
- Medical Faculty, Core Facility TRAnsgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149, Münster, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility TRAnsgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, 48149, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, 48149, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Ulrich Schüller
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Thomas K Albert
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
8
|
Ford MJ, Harwalkar K, Kazemdarvish H, Yamanaka N, Yamanaka Y. CD133/Prom1 marks proximal mouse oviduct epithelial progenitors and adult epithelial cells with a low generative capacity. Biol Open 2023; 12:bio059963. [PMID: 37605939 PMCID: PMC10508696 DOI: 10.1242/bio.059963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
The epithelium lining the oviduct or fallopian tube consists of multiciliated and secretory cells, which support fertilization and preimplantation development, however, its homeostasis remains poorly understood. CD133/Prom1 expression has been used as a marker to identify adult stem cell populations in various organs and often associated with cancer cells that have stem-like properties. Using an antibody targeted to CD133 and a Cre recombinase-based lineage tracing strategy, we found that CD133/Prom1 expression is not associated with a stem/progenitor population in the oviduct but marked predominantly multiciliated cells with a low generative capacity. Additionally, we have shown that CD133 is disparately localised along the oviduct during neonatal development, and that Prom1 expressing secretory cells in the ampulla rapidly transitioned to multiciliated cells and progressively migrated to the ridge of epithelial folds.
Collapse
Affiliation(s)
- Matthew J Ford
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Hengameh Kazemdarvish
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Nobuko Yamanaka
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| |
Collapse
|
9
|
Hrovatin K, Bastidas-Ponce A, Bakhti M, Zappia L, Büttner M, Salinno C, Sterr M, Böttcher A, Migliorini A, Lickert H, Theis FJ. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat Metab 2023; 5:1615-1637. [PMID: 37697055 PMCID: PMC10513934 DOI: 10.1038/s42255-023-00876-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that β-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD β-cells. We also report pathways that are shared between β-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of β-cell responses to different stressors, providing a roadmap for the understanding of β-cell plasticity, compensation and demise.
Collapse
Affiliation(s)
- Karin Hrovatin
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- McEwen Stem Cell Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Faculty, Technical University of Munich, Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
10
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
11
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
12
|
Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in Understanding the Genetic Mechanisms of Zebrafish Renal Multiciliated Cell Development. J Dev Biol 2022; 11:1. [PMID: 36648903 PMCID: PMC9844391 DOI: 10.3390/jdb11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
13
|
Hoque M, Kim EN, Chen D, Li FQ, Takemaru KI. Essential Roles of Efferent Duct Multicilia in Male Fertility. Cells 2022; 11:cells11030341. [PMID: 35159149 PMCID: PMC8834061 DOI: 10.3390/cells11030341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cilia are microtubule-based hair-like organelles on the cell surface. Cilia have been implicated in various biological processes ranging from mechanosensation to fluid movement. Ciliary dysfunction leads to a plethora of human diseases, known as ciliopathies. Although non-motile primary cilia are ubiquitous, motile multicilia are found in restricted locations of the body, such as the respiratory tract, the oviduct, the efferent duct, and the brain ventricles. Multicilia beat in a whip-like motion to generate fluid flow over the apical surface of an epithelium. The concerted ciliary motion provides the driving force critical for clearing airway mucus and debris, transporting ova from the ovary to the uterus, maintaining sperm in suspension, and circulating cerebrospinal fluid in the brain. In the male reproductive tract, multiciliated cells (MCCs) were first described in the mid-1800s, but their importance in male fertility remained elusive until recently. MCCs exist in the efferent ducts, which are small, highly convoluted tubules that connect the testis to the epididymis and play an essential role in male fertility. In this review, we will introduce multiciliogenesis, discuss mouse models of male infertility with defective multicilia, and summarize our current knowledge on the biological function of multicilia in the male reproductive tract.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Danny Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
- Correspondence:
| |
Collapse
|
14
|
Click chemistry-enabled CRISPR screening reveals GSK3 as a regulator of PLD signaling. Proc Natl Acad Sci U S A 2021; 118:2025265118. [PMID: 34810254 DOI: 10.1073/pnas.2025265118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Enzymes that produce second messengers are highly regulated. Revealing the mechanisms underlying such regulation is critical to understanding both how cells achieve specific signaling outcomes and return to homeostasis following a particular stimulus. Pooled genome-wide CRISPR screens are powerful unbiased approaches to elucidate regulatory networks, their principal limitation being the choice of phenotype selection. Here, we merge advances in bioorthogonal fluorescent labeling and CRISPR screening technologies to discover regulators of phospholipase D (PLD) signaling, which generates the potent lipid second messenger phosphatidic acid. Our results reveal glycogen synthase kinase 3 as a positive regulator of protein kinase C and PLD signaling. More generally, this work demonstrates how bioorthogonal, activity-based fluorescent tagging can expand the power of CRISPR screening to uncover mechanisms regulating specific enzyme-driven signaling pathways in mammalian cells.
Collapse
|
15
|
Scheibner K, Schirge S, Burtscher I, Büttner M, Sterr M, Yang D, Böttcher A, Ansarullah, Irmler M, Beckers J, Cernilogar FM, Schotta G, Theis FJ, Lickert H. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat Cell Biol 2021; 23:692-703. [PMID: 34168324 PMCID: PMC8277579 DOI: 10.1038/s41556-021-00694-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
It is generally accepted that epiblast cells ingress into the primitive streak by epithelial-to-mesenchymal transition (EMT) to give rise to the mesoderm; however, it is less clear how the endoderm acquires an epithelial fate. Here, we used embryonic stem cell and mouse embryo knock-in reporter systems to combine time-resolved lineage labelling with high-resolution single-cell transcriptomics. This allowed us to resolve the morphogenetic programs that segregate the mesoderm from the endoderm germ layer. Strikingly, while the mesoderm is formed by classical EMT, the endoderm is formed independent of the key EMT transcription factor Snail1 by mechanisms of epithelial cell plasticity. Importantly, forkhead box transcription factor A2 (Foxa2) acts as an epithelial gatekeeper and EMT suppressor to shield the endoderm from undergoing a mesenchymal transition. Altogether, these results not only establish the morphogenetic details of germ layer formation, but also have broader implications for stem cell differentiation and cancer metastasis.
Collapse
Affiliation(s)
- Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
16
|
Salinno C, Büttner M, Cota P, Tritschler S, Tarquis-Medina M, Bastidas-Ponce A, Scheibner K, Burtscher I, Böttcher A, Theis FJ, Bakhti M, Lickert H. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab 2021; 49:101188. [PMID: 33582383 PMCID: PMC7932895 DOI: 10.1016/j.molmet.2021.101188] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Islets of Langerhans contain heterogeneous populations of insulin-producing β-cells. Surface markers and respective antibodies for isolation, tracking, and analysis are urgently needed to study β-cell heterogeneity and explore the mechanisms to harness the regenerative potential of immature β-cells. METHODS We performed single-cell mRNA profiling of early postnatal mouse islets and re-analyzed several single-cell mRNA sequencing datasets from mouse and human pancreas and islets. We used mouse primary islets, iPSC-derived endocrine cells, Min6 insulinoma, and human EndoC-βH1 β-cell lines and performed FAC sorting, Western blotting, and imaging to support and complement the findings from the data analyses. RESULTS We found that all endocrine cell types expressed the cluster of differentiation 81 (CD81) during pancreas development, but the expression levels of this protein were gradually reduced in β-cells during postnatal maturation. Single-cell gene expression profiling and high-resolution imaging revealed an immature signature of β-cells expressing high levels of CD81 (CD81high) compared to a more mature population expressing no or low levels of this protein (CD81low/-). Analysis of β-cells from different diabetic mouse models and in vitro β-cell stress assays indicated an upregulation of CD81 expression levels in stressed and dedifferentiated β-cells. Similarly, CD81 was upregulated and marked stressed human β-cells in vitro. CONCLUSIONS We identified CD81 as a novel surface marker that labels immature, stressed, and dedifferentiated β-cells in the adult mouse and human islets. This novel surface marker will allow us to better study β-cell heterogeneity in healthy subjects and diabetes progression.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany.
| |
Collapse
|
17
|
Miranda MA, Macias-Velasco JF, Lawson HA. Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. Am J Physiol Endocrinol Metab 2021; 320:E716-E731. [PMID: 33586491 PMCID: PMC8238131 DOI: 10.1152/ajpendo.00649.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cells perform glucose-stimulated insulin secretion, a process at the center of type 2 diabetes etiology. Efforts to understand how β-cells behave in healthy and stressful conditions have revealed a wide degree of morphological, functional, and transcriptional heterogeneity. Sources of heterogeneity include β-cell topography, developmental origin, maturation state, and stress response. Advances in sequencing and imaging technologies have led to the identification of β-cell subtypes, which play distinct roles in the islet niche. This review examines β-cell heterogeneity from morphological, functional, and transcriptional perspectives, and considers the relevance of topography, maturation, development, and stress response. It also discusses how these factors have been used to identify β-cell subtypes, and how heterogeneity is impacted by diabetes. We examine open questions in the field and discuss recent technological innovations that could advance understanding of β-cell heterogeneity in health and disease.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
18
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
19
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 DOI: 10.4252/wjsc.v13.i3.193] [cited] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 01/26/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
20
|
Harwalkar K, Ford MJ, Teng K, Yamanaka N, Yang B, Burtscher I, Lickert H, Yamanaka Y. Anatomical and cellular heterogeneity in the mouse oviduct-its potential roles in reproduction and preimplantation development†. Biol Reprod 2021; 104:1249-1261. [PMID: 33693543 DOI: 10.1093/biolre/ioab043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2020] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
The oviduct/fallopian tube is a tube-like structure that extends from the uterus to the ovary. It is an essential reproductive organ that provides an environment for internal fertilization and preimplantation development. However, our knowledge of its regional and cellular heterogeneity is still limited. Here, we examined the anatomical complexity of mouse oviducts using modern imaging techniques and fluorescence reporter lines. We found that there are consistent coiling patterns and turning points in the coiled mouse oviduct that serve as reliable landmarks for luminal morphological regionalities. We also found previously unrecognized anatomical structures in the isthmus and uterotubal junction, which likely play roles in reproduction. Furthermore, we demarcated the ampulla-isthmus junction as a distinct region. Taken together, the oviduct mucosal epithelium has highly diverse structures with distinct epithelial cell populations, reflecting its complex functions in reproduction.
Collapse
Affiliation(s)
- Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Matthew J Ford
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Katie Teng
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
| | - Brenna Yang
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
- German Centre for Diabetes Research (DZD), Munich, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. Nat Cell Biol 2021; 23:23-31. [PMID: 33398177 DOI: 10.1038/s41556-020-00617-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
A detailed understanding of intestinal stem cell (ISC) self-renewal and differentiation is required to treat chronic intestinal diseases. However, the different models of ISC lineage hierarchy1-6 and segregation7-12 are subject to debate. Here, we have discovered non-canonical Wnt/planar cell polarity (PCP)-activated ISCs that are primed towards the enteroendocrine or Paneth cell lineage. Strikingly, integration of time-resolved lineage labelling with single-cell gene expression analysis revealed that both lineages are directly recruited from ISCs via unipotent transition states, challenging the existence of formerly predicted bi- or multipotent secretory progenitors7-12. Transitory cells that mature into Paneth cells are quiescent and express both stem cell and secretory lineage genes, indicating that these cells are the previously described Lgr5+ label-retaining cells7. Finally, Wnt/PCP-activated Lgr5+ ISCs are molecularly indistinguishable from Wnt/β-catenin-activated Lgr5+ ISCs, suggesting that lineage priming and cell-cycle exit is triggered at the post-transcriptional level by polarity cues and a switch from canonical to non-canonical Wnt/PCP signalling. Taken together, we redefine the mechanisms underlying ISC lineage hierarchy and identify the Wnt/PCP pathway as a new niche signal preceding lateral inhibition in ISC lineage priming and segregation.
Collapse
|
22
|
Santagata S. Genes with evidence of positive selection as potentially related to coloniality and the evolution of morphological features among the lophophorates and entoprocts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:267-280. [PMID: 32638536 DOI: 10.1002/jez.b.22975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Evolutionary mechanisms that underlie the origins of coloniality among organisms are diverse. Some animal colonies may be comprised strictly of clonal individuals formed from asexual budding or comprised of a chimera of clonal and sexually produced individuals that fuse secondarily. This investigation focuses on select members of the lophophorates and entoprocts whose evolutionary relationships remain enigmatic even in the age of genomics. Using transcriptomic data sets, two coloniality-based hypotheses are tested in a phylogenetic context to find candidate genes showing evidence of positive selection and potentially convergent molecular signatures among solitary species and taxa-forming colonies from aggregate groups or clonal budding. Approximately 22% of the 387 orthogroups tested showed evidence of positive selection in at least one of the three branch-site tests (CODEML, BUSTED, and aBSREL). Only 12 genes could be reliably associated with a developmental function related to traits linked with coloniality, neuroanatomy, or ciliary fields. Genes testing for both positive selection and convergent molecular characters include orthologues of Radial spoke head, Elongation translation initiation factors, SEC13, and Immediate early response gene5. Maximum likelihood analyses included here resulted in tree topologies typical of other phylogenetic investigations based on wider genomic information. Further genomic and experimental evidence will be needed to resolve whether a solitary ancestor with multiciliated cells that formed aggregate groups gave rise to colonial forms in bryozoans (and perhaps the entoprocts) or that the morphological differences exhibited by phoronids and brachiopods represent trait modifications from a colonial ancestor.
Collapse
Affiliation(s)
- Scott Santagata
- Department of Biological and Environmental Sciences, Long Island University, Greenvale, New York
| |
Collapse
|
23
|
Noncanonical Wnt planar cell polarity signaling in lung development and disease. Biochem Soc Trans 2020; 48:231-243. [PMID: 32096543 DOI: 10.1042/bst20190597] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
The planar cell polarity (PCP) signaling pathway is a potent developmental regulator of directional cell behaviors such as migration, asymmetric division and morphological polarization that are critical for shaping the body axis and the complex three-dimensional architecture of tissues and organs. PCP is considered a noncanonical Wnt pathway due to the involvement of Wnt ligands and Frizzled family receptors in the absence of the beta-catenin driven gene expression observed in the canonical Wnt cascade. At the heart of the PCP mechanism are protein complexes capable of generating molecular asymmetries within cells along a tissue-wide axis that are translated into polarized actin and microtubule cytoskeletal dynamics. PCP has emerged as an important regulator of developmental, homeostatic and disease processes in the respiratory system. It acts along other signaling pathways to create the elaborately branched structure of the lung by controlling the directional protrusive movements of cells during branching morphogenesis. PCP operates in the airway epithelium to establish and maintain the orientation of respiratory cilia along the airway axis for anatomically directed mucociliary clearance. It also regulates the establishment of the pulmonary vasculature. In adult tissues, PCP dysfunction has been linked to a variety of chronic lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary arterial hypertension, stemming chiefly from the breakdown of proper tissue structure and function and aberrant cell migration during regenerative wound healing. A better understanding of these (impaired) PCP mechanisms is needed to fully harness the therapeutic opportunities of targeting PCP in chronic lung diseases.
Collapse
|
24
|
Greaney AM, Adams TS, Brickman Raredon MS, Gubbins E, Schupp JC, Engler AJ, Ghaedi M, Yuan Y, Kaminski N, Niklason LE. Platform Effects on Regeneration by Pulmonary Basal Cells as Evaluated by Single-Cell RNA Sequencing. Cell Rep 2020; 30:4250-4265.e6. [PMID: 32209482 PMCID: PMC7175071 DOI: 10.1016/j.celrep.2020.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies have shown promise for treating myriad chronic pulmonary diseases through direct application of epithelial progenitors or by way of engineered tissue grafts or whole organs. To elucidate environmental effects on epithelial regenerative outcomes in vitro, here, we isolate and culture a population of pharmacologically expanded basal cells (peBCs) from rat tracheas. At peak basal marker expression, we simultaneously split peBCs into four in vitro platforms: organoid, air-liquid interface (ALI), engineered trachea, and engineered lung. Following differentiation, these samples are evaluated using single-cell RNA sequencing (scRNA-seq) and computational pipelines are developed to compare samples both globally and at the population level. A sample of native rat tracheal epithelium is also evaluated by scRNA-seq as a control for engineered epithelium. Overall, this work identifies platform-specific effects that support the use of engineered models to achieve the most physiologic differential outcomes in pulmonary epithelial regenerative applications.
Collapse
Affiliation(s)
- Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA.
| | - Taylor S Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Medical Scientist Training Program, Yale University, New Haven, CT 06511, USA
| | - Elise Gubbins
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Alexander J Engler
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA
| | - Mahboobe Ghaedi
- Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| | - Yifan Yuan
- Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
25
|
Khalifa AAZ, Ichikawa M, Dai D, Kubo S, Black CS, Peri K, McAlear TS, Veyron S, Yang SK, Vargas J, Bechstedt S, Trempe JF, Bui KH. The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. eLife 2020; 9:e52760. [PMID: 31951202 PMCID: PMC6994238 DOI: 10.7554/elife.52760] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Microtubules are cytoskeletal structures involved in stability, transport and organization in the cell. The building blocks, the α- and β-tubulin heterodimers, form protofilaments that associate laterally into the hollow microtubule. Microtubule also exists as highly stable doublet microtubules in the cilia where stability is needed for ciliary beating and function. The doublet microtubule maintains its stability through interactions at its inner and outer junctions where its A- and B-tubules meet. Here, using cryo-electron microscopy, bioinformatics and mass spectrometry of the doublets of Chlamydomonas reinhardtii and Tetrahymena thermophila, we identified two new inner junction proteins, FAP276 and FAP106, and an inner junction-associated protein, FAP126, thus presenting the complete answer to the inner junction identity and localization. Our structural study of the doublets shows that the inner junction serves as an interaction hub that involves tubulin post-translational modifications. These interactions contribute to the stability of the doublet and hence, normal ciliary motility.
Collapse
Affiliation(s)
- Ahmad Abdelzaher Zaki Khalifa
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| | | | - Daniel Dai
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| | - Shintaroh Kubo
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
- Department of Biophysics, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Corbin Steven Black
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| | - Katya Peri
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
| | - Thomas S McAlear
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| | - Simon Veyron
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
- Department of Pharmacology & TherapeuticsMcGill UniversityMontréalCanada
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| | - Javier Vargas
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| | - Susanne Bechstedt
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| | - Jean-François Trempe
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
- Department of Pharmacology & TherapeuticsMcGill UniversityMontréalCanada
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityQuébecCanada
- Centre de Recherche en Biologie Structurale - FRQSMcGill UniversityQuébecCanada
| |
Collapse
|
26
|
Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R. Structure of the Decorated Ciliary Doublet Microtubule. Cell 2019; 179:909-922.e12. [PMID: 31668805 PMCID: PMC6936269 DOI: 10.1016/j.cell.2019.09.030] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
The axoneme of motile cilia is the largest macromolecular machine of eukaryotic cells. In humans, impaired axoneme function causes a range of ciliopathies. Axoneme assembly, structure, and motility require a radially arranged set of doublet microtubules, each decorated in repeating patterns with non-tubulin components. We use single-particle cryo-electron microscopy to visualize and build an atomic model of the repeating structure of a native axonemal doublet microtubule, which reveals the identities, positions, repeat lengths, and interactions of 38 associated proteins, including 33 microtubule inner proteins (MIPs). The structure demonstrates how these proteins establish the unique architecture of doublet microtubules, maintain coherent periodicities along the axoneme, and stabilize the microtubules against the repeated mechanical stress induced by ciliary motility. Our work elucidates the architectural principles that underpin the assembly of this large, repetitive eukaryotic structure and provides a molecular basis for understanding the etiology of human ciliopathies.
Collapse
Affiliation(s)
- Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Mihaela Stoyanova
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Griffin Rademacher
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Salinno C, Cota P, Bastidas-Ponce A, Tarquis-Medina M, Lickert H, Bakhti M. β-Cell Maturation and Identity in Health and Disease. Int J Mol Sci 2019; 20:E5417. [PMID: 31671683 PMCID: PMC6861993 DOI: 10.3390/ijms20215417] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing β-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the β-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate β-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of β-cells and define their functional identity. Furthermore, we discuss different routes by which β-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those β-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature β-cells from stem cells for cell-replacement therapy for diabetes treatment.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
| |
Collapse
|
28
|
Mathewson AW, Berman DG, Moens CB. Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells. Dev Biol 2019; 452:21-33. [PMID: 31029691 PMCID: PMC6661169 DOI: 10.1016/j.ydbio.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022]
Abstract
The asymmetric localization of planar cell polarity (PCP) proteins is essential for the establishment of many planar polarized cellular processes, but the mechanisms that maintain these asymmetric distributions remain poorly understood. A body of evidence has tied oriented subapical microtubules (MTs) to the establishment of PCP protein polarity, yet recent studies have suggested that the MT cytoskeleton is later dispensable for the maintenance of this asymmetry. As MTs underlie the vesicular trafficking of membrane-bound proteins within cells, the requirement for MTs in the maintenance of PCP merited further investigation. We investigated the complex interactions between PCP proteins and the MT cytoskeleton in the polarized context of the floorplate of the zebrafish neural tube. We demonstrated that the progressive posterior polarization of the primary cilia of floorplate cells requires not only Vangl2 but also Fzd3a. We determined that GFP-Vangl2 asymmetrically localizes to anterior membranes whereas Fzd3a-GFP does not polarize on anterior or posterior membranes but maintains a cytosolic enrichment at the base of the primary cilium. Vesicular Fzd3a-GFP is rapidly trafficked along MTs primarily toward the apical membrane during a period of PCP maintenance, whereas vesicular GFP-Vangl2 is less frequently observed. Nocodazole-induced loss of MT polymerization disrupts basal body positioning as well as GFP-Vangl2 localization and reduces cytosolic Fzd3a-GFP movements. Removal of nocodazole after MT disruption restores MT polymerization but does not restore basal body polarity. Interestingly, GFP-Vangl2 repolarizes to anterior membranes and vesicular Fzd3a-GFP dynamics recover after multiple hours of recovery, even in the context of unpolarized basal bodies. Together our findings challenge previous work by revealing an ongoing role for MT-dependent transport of PCP proteins in maintaining both cellular and PCP protein asymmetry during development.
Collapse
Affiliation(s)
- Andrew W Mathewson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Daniel G Berman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA; Biology Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Scheibner K, Bakhti M, Bastidas-Ponce A, Lickert H. Wnt signaling: implications in endoderm development and pancreas organogenesis. Curr Opin Cell Biol 2019; 61:48-55. [PMID: 31377680 DOI: 10.1016/j.ceb.2019.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
The pancreas is derived from the foregut endoderm during embryonic development. After gastrulation and endoderm germ layer formation complex morphogenetic events coupled with cell differentiation programs pattern the gut tube and induce pancreas organogenesis. This results in formation of exocrine, ductal and hormone-producing endocrine cells. Among these, endocrine cells are responsible for blood glucose homeostasis and their malfunction leads to diabetes mellitus, which cannot be stopped or reversed by the current standard treatments. Thus, intense efforts to regenerate or replace the lost or dysfunctional insulin-producing β-cells are on the way. This depends on identifying the factors that coordinate pancreas organogenesis. Here, we highlight the contribution of canonical and non-canonical Wnt signaling branches in orchestrating endoderm formation, pancreatic morphogenesis as well as endocrine cell formation and function.
Collapse
Affiliation(s)
- Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany.
| |
Collapse
|
30
|
Prostaglandin signaling regulates renal multiciliated cell specification and maturation. Proc Natl Acad Sci U S A 2019; 116:8409-8418. [PMID: 30948642 PMCID: PMC6486750 DOI: 10.1073/pnas.1813492116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) have core roles in organ formation and function, where they control fluid flow and particle displacement. MCCs direct fluid movement in the brain and spinal cord, clearance of respiratory mucus, and ovum transport from the ovary to the uterus. Deficiencies in MCC functionality lead to hydrocephalus, chronic respiratory infections, and infertility. Prostaglandins are lipids that are used to coordinate cellular functions. Here, we discovered that prostaglandin signaling is required for MCC development in the embryonic zebrafish kidney. Understanding renal MCC genesis can lend insights into the puzzling origins of MCCs in several chronic kidney diseases, where it is unclear whether MCCs are a cause or phenotypic outcome of the condition. Multiciliated cells (MCCs) are specialized epithelia with apical bundles of motile cilia that direct fluid flow. MCC dysfunction is associated with human diseases of the respiratory, reproductive, and central nervous systems. Further, the appearance of renal MCCs has been cataloged in several kidney conditions, where their function is unknown. Despite their pivotal health importance, many aspects of MCC development remain poorly understood. Here, we utilized a chemical screen to identify molecules that affect MCC ontogeny in the zebrafish embryo kidney, and found prostaglandin signaling is essential both for renal MCC progenitor formation and terminal differentiation. Moreover, we show that prostaglandin activity is required downstream of the transcription factor ets variant 5a (etv5a) during MCC fate choice, where modulating prostaglandin E2 (PGE2) levels rescued MCC number. The discovery that prostaglandin signaling mediates renal MCC development has broad implications for other tissues, and could provide insight into a multitude of pathological states.
Collapse
|
31
|
Zhong F, Jiang Y. Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in Diabetes. Front Endocrinol (Lausanne) 2019; 10:101. [PMID: 30842756 PMCID: PMC6391341 DOI: 10.3389/fendo.2019.00101] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous pancreatic β cell regeneration is a potential strategy for β cell expansion or neogenesis to treat diabetes. Regeneration can occur through stimulation of existing β cell replication or conversion of other pancreatic cells into β cells. Recently, various strategies and approaches for stimulation of endogenous β cell regeneration have been evaluated, but they were not suitable for clinical application. In this paper, we comprehensively review these strategies, and further discuss various factors involved in regulation of β cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways, and potential pharmaceutical drugs. Furthermore, we discuss possible reasons for the failure of regenerative medicines in clinical trials, and possible strategies for improving β cell regeneration. As β cell heterogeneity and plasticity determines their function and environmental adaptability, we focus on β cell subtype markers and discuss the importance of research evaluating the characteristics of new β cells. In addition, based on the autoimmunologic features of type 1 diabetes, NOD/Lt-SCID-IL2rg null (NSG) mice grafted with human immune cells and β cells are recommended for use in evaluation of antidiabetic regenerative medicines. This review will further understand current advances in endogenous β cell regeneration, and provide potential new strategies for the treatment of diabetes focused on cell therapy.
Collapse
Affiliation(s)
- Fan Zhong
- Department of Gastroenterology, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Jiang
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Roman AC, Garrido-Jimenez S, Diaz-Chamorro S, Centeno F, Carvajal-Gonzalez JM. Centriole Positioning: Not Just a Little Dot in the Cell. Results Probl Cell Differ 2019; 67:201-221. [PMID: 31435796 DOI: 10.1007/978-3-030-23173-6_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organelle positioning as many other morphological parameters in a cell is not random. Centriole positioning as centrosomes or ciliary basal bodies is not an exception to this rule in cell biology. Indeed, centriole positioning is a tightly regulated process that occurs during development, and it is critical for many organs to function properly, not just during development but also in the adulthood. In this book chapter, we overview our knowledge on centriole positioning in different and highly specialized animal cells like photoreceptor or ependymal cells. We will also discuss recent advances in the discovery of molecular pathways involved in this process, mostly related to the cytoskeleton and the cell polarity pathways. And finally, we present quantitative methods that have been used to assess centriole positioning in different cell types although mostly in epithelial cells.
Collapse
Affiliation(s)
- Angel-Carlos Roman
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Jose Maria Carvajal-Gonzalez
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
33
|
Haag N, Schüler S, Nietzsche S, Hübner CA, Strenzke N, Qualmann B, Kessels MM. The Actin Nucleator Cobl Is Critical for Centriolar Positioning, Postnatal Planar Cell Polarity Refinement, and Function of the Cochlea. Cell Rep 2018; 24:2418-2431.e6. [DOI: 10.1016/j.celrep.2018.07.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 07/26/2018] [Indexed: 11/26/2022] Open
|
34
|
Apodaca G. Role of Polarity Proteins in the Generation and Organization of Apical Surface Protrusions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027813. [PMID: 28264821 DOI: 10.1101/cshperspect.a027813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protruding from the apical surfaces of epithelial cells are specialized structures, including cilia, microplicae, microvilli, and stereocilia. These contribute to epithelial function by cushioning the apical surface, by amplifying its surface area to facilitate nutrient absorption, and by promoting sensory transduction and barrier function. Despite these important roles, and the diseases that result when their formation is perturbed, there remain significant gaps in our understanding of the biogenesis of apical protrusions, or the pathways that promote their organization and orientation once at the apical surface. Here, I review some general aspects of these apical structures, and then discuss our current understanding of their formation and organization with respect to proteins that specify apicobasolateral polarity and planar cell polarity.
Collapse
Affiliation(s)
- Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
35
|
Cowan JR, Tariq M, Shaw C, Rao M, Belmont JW, Lalani SR, Smolarek TA, Ware SM. Copy number variation as a genetic basis for heterotaxy and heterotaxy-spectrum congenital heart defects. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0406. [PMID: 27821535 DOI: 10.1098/rstb.2015.0406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Genomic disorders and rare copy number abnormalities are identified in 15-25% of patients with syndromic conditions, but their prevalence in individuals with isolated birth defects is less clear. A spectrum of congenital heart defects (CHDs) is seen in heterotaxy, a highly heritable and genetically heterogeneous multiple congenital anomaly syndrome resulting from failure to properly establish left-right (L-R) organ asymmetry during early embryonic development. To identify novel genetic causes of heterotaxy, we analysed copy number variants (CNVs) in 225 patients with heterotaxy and heterotaxy-spectrum CHDs using array-based genotyping methods. Clinically relevant CNVs were identified in approximately 20% of patients and encompassed both known and putative heterotaxy genes. Patients were carefully phenotyped, revealing a significant association of abdominal situs inversus with pathogenic or likely pathogenic CNVs, while d-transposition of the great arteries was more frequently associated with common CNVs. Identified cytogenetic abnormalities ranged from large unbalanced translocations to smaller, kilobase-scale CNVs, including a rare, single exon deletion in ZIC3, a gene known to cause X-linked heterotaxy. Morpholino loss-of-function experiments in Xenopus support a role for one of these novel candidates, the platelet isoform of phosphofructokinase-1 (PFKP) in heterotaxy. Collectively, our results confirm a high CNV yield for array-based testing in patients with heterotaxy, and support use of CNV analysis for identification of novel biological processes relevant to human laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Jason R Cowan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Muhammad Tariq
- Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Clinical Biochemistry, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mitchell Rao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresa A Smolarek
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229, USA
| | - Stephanie M Ware
- Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
36
|
Tritschler S, Theis FJ, Lickert H, Böttcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 2017; 6:974-990. [PMID: 28951822 PMCID: PMC5605721 DOI: 10.1016/j.molmet.2017.06.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. SCOPE OF REVIEW This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. MAJOR CONCLUSION Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
37
|
Abstract
Following differentiation during fetal development, β cells further adapt to their postnatal role through functional maturation. While adult islets are thought to contain functionally mature β cells, recent analyses of transgenic rodent and human pancreata reveal a number of novel heterogeneity markers in mammalian β cells. The marked heterogeneity long after maturation raises the prospect that diverse populations harbor distinct roles aside from glucose-stimulated insulin secretion. In this review, we outline our current understanding of the β-cell maturation process, emphasize recent literature on novel heterogeneity markers, and offer perspectives on reconciling the findings from these two areas.
Collapse
Affiliation(s)
- Jennifer S E Liu
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
38
|
Abstract
Multiciliated cells are epithelial cells that are in contact with bodily fluids and are required for the proper function of major organs including the brain, the respiratory system and the reproductive tracts. Their multiple motile cilia beat unidirectionally to remove particles of external origin from their surface and/or drive cells or fluids into the lumen of the organs. Multiciliated cells in the brain are produced once, almost exclusively during embryonic development, whereas in respiratory tracts and oviducts they regenerate throughout life. In this Review, we provide a cell-to-organ overview of multiciliated cells and highlight recent studies that have greatly increased our understanding of the mechanisms driving the development and function of these cells in vertebrates. We discuss cell fate determination and differentiation of multiciliated cells, and provide a comprehensive account of their locations and functions in mammals.
Collapse
|
39
|
Luo W, Yi H, Taylor J, Li JD, Chi F, Todd NW, Lin X, Ren D, Chen P. Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity. Sci Rep 2017; 7:45870. [PMID: 28358397 PMCID: PMC5372464 DOI: 10.1038/srep45870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/03/2017] [Indexed: 12/15/2022] Open
Abstract
The middle ear conducts sound to the cochlea for hearing. Otitis media (OM) is the most common illness in childhood. Moreover, chronic OM with effusion (COME) is the leading cause of conductive hearing loss. Clinically, COME is highly associated with Primary Ciliary Dyskinesia, implicating significant contributions of cilia dysfunction to COME. The understanding of middle ear cilia properties that are critical to OM susceptibility, however, is limited. Here, we confirmed the presence of a ciliated region near the Eustachian tube orifice at the ventral region of the middle ear cavity, consisting mostly of a lumen layer of multi-ciliated and a layer of Keratin-5-positive basal cells. We also found that the motile cilia are polarized coordinately and display a planar cell polarity. Surprisingly, we also found a region of multi-ciliated cells that line the posterior dorsal pole of the middle ear cavity which was previously thought to contain only non-ciliated cells. Our study provided a more complete understanding of cilia distribution and revealed for the first time coordinated polarity of cilia in the epithelium of the mammalian middle ear, thus illustrating novel structural features that are likely critical for middle ear functions and related to OM susceptibility.
Collapse
Affiliation(s)
- Wenwei Luo
- Department of Cell Biology Emory University, Atlanta, USA.,Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, PR China
| | - Hong Yi
- Electronic Microscopy Laboratory, Emory University, Atlanta, USA
| | - Jeannette Taylor
- Electronic Microscopy Laboratory, Emory University, Atlanta, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institution for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Fanglu Chi
- Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, PR China
| | - N Wendell Todd
- Department of Otolaryngology, Emory University, Atlanta, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University, Atlanta, USA
| | - Dongdong Ren
- Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, PR China
| | - Ping Chen
- Department of Cell Biology Emory University, Atlanta, USA
| |
Collapse
|
40
|
Abstract
Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs.
Collapse
Affiliation(s)
- Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Juliette Azimzadeh
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592, Université Paris-Diderot, 75013 Paris, France
| |
Collapse
|
41
|
Roscioni SS, Migliorini A, Gegg M, Lickert H. Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 2016; 12:695-709. [PMID: 27585958 DOI: 10.1038/nrendo.2016.147] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although β-cell heterogeneity was discovered more than 50 years ago, the underlying principles have been explored only during the past decade. Islet-cell heterogeneity arises during pancreatic development and might reflect the existence of distinct populations of progenitor cells and the developmental pathways of endocrine cells. Heterogeneity can also be acquired in the postnatal period owing to β-cell plasticity or changes in islet architecture. Furthermore, β-cell neogenesis, replication and dedifferentiation represent alternative sources of β-cell heterogeneity. In addition to a physiological role, β-cell heterogeneity influences the development of diabetes mellitus and its response to treatment. Identifying phenotypic and functional markers to discriminate distinct β-cell subpopulations and the mechanisms underpinning their regulation is warranted to advance current knowledge of β-cell function and to design novel regenerative strategies that target subpopulations of β cells. In this context, the Wnt/planar cell polarity (PCP) effector molecule Flattop can distinguish two unique β-cell subpopulations with specific transcriptional signatures, functional properties and differential responses to environmental stimuli. In vivo targeting of these β-cell subpopulations might, therefore, represent an alternative strategy for the future treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sara S Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Moritz Gegg
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Technische Universität München, 81675 München, Germany
| |
Collapse
|
42
|
Migliorini A, Roscioni SS, Lickert H. Targeting insulin-producing beta cells for regenerative therapy. Diabetologia 2016; 59:1838-42. [PMID: 27412250 DOI: 10.1007/s00125-016-3949-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022]
Abstract
Pancreatic beta cells differ in terms of glucose responsiveness, insulin secretion and proliferative capacity; however, the molecular pathways that regulate this cellular heterogeneity are unknown. We have identified the Wnt-planar cell polarity (PCP) effector Flattop (FLTP) as a biomarker that identifies mature beta cells in the islets of Langerhans. Interestingly, three-dimensional architecture and Wnt-PCP ligands are sufficient to trigger mouse and human beta cell maturation. These results highlight the fact that novel biomarkers shed light on the long-standing mystery of beta cell heterogeneity and identify the Wnt-PCP pathway as triggering beta cell maturation. Understanding heterogeneity in the islets of Langerhans might allow targeting of beta cell subpopulations for regenerative therapy and provide building principles for stem cell-derived islets. This review summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Harry Heimberg and colleagues, DOI: 10.1007/s00125-016-3879-6 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).
Collapse
Affiliation(s)
- Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sara S Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
43
|
Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 2016; 535:430-4. [PMID: 27398620 DOI: 10.1038/nature18624] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells. Pancreatic β-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature β-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs. We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger β-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for β-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional β-cell heterogeneity and induce β-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional β-cell mass in diabetic patients.
Collapse
|
44
|
Bhonker Y, Abu-Rayyan A, Ushakov K, Amir-Zilberstein L, Shivatzki S, Yizhar-Barnea O, Elkan-Miller T, Tayeb-Fligelman E, Kim SM, Landau M, Kanaan M, Chen P, Matsuzaki F, Sprinzak D, Avraham KB. The GPSM2/LGN GoLoco motifs are essential for hearing. Mamm Genome 2015; 27:29-46. [PMID: 26662512 DOI: 10.1007/s00335-015-9614-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022]
Abstract
The planar cell polarity (PCP) pathway is responsible for polarizing and orienting cochlear hair cells during development through movement of a primary cilium, the kinocilium. GPSM2/LGN, a mitotic spindle-orienting protein associated with deafness in humans, is a PCP effector involved in kinocilium migration. Here, we link human and mouse truncating mutations in the GPSM2/LGN gene, both leading to hearing loss. The human variant, p.(Trp326*), was identified by targeted genomic enrichment of genes associated with deafness, followed by massively parallel sequencing. Lgn (ΔC) mice, with a targeted deletion truncating the C-terminal GoLoco motifs, are profoundly deaf and show misorientation of the hair bundle and severe malformations in stereocilia shape that deteriorates over time. Full-length protein levels are greatly reduced in mutant mice, with upregulated mRNA levels. The truncated Lgn (ΔC) allele is translated in vitro, suggesting that mutant mice may have partially functioning Lgn. Gαi and aPKC, known to function in the same pathway as Lgn, are dependent on Lgn for proper localization. The polarization of core PCP proteins is not affected in Lgn mutants; however, Lgn and Gαi are misoriented in a PCP mutant, supporting the role of Lgn as a PCP effector. The kinocilium, previously shown to be dependent on Lgn for robust localization, is essential for proper localization of Lgn, as well as Gαi and aPKC, suggesting that cilium function plays a role in positioning of apical proteins. Taken together, our data provide a mechanism for the loss of hearing found in human patients with GPSM2/LGN variants.
Collapse
Affiliation(s)
- Yoni Bhonker
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amal Abu-Rayyan
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Liat Amir-Zilberstein
- Department of Biochemistry and Molecular Biology, Weiss Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Shaked Shivatzki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ofer Yizhar-Barnea
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tal Elkan-Miller
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Einav Tayeb-Fligelman
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Sun Myoung Kim
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Moien Kanaan
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ping Chen
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Fumio Matsuzaki
- Laboratory of Cell Asymmetry, Center for Developmental Biology, Riken, Kobe, 650-0047, Japan
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, Weiss Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
45
|
Ober EA, Grapin-Botton A. At new heights - endodermal lineages in development and disease. Development 2015; 142:1912-7. [PMID: 26015535 DOI: 10.1242/dev.121095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoderm gives rise to diverse tissues and organs that are essential for the homeostasis and metabolism of the organism: the thymus, thyroid, lungs, liver and pancreas, and the functionally diverse domains of the digestive tract. Classically, the endoderm, the 'innermost germ layer', was in the shadow of the ectoderm and mesoderm. However, at a recent Keystone meeting it took center stage, revealing astonishing progress in dissecting the mechanisms underlying the development and malfunction of the endodermal organs. In vitro cultures of stem and progenitor cells have become widespread, with remarkable success in differentiating three-dimensional organoids, which - in a new turn for the field - can be used as disease models.
Collapse
Affiliation(s)
- Elke A Ober
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|