1
|
Gao X, Liu X, Han Z, Liao H, Li R. Friend or foe? The role of SIRT6 on macrophage polarized to M2 subtype in acute kidney injury to chronic kidney disease. Ren Fail 2025; 47:2482121. [PMID: 40260529 PMCID: PMC12016254 DOI: 10.1080/0886022x.2025.2482121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 04/23/2025] Open
Abstract
Acute kidney injury (AKI) substantially increases the risk of developing and worsening chronic kidney disease (CKD). The shift from AKI to CKD is a complex process that involves various cell types, with macrophages playing a key role in responding to renal injury. M1 and M2 macrophages-the two main types of macrophages-have distinct functions at various stages. M1 macrophages induce kidney damage by secreting pro-inflammatory cytokines immediately after injury, whereas M2 macrophages subsequently facilitate kidney tissue repair. The conversion of macrophages from the M1 to M2 subtype is vital for effective repair after renal injury. However, when M2 macrophages infiltrate persistently, they can paradoxically cause fibrosis, thereby complicating recovery. As a key epigenetic regulatory factor, the deacetylase SIRT6 exerts various biological effects through its enzymatic reactions, including the regulation of cellular metabolism, antioxidant stress response, and inhibition of fibrosis. SIRT6 is expressed in all major types of renal resident cells and is demonstrated to protect the kidneys. SIRT6 promotes the transition from the M1 to M2 subtype; nevertheless, this process poses the risk of fibrosis if macrophages remain in the M2 subtype because of the influence of SIRT6. This review aimed (i) to delve into the intricate role of SIRT6 in macrophage polarization toward the M2 subtype in the context of the progression from AKI to CKD and (ii) to explore potential strategies that may effectively target and mitigate the progression from AKI to CKD.
Collapse
Affiliation(s)
- Xiaoqin Gao
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| |
Collapse
|
2
|
Hao Y, Hu J, Zhang Z, Guan Q, Wang J, Tao Y, Cheng J, Fan Y. Sirt6 deficiency exacerbates angiotensin II-induced lipid nephrotoxicity by affecting PLD6-derived cardiolipin metabolism in podocytes. Cell Signal 2025; 133:111858. [PMID: 40355014 DOI: 10.1016/j.cellsig.2025.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND AND AIMS Perturbation of cardiolipin (CL) metabolism is associated with lipid nephrotoxicity. Recent findings provide new insights into the roles of CL-modulating proteins as critical determinants of podocyte function in chronic kidney disease (CKD). We previously demonstrated that Sirtuin 6 (Sirt6) is a compelling target inhibiting Angiotensin II (Ang II)-induced lipid dysregulation in podocytes. However, whether Sirt6 regulates podocyte CL metabolism is unknown. METHODS Renal biopsy specimens of patients with hypertensive nephropathy (HN) were used in this study. Podocyte Sirt6-specific knockout mice were generated using the Cre-loxP system. The effect of Sirt6 on mitochondrial CL metabolism, especially the peroxidation and hydrolysis of CL, was investigated in Ang II-infusion mice and Ang II-induced cultured podocytes. RESULTS Sirt6 and outer mitochondrial membrane protein phospholipase D family member 6 (PLD6) were decreased in the glomeruli of patients with HN. Ang II downregulated Sirt6 and PLD6 expression in podocytes in vitro and in vivo. Podocyte-specific deletion of Sirt6 exacerbated lipid droplets formation, CL accumulation and peroxidation, aggravated Ang II-induced mitochondrial dysfunction and cell apoptosis. Mechanically, Sirt6 maintained podocyte CL homeostasis, at least in part through PLD6 signaling-mediated CL metabolism. In addition, cardiolipin antioxidant Szeto-Schiller Peptide 31 (SS-31) treatment inhibited Ang II-induced lipid accumulation and CL peroxidation in podocytes. CONCLUSIONS Our findings shed light on Sirt6's regulatory mechanisms on podocyte CL metabolism and suggest exploiting the Sirt6-PLD6 axis as a potential therapeutic target for protecting against lipid nephrotoxicity.
Collapse
Affiliation(s)
- Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qian Guan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Tao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
von Morze C, Shaw A, Shoghi KI, Blazey T. Multi-compartment metabolic assessment of the kidneys by co-hyperpolarized 13C MRI. Magn Reson Med 2025. [PMID: 40411365 DOI: 10.1002/mrm.30568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025]
Abstract
PURPOSE The purpose of this study was to show that hyperpolarized (HP) carbon-13 (13C) MRI with multiple co-HP substrates can probe the time course of renal metabolic changes in diabetes. METHODS [1-13C]pyruvate and [1,3-13C2]acetoacetate were co-HP for simultaneous metabolic assessment of cytosolic and mitochondrial compartments, respectively. A custom multi-band spectral-spatial radiofrequency pulse was designed for enhanced detection of downstream metabolites of both substrates. In vivo co-HP 13C kidney spectra were acquired serially in rats with uncontrolled insulin-deficient diabetes over a period of 8 weeks. Time courses of changes in apparent metabolic conversions of [1-13C]pyruvate and [1,3-13C2]acetoacetate were evaluated and compared with routine clinical markers of kidney disease obtained by serum and urine sampling. RESULTS Metabolic conversions of both co-HP substrates showed large shifts in diabetic kidney with chronic hyperglycemia. Production of both HP [1-13C]lactate and [1,3-13C2]β-hydroxybutyrate increased over time, with β-hydroxybutyrate signal significantly elevated at 4 weeks, sustained at 8 weeks. Lactate trended higher at 4 weeks, with a larger, significant increase at 8 weeks. Serum and urine markers of renal function were unaltered from baseline throughout the time course, without significant change in serum creatinine nor evidence of albuminuria. CONCLUSION Noninvasive 13C MRI using multiple co-HP metabolic substrates, whose activities are localized to distinct cellular compartments, could enable early detection of diabetic kidney damage.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Yu S, Han Z, Li C, Lu X, Li Y, Yuan X, Guo D. Cross Talk Between Macrophages and Podocytes in Diabetic Nephropathy: Potential Mechanisms and Novel Therapeutics. Mediators Inflamm 2025; 2025:8140479. [PMID: 40352596 PMCID: PMC12064321 DOI: 10.1155/mi/8140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/11/2024] [Accepted: 04/12/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of chronic kidney disease and end-stage renal failure worldwide. Podocytes, essential components of the glomerular filtration barrier (GFB), are profoundly affected in the diabetic milieu, resulting in structural and functional alterations. Concurrently, macrophages, pivotal innate immune cells, infiltrate the diabetic kidney and exhibit diverse activation states influenced by the local environment, playing a crucial role in kidney physiology and pathology. This review synthesizes current insights into how the dynamic cross talk between these two cell types contributes to the progression of DN, exploring the molecular and cellular mechanisms underlying this interaction, with a particular focus on how macrophages influence podocyte survival through various forms of cell death, including apoptosis, pyroptosis, and autophagy. The review also discusses the potential of targeting macrophages to develop more effective treatments for DN.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Zehui Han
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xinxin Lu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China
| |
Collapse
|
5
|
Miao Y, Yan L, Cao H, Jiao X, Shao F. The Mitochondrial Metabolism Gene ECH1 Was Identified as a Novel Biomarker for Diabetic Nephropathy: Using Bioinformatics Analysis and Experimental Confirmation. Diabetes Metab Syndr Obes 2025; 18:1087-1098. [PMID: 40230799 PMCID: PMC11995922 DOI: 10.2147/dmso.s494644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/25/2024] [Indexed: 04/16/2025] Open
Abstract
Background Diabetic nephropathy (DN) is a major cause of kidney failure, and its incidence is increasing worldwide. Existing studies have shown that mitochondrial dysfunction is potentially related to the pathogenesis of DN. This study aims to explore novel biomarkers related to mitochondrial metabolism that may affect the diagnosis and treatment of DN. Methods The Gene Expression Omnibus (GEO) database and MitoCarta3.0 database were used to download the DN datasets and mitochondrial metabolism-related genes (MRGs), respectively. Differentially expressed genes (DEGs) were identified using the "limma" R package, and their functional analysis was performed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Important gene modules were identified by weighted gene Coexpression network analysis (WGCNA) clustering. Next, we obtained key genes by intersecting DEGs, important gene modules and MRGs. The ROC curve was employed to assess the sensitivity and specificity of the diagnostic indicators for DN. Finally, the expression of key genes was assessed in the in vitro DN model and the mechanisms of key gene were investigated. Results A total of 343 DEGs were identified, with functional analysis revealing a primary focus on metabolic biological processes. A sum of 752 important module genes was ascertained. PDK4, ECH1, and ETFB were selected as key genes. Then, the expression level and specificity of key genes were verified by the GSE104954 dataset, which confirmed the high diagnostic value of PDK4 and ECH1 (AUC>0.9). Finally, the q-PCR, flow cytometry, and Western blot results indicated that key genes were significantly decreased in high glucose induced HK-2 cells. ECH1 could promote fatty acid oxidation and inhibit cell apoptosis, oxidative stress, and inflammation. Conclusion This study identified biomarkers related to mitochondrial metabolism in DN, providing new insights and directions for the diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Yan Miao
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450053, People’s Republic of China
| | - Lei Yan
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450053, People’s Republic of China
| | - Huixia Cao
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450053, People’s Republic of China
| | - Xiaojing Jiao
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450053, People’s Republic of China
| | - Fengmin Shao
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450053, People’s Republic of China
| |
Collapse
|
6
|
Wei L, Kang M, Zhang G, Meng Y, Qin H. SIRT6 Overexpression Enhances Diabetic Foot Ulcer Healing via Nrf2 Pathway Activation. Inflammation 2025:10.1007/s10753-025-02297-2. [PMID: 40199836 DOI: 10.1007/s10753-025-02297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Sirtuin-6 (SIRT6) has a pivotal role in a wide array of cellular biological functions and is linked to the progression of various diseases. Previous findings have identified SIRT6 as a protective modulator against numerous diabetic complications. However, whether SIRT6 exerts a protective role in diabetic foot ulcer (DFU) remains unstudied. This work established a rat model of DFU and evaluated the possible role of SIRT6 in mediating the wound healing in DFU. Marked reductions in SIRT6 levels were observed in wound samples from DFU patients and rats. Increasing SIRT6 expression in wound tissues remarkably decreased wound area, accelerated epithelialisation, increased collagen deposition and improved angiogenesis. Moreover, up-modulation of SIRT6 relieved the oxidative stress and inflammation in DFU rats. The increase of SIRT6 in cultured vascular endothelial cells restrained cell apoptosis, oxidative stress and inflammation elicited by high glucose (HG). HG-impaired migration capacity and angiogenesis of vascular endothelial cells was also recovered by increasing SIRT6 expression. Mechanism research revealed that SIRT6 overexpression reinforced the activation of the Nrf2 pathway in wound tissues of DFU rats and HG-exposed vascular endothelial cells. Pharmacological suppression of Nrf2 reversed the protective effect of SIRT6 overexpression on HG-triggered endothelial dysfunction. The findings of this work indicate that the positive role of SIRT6 in DFU wound healing is related to Nrf2 activation which contributes to the suppression of oxidative stress and inflammation and the improvement of angiogenesis in vascular endothelial cells. This study highlights the previously unaddressed role of SIRT6 in DFU wound healing, providing novel insights into its protective functions. The findings hold significant clinical value by identifying SIRT6 as a promising therapeutic target for improving DFU wound healing.
Collapse
Affiliation(s)
- Li Wei
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mengyang Kang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Guofeng Zhang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan Meng
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hao Qin
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Kaushik AS, Agarwal V, Kumar N, Rehman M, Chaudhary R, Srivastava S, Srivastava S, Mishra V. Stimulation of auricular vagus nerve ameliorates chronic stress induced metabolic syndrome via activation of Sirtuin-6. Biochem Biophys Res Commun 2025; 756:151567. [PMID: 40056501 DOI: 10.1016/j.bbrc.2025.151567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Chronic stress is one of the potential causes of the progression of metabolic syndrome (MS). Chronic stress decreases the release of Sirtuin-6 (SIRT6), which regulates MS by controlling glucose, insulin, lipids, and hypertension. Vagus nerve stimulation (VNS) activates SIRT6 via the cholinergic anti-inflammatory pathway (CAP). However, the effectiveness of VNS therapy for treating MS induced by chronic stress has not yet been studied. In this study, we first validated a rat model of chronic unpredictable stress (CUS) and assessed the characteristic features of MS. The CUS rats were exposed to random stressors daily for 8 weeks. The stress response was then confirmed by behavioral alteration and elevated serum corticosterone levels in rats, as measured by various behavioral tests and an ELISA kit, respectively. The MS characteristics in CUS rats were assessed using measurements of fasting blood glucose (FBG), systolic blood pressure (SBP), lipid indices, insulin levels, and HOMA-IR. The stressed animals demonstrated a rise in FBG, SBP, and insulin along with altered lipid indices. After CUS, the rats were treated with VNS (6 Hz, 1.0 ms, 6 V, for 40 min × 14 days, alternatively), and their metabolic activity and vagal flow were assessed. Moreover, SIRT6 and AMP-activated protein kinase (AMPK) expression in rats was also assessed by immunohistochemistry and mRNA expression of liver and pancreatic tissue. SIRT6 and AMPK expression was decreased in CUS animals. Interestingly, VNS treatment attenuated CUS induced MS-associated parameters. These results indicate that VNS may be a beneficial complementary and non-pharmacological method for managing CUS-associated MS.
Collapse
Affiliation(s)
- Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Vipul Agarwal
- MIT College of Pharmacy, Ram Ganga Vihar Phase-II, Moradabad, 244001, (U.P.), India
| | - Neeraj Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India.
| |
Collapse
|
8
|
Li Q, Shang J, Inagi R. Control of Mitochondrial Quality: A Promising Target for Diabetic Kidney Disease Treatment. Kidney Int Rep 2025; 10:994-1010. [PMID: 40303215 PMCID: PMC12034889 DOI: 10.1016/j.ekir.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 05/02/2025] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), affecting over 40% of patients with diabetes. DKD progression involves fibrosis and damage to glomerular and tubulointerstitial regions, with mitochondrial dysfunction playing a critical role. Impaired mitochondria lead to reduced adenosine triphosphate (ATP) production, damaged mitochondria accumulation, and increased reactive oxygen species (ROS), contributing to renal deterioration. Maintaining mitochondrial quality control (MQC) is essential for preventing cell death, tissue injury, and kidney failure. Recent clinical trials show that enhancing MQC can alleviate DKD. However, current treatments cannot halt kidney function decline, underscoring the need for new therapeutic strategies. Mitochondrial-targeted drugs show potential; however, challenges remain because of adverse effects and unclear mechanisms. Future research should aim to comprehensively explore therapeutic potential of MQC in DKD. This review highlights the significance of MQC in DKD treatment, emphasizing the need to maintain mitochondrial quality for developing new therapies.
Collapse
Affiliation(s)
- Qi Li
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Jin Shang
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Lu Y, Yang J, Wu Q, Wang X. The Role and Molecular Pathways of SIRT6 in Senescence and Age-related Diseases. Adv Biol (Weinh) 2025; 9:e2400469. [PMID: 39913122 DOI: 10.1002/adbi.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/10/2024] [Indexed: 02/07/2025]
Abstract
SIRT6 is a NAD+-dependent histone deacetylase with crucial roles in controlling DNA damage repair, telomere homeostasis, oxidative stress, autophagy, and other cellular processes, and it has long been recognized as a longevity-associated protein. This review details its anti-aging-related mechanisms. First, SIRT6 facilitates DNA repair pathways and maintains genome stability by deacetylating histone H3 at K56, K9, and K18 residues, in addition to participating in DNA damage repair through mono-ADP-ribosylation and other mechanisms. Second, SIRT6 preserves telomere integrity and mitigates cellular senescence by reducing oxidative stress-induced damage through the regulation of reactive oxygen species (ROS), inhibition of inflammation, and other pathways. Furthermore, SIRT6 promotes autophagy, slowing cellular senescence via the modulation of various signaling pathways, including AMPK, IGF-Akt-mTOR, H133Y, IL-1β, and mitochondrial autophagy-related proteins. Finally, SIRT6 regulates multiple signaling pathways, such asNF-κB, FOXO, and AMPK, to counteract the aging process. This review particularly delves into the interplay between SIRT6 and various diseases, including tumors, cardiovascular diseases (e.g., atherosclerosis, heart failure), metabolic diseases (e.g., type 2 diabetes, dyslipidemia, gluconeogenesis, osteoporosis), and neurodegenerative diseases (e.g., Alzheimer's disease). Moreover, recent advancements in SIRT6-regulated compounds (e.g., C3G, BZBS, Fisetin, FNDC5, Lycorine hydrochloride, and Ergothioneine) are discussed as potential therapeutic agents for these mediated diseases.
Collapse
Affiliation(s)
- Yi Lu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Junye Yang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Qiuju Wu
- College of General Education, Guangxi Vocational University of Agriculture, Nanning, Guangxi, 530007, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| |
Collapse
|
10
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
11
|
Zhao Y, Yu H, Li J, Qian J, Li M, Zhang X, Wang M, Wang Y, Dong Y, You Y, Zhou Q, Gao D, Zhao Y, Liu B, Chen R, Ren Z, Wang Z, Zhang K, Cui J. A glucose-enriched lung pre-metastatic niche triggered by matrix stiffness-tuned exosomal miRNAs in hepatocellular carcinoma. Nat Commun 2025; 16:1736. [PMID: 39966385 PMCID: PMC11836368 DOI: 10.1038/s41467-025-56878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Apart from the classic features, it is almost unknown whether there exist other new pathological features during pre-metastatic niche formation in hepatocellular carcinoma (HCC). Our previous works have highlighted the contribution of increased matrix stiffness to lung pre-metastatic niche formation and metastasis in HCC. However, whether increased matrix stiffness influences glucose metabolism and supply of lung pre-metastatic niche remains largely unclear. Here we uncover the underlying mechanism by which matrix stiffness-tuned exosomal miRNAs as the major contributor modulate glucose enrichment during lung pre-metastatic niche formation through decreasing the glucose uptake and consumption of lung fibroblasts and increasing angiogenesis and vascular permeability. Our findings suggest that glucose enrichment, a new characteristic of the lung pre-metastatic niche triggered by matrix stiffness-tuned exosomal miRNAs, is essential for the colonization and survival of metastatic tumor cells, as well as subsequent metastatic foci growth.
Collapse
Affiliation(s)
- Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Hongmei Yu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Jiajun Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Yaohui Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Yang You
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Qiwen Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Binbin Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Kezhi Zhang
- Department of Hepatobiliary Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, PR China.
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China.
| |
Collapse
|
12
|
Yang M, Chen W, He L, Wang X, Liu D, Xiao L, Sun L. The Role of Mitokines in Diabetic Nephropathy. Curr Med Chem 2025; 32:1276-1287. [PMID: 37921178 DOI: 10.2174/0109298673255403230919061828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
Diabetic nephropathy (DN) has gradually become one of the main causes of end-stage renal disease (ESRD). However, there is still a lack of effective preventive measures to delay its progression. As the energy factory in the cell, mitochondria play an irreplaceable role in maintaining cell homeostasis. Interestingly, recent studies have shown that in addition to maintaining homeostasis in cells in which mitochondria reside, when mitochondrial perturbations occur in one tissue, distal tissues can also sense and act through mitochondrial stress response pathways through a group of proteins or peptides called "mitokines". Here, we reviewed the mitokines that have been found thus far and summarized their research progress in DN. Finally, we explored the possibility of mitokines as potential therapeutic targets for DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Feng X, Liu Y, Su L, Xu L. SIRT6 regulates the HIPK2/P53 pathway to reduce oxidative stress and apoptosis to attenuate vancomycin-induced nephrotoxicity. Mutat Res 2025; 830:111897. [PMID: 39764940 DOI: 10.1016/j.mrfmmm.2024.111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/25/2024] [Indexed: 05/25/2025]
Abstract
SIRT6 is known to play a protective role in several kidney diseases; however, its role in vancomycin-induced renal injury remains unclear. This study aims to confirm the role and related mechanisms of SIRT6 in vancomycin-induced renal injury. To develop a kidney damage model, mice were given vancomycin injections for seven days. Additionally, an in vivo transfection with a SIRT6 overexpression plasmid was performed. PCR and Western blot analyses were used to assess the SIRT6 mRNA and protein expression levels in renal tissue. HE staining was performed to evaluate renal tissue damage, while Scr and BUN were measured using specialized kits. Renal tissue apoptotic cells were labeled using a TUNEL kit, and the levels of the antioxidant enzymes SOD and GSH were measured using appropriate kits. Western blot was used to identify HIPK2, p-p53, and p53 protein expression in the renal tissue. The results reveal that SIRT6 is expressed at markedly low levels in renal tissue. Furthermore, mice administered vancomycin exhibited a significant increase in Scr and BUN levels, indicating impaired renal function. Histological examination through HE staining demonstrated considerable damage to the renal tissue of the vancomycin group. Additionally, the renal tissue of the mice in the vancomycin group displayed reduced levels of the antioxidant enzymes SOD and GSH, an increased number of TUNEL-positive cells, and significantly elevated levels of HIPK2 and p-p53 protein expression. Moreover, the mice transfected with SIRT6 exhibited significant improvements in previously described symptoms. These findings imply that the inhibition of HIPK2/p53 by SIRT6 may represent a promising therapeutic strategy for alleviating vancomycin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xiuying Feng
- Department of Anesthesiology, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang City, Jiangxi Province 330038, China
| | - Yunhui Liu
- Department of emergency, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province 330006, China
| | - Lei Su
- Department of emergency, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province 330006, China
| | - Luyang Xu
- Department of emergency, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province 330006, China.
| |
Collapse
|
14
|
Xia L, Yuan H, Gao Z, Lv Y, Xu L, Hu F. The role of mitochondrial reactive oxygen species in initiating mitochondrial damage and inflammation in wasp-venom-induced acute kidney injury. J Toxicol Pathol 2025; 38:17-26. [PMID: 39839726 PMCID: PMC11745504 DOI: 10.1293/tox.2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/02/2024] [Indexed: 01/23/2025] Open
Abstract
Acute kidney injury induced by stings from multiple wasps is a medical emergency and is a driving factor of acute renal dysfunction. Numerous studies have shown that mitochondrial reactive oxygen species (mtROS) play a key role in ischemia-reperfusion injury-, cisplatin-, and sepsis-induced acute kidney injury. However, the role of mtROS and its underlying mechanisms in wasp-venom-induced acute kidney injury remain inconclusive. In this study, we investigated the role and mechanisms of mtROS in mitochondrial damage and inflammation in a mouse model of acute kidney injury induced using wasp venom. Changes in mitochondrial function, transcription factor A (TFAM) expression, and DNA maintenance levels, renal function, stimulator of interferon gene (STING) expression, and inflammatory mediator levels in model mice with or without the mtROS scavenger Mito-Tempo were analyzed in vivo. Downregulation of mtROS levels reversed renal damage and mitochondrial dysfunction, and reduced STING expression and inflammation in the kidneys of model mice. The suppression of mtROS levels also improved the decrease in TFAM levels and mitochondrial DNA copy numbers in the kidneys of the model mice. In summary, the existing evidence in this study shows that mtROS contribute significantly to mitochondrial damage and inflammation in acute kidney injury induced by wasp venom.
Collapse
Affiliation(s)
- Lingya Xia
- School of Medicine, Wuhan University of Science and
Technology, Wuhan 430065, China
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Ying Lv
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| |
Collapse
|
15
|
Cai Y, Chen S, Jiang X, Wu Q, Guo B, Wang F. [Inhibition of miR-30d-5p promotes mitochondrial autophagy and alleviates high glucose-induced injury in podocytes]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:756-764. [PMID: 39668610 PMCID: PMC11736342 DOI: 10.3724/zdxbyxb-2024-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES To study the role of microRNA (miR)-30d-5p in high glucose-induced podocyte injury. METHODS Podocytes were hyperglycated with 30 mmol/L glucose, transfected with miR-30d-5p inhibitor and mimic, and then treated with 1 mg/mL 3-methyladenine (3-MA). The transfection efficiency of miR-30d-5p was quantified by reverse transcription PCR. Apoptosis was detected by flow cytometry. The expressions of nephrin, microtubule-associated protein light chain (LC) 3Ⅱ/LC3Ⅰ, P62, autophagy-related gene (ATG) 5, PTEN induced putative kinase (PINK) 1 and Parkin gene (PARK2) were detected by Western blotting. The mito-chondrial membrane potential was detected by JC-1 fluorescent probe, and adenosine triphosphate (ATP) content in cells was detected by relevant kits. RESULTS Under high glucose induction, podocyte apoptosis increased, miR-30d-5p and P62 expressions were upregulated, while nephrin, ATG5, PINK1, PARK2 and LC3Ⅱ/LC3Ⅰ expressions decreased (all P<0.01). MiR-30d-5p inhibitor reversed the effect of high glucose on apoptosis, and the expression of ATG5, PINK1, PARK2, nephrin, LC3Ⅱ/LC3Ⅰ and P62 (all P<0.01). High glucose induced loss of mitochondrial membrane potential and ATP content in podocytes, while inhibition of miR-30d-5p increased them. Autophagy inhibitors 3-MA and miR-30d-5p mimics reversed the effects of miR-30d-5p inhibition on apoptosis, autophagy and mitochondrial function of podocytes induced by high glucose (all P<0.05). CONCLUSIONS Inhibition of miR-30d-5p may promote mitochondrial autophagy (mitophagy) by promoting the expression of ATG5, PINK1, PARK2 and alleviating high glucose-induced podocyte damage.
Collapse
Affiliation(s)
- Ying Cai
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China.
| | - Sheng Chen
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Xiaoli Jiang
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qiyuan Wu
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Bei Guo
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Fang Wang
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China.
| |
Collapse
|
16
|
Zheng M, Chen Z, Xie J, Yang Q, Mo M, Liu J, Chen L. The Genetic and Epigenetic Toxicity of Silica Nanoparticles: An Updated Review. Int J Nanomedicine 2024; 19:13901-13923. [PMID: 39735322 PMCID: PMC11681786 DOI: 10.2147/ijn.s486858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility. This review summarizes SiNPs-induced genetic and epigenetic toxicity, especially to germ cells, and explore their potential mechanisms. SiNPs cause genetic material damage mainly by inducing oxidative stress. Furtherly, the molecular mechanisms of epigenetic toxicity are discussed in detail for the first time. SiNPs alter DNA methylation, miRNA expression, histone modification and inhibit chromatin remodeling by regulating epigenetic-related enzymes and transcription factors. This review is beneficial for investigating potential solutions to avoid toxicity and provide guidance for better application of SiNPs in the biomedical field.
Collapse
Affiliation(s)
- Manjia Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiling Xie
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qiyuan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
17
|
Du L, Guo C, Zeng S, Yu K, Liu M, Li Y. Sirt6 overexpression relieves ferroptosis and delays the progression of diabetic nephropathy via Nrf2/GPX4 pathway. Ren Fail 2024; 46:2377785. [PMID: 39082470 PMCID: PMC11293269 DOI: 10.1080/0886022x.2024.2377785] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE Sirt6, reactive oxygen species and ferroptosis may participate in the pathogenesis of Diabetic Nephropathy (DN). Exploring the relationship between Sirt6, oxidative stress, and ferroptosis provides new scientific ideas to DN. METHODS Human podocytes were stimulated with 30 mM glucose and 5.5 mM glucose. The mice of db/db group were randomly divided into two groups:12 weeks and 16 weeks. Collect mouse blood and urine specimens and renal cortices for investigations. HE, Masson, PAS and immunohistochemical staining were used to observe pathological changes. Western blot, RT-qPCR and immunofluorescence staining were used to evaluate expression of relevant molecules. CCK8 method was introduced to observe cell viability. The changes of podocyte mitochondrial membrane potential and mitochondrial morphology in each group were determined by JC-1 staining and Mito-Tracker. RESULTS The expression level of Sirt6, Nrf2, SLC7A11, HO1, SOD2 and GPX4 were reduced, while ACSL4 was increased in DN. Blood glucose, BUN, Scr, TG, T-CHO and 24h urine protein were upregulated, while ALB was reduced in diabetic group. The treatment of Ferrostatin-1 significantly improved these changes, which proved ferroptosis was involved in the development of DN. Overexpression of Sirt6 might ameliorate the oxidation irritable reaction and ferroptosis. Sirt6 plasmid transfection increased mitochondrial membrane potential and protected morphology and structure of mitochondria. The application of Sirt6 siRNA could aggravated the damage manifestations. CONCLUSION High glucose stimulation could decrease the antioxidant capacity and increase formation of ROS and lipid peroxidation. Sirt6 might alleviate HG-induced mitochondrial dysfunction, podocyte injury and ferroptosis through regulating Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Lingyu Du
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Canghui Guo
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Shengnan Zeng
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Ke Yu
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Maodong Liu
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Ying Li
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
18
|
Zhang Z, Huang H, Tao Y, Liu H, Fan Y. Sirt6 ameliorates high glucose-induced podocyte cytoskeleton remodeling via the PI3K/AKT signaling pathway. Ren Fail 2024; 46:2410396. [PMID: 39378103 PMCID: PMC11463017 DOI: 10.1080/0886022x.2024.2410396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Podocyte injury plays an important role in the occurrence and progression of diabetic kidney disease (DKD), which leads to albuminuria. Cytoskeletal remodeling is an early manifestation of podocyte injury in DKD. However, the underlying mechanism of cytoskeletal remodeling has not been clarified. Histone deacetylase sirtuin6 (Sirt6) has been found to play a key role in DKD progression, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) pathway directly regulates the cytoskeletal structure of podocytes. Whereas, the relationship between Sirt6, the PI3K/AKT pathway and DKD progression remains unclear. METHODS Renal injury of db/db mice was observed by PAS staining and transmission electron microscope. Expression of Sirt6 in the glomeruli of db/db mice was detected by immunofluorescence. UBCS039, a Sirt6 activator, was used to explore the renal effects of Sirt6 activation on diabetic mouse kidneys. We also downregulating Sirt6 expression in podocytes using the Sirt6 inhibitor, OSS_128167, and induced upregulation of Sirt6 using a recombinant plasmid, after which the effects of Sirt6 on high glucose (HG)-induced podocyte damage were assessed in vitro. Podocyte cytoskeletal structures were observed by phalloidin staining. The podocyte apoptotic rate was assessed by flow cytometry, and PI3K/AKT signaling activation was measured by Western blotting. RESULTS Db/db mice exhibited renal damage including elevated urine albumin-to-creatinine ratio (ACR), increased mesangial matrix, fused podocyte foot processes, and thickened glomerular basement membrane. The expression of Sirt6 and PI3K/AKT pathway components was decreased in db/db mice. UBCS039 increased the expressions of Sirt6 and PI3K/AKT pathway components and ameliorated renal damage in db/db mice. We also observed consistent Sirt6 expression was in HG-induced podocytes in vitro. Activation of the PI3K/AKT pathway via a Sirt6 recombinant plasmid ameliorated podocyte cytoskeletal remodeling and apoptosis in HG-treated immortalized human podocytes in vitro, whereas Sirt6 inhibition by OSS_128167 accelerated HG-induced podocyte damage in vitro. CONCLUSIONS Sirt6 protects podocytes against HG-induced cytoskeletal remodeling and apoptosis through activation of the PI3K/AKT signaling pathway. These findings provide evidence supporting the potential efficacy of Sirt6 activation as a promising therapeutic strategy for addressing podocyte injury in DKD.
Collapse
Affiliation(s)
- Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Huang
- Division of Rehabilitation, Tianmen First People’s Hospital, Tianmen, Hubei, China
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, USA
| | - Hongyan Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Chen Y, Zhang M, Jia R, Qian B, Jing C, Zeng C, Zhu D, Liu Z, Zen K, Li L. Podocyte SIRPα reduction in diabetic nephropathy aggravates podocyte injury by promoting pyruvate kinase M2 nuclear translocation. Redox Biol 2024; 78:103439. [PMID: 39586122 PMCID: PMC11625355 DOI: 10.1016/j.redox.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Podocyte injury is a critical event in the pathogenesis of diabetic nephropathy (DN). Hyperglycemia, oxidative stress, inflammation, and other factors contribute to podocyte damage in DN. In this study, we demonstrate that signaling regulatory protein alpha (SIRPα) plays a pivotal role in regulating the metabolic and immune homeostasis of podocytes. Deletion of SIRPα in podocytes exacerbates, while transgenic overexpression of SIRPα alleviates, podocyte injury in experimental DN mice. Mechanistically, SIRPα downregulation promotes pyruvate kinase M2 (PKM2) phosphorylation, initiating a positive feedback loop that involves PKM2 nuclear translocation, NF-κB activation, and oxidative stress, ultimately impairing aerobic glycolysis. Consistent with this mechanism, shikonin ameliorates podocyte injury by reducing PKM2 nuclear translocation, preventing oxidative stress and NF-κB activation, thereby restoring aerobic glycolysis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, 210002, China
| | - Ruoyu Jia
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Dihan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, 210002, China.
| | - Ke Zen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
20
|
Che X, Oh JH, Kang YJ, Kim DW, Kim SG, Choi JY, Garagiola U. 4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation. Int J Mol Sci 2024; 25:12281. [PMID: 39596347 PMCID: PMC11594624 DOI: 10.3390/ijms252212281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the potential of 4-hexylresorcinol (4HR) as a novel antidiabetic agent by assessing its effects on blood glucose levels, Glut4 expression, AMPK phosphorylation, and Histone H3 acetylation (Ac-H3) in the liver. In vitro experiments utilized Huh7 and HepG2 cells treated with varying concentrations of 4HR. Glut4, p-AMPK, and Ac-H3 expression levels were quantified via Western blotting. Additionally, GAPDH activity and glucose uptake were evaluated. In vivo experiments employed streptozotocin (STZ)-induced diabetic rats, with or without 4HR treatment, monitoring blood glucose, body weight, and hepatic levels of Glut4, p-AMPK, and Ac-H3. In vitro, 4HR treatment increased GAPDH activity and glucose uptake. Elevated Glut4, p-AMPK, and Ac-H3 levels were observed 8 h after 4HR administration. Inhibition of p-AMPK using compound C reduced 4HR-mediated Glut4 expression. In STZ-induced diabetic rats, 4HR significantly upregulated Glut4, p-AMPK, and Ac-H3 expression in the liver. Periodic 4HR injections mitigated weight loss and lowered blood glucose levels in STZ-injected animals. Histological analysis revealed increased glycogen storage in hepatocytes of the 4HR-treated group. Overall, 4HR enhanced Glut4 expression through upregulation of AMPK activity and histone H3 acetylation in vitro and in vivo, improving hepatic glucose homeostasis and suggesting potential as a candidate for diabetes treatment.
Collapse
Affiliation(s)
- Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Ji-Hyeon Oh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Yei-Jin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Umberto Garagiola
- Maxillofacial and Dental Unit, Biomedical, Surgical and Oral Sciences Department, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
21
|
Wang ZH, Dong Q, Yan Q, Yu WR, Zhang DD, Yi R. Constructing the biomolecular networks associated with diabetic nephropathy and dissecting the effects of biomolecule variation underlying pathogenesis. Endocr J 2024; 71:1031-1043. [PMID: 39069497 PMCID: PMC11778351 DOI: 10.1507/endocrj.ej24-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes, contributing significantly to patient mortality. Complication of DN (CDN) ranks as the second leading cause of end-stage renal disease globally. To address this, understanding the genetic regulation underlying DN is crucial for personalized treatment strategies. In this study, we identified genes and lncRNAs associated with diabetes and diabetic nephropathy constructing a DN-related lncRNA-mRNA network (DNLMN). This network, characterized by scale-free biomolecular properties, generated through the study of topological properties, elucidates key regulatory interactions. Enrichment analysis of important network modules revealed critical biological processes and pathways involved in DN pathogenesis. In the second step, we investigated the differential expression and co-expression of hub nodes in diseased and normal individuals, identifying lncRNA-mRNA relationships implicated in disease regulation. Finally, we gathered DN-related single nucleotide polymorphisms (SNPs) and lncRNAs from the LincSNP 3.0 database. The DNLMN encompasses SNP-associated lncRNAs, and transcription factors (TFs) linked to differentially expressed lncRNAs between diseased and normal samples. These results underscore the significance of biomolecular networks in disease progression and highlighting the role of biomolecular variability contributes to personalized disease phenotyping and treatment.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Endocrine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| | - Qi Dong
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| | - Qian Yan
- Department of Endocrine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| | - Wan-Rong Yu
- Department of Endocrine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| | - Dan-Dan Zhang
- Department of Endocrine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| | - Ran Yi
- Department of Endocrine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| |
Collapse
|
22
|
Hu Y, Ye S, Kong J, Zhou Q, Wang Z, Zhang Y, Yan H, Wang Y, Li T, Xie Y, Chen B, Zhao Y, Zhang T, Zheng X, Niu J, Hu B, Wang S, Chen Z, Zheng C. DOT1L protects against podocyte injury in diabetic kidney disease through phospholipase C-like 1. Cell Commun Signal 2024; 22:519. [PMID: 39456056 PMCID: PMC11515305 DOI: 10.1186/s12964-024-01895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Podocyte injury causes proteinuria and accelerates glomerular sclerosis during diabetic kidney disease (DKD). Disruptor of telomeric silencing 1-like (DOT1L), an evolutionarily conserved histone methyltransferase, has been reported in preventing kidney fibrosis in chronic kidney disease models. However, whether DOT1L exerts beneficial effects in diabetes induced podocyte injury and the underlying molecular mechanisms need further exploration. METHODS The expression of DOT1L was confirmed by Western blotting in MPC-5 cells and cortex of kidney from db/db mice, as well as immunofluorescence staining in human renal biopsy samples. The effect of DOT1L on podocyte injury was obtained using MPC-5 cells and db/db mice. The potential target genes regulated by DOT1L was measured by RNA-sequencing. Then, a series of molecular biological experiments was performed to investigate the regulation of PLCL1 by DOT1L in MCP-5 cells and db/db mice. Lipid accumulation was assessed by UPLC-MS/MS analysis and Oil Red O staining. RESULTS DOT1L expression was significantly declined in high glucose (HG)-treated MPC-5 cells, podocyte regions of kidney tissues from db/db mice and human renal biopsy samples. Subsequent investigations revealed that upregulation of DOT1L ameliorated HG-induced cell apoptosis in MPC-5 cells as well as primary podocytes. Furthermore, podocyte-specific DOT1L overexpression inhibited diabetic podocyte injury in db/db mice. Mechanistically, we revealed that DOT1L upregulated phospholipase C-like 1 (PLCL1) expression by mediating H3K79me2 at its promoter and PLCL1 silencing suppressed the protective role of DOT1L on podocyte injury. Moreover, DOT1L improved diabetes induced abnormal fatty acid metabolism in podocytes and PLCL1 knockdown reversed its protective effects. CONCLUSIONS Taken together, our results indicate that DOT1L protects podocyte injury via PLCL1-mediated fatty acid metabolism and provides new insights into the therapeutic target of DKD.
Collapse
Affiliation(s)
- Yepeng Hu
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Shu Ye
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Jing Kong
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Zhe Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yikai Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yaqiong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Tiekun Li
- Nanjing Kingmed Center for Clinical Laboratory Co., Ltd., 11 Yaogu Avenue, Nanjing, Jiangsu, China
| | - Yi Xie
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Bingbing Chen
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Tianyue Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xianan Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Junjia Niu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Bibi Hu
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Zhida Chen
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Yang K, Liang W, Hu H, Zhang Z, Hao Y, Song Z, Yang L, Hu J, Chen Z, Ding G. ESRRA modulation by empagliflozin mitigates diabetic tubular injury via mitochondrial restoration. Cell Signal 2024; 122:111308. [PMID: 39059756 DOI: 10.1016/j.cellsig.2024.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The protection of the diabetic kidney by Empagliflozin (EMPA) is attributed to its interaction with the sodium glucose cotransporter 2 located on proximal tubular epithelial cells (PTECs). Estrogen-related receptor α (ESRRA), known for its high expression in PTECs and association with mitochondrial biogenesis, plays a crucial role in this process. This study aimed to explore the impact of ESRRA on mitochondrial mass in diabetic tubular injury and elucidate the mechanism underlying the protective effects of EMPA. METHODS Mitochondrial changes in PTECs of 16-week-old diabetic mice were assessed using transmission electron microscopy (TEM) and RNA-sequences. In vivo, EMPA administration was carried out in db/db mice for 8 weeks, while in vitro experiments involved modifying ESRRA expression in HK2 cells using pcDNA-ESRRA or EMPA. RESULTS Evaluation through TEM revealed reduced mitochondrial mass and swollen mitochondria in PTECs, whereas no significant changes were observed under light microscopy. Analysis of RNA-sequences identified 110 downregulated genes, including Esrra, associated with mitochondrial function. Notably, ESRRA overexpression rescued the loss of mitochondrial mass induced by high glucose (HG) in HK2 cells. EMPA treatment ameliorated the ultrastructural alterations and mitigated the downregulation of ESRRA both in db/db mice and HG-treated HK2 cells. CONCLUSION The diminished expression of ESRRA is implicated in the decline of mitochondrial mass in PTECs during the early stages of diabetes, highlighting it as a key target of EMPA for preventing the progression of diabetic kidney injury.
Collapse
Affiliation(s)
- Keju Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Lin Yang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
25
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
26
|
Wang M, Huang Z, Li X, He P, Sun H, Peng Y, Fan Q. Apabetalone, a BET protein inhibitor, inhibits kidney damage in diabetes by preventing pyroptosis via modulating the P300/H3K27ac/PLK1 axis. Pharmacol Res 2024; 207:107306. [PMID: 39002871 DOI: 10.1016/j.phrs.2024.107306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Many inflammatory disorders, including diabetic kidney disease (DKD), are associated with pyroptosis, a type of inflammation-regulated cell death. The purpose of this work was to ascertain the effects of apabetalone, which targets BRD4, a specific inhibitor of the bromodomain (BRD) and extra-terminal (BET) proteins that target bromodomain 2, on kidney injury in DKD. This study utilized pharmacological and genetic approaches to investigate the effects of apabetalone on pyroptosis in db/db mice and human tubular epithelial cells (HK-2). BRD4 levels were elevated in HK-2 cells exposed to high glucose and in db/db mice. Modulating BRD4 levels led to changes in the generation of inflammatory cytokines and cell pyroptosis linked to NLRP3 inflammasome in HK-2 cells and db/db mice. Likewise, these cellular processes were mitigated by apabetalone through inhibition BRD4. Apabetalone or BRD4 siRNA suppressed PLK1 expression in HK-2 cells under high glucose by P300-dependent H3K27 acetylation on the PLK1 gene promoter, as demonstrated through chromatin immunoprecipitation and immunoprecipitation assays. To summarize, apabetalone relieves renal proptosis and fibrosis in DKD. BRD4 regulates the P300/H3K27ac/PLK1 axis, leading to the activation of the NLRP3 inflammasome and subsequent cell pyroptosis, inflammation, and fibrosis. These results may provide new perspectives on DKD treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaohui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Li
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping He
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yali Peng
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - QiuLing Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Cao Y, Wang Y, Li W, Feng J, Chen Y, Chen R, Hu L, Wei J. Fasudil attenuates oxidative stress-induced partial epithelial-mesenchymal transition of tubular epithelial cells in hyperuricemic nephropathy via activating Nrf2. Eur J Pharmacol 2024; 975:176640. [PMID: 38750716 DOI: 10.1016/j.ejphar.2024.176640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024]
Abstract
Anti-partial epithelial-mesenchymal transition (pEMT) treatment of renal tubular epithelial cells (TECs) represents a promising therapeutic approach. Hyperuricemia nephropathy (HN) arises as a consequence of hyperuricemia (HUA)-induced tubulointerstitial fibrosis (TIF). Studies have suggested that the Ras homolog member A (RhoA)/Rho-associated kinase (ROCK) pathway is a crucial signaling transduction system in renal fibrosis. Fasudil, a RhoA/ROCK inhibitor, has exhibited the potential to prevent fibrosis progress. However, its impact on the pEMT of TECs in HN remains unclear. Here, an HN rat model and an uric acid (UA)-stimulated human kidney 2 (HK2) cell model were established and treated with Fasudil to explore its effects. Furthermore, the underlying mechanism of action involved in the attenuation of pEMT in TECs by Fasudil during HN was probed by using multiple molecular approaches. The HN rat model exhibited significant renal dysfunction and histopathological damage, whereas in vitro and in vivo experiments further confirmed the pEMT status accompanied by RhoA/ROCK pathway activation and oxidative stress in tubular cells exposed to UA. Notably, Fasudil ameliorated these pathological changes, and this was consistent with the trend of ROCK silencing in vitro. Mechanistically, we identified the Neh2 domain of nuclear factor erythroid 2-related factor 2 (Nrf2) as a target of Fasudil for the first time. Fasudil targets Nrf2 activation and antagonizes oxidative stress to attenuate the pEMT of TECs in HN. Our findings suggest that Fasudil attenuates oxidative stress-induced pEMT of TECs in HN by targeting Nrf2 activation. Thus, Fasudil is a potential therapeutic agent for the treatment of HN.
Collapse
Affiliation(s)
- Yun Cao
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yanni Wang
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Weiwei Li
- Division of Nephrology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Jianan Feng
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yao Chen
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Ruike Chen
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Langtao Hu
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China.
| |
Collapse
|
28
|
Yang Y, Liu J, Shi Q, Guo B, Jia H, Yang Y, Fu S. Roles of Mitochondrial Dysfunction in Diabetic Kidney Disease: New Perspectives from Mechanism to Therapy. Biomolecules 2024; 14:733. [PMID: 38927136 PMCID: PMC11201432 DOI: 10.3390/biom14060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes and the main cause of end-stage renal disease around the world. Mitochondria are the main organelles responsible for producing energy in cells and are closely involved in maintaining normal organ function. Studies have found that a high-sugar environment can damage glomeruli and tubules and trigger mitochondrial dysfunction. Meanwhile, animal experiments have shown that DKD symptoms are alleviated when mitochondrial damage is targeted, suggesting that mitochondrial dysfunction is inextricably linked to the development of DKD. This article describes the mechanisms of mitochondrial dysfunction and the progression and onset of DKD. The relationship between DKD and mitochondrial dysfunction is discussed. At the same time, the progress of DKD treatment targeting mitochondrial dysfunction is summarized. We hope to provide new insights into the progress and treatment of DKD.
Collapse
Affiliation(s)
- Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiling Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hanbing Jia
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songbo Fu
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Provincial Endocrine Disease Clinical Medicine Research Center, Lanzhou 730000, China
| |
Collapse
|
29
|
Divya KP, Kanwar N, Anuranjana PV, Kumar G, Beegum F, George KT, Kumar N, Nandakumar K, Kanwal A. SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs. Cardiovasc Toxicol 2024; 24:598-621. [PMID: 38689163 DOI: 10.1007/s12012-024-09858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.
Collapse
Affiliation(s)
- K P Divya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Navjot Kanwar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab, Technical University, Bathinda, Punjab, 151005, India
| | - P V Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, National Institute of Pharmaceutical Educations and Research, Hajipur, Bihar, 844102, India
| | - K Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, 151005, India.
| |
Collapse
|
30
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
31
|
Ma L, Li J, Zhang X, Zhang W, Jiang C, Yang B, Yang H. Chinese botanical drugs targeting mitophagy to alleviate diabetic kidney disease, a comprehensive review. Front Pharmacol 2024; 15:1360179. [PMID: 38803440 PMCID: PMC11128677 DOI: 10.3389/fphar.2024.1360179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the chronic microvascular complications caused by diabetes, which is characterized by persistent albuminuria and/or progressive decline of estimated glomerular filtration rate (eGFR), and has been the major cause of dialysis around the world. At present, although the treatments for DKD including lifestyle modification, glycemic control and even using of Sodium-glucose cotransporter 2 (SGLT2) inhibitors can relieve kidney damage caused to a certain extent, there is still a lack of effective treatment schemes that can prevent DKD progressing to ESRD. It is urgent to find new complementary and effective therapeutic agents. Growing animal researches have shown that mitophagy makes a great difference to the pathogenesis of DKD, therefore, exploration of new drugs that target the restoration of mitophagy maybe a potential perspective treatment for DKD. The use of Chinese botanical drugs (CBD) has been identified to be an effective treatment option for DKD. There is growing concern on the molecular mechanism of CBD for treatment of DKD by regulating mitophagy. In this review, we highlight the current findings regarding the function of mitophagy in the pathological damages and progression of DKD and summarize the contributions of CBD that ameliorate renal injuries in DKD by interfering with mitophagy, which will help us further explain the mechanism of CBD in treatment for DKD and explore potential therapeutic strategies for DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
32
|
Abdelhafez HEDH, Abdallah AA, Abdel-Razik RK, Hamed NA, Elshatory A, Awad W, Khalaf AAA, Mekkawy AM. Sex comparison of oxidative stress, mitochondrial dysfunction, and apoptosis triggers induced by single-dose Abamectin in albino rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105903. [PMID: 38685225 DOI: 10.1016/j.pestbp.2024.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Abamectin (AB) is widely used in agriculture and has been employed as an insecticide, nematicide, and livestock pest control agent. However, it may also pose a serious threat to mammals. The primary purpose of this research was to compare the sex variations between male and female rats during exposure and to assess the risk of toxicity of abamectin, which are still largely unknown. The twenty albino rats were divided randomly into four groups (n = 5): 1) the male control group; 2) the male treatment group treated with AB (1 mg/kg B.W.); 3) the female control group; and 4) the female treatment group treated with AB (1 mg/kg B.W.). AB administration caused a drop in body weight in females more than males with showing oxidative stress in both sexes of animals, as characterized by an increase in MDA content and a decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Reported sex-specific effects suggested that females are more susceptible from males in brain tissues for alteration of antioxidant markers while females' liver and kidney tissues showed more level of lipid peroxidation than males. In addition, mitochondrial dysfunction was associated with a significant decrease in NADH dehydrogenase (Complex I) and a significant decrease in mitochondrial ATPase, which led to apoptosis and histopathological alterations in the targeted tissues, indicating that females are higher sensitive than males to these biological events. In brief, the results of this study led to female rats are generally more sensitive than male rats to neurobehavioral and hepatic complications associated with abamectin treatment. Further evaluation should be performed to determine the adverse outcome pathways involved and to determine the effects of sex on improving the risk assessment of abamectin in both sexes.
Collapse
Affiliation(s)
- Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt.
| | - Amr A Abdallah
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Reda K Abdel-Razik
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Nadia A Hamed
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Ahmed Elshatory
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Egypt
| | - Walaa Awad
- Clinical Pharmacy Department, Abo El-Reesh Al Mounira Hospital, Cairo University, Cairo, Egypt
| | - Abdel Azeim A Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya M Mekkawy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
34
|
Tang S, Huang M, Wang R, Li M, Dong N, Wu R, Chi Z, Gao L. Drp1-dependent mitochondrial fragmentation mediates photoreceptor abnormalities in type 1 diabetic retina. Exp Eye Res 2024; 242:109860. [PMID: 38467174 DOI: 10.1016/j.exer.2024.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Recent studies have highlighted that retinal neurodegeneration precedes microvascular changes in diabetic retinopathy (DR), but the specific mechanisms remain unclear. Given the pivotal role of dysfunctional mitochondria and oxidative stress in early DR, our objective was to observe mitochondria-related alterations in the neural retina of type one diabetic mellitus mice with no evidence of DR (T1DM-NDR). We aimed to identify the key mitochondrial-related proteins contributing to mitochondrial injury. Our study revealed that T1DM-NDR mice exhibited outer retina thinning, including the ellipsoid zone, inner segment, and outer segment. Additionally, there was an impaired amplitude of the b-wave in electroretinogram (ERG) and a disorganized arrangement of the photoreceptor layer. In both the retina of DM mice and high glucose (HG)-treated 661w cells, mitochondria appeared swollen and fragmented, with disrupted cristae, disorganized or shortened branches in the mitochondrial network, and decreased mitochondrial membrane potential. Among the mitochondrial-related proteins, dynamin-related protein 1 (Drp1) was upregulated, and the ratio of phosphorylated Drp1 protein at serine 616 (S616) and serine 637 (S637) sites significantly increased in the retina of DM mice. The administration of Mdivi-1 ameliorated high-glucose-induced dysfunctional mitochondria, thereby protecting T1DM-NDR mice retina from morphological and functional injuries. Our findings suggest that hyperglycemia promotes Drp1-mediated mitochondrial dysfunction, which may be a significant factor in the development of DR. The inhibition of high-glucose-induced mitochondrial fission emerges as a potential and innovative intervention strategy for preventing DR.
Collapse
Affiliation(s)
- Shuyu Tang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mengling Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruixuan Wang
- Bourns Engineering, The University of California, Riverside, Riverside, CA, 92521, United States
| | - Ming Li
- Department of Immunology, College of Basic Medical Immunology, Central South University, Changsha, China
| | - Ning Dong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ronghan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zailong Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Eye Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Ling Gao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Eye Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
35
|
Lin DW, Yang TM, Ho C, Shih YH, Lin CL, Hsu YC. Targeting Macrophages: Therapeutic Approaches in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4350. [PMID: 38673935 PMCID: PMC11050450 DOI: 10.3390/ijms25084350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes is not solely a metabolic disorder but also involves inflammatory processes. The immune response it incites is a primary contributor to damage in target organs. Research indicates that during the initial phases of diabetic nephropathy, macrophages infiltrate the kidneys alongside lymphocytes, initiating a cascade of inflammatory reactions. The interplay between macrophages and other renal cells is pivotal in the advancement of kidney disease within a hyperglycemic milieu. While M1 macrophages react to the inflammatory stimuli induced by elevated glucose levels early in the disease progression, their subsequent transition to M2 macrophages, which possess anti-inflammatory and tissue repair properties, also contributes to fibrosis in the later stages of nephropathy by transforming into myofibroblasts. Comprehending the diverse functions of macrophages in diabetic kidney disease and regulating their activity could offer therapeutic benefits for managing this condition.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi City 60069, Taiwan;
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Cheng Ho
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Chun-Liang Lin
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| |
Collapse
|
36
|
Kamisah Y, Che Hassan HH. Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals (Basel) 2024; 17:464. [PMID: 38675424 PMCID: PMC11054808 DOI: 10.3390/ph17040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial dysfunction is a hallmark of cardiovascular diseases, contributing to impaired vasodilation, altered hemodynamics, and atherosclerosis progression. Trimetazidine, traditionally used for angina pectoris, exhibits diverse therapeutic effects on endothelial dysfunction. This review aims to elucidate the mechanisms underlying trimetazidine's actions and its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders. Trimetazidine enhances vasodilation and hemodynamic function by modulating endothelial nitric oxide synthase activity, nitric oxide production, and endothelin-1. It also ameliorates metabolic parameters, including reducing blood glucose, mitigating oxidative stress, and dampening inflammation. Additionally, trimetazidine exerts antiatherosclerotic effects by inhibiting plaque formation and promoting its stability. Moreover, it regulates apoptosis and angiogenesis, fostering endothelial cell survival and neovascularization. Understanding trimetazidine's multifaceted mechanisms underscores its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders, warranting further investigation for clinical translation.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
37
|
Wang T, Chen Y, Liu Z, Zhou J, Li N, Shan Y, He Y. Long noncoding RNA Glis2 regulates podocyte mitochondrial dysfunction and apoptosis in diabetic nephropathy via sponging miR-328-5p. J Cell Mol Med 2024; 28:e18204. [PMID: 38506068 PMCID: PMC10951868 DOI: 10.1111/jcmm.18204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Podocyte apoptosis exerts a crucial role in the pathogenesis of DN. Recently, long noncoding RNAs (lncRNAs) have been gradually identified to be functional in a variety of different mechanisms associated with podocyte apoptosis. This study aimed to investigate whether lncRNA Glis2 could regulate podocyte apoptosis in DN and uncover the underlying mechanism. The apoptosis rate was detected by flow cytometry. Mitochondrial membrane potential (ΔΨM) was measured using JC-1 staining. Mitochondrial morphology was detected by MitoTracker Deep Red staining. Then, the histopathological and ultrastructure changes of renal tissues in diabetic mice were observed using periodic acid-Schiff (PAS) staining and transmission electron microscopy. We found that lncRNA Glis2 was significantly downregulated in high-glucose cultured podocytes and renal tissues of db/db mice. LncRNA Glis2 overexpression was found to alleviate podocyte mitochondrial dysfunction and apoptosis. The direct interaction between lncRNA Glis2 and miR-328-5p was confirmed by dual luciferase reporter assay. Furthermore, lncRNA Glis2 overexpression alleviated podocyte apoptosis in diabetic mice. Taken together, this study demonstrated that lncRNA Glis2, acting as a competing endogenous RNA (ceRNA) of miRNA-328-5p, regulated Sirt1-mediated mitochondrial dysfunction and podocyte apoptosis in DN.
Collapse
Affiliation(s)
- Ting Wang
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Yanxia Chen
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Zhihong Liu
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Jing Zhou
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Na Li
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Yue Shan
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Yinxi He
- Department of Orthopaedic TraumaThe Third Hospital of ShijiazhuangShijiazhuangHebeiP.R. China
| |
Collapse
|
38
|
Wang X, Li X, Zhou J, Lei Z, Yang X. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. Chem Biol Interact 2024; 390:110890. [PMID: 38278314 DOI: 10.1016/j.cbi.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is the most common type of arthritis and is an age-related joint disease that is particularly prevalent in subjects over 65 years old. The chronic rise of senescent cells has a close correlation with age-related diseases such as OA, and the senescence-associated secretory phenotype (SASP) is implicated in OA cartilage degeneration pathogenesis. Sirtuin 6 (SIRT6) is likely to be a key senescence-related regulator. Fisetin (FST) is a natural flavonol of the flavonoid family that is recommended as a senolytic drug to extend health and lifespan. However, the potential chondroprotective effects of FST on OA rats are largely unclarified. The aim of this study is to investigate the ameliorative effects of FST on OA joint cartilage and the relationship with SIRT6 and the detailed mechanisms from anti-inflammatory and anti-senescent perspectives. Rats were subjected to destabilization of the medial meniscus (DMM) surgery as a means of inducing the experimental OA model in vivo. Chondrocytes treated with IL-1β were utilized for mimicking the OA cell model in vitro. Intra-articular injection of FST, OSS_128,167 (OSS, SIRT6 inhibitor), and MDL800 (MDL, SIRT6 agonist) in vivo or administering them in IL-1β-induced rat chondrocytes in vitro were performed in order to determine the effects FST has on OA and the link with SIRT6. This study found SIRT6 level to be negatively correlated with OA severity. SIRT6 downregulation was validated in the joint cartilages of DMM rats and IL-1β-treated chondrocytes. It was also notably demonstrated that FST can activate SIRT6. Both the administration of FST and activation of SIRT6 using MDL were found to rescue cartilage erosion, decrease extracellular matrix (ECM) degradation, prevent cartilage from apoptosis, and improve detrimental senescence-related phenotype. The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1β-stimulated chondrocytes were also confirmed. SIRT6 loss occurs in articular cartilage in OA pathogenesis, which is linked to aging. FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zheng Lei
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
39
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Hao Y, Fan Y, Feng J, Zhu Z, Luo Z, Hu H, Li W, Yang H, Ding G. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease. Cell Commun Signal 2024; 22:26. [PMID: 38200543 PMCID: PMC10777643 DOI: 10.1186/s12964-023-01399-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiolipin (CL) plays a critical role in maintaining mitochondrial membrane integrity and overall mitochondrial homeostasis. Recent studies have suggested that mitochondrial damage resulting from abnormal cardiolipin remodelling is associated with the pathogenesis of diabetic kidney disease (DKD). Acyl-coenzyme A:lyso-cardiolipin acyltransferase-1 (ALCAT1) was confirmed to be involved in the progression of Parkinson's disease, diet-induced obesity and other ageing-related diseases by regulating pathological cardiolipin remodelling. Thus, the purpose of this investigation was to determine the role of ALCAT1-mediated CL remodelling in DKD and to explore the potential underlying mechanism. METHODS In vivo study, the mitochondrial structure was examined by transmission electron microscopy (TEM). The colocalization of ALCAT1 and synaptopodin was evaluated by double immunolabelling. Western blotting (WB) was performed to assess ALCAT1 expression in glomeruli. Lipidomics analysis was conducted to evaluate the composition of reconstructed cardiolipins. In vitro study, the lipidomics, TEM and WB analyses were similar to those in vivo. Mitochondrial function was evaluated by measuring the mitochondrial membrane potential (MMP) and the production of ATP and ROS. RESULTS Here, we showed that increased oxidized cardiolipin (ox-CL) and significant mitochondrial damage were accompanied by increased ALCAT1 expression in the glomeruli of patients with DKD. Similar results were found in db/db mouse kidneys and in cultured podocytes stimulated with high glucose (HG). ALCAT1 deficiency effectively prevented HG-induced ox-CL production and mitochondrial damage in podocytes. In contrast, ALCAT1 upregulation enhanced ox-CL levels and podocyte mitochondrial dysfunction. Moreover, treatment with the cardiolipin antioxidant SS-31 markedly inhibited mitochondrial dysfunction and cell injury, and SS-31 treatment partly reversed the damage mediated by ALCAT1 overexpression. We further found that ALCAT1 could mediate the key regulators of mitochondrial dynamics and mitophagy through the AMPK pathway. CONCLUSIONS Collectively, our studies demonstrated that ALCAT1-mediated cardiolipin remodelling played a crucial role in DKD, which might provide new insights for DKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Weiwei Li
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongxia Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| |
Collapse
|
41
|
Miao H, Wang YN, Su W, Zou L, Zhuang SG, Yu XY, Liu F, Zhao YY. Sirtuin 6 protects against podocyte injury by blocking the renin-angiotensin system by inhibiting the Wnt1/β-catenin pathway. Acta Pharmacol Sin 2024; 45:137-149. [PMID: 37640899 PMCID: PMC10770168 DOI: 10.1038/s41401-023-01148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Sirtuins (Sirts) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases that share diverse cellular functions. Increasing evidence shows that Sirts play a critical role in podocyte injury, which is a major determinant of proteinuria-associated renal disease. Membranous nephropathy (MN) is a typical glomerular disease in which podocyte damage mediates proteinuria development. In this study we investigated the molecular mechanisms underlying the regulatory roles of Sirt in podocyte injury in MN patients, rats with cationic bovine serum albumin (CBSA)-induced MN and zymosan activation serum (ZAS)-stimulated podocytes. Compared with healthy controls, MN patients showed significant reduction in intrarenal Sirt1 and Sirt6 protein expression. In CBSA-induced MN rats, significant reduction in intrarenal Sirt1, Sirt3 and Sirt6 protein expression was observed. However, only significant decrease in Sirt6 protein expression was found in ZAS-stimulated podocytes. MN patients showed significantly upregulated protein expression of Wnt1 and β-catenin and renin-angiotensin system (RAS) components in glomeruli. CBSA-induced MN rats exhibited significantly upregulated protein expression of intrarenal Wnt1 and β-catenin and their downstream gene products as well as RAS components. Similar results were observed in ZAS-stimulated podocytes. In ZAS-stimulated podocytes, treatment with a specific Sirt6 activator UBCS039 preserved the protein expression of podocin, nephrin and podocalyxin, accompanied by significant inhibition of the protein expression of β-catenin and its downstream gene products, including Snail1 and Twist; treatment with a β-catenin inhibitor ICG-001 significantly preserved the expression of podocyte-specific proteins and inhibited the upregulation of downstream β-catenin gene products accompanied by significant suppression of the protein expression of RAS components. Thus, we demonstrate that Sirt6 ameliorates podocyte injury by blocking RAS signalling via the Wnt1/β-catenin pathway. Sirt6 is a specific therapeutic target for the treatment of podocyte damage-associated renal disease.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, 721008, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Shou-Gang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, 710003, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
42
|
Yao BF, Luo XJ, Peng J. A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. Int J Biol Macromol 2024; 254:127910. [PMID: 37939779 DOI: 10.1016/j.ijbiomac.2023.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.
Collapse
Affiliation(s)
- Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
43
|
Gong M, Guo Y, Dong H, Wu F, He Q, Gong J, Lu F. Modified Hu-lu-ba-wan protects diabetic glomerular podocytes via promoting PKM2-mediated mitochondrial dynamic homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155247. [PMID: 38128393 DOI: 10.1016/j.phymed.2023.155247] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in the progression of diabetic kidney disease (DKD). Damaged mitochondria produce excessive reactive oxygen species (ROS) that can cause apoptosis. Mitochondrial dynamics control the quality and function of mitochondria. Targeting mitochondrial dynamics may reduce ROS-induced apoptosis and improve renal injury in DKD. Modified Hu-lu-ba-wan (MHLBW) shows distinct clinical effects on DKD patients, which are related to its role in antioxidant stress modulation. However, the relevant mechanisms of MHLBW have not been clearly explored. PURPOSE This study was aimed to evaluate the therapeutic effects of MHLBW on spontaneous DKD mice and clarify the potential mechanisms. METHODS The main components of MHLBW were identified by HPLC. Using db/db mice as DKD models, we evaluated the therapeutic effects of MHLBW on mice after an 8-week administration. We investigated the molecular mechanism of MHLBW in regulating mitochondrial dynamic homeostasis, podocyte apoptosis, and glomerular damage. After that, computational docking analysis and in vitro experiments were conducted for further mechanism verification. RESULTS Intragastric administration of MHLBW for 8 weeks in db/db mice significantly improved glucose metabolism, basement membrane thickening, mesangial expansion, glomerular fibrosis, and podocyte injury. MHLBW can reverse podocyte apoptosis via promoting mitochondrial dynamic homeostasis, which was related to regulating the PKM2/ PGC-1α/Opa1 pathway. Berberine (BBR), one of the components of MHLBW, exhibited preeminent affinity with PKM2 as reflected by computational docking analysis. In cultured podocytes, BBR can also prevent apoptosis by promoting PKM2-mediated mitochondrial dynamic homeostasis. CONCLUSION Our study demonstrates that MHLBW can treat DKD by inhibiting glomerular damage and podocyte apoptosis through positive regulation of PKM2-mediated mitochondrial dynamic homeostasis. These results may provide a potential strategy against DKD.
Collapse
Affiliation(s)
- Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
44
|
Wang HQ, Wu HX, Shi WQ, Yang Y, Lin M, Wang K, Bian CC, An XF, Wang T, Yan M. Triptolide Attenuates Renal Slit Diagram to Tight Junction Transition in Diabetic Kidney Disease by Regulating Nrf2-Ferroptosis Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2161-2185. [PMID: 39663264 DOI: 10.1142/s0192415x24500836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Diabetic kidney disease (DKD) is a prominent etiological factor underlying the onset of end-stage kidney disease, which is characterized by the presence of microalbuminuria. Recent studies have found that high glucose can induce mitochondrial dysfunction and ferroptosis in podocytes, leading to renal impairment and proteinuria. Triptolide was extracted from traditional Chinese medicine Tripterygium wilfordii Hook F., which has anti-inflammatory, anti-oxidant, and podocyte protective activities. Multiple studies have shown that triptolide can ameliorate proteinuria in DKD. However, the specific mechanisms remain unclear. This study investigates whether triptolide can reverse proteinuria in DKD by inhibiting ferroptosis in db/db mice and its specific protective mechanisms. The results demonstrate that triptolide could preserve podocytes and reduce proteinuria in db/db mice via inhibiting ferroptosis. In vivo and in vitro, the expression of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH-1), and the cystine/glutamate reverse antiporter solute carrier family 7 member 11 (SLC7A11) were increased, and the production of transferrin receptor 1 (TFR-1) was decreased by triptolide. Moreover, triptolide suppressed oxidative stress and mitochondria dysfunction. Additionally, triptolide up-regulated the expression of NFE2-related factor 2 (Nrf2) and change the expression of its downstream targets related to ferroptosis. Furthermore, the podocyte actin cytoskeleton was stabilized by triptolide, and the transition from slit diaphragm (SD) to tight junction (TJ), which is a pivotal character of filtration barrier damage, was attenuated by triptolide. In conclusion, our results suggest that triptolide could stabilize the glomerular podocyte cytoskeleton and attenuate renal SD-TJ transition in DKD by upregulating Nrf2 and thereby inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hai-Qin Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Hai-Xia Wu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Wei-Qing Shi
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Rd., Nanjing, 210009 Jiangsu, P. R. China
| | - Ying Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Min Lin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Kai Wang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210009, Jiangsu, P. R. China
| | - Chen-Chen Bian
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210009, Jiangsu, P. R. China
| | - Xiao-Fei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210009, Jiangsu, P. R. China
| | - Tao Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Ming Yan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
45
|
Wang R, Wang J, Zhang Z, Ma B, Sun S, Gao L, Gao G. FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Mol Med 2023; 29:165. [PMID: 38049769 PMCID: PMC10696847 DOI: 10.1186/s10020-023-00755-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Disruption of the BBB is a harmful event after intracranial hemorrhage (ICH), and this disruption contributes to a series of secondary injuries. We hypothesized that FGF21 may have protective effects after intracranial hemorrhage (ICH) and investigated possible underlying molecular mechanisms. METHODS Blood samples of ICH patients were collected to determine the relationship between the serum level of FGF21 and the [Formula: see text]GCS%. Wild-type mice, SIRT6flox/flox mice, endothelial-specific SIRT6-homozygous-knockout mice (eSIRT6-/- mice) and cultured human brain microvascular endothelial cells (HCMECs) were used to determine the protective effects of FGF21 on the BBB. RESULTS We obtained original clinical evidence from patient data identifying a positive correlation between the serum level of FGF21 and [Formula: see text]GCS%. In mice, we found that FGF21 treatment is capable of alleviating BBB damage, mitigating brain edema, reducing lesion volume and improving neurofunction after ICH. In vitro, after oxyhemoglobin injury, we further explored the protective effects of FGF21 on endothelial cells (ECs), which are a significant component of the BBB. Mitochondria play crucial roles during various types of stress reactions. FGF21 significantly improved mitochondrial biology and function in ECs, as evidenced by alleviated mitochondrial morphology damage, reduced ROS accumulation, and restored ATP production. Moreover, we found that the crucial regulatory mitochondrial factor deacylase sirtuin 6 (SIRT6) played an irreplaceable role in the effects of FGF21. Using endothelial-specific SIRT6-knockout mice, we found that SIRT6 deficiency largely diminished these neuroprotective effects of FGF21. Then, we revealed that FGF21 might promote the expression of SIRT6 via the AMPK-Foxo3a pathway. CONCLUSIONS We provide the first evidence that FGF21 is capable of protecting the BBB after ICH by improving SIRT6-mediated mitochondrial homeostasis.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
46
|
Bayir MH, Yıldızhan K, Altındağ F. Effect of Hesperidin on Sciatic Nerve Damage in STZ-Induced Diabetic Neuropathy: Modulation of TRPM2 Channel. Neurotox Res 2023; 41:638-647. [PMID: 37439953 DOI: 10.1007/s12640-023-00657-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Diabetic neuropathy (DNP) is a severe complication of diabetes mellitus. In this study, we examined the potential of hesperidin (HES) to attenuate DNP and the involvement of the TRPM2 channel in this process. The rats were given a single dose of 45 mg/kg of streptozotocin (STZ) intraperitoneally to induce diabetic neuropathic pain. On the third day, we confirmed the development of diabetes in the DNP and DNP + HES groups. The HES groups were treated with 100 mg/kg and intragastric gavage daily for 14 days. The results showed that treatment with HES in diabetic rats decreased STZ-induced hyperglycemia and thermal hyperalgesia. Furthermore, in the histopathological examination of the sciatic nerve, HES treatment reduced STZ-induced damage. The immunohistochemical analysis also determined that STZ-induced increased TRPM2 channel, type-4 collagen, and fibrinogen immunoactivity decreased with HES treatment. In addition, we investigated the TRPM2 channel activation in the sciatic nerve damage mechanism of DNP model rats created by STZ application using the ELISA method. We determined the regulatory effect of HES on increased ROS, and PARP1 and TRPM2 channel activation in the sciatic nerves of DNP model rats. These findings indicated that hesperidin treatment could attenuate diabetes-induced DNP by reducing TRPM2 channel activation.
Collapse
Affiliation(s)
- Mehmet Hafit Bayir
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
47
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
48
|
Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol 2023; 14:1238706. [PMID: 38074159 PMCID: PMC10702752 DOI: 10.3389/fphar.2023.1238706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial epigenetic mechanisms that regulate various cellular biological processes. The use of mass spectrometry (MS)-proteomics has led to the discovery of numerous novel types of protein PTMs, such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation. In this review, we specifically highlight the molecular mechanisms and roles of various histone and some non-histone PTMs in renal diseases, including diabetic kidney disease. PTMs exhibit diverse effects on renal diseases, which can be either protective or detrimental, depending on the specific type of protein PTMs and their respective targets. Different PTMs activate various signaling pathways in diverse renal pathological conditions, which could provide novel insights for studying epigenetic mechanisms and developing potential therapeutic strategies for renal diseases.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghui Du
- Biomedical Science College, Shandong First Medical University, Jinan, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
49
|
Xia W, Li S, Li L, Zhang S, Wang X, Ding W, Ding L, Zhang X, Wang Z. Role of anthraquinones in combating insulin resistance. Front Pharmacol 2023; 14:1275430. [PMID: 38053837 PMCID: PMC10694622 DOI: 10.3389/fphar.2023.1275430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Insulin resistance presents a formidable public health challenge that is intricately linked to the onset and progression of various chronic ailments, including diabetes, cardiovascular disease, hypertension, metabolic syndrome, nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin resistance is paramount in preventing and managing these metabolic disorders. Natural herbal remedies show promise in combating insulin resistance, with anthraquinone extracts garnering attention for their role in enhancing insulin sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin resistance through diverse pathways, encompassing activation of the AMP-activated protein kinase (AMPK) signaling pathway, restoration of insulin signal transduction, attenuation of inflammatory pathways, and modulation of gut microbiota. This comprehensive review aims to consolidate the potential anthraquinone compounds that exert beneficial effects on insulin resistance, elucidating the underlying mechanisms responsible for their therapeutic impact. The evidence discussed in this review points toward the potential utilization of anthraquinones as a promising therapeutic strategy to combat insulin resistance and its associated metabolic diseases.
Collapse
Affiliation(s)
- Wanru Xia
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqian Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - LinZehao Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shibo Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiandang Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
50
|
Wu S, Zhang J, Peng C, Ma Y, Tian X. SIRT6 mediated histone H3K9ac deacetylation involves myocardial remodelling through regulating myocardial energy metabolism in TAC mice. J Cell Mol Med 2023; 27:3451-3464. [PMID: 37603612 PMCID: PMC10660608 DOI: 10.1111/jcmm.17915] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Pathological myocardial remodelling is the initial factor of chronic heart failure (CHF) and is induced by multiple factors. We previously demonstrated that histone acetylation is involved in CHF in transverse aortic constriction (TAC) mice, a model for pressure overload-induced heart failure. In this study, we investigated whether the histone deacetylase Sirtuin 6 (SIRT6), which mediates deacetylation of histone 3 acetylated at lysine 9 (H3K9ac), is involved pathological myocardial remodelling by regulating myocardial energy metabolism and explored the underlying mechanisms. We generated a TAC mouse model by partial thoracic aortic banding. TAC mice were injected with the SIRT6 agonist MDL-800 at a dose of 65 mg/kg for 8 weeks. At 4, 8 and 12 weeks after TAC, the level of H3K9ac increased gradually, while the expression of SIRT6 and vascular endothelial growth factor A (VEGFA) decreased gradually. MDL-800 reversed the effects of SIRT6 on H3K9ac in TAC mice and promoted the expression of VEGFA in the hearts of TAC mice. MDL-800 also attenuated mitochondria damage and improved mitochondrial respiratory function through upregulating SIRT6 in the hearts of TAC mice. These results revealed a novel mechanism in which SIRT6-mediated H3K9ac level is involved pathological myocardial remodelling in TAC mice through regulating myocardial energy metabolism. These findings may assist in the development of novel methods for preventing and treating pathological myocardial remodelling.
Collapse
Affiliation(s)
- Shuqi Wu
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jiaojiao Zhang
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chang Peng
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yixiang Ma
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaochun Tian
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|