1
|
Mohanakrishnan V, Sivaraj KK, Jeong HW, Bovay E, Dharmalingam B, Bixel MG, Dinh VV, Petkova M, Paredes Ugarte I, Kuo YT, Gurusamy M, Raftrey B, Chu NTL, Das S, Rios Coronado PE, Stehling M, Sävendahl L, Chagin AS, Mäkinen T, Red-Horse K, Adams RH. Specialized post-arterial capillaries facilitate adult bone remodelling. Nat Cell Biol 2024; 26:2020-2034. [PMID: 39528700 PMCID: PMC11628402 DOI: 10.1038/s41556-024-01545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
The vasculature of the skeletal system is crucial for bone formation, homoeostasis and fracture repair, yet the diversity and specialization of bone-associated vessels remain poorly understood. Here we identify a specialized type of post-arterial capillary, termed type R, involved in bone remodelling. Type R capillaries emerge during adolescence around trabecular bone, possess a distinct morphology and molecular profile, and are associated with osteoprogenitors and bone-resorbing osteoclasts. Endothelial cell-specific overexpression of the transcription factor DACH1 in postnatal mice induces a strong increase in arteries and type R capillaries, leading to local metabolic changes and enabling trabecular bone formation in normally highly hypoxic areas of the diaphysis. Indicating potential clinical relevance of type R capillaries, these vessels respond to anti-osteoporosis treatments and emerge during ageing inside porous structures that are known to weaken compact bone. Our work outlines fundamental principles of vessel specialization in the developing, adult and ageing skeletal system.
Collapse
Affiliation(s)
- Vishal Mohanakrishnan
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Single Cell Multi-Omics Laboratory, Münster, Germany
| | - Esther Bovay
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | | | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Van Vuong Dinh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Milena Petkova
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Isidora Paredes Ugarte
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Yi-Tong Kuo
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Malarvizhi Gurusamy
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Brian Raftrey
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nelson Tsz Long Chu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Soumyashree Das
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Pamela E Rios Coronado
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Flow Cytometry Unit, Münster, Germany
| | - Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
- Wihuri Research Institute, Helsinki, Finland
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| |
Collapse
|
2
|
Khanchandani P, Narayanan A, Naik AA, Kannan V, Pradhan SS, Srimadh Bhagavataham SK, Pulukool SK, Sivaramakrishnan V. Clinical Characteristics, Current Treatment Options, Potential Mechanisms, Biomarkers, and Therapeutic Targets in Avascular Necrosis of Femoral Head. Med Princ Pract 2024; 33:519-536. [PMID: 39168116 PMCID: PMC11631174 DOI: 10.1159/000541044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Avascular necrosis of femoral head (AVNFH) is a debilitating disease of the young, affecting the quality of life significantly and eventually leading to total hip replacement surgery. The disease is diagnosed clinico-radiologically and MRI is the investigation of choice to diagnose the early stages of the disease. There is neither an early biomarker for detection nor is there a permanent cure for the disease and most of the patients are managed with various combinations of surgical and medical management protocols. In this review, we comprehensively address the etiopathogenesis, clinical characteristics, therapeutic procedures, bone characteristics, histopathology, multi-omic studies, finite element modeling, and systems analysis that has been performed in AVNFH. The etiology includes various factors that compromise the blood supply to the femoral head which also includes contributions by environmental and genetic factors. Multi-omic analysis has shown an association of deregulated pathways with the disease. The cell types involved include mesenchymal stem cells, osteoblasts, osteoclasts, endothelial and immune cells. Biochemical, hematological, histopathology, IHC, and other bone remodeling and degradation marker studies have been performed. A systems analysis using multi-omic data sets from published literature was carried out, the relevance of which is discussed to delineate potential mechanisms in etiopathogenesis, diagnosis, and effective management of this debilitating disease.
Collapse
Affiliation(s)
- Prakash Khanchandani
- Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India
| | - Aswath Narayanan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Ashwin A. Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Vishnu Kannan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | | | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| |
Collapse
|
3
|
Nugraha AP, Narmada IB, Winoto ER, Ardani IGAW, Triwardhani A, Alida A, Pramusita A, Nur RM, Indrastie N, Nam HY, Ihsan IS, Riawan W, Rantam FA, Nugraha AP, Noor TNEBTA. Gingiva Mesenchymal Stem Cells Normoxic or Hypoxic Preconditioned Application Under Orthodontic Mechanical Force on Osterix, Osteopontin, and ALP Expression. Eur J Dent 2024; 18:501-509. [PMID: 37995729 PMCID: PMC11132784 DOI: 10.1055/s-0043-1772699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES The aim of this article was to investigate Osterix, ALP, and osteopontin expression in the compression and tension sides of alveolar bone after the application of normoxic/hypoxic-preconditioned GMSCs in rabbits (Oryctolagus cuniculus) induced with OMF. MATERIALS AND METHODS Forty-eight healthy, young male rabbits were divided into four groups: [-] OMF; [+] OMF; OMF with GMSCs normoxic-preconditioned; and OMF and GMSCs hypoxic-preconditioned. The central incisor and left mandibular molar in the experimental animals were moved, the mandibular first molar was moved mesially using nickel titanium (NiTi) and stainless steel ligature wire connected to a 50 g/mm2 light force closed coil spring. Allogeneic application of normoxic or hypoxic-preconditioned GMSCs was used in as many as 106 cells in a 20 µL phosphate buffered saline single dose and injected into experimental animals' gingiva after 1 day of OTM. On days 7, 14, and 28, all experimental animals were euthanized. Osterix, ALP, and osteopontin expressions were examined by immunohistochemistry. RESULTS Osterix, ALP, and osteopontin expressions were significantly different after allogeneic application of hypoxic-preconditioned GMSCs than normoxic-preconditioned GMSCs in the tension and compression of the alveolar bone side during OMF (p < 0.05). CONCLUSION Osterix, ALP, and osteopontin expressions were significantly more enhanced post-transplantation of GMSCs with hypoxic-preconditioning than after transplantation of normoxic-preconditioned GMSCs in rabbits (O. cuniculus) induced with OMF.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ervina Restiwulan Winoto
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - I Gusti Aju Wahju Ardani
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Triwardhani
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Alida Alida
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adya Pramusita
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Reyhan Mahendra Nur
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nuraini Indrastie
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hui Yin Nam
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Kuala Lumpur, Malaysia
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Fedik Abdul Rantam
- Laboratory of Immunology and Virology Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Tengku Natasha Eleena binti Tengku Ahmad Noor
- Membership of Faculty of Dental Surgery, Royal Collage of Surgeon, Edinburgh University, United Kingdom
- Malaysian Armed Forces Dental Officer, 609 Armed Forces Dental Clinic, Kem Semenggo, Kuching, Sarawak, Malaysia
| |
Collapse
|
4
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
5
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Zhao J, Meng H, Liao S, Su Y, Guo L, Wang A, Xu W, Zhou H, Peng J. Therapeutic effect of human umbilical cord mesenchymal stem cells in early traumatic osteonecrosis of the femoral head. J Orthop Translat 2022; 37:126-142. [PMID: 36313533 PMCID: PMC9582590 DOI: 10.1016/j.jot.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a refractory disease due to its unclear pathomechanism. Therapies during the early stage of ONFH have not achieved satisfactory results. Therefore, this study aims to explore the available evidence for the therapeutic effect of human umbilical cord mesenchymal stem cells (HUCMSCs) on early-stage traumatic ONFH. Methods Early-stage traumatic ONFH was established. The femoral heads of rats were then locally administered HUCMSCs. Four weeks and eight weeks after surgery, bone repair of the necrotic area in the femoral head was analyzed to evaluate the therapeutic effect of HUCMSCs using micro-CT, histopathological staining, immunofluorescence staining, Luminex. Results HUCMSCs were still present in the femoral head four weeks later, and the morphological, micro-CT and histopathological outcomes in the 4-week HUCMSC-treated group were better than those in the model, NS and 8-week HUCMSC-treated groups. Local transplantation of HUCMSCs promoted bone repair and prevented bone loss in the necrotic area of the femoral head. Conclusions HUCMSCs can survive and positively affect the femoral head through local transplantation in early-stage traumatic ONFH. The conclusions of this study can provide a treatment option for patients who have ONFH and can serve as basic research on the advanced development of this disease. The Translational potential of this article The study indicated that the positive effect of exogenous HUCMSCs in the treatment of early-stage traumatic ONFH provides the solid basis and guidance for the clinical application of HUCMSCs.
Collapse
Affiliation(s)
- Jun Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China
| | - Sida Liao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China
| | - Yaoyu Su
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China
| | - Li Guo
- The Eight Medical Center of PLA General Hospital, China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China
| | - Hao Zhou
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory (No BZ0128), Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, China,Corresponding author.
| |
Collapse
|
7
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
8
|
Chun YS, Lee DH, Won TG, Kim CS, Shetty AA, Kim SJ. Cell therapy for osteonecrosis of femoral head and joint preservation. J Clin Orthop Trauma 2021; 24:101713. [PMID: 34926146 PMCID: PMC8646149 DOI: 10.1016/j.jcot.2021.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Osteonecrosis of femoral head (ONFH) is a disease of the femoral head and can cause femoral head collapse and arthritis. This can lead to pain and gait disorders. ONFH has various risk factors, it is often progressive, and if untreated results in secondary osteo-arthritis. Biological therapy makes use of bone marrow concentrate, cultured osteoblast and mesenchymal stem cell (MSC) obtained from various sources. These are often used in conjunction with core decompression surgery. In this review article, we discuss the current status of cell therapy and its limitations. We also present the future development of biological approach to treat ONFH.
Collapse
Affiliation(s)
- You Seung Chun
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Corresponding author. Department of Orthopedic Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, South Korea.
| | - Tae Gu Won
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Sik Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Asode Ananthram Shetty
- Canterbury Christ Church University, Faculty of Medicine, Health and Social Care, 30 Pembroke Court, Chatham Maritime, Kent, ME4 4UF, United Kingdom
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
9
|
Osteogenic Potential of Mesenchymal Stem Cells from Adipose Tissue, Bone Marrow and Hair Follicle Outer Root Sheath in a 3D Crosslinked Gelatin-Based Hydrogel. Int J Mol Sci 2021; 22:ijms22105404. [PMID: 34065598 PMCID: PMC8161179 DOI: 10.3390/ijms22105404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Bone transplantation is regarded as the preferred therapy to treat a variety of bone defects. Autologous bone tissue is often lacking at the source, and the mesenchymal stem cells (MSCs) responsible for bone repair mechanisms are extracted by invasive procedures. This study explores the potential of autologous mesenchymal stem cells derived from the hair follicle outer root sheath (MSCORS). We demonstrated that MSCORS have a remarkable capacity to differentiate in vitro towards the osteogenic lineage. Indeed, when combined with a novel gelatin-based hydrogel called Osteogel, they provided additional osteoinductive cues in vitro that may pave the way for future application in bone regeneration. MSCORS were also compared to MSCs from adipose tissue (ADMSC) and bone marrow (BMMSC) in a 3D Osteogel model. We analyzed gel plasticity, cell phenotype, cell viability, and differentiation capacity towards the osteogenic lineage by measuring alkaline phosphatase (ALP) activity, calcium deposition, and specific gene expression. The novel injectable hydrogel filled an irregularly shaped lesion in a porcine wound model displaying high plasticity. MSCORS in Osteogel showed a higher osteo-commitment in terms of calcium deposition and expression dynamics of OCN, BMP2, and PPARG when compared to ADMSC and BMMSC, whilst displaying comparable cell viability and ALP activity. In conclusion, autologous MSCORS combined with our novel gelatin-based hydrogel displayed a high capacity for differentiation towards the osteogenic lineage and are acquired by non-invasive procedures, therefore qualifying as a suitable and expandable novel approach in the field of bone regeneration therapy.
Collapse
|
10
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
11
|
Camacho-Cardenosa M, Quesada-Gómez JM, Camacho-Cardenosa A, Leal A, Dorado G, Torrecillas-Baena B, Casado-Díaz A. Effects of normobaric cyclic hypoxia exposure on mesenchymal stem-cell differentiation-pilot study on bone parameters in elderly. World J Stem Cells 2020; 12:1667-1690. [PMID: 33505607 PMCID: PMC7789125 DOI: 10.4252/wjsc.v12.i12.1667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) of bone marrow are the progenitor of osteoblasts and adipocytes. MSC tend to differentiate into adipocytes, instead of osteoblasts, with aging. This favors the loss of bone mass and development of osteoporosis. Hypoxia induces hypoxia inducible factor 1α gene encoding transcription factor, which regulates the expression of genes related to energy metabolism and angiogenesis. That allows a better adaptation to low O2 conditions. Sustained hypoxia has negative effects on bone metabolism, favoring bone resorption. Yet, surprisingly, cyclic hypoxia (CH), short times of hypoxia followed by long times in normoxia, can modulate MSC differentiation and improve bone health in aging. AIM To evaluate the CH effect on MSC differentiation, and whether it improves bone mineral density in elderly. METHODS MSC cultures were induced to differentiate into osteoblasts or adipocytes, in CH (3% O2 for 1, 2 or 4 h, 4 d a week). Extracellular-matrix mineralization and lipid-droplet formation were studied in MSC induced to differentiate into osteoblast or adipocytes, respectively. In addition, gene expression of marker genes, for osteogenesis or adipogenesis, have been quantified by quantitative real time polymerase chain reaction. The in vivo studies with elderly (> 75 years old; n = 10) were carried out in a hypoxia chamber, simulating an altitude of 2500 m above sea level, or in normoxia, for 18 wk (36 CH sessions of 16 min each). Percentages of fat mass and bone mineral density from whole body, trunk and right proximal femur (femoral, femoral neck and trochanter) were assessed, using dual-energy X-ray absorptiometry. RESULTS CH (4 h of hypoxic exposure) inhibited extracellular matrix mineralization and lipid-droplet formation in MSC induced to differentiate into osteoblasts or adipocytes, respectively. However, both parameters were not significantly affected by the other shorter hypoxia times assessed. The longest periods of hypoxia downregulated the expression of genes related to extracellular matrix formation, in MSC induced to differentiate into osteoblasts. Interestingly, osteocalcin (associated to energy metabolism) was upregulated. Vascular endothelial growth factor an expression and low-density lipoprotein receptor related protein 5/6/dickkopf Wnt signaling pathway inhibitor 1 (associated to Wnt/β-catenin pathway activation) increased in osteoblasts. Yet, they decreased in adipocytes after CH treatments, mainly with the longest hypoxia times. However, the same CH treatments increased the osteoprotegerin/receptor activator for nuclear factor kappa B ligand ratio in both cell types. An increase in total bone mineral density was observed in elderly people exposed to CH, but not in specific regions. The percentage of fat did not vary between groups. CONCLUSION CH may have positive effects on bone health in the elderly, due to its possible inhibitory effect on bone resorption, by increasing the osteoprotegerin / receptor activator for nuclear factor kappa B ligand ratio.
Collapse
Affiliation(s)
| | - José Manuel Quesada-Gómez
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | | | - Alejo Leal
- Servicio de Traumatología, Hospital de Cáceres, Cáceres 10004, Spain
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba-CIBERFES, 14071 Córdoba, Spain
| | - Bárbara Torrecillas-Baena
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Antonio Casado-Díaz
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| |
Collapse
|
12
|
Physioxia Expanded Bone Marrow Derived Mesenchymal Stem Cells Have Improved Cartilage Repair in an Early Osteoarthritic Focal Defect Model. BIOLOGY 2020; 9:biology9080230. [PMID: 32824442 PMCID: PMC7463623 DOI: 10.3390/biology9080230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Focal early osteoarthritis (OA) or degenerative lesions account for 60% of treated cartilage defects each year. The current cell-based regenerative treatments have an increased failure rate for treating degenerative lesions compared to traumatic defects. Mesenchymal stem cells (MSCs) are an alternative cell source for treating early OA defects, due to their greater chondrogenic potential, compared to early OA chondrocytes. Low oxygen tension or physioxia has been shown to enhance MSC chondrogenic matrix content and could improve functional outcomes of regenerative therapies. The present investigation sought to develop a focal early OA animal model to evaluate cartilage regeneration and hypothesized that physioxic MSCs improve in vivo cartilage repair in both, post-trauma and focal early OA defects. Using a rabbit model, a focal defect was created, that developed signs of focal early OA after six weeks. MSCs cultured under physioxia had significantly enhanced in vitro MSC chondrogenic GAG content under hyperoxia with or without the presence of interleukin-1β (IL-1β). In both post-traumatic and focal early OA defect models, physioxic MSC treatment demonstrated a significant improvement in cartilage repair score, compared to hyperoxic MSCs and respective control defects. Future investigations will seek to understand whether these results are replicated in large animal models and the underlying mechanisms involved in in vivo cartilage regeneration.
Collapse
|
13
|
Li K, Ning T, Wang H, Jiang Y, Zhang J, Ge Z. Nanosecond pulsed electric fields enhance mesenchymal stem cells differentiation via DNMT1-regulated OCT4/NANOG gene expression. Stem Cell Res Ther 2020; 11:308. [PMID: 32698858 PMCID: PMC7374836 DOI: 10.1186/s13287-020-01821-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 02/28/2023] Open
Abstract
Background Multiple strategies have been proposed to promote the differentiation potential of mesenchymal stem cells (MSCs), which is the fundamental property in tissue formation and regeneration. However, these strategies are relatively inefficient that limit the application. In this study, we reported a novel and efficient strategy, nanosecond pulsed electric fields (nsPEFs) stimulation, which can enhance the trilineage differentiation potential of MSCs, and further explained the mechanism behind. Methods We used histological staining to screen out the nsPEFs parameters that promoted the trilineage differentiation potential of MSCs, and further proved the effect of nsPEFs by detecting the functional genes. In order to explore the corresponding mechanism, we examined the expression of pluripotency genes and the methylation status of their promoters. Finally, we targeted the DNA methyltransferase which was affected by nsPEFs. Results The trilineage differentiation of bone marrow-derived MSCs was significantly enhanced in vitro by simply pre-treating with 5 pulses of nsPEFs stimulation (energy levels as 10 ns, 20 kV/cm; 100 ns, 10 kV/cm), due to that the nsPEFs demethylated the promoters of stem cell pluripotency genes OCT4 and NANOG through instantaneous downregulation of DNA methylation transferase 1 (DNMT1), thereby increasing the expression of OCT4 and NANOG for up to 3 days, and created a treatment window period of stem cells. Conclusions In summary, nsPEFs can enhance MSCs differentiation via the epigenetic regulation and could be a safe and effective strategy for future stem cell application.
Collapse
Affiliation(s)
- Kejia Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Tong Ning
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Hao Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jue Zhang
- Institute of Biomechanics and Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
15
|
Succinate Supplement Elicited "Pseudohypoxia" Condition to Promote Proliferation, Migration, and Osteogenesis of Periodontal Ligament Cells. Stem Cells Int 2020; 2020:2016809. [PMID: 32215014 PMCID: PMC7085835 DOI: 10.1155/2020/2016809] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/01/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Most mesenchymal stem cells reside in a niche of low oxygen tension. Iron-chelating agents such as CoCl2 and deferoxamine have been utilized to mimic hypoxia and promote cell growth. The purpose of the present study was to explore whether a supplement of succinate, a natural metabolite of the tricarboxylic acid (TCA) cycle, can mimic hypoxia condition to promote human periodontal ligament cells (hPDLCs). Culturing hPDLCs in hypoxia condition promoted cell proliferation, migration, and osteogenic differentiation; moreover, hypoxia shifted cell metabolism from oxidative phosphorylation to glycolysis with accumulation of succinate in the cytosol and its release into culture supernatants. The succinate supplement enhanced hPDLC proliferation, migration, and osteogenesis with decreased succinate dehydrogenase (SDH) expression and activity, as well as increased hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), suggesting metabolic reprogramming from oxidative phosphorylation to glycolysis in a normal oxygen condition. The succinate supplement in cell cultures promoted intracellular succinate accumulation while stabilizing hypoxia inducible factor-1α (HIF-1α), leading to a state of pseudohypoxia. Moreover, we demonstrate that hypoxia-induced proliferation was G-protein-coupled receptor 91- (GPR91-) dependent, while exogenous succinate-elicited proliferation involved the GPR91-dependent and GPR91-independent pathway. In conclusion, the succinate supplement altered cell metabolism in hPDLCs, induced a pseudohypoxia condition, and enhanced proliferation, migration, and osteogenesis of mesenchymal stem cells in vitro.
Collapse
|
16
|
Nagy A, Pethő D, Gáll T, Zavaczki E, Nyitrai M, Posta J, Zarjou A, Agarwal A, Balla G, Balla J. Zinc Inhibits HIF-Prolyl Hydroxylase Inhibitor-Aggravated VSMC Calcification Induced by High Phosphate. Front Physiol 2020; 10:1584. [PMID: 32009983 PMCID: PMC6974455 DOI: 10.3389/fphys.2019.01584] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification is a life-threatening clinical condition in chronic kidney disease (CKD) and is associated with reduced zinc serum levels. Anemia is another frequent complication of CKD. Hypoxia-inducible factor (HIF) stabilizers, also known as HIF prolyl hydroxylase inhibitors (PHI), are promising candidates to treat CKD-associated anemia by increasing erythropoietin synthesis. Recent evidence suggests that HIFs play a pivotal role in vascular calcification. Our study explored feasible impacts of HIF PHI on phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs) and tested whether zinc might inhibit this mineralization process. Treatment of VSMCs with PHI aggravated Pi-induced calcium deposition and Pi uptake. PHI promoted Pi-induced loss of smooth muscle cell markers (ACTA-2, MYH11, SM22α) and enhanced osteochondrogenic gene expression (Msx-2, BMP-2, Sp7) triggering osteochondrogenic phenotypic switch of VSMCs. These effects of PHI paralleled with increased pyruvate dehydrogenase kinase 4 (PDK4) expression, decreased Runx2 Ser451 phosphorylation, and reduced cell viability. Zinc inhibited Pi-induced mineralization of VSMCs in a dose-dependent manner and also attenuated the pro-calcification effect of PHI in Pi-induced mineralization. Zinc inhibited osteochondrogenic phenotypic switch of VSMCs reflected by lowering Pi uptake, decreasing the expressions of Msx-2, BMP-2, and Sp7 as well as the loss of smooth muscle cell-specific markers. Zinc preserved phosphorylation state of Runx2 Ser451, decreased PDK4 level, and restored cell viability. PHI alone reduced the expression of smooth muscle markers without inducing mineralization, which was also inhibited by zinc. In addition, we observed a significantly lower serum zinc level in CKD as well as in patients undergoing carotid endarterectomy compared to healthy individuals. Conclusion - PHI promoted the loss of smooth muscle markers and augmented Pi-induced osteochondrogenic phenotypic switch leading to VSMCs calcification. This mineralization process was attenuated by zinc. Enhanced vascular calcification is a potential risk factor during PHI therapy in CKD which necessitates the strict follow up of vascular calcification and zinc supplementation.
Collapse
Affiliation(s)
- Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Zavaczki
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Mónika Nyitrai
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - József Posta
- Department of Inorganic and Analytical Chemistry, UD Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
17
|
Alijani N, Johari B, Moradi M, Kadivar M. A review on transcriptional regulation responses to hypoxia in mesenchymal stem cells. Cell Biol Int 2020; 44:14-26. [PMID: 31393053 DOI: 10.1002/cbin.11211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/03/2019] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cells (MSCs), which are known for having therapeutic applications, reside in stem cell niches where the oxygen concentration is low. At the molecular level, the master regulator of the cellular reaction to hypoxia is hypoxia-inducible transcription factor (HIF). The transcriptional response of a cell to hypoxia is affected by two major components; first, the structure of hypoxia-response elements (HREs), which primarily define how much of the HIF signal is integrated into the transcriptional output of individual genes. Second, the availability of other transcriptional factors cooperating with HIF in the context of HRE. In MSCs, the expression of a single gene by hypoxia depends on elements such as factors influencing the HIF activity, metabolic pathways, the real oxygen concentration in the cellular microenvironment, and duration of culture. In addition, specific growth factors and pro-infection cytokines, hormones, oncogenic signaling, as well as ultrasound are potent regulators of HIF in MSCs. Altogether, the response of MSCs to hypoxia is complex and mediated by several genes and molecular agents. Regarding the influence of hypoxia on MSCs, oxygen concentration must be taken into consideration based on the cell type and the aim of culture before a particular MSCs culture.
Collapse
Affiliation(s)
- Najva Alijani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Moradi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Ma B, Li M, Fuchs S, Bischoff I, Hofmann A, Unger RE, Kirkpatrick CJ. Short‐term hypoxia promotes vascularization in co‐culture system consisting of primary human osteoblasts and outgrowth endothelial cells. J Biomed Mater Res A 2019; 108:7-18. [DOI: 10.1002/jbm.a.36786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Bin Ma
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
- Medical, Molecular and Forensic SciencesMurdoch University Murdoch Western Australia Australia
| | - Ming Li
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Sabine Fuchs
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
- Experimental Trauma SurgeryUniversity Medical Center Schleswig‐Holstein Kiel Kiel Germany
| | - Iris Bischoff
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Alexander Hofmann
- Department of Trauma SurgeryUniversity Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Ronald E. Unger
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Charles J. Kirkpatrick
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
19
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Timón R, Olcina G, Tomas-Carus P, Brazo-Sayavera J. Can Hypoxic Conditioning Improve Bone Metabolism? A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101799. [PMID: 31117194 PMCID: PMC6572511 DOI: 10.3390/ijerph16101799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Among other functions, hypoxia-inducible factor plays a critical role in bone–vascular coupling and bone formation. Studies have suggested that hypoxic conditioning could be a potential nonpharmacological strategy for treating skeletal diseases. However, there is no clear consensus regarding the bone metabolism response to hypoxia. Therefore, this review aims to examine the impact of different modes of hypoxia conditioning on bone metabolism. The PubMed and Web of Science databases were searched for experimental studies written in English that investigated the effects of modification of ambient oxygen on bone remodelling parameters of healthy organisms. Thirty-nine studies analysed the effect of sustained or cyclic hypoxia exposure on genetic and protein expression and mineralisation capacity of different cell models; three studies carried out in animal models implemented sustained or cyclic hypoxia; ten studies examined the effect of sustained, intermittent or cyclic hypoxia on bone health and hormonal responses in humans. Different modes of hypoxic conditioning may have different impacts on bone metabolism both in vivo and in vitro. Additional research is necessary to establish the optimal cyclical dose of oxygen concentration and exposure time.
Collapse
Affiliation(s)
| | | | - Rafael Timón
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain.
| | - Guillermo Olcina
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain.
| | - Pablo Tomas-Carus
- Departamento de Desporto e Saúde, Escola de Ciência e Tecnologia, Universidade de Évora, 7000-812 Évora, Portugal.
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-812 Évora, Portugal.
| | - Javier Brazo-Sayavera
- Instituto Superior de Educación Física, Universidad de la República, 40000 Rivera, Uruguay.
- Polo de Desarrollo Universitario EFISAL, Universidad de la República, 40000 Rivera, Uruguay.
| |
Collapse
|
20
|
Evaluation of Proliferation and Osteogenic Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Porous Scaffolds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:207-220. [PMID: 31214911 DOI: 10.1007/5584_2019_343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human umbilical cord-derived mesenchymal stem cells (UCMSCs) are multiple potential stem cells that can differentiate into various kinds of functional cells, including adipocytes, osteoblasts, and chondroblasts. Thus, UCMSCs have recently been used in both stem cell therapy and tissue engineering applications to produce various functional tissues. This study aimed to evaluate the proliferation and differentiation of UCMSCs on porous scaffolds. METHODS UCMSCs were established in a previous study and kept in liquid nitrogen. They were thawed and expanded in vitro to yield enough cells for further experiments. The cells were characterized as having MSC phenotype. They were seeded onto culture medium-treated porous scaffolds or on non-treated porous scaffolds at different densities of UCMSCs (105, 2.1 × 105, and 5 × 105 cells/0.005 g scaffold). The existence of UCMSCs on the scaffold was evaluated by nucleic staining using Hoechst 33342 dye, while cell proliferation on the scaffold was determined by MTT assay. Osteogenic differentiation was evaluated by changes in cellular morphology, accumulation of extracellular calcium, and expression of osteoblast-specific genes (including runx2, osteopontin (OPN), and osteocalcin (OCN)). RESULTS The data showed that UCMSCs could attach, proliferate, and differentiate on both treated and non-treated scaffolds but were better on the treated scaffold. At a cell density of 105 cells/0.005 g scaffold, the adherent and proliferative abilities of UCMSCs were higher than that of the other densities after 14 days of culture (p < 0.05). Adherent UCMSCs on the scaffold could be induced into osteoblasts in the osteogenic medium after 21 days of induction. These cells accumulated calcium in the extracellular matrix that was positive with Alizarin Red staining. They also expressed some genes related to osteoblasts, including runx2, OPN, and OCN. CONCLUSION UCMSCs could adhere, proliferate, and differentiate into osteoblasts on porous scaffolds. Therefore, porous scaffolds (such as Variotis) may be suitable scaffolds for producing bone tissue in combination with UCMSCs.
Collapse
|
21
|
Li R, Lin QX, Liang XZ, Liu GB, Tang H, Wang Y, Lu SB, Peng J. Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research. Stem Cell Res Ther 2018; 9:291. [PMID: 30359305 PMCID: PMC6202807 DOI: 10.1186/s13287-018-1018-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory disease that is associated with collapse of the femoral head, with a risk of hip arthroplasty in younger populations. Thus, there has been an increased focus on early interventions for ONFH that aim to preserve the native articulation. Stem cell therapy is a promising treatment, and an increasing number of recent studies have focused on this topic. Many clinical studies have reported positive outcomes of stem cell therapy for the treatment of ONFH. To improve the therapeutic effects of this approach, many related basic research studies have also been performed. However, some issues must be further explored, such as the appropriate patient selection procedure, the optimal stem cell selection protocol, the ideal injection number, and the safety of stem cell therapy. The purpose of this review is to summarize the available clinical studies and basic research related to stem cell therapy for ONFH.
Collapse
Affiliation(s)
- Rui Li
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Qiu-Xia Lin
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xue-Zhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Guang-Bo Liu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - He Tang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yu Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Shi-Bi Lu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jiang Peng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
22
|
Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Mol Biotechnol 2018; 60:843-861. [DOI: 10.1007/s12033-018-0113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Blaschke M, Koepp R, Lenz C, Kruppa J, Jung K, Siggelkow H. Crohn's disease patient serum changes protein expression in a human mesenchymal stem cell model in a linear relationship to patients' disease stage and to bone mineral density. J Clin Transl Endocrinol 2018; 13:26-38. [PMID: 30003044 PMCID: PMC6039964 DOI: 10.1016/j.jcte.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Crohn's disease (CD) is associated with a higher prevalence of osteoporosis, a complication that is recognized as a significant cause of morbidity. Its pathogenesis is controversial, but the activity of CD is one contributing factor. METHODS We stimulated SCP-1 cells (mesenchymal stem cell line) under osteogenic conditions with serum from adult patients with CD in the symptomatic phase (SP) and in remission (R) and with control sera. Concentrations of IL-6, IL-1 beta, and TNF alpha in the sera were measured. Patients were classified as normal or osteopenic/osteoporotic based on bone mineral density (BMD) T-score measurements. After 14 days in culture, protein expression and gene ontology (GO) annotation analysis was performed. RESULTS Cytokine concentrations (IL-6, IL-1 beta, TNF alpha) varied within sera groups. None of the cytokines were significantly increased in the symptomatic phase compared to remission. Protein analysis revealed 17 proteins regulated by the SP versus R phase sera of disease. A linear relationship between CDAI (Crohn's disease activity index) and normalized protein expression of APOA1 and 2, TTR, CDKAL1 and TUBB6 could be determined. Eleven proteins were found to be differentially regulated comparing osteoporosis-positive and osteoporosis-negative sera. Gene annotation and further analysis identified these genes as part of heme and erythrocyte metabolism, as well as involved in hypoxia and in endocytosis. A significant linear relationship between bone mineral density and normalized protein expression could be determined for proteins FABP3 and TTR. CONCLUSION Our explorative results confirm our hypothesis that factors in serum from patients with CD change the protein expression pattern of human immortalized osteoblast like cells. We suggest, that these short time changes indeed influence factors of bone metabolism.
Collapse
Affiliation(s)
- Martina Blaschke
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Regine Koepp
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center, 37075 Göttingen, Germany
| | - Jochen Kruppa
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
- Genomics and Bioinformatics of Infectious Diseases, University of Veterinary Medicine Hannover, Institute of animal breeding and Genetics, 30559 Hannover, Germany
| | - Klaus Jung
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
- Institute of Biometry and Clinical Epidemiology, Charite, University Medical Center Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Heide Siggelkow
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- MVZ Endokrinologikum Göttingen, von Siebold-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
24
|
Yu X, Wan Q, Cheng G, Cheng X, Zhang J, Pathak JL, Li Z. CoCl 2 , a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway. Cell Biol Int 2018; 42:1321-1329. [PMID: 29908007 DOI: 10.1002/cbin.11017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/09/2018] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression, that is, metalloproteinase (MMP) 7, MMP9, and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases, and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hypoxia-induced BMSCs migration, cell migration related signaling molecules phosphorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK, and MMP9 signaling pathways.
Collapse
Affiliation(s)
- Xin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stoma-tology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Qilong Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stoma-tology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.,Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stoma-tology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.,Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Xin Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stoma-tology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stoma-tology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou 510140, PR China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stoma-tology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.,Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| |
Collapse
|
25
|
Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep 2017; 7:17696. [PMID: 29255201 PMCID: PMC5735093 DOI: 10.1038/s41598-017-18089-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.
Collapse
|
26
|
Narayan R, Agarwal T, Mishra D, Maji S, Mohanty S, Mukhopadhyay A, Maiti TK. Ectopic vascularized bone formation by human mesenchymal stem cell microtissues in a biocomposite scaffold. Colloids Surf B Biointerfaces 2017; 160:661-670. [DOI: 10.1016/j.colsurfb.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
|
27
|
Chen D, Wu L, Liu L, Gong Q, Zheng J, Peng C, Deng J. Comparison of HIF1A‑AS1 and HIF1A‑AS2 in regulating HIF‑1α and the osteogenic differentiation of PDLCs under hypoxia. Int J Mol Med 2017; 40:1529-1536. [PMID: 28949371 DOI: 10.3892/ijmm.2017.3138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxia‑inducible factor‑1α (HIF‑1α) is essential for regulating the osteogenic differentiation of periodontal ligament cells (PDLCs). The regulatory mechanism of HIF‑1α transcription is still not clear. Recently, two long non‑coding RNAs, HIF1A antisense RNA 1 (HIF1A‑AS1) and HIF1A antisense RNA 2 (HIF1A‑AS2), were found to regulate HIF‑1α mRNA, but the regulatory mechanisms among HIF‑1α, HIF1A‑AS1 and HIF1A‑AS2 have not been well studied. We hypothesized that HIF1A‑AS1 and HIF1A‑AS2 play important roles in the osteogenic differentiation of PDLCs by regulating HIF‑1α. In the present study, we showed that expression levels of HIF1A‑AS1, HIF1A‑AS2, HIF‑1α and osteogenic biomarkers were time‑dependent under hypoxia. Even though both HIF1A‑AS1 and HIF1A‑AS2 were complementary to HIF‑1α mRNA, only HIF1A‑AS2 showed an inhibitory effect on HIF‑1α in PDLCs. Moreover, HIF‑1α had positive regulatory effects on HIF1A‑AS1 and HIF1A‑AS2. HIF‑1α promoted the osteogenic differentiation of PDLCs, and HIF1A‑AS2 had a negative effect on the osteogenic differentiation of PDLCs. Altogether, the present study revealed the complex relationships among HIF1A‑AS1, HIF1A‑AS2 and HIF‑1α, as well as their roles in regulating the osteogenic differentiation of PDLCs. These findings provide a theoretical basis for promoting periodontal tissue regeneration and repair during orthodontic tooth movement.
Collapse
Affiliation(s)
- Dongru Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lu Liu
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Qimei Gong
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Caixia Peng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jianqing Deng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
28
|
Le Pape F, Richard G, Porchet E, Sourice S, Dubrana F, Férec C, Polard V, Pace R, Weiss P, Zal F, Delépine P, Leize E. Adhesion, proliferation and osteogenic differentiation of human MSCs cultured under perfusion with a marine oxygen carrier on an allogenic bone substitute. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:95-107. [DOI: 10.1080/21691401.2017.1365724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fiona Le Pape
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Gaëlle Richard
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
| | - Emmanuelle Porchet
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
| | - Sophie Sourice
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
- Regional University Hospital Center of Nantes, Nantes, France
| | | | - Claude Férec
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
- Regional University Hospital Center, Brest, France
| | - Valérie Polard
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Richard Pace
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
| | - Pierre Weiss
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
| | - Franck Zal
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Pascal Delépine
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
| | - Elisabeth Leize
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- Prosthesis Department, Research and Formation Unit of Odontology, Regional University Hospital Center of Brest, Brest, France
| |
Collapse
|
29
|
Zhao B, Zhang H, Xu Q, Ge Q, Li B, Peng X, Wu X. [Effects of long time different negative pressures on osteogenic differentiation of rabbit bone mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:594-599. [PMID: 29798550 PMCID: PMC8498252 DOI: 10.7507/1002-1892.201701095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Indexed: 11/03/2022]
Abstract
Objective To investigate the effects of long time different negative pressures on osteogenic diffe-rentiation of rabbit bone mesenchymal stem cells (BMSCs). Methods The rabbit BMSCs were isolated and cultured by density gradient centrifugation. Flow cytometry was used to analyze expression of surface markers. The third passage cells cultured under condition of osteogenic induction and under different negative pressure of 0 mm Hg (control group), 75 mm Hg (low negative pressure group), and 150 mm Hg (high negative pressure group) (1 mm Hg=0.133 kPa), and the negative pressure time was 30 min/h. Cell growth was observed under phase contrast microscopy, and the growth curve was drawn; alkaline phosphatase (ALP) activity was detected by ELISA after induced for 3, 7, and 14 days. The mRNA and protein expressions of collagen type I (COL-I) and osteocalcin (OC) in BMSCs were analyzed by real-time fluorescence quantitative PCR and Western blot. Results The cultured cells were identified as BMSCs by flow cytometry. The third passage BMSCs exhibited typical long shuttle and irregular shape. Cell proliferation was inhibited with the increase of negative pressure. After induced for 4 days, the cell number of high negative pressure group was significantly less than that in control group and low negative pressure group ( P<0.05), but there was no significant difference between the low negative pressure group and the control group ( P>0.05); at 5-7 days, the cell number showed significant difference between 3 groups ( P<0.05). The greater the negative pressure was, the greater the inhibition of cell proliferation was. There was no significant difference in ALP activity between groups at 3 days after induction ( P>0.05); the ALP activity showed significant difference ( P<0.05) between the high negative pressure group and the control group at 7 days after induction; and significant difference was found in the ALP activity between 3 groups at 14 days after induction ( P<0.05). The greater the negative pressure was, the higher the ALP activity was. Real-time fluorescence quantitative PCR and Western blot detection showed that the mRNA and protein expressions of COL-I and OC protein were significantly higher in low negative pressure group and high negative pressure group than control group ( P<0.05), and in the high negative pressure group than the low negative pressure group ( P<0.05). Conclusion With the increase of the negative pressure, the osteogenic differentiation ability of BMSCs increases gradually, but the cell proliferation is inhibited.
Collapse
Affiliation(s)
- Bowen Zhao
- No.1 Department of General Surgery, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi Xinjiang, 832008, P.R.China
| | - Hongwei Zhang
- No.1 Department of General Surgery, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi Xinjiang, 832008,
| | - Qiang Xu
- No.1 Department of General Surgery, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi Xinjiang, 832008, P.R.China
| | - Quanhu Ge
- No.1 Department of General Surgery, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi Xinjiang, 832008, P.R.China
| | - Bolong Li
- No.1 Department of General Surgery, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi Xinjiang, 832008, P.R.China
| | - Xinyu Peng
- No.1 Department of General Surgery, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi Xinjiang, 832008,
| | - Xiangwei Wu
- No.1 Department of General Surgery, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi Xinjiang, 832008, P.R.China
| |
Collapse
|
30
|
Gu Q, Gu Y, Shi Q, Yang H. Hypoxia Promotes Osteogenesis of Human Placental-Derived Mesenchymal Stem Cells. TOHOKU J EXP MED 2017; 239:287-96. [PMID: 27477937 DOI: 10.1620/tjem.239.287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Placental-derived mesenchymal stem cells (pMSCs) are promising candidates for regenerative medicine because they possess high proliferative capacity and multi-differentiation potential. Human pMSCs are residing in an environment with low oxygen tension in the body. Heme oxygenase-1 (HO-1) is known to participate in the regulation of MSC differentiation. The present study aimed to investigate the impact of hypoxia on the osteogenic differentiation of human pMSCs, and to elucidate the role of HO-1 in the osteogenic differentiation of hypoxic pMSCs. Human pMSCs were cultured under normoxia (21% O2) or hypoxia (5% O2) for 3 days. We found that hypoxia maintained the morphology and immunophenotype of human pMSCs. The expression of stemness markers Oct4, Nanog, and Sox2 was increased under hypoxia. After a 5-day hypoxic culture, the proliferation ability of pMSCs was increased, which might be correlated with the increased expression of stem cell factor. During osteogenic induction, hypoxia increased the expression of osteogenic genes including osteopontin, osteocalcin, and alkaline phosphatase (ALP). Moreover, hypoxia increased the mineralization and ALP levels of human pMSCs as evidenced by Alizarin Red staining and ALP staining. Upregulation of HO-1 by cobalt-protoporphyrin treatment increased the osteogenic differentiation of pMSCs under hypoxia, while inhibition of HO-1 by Zn-protoporphyrin reduced the osteogenic differentiation of hypoxic pMSCs. Taken together, our data suggest that hypoxia can promote the osteogenic differentiation of human pMSCs. Upregulation of HO-1 can further increase the osteogenesis of human pMSCs under hypoxia. Our findings will highlight the therapeutic potential of MSCs in the tissue engineering of bones.
Collapse
Affiliation(s)
- Qiaoli Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University
| | | | | | | |
Collapse
|
31
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
32
|
Zhu ZH, Song WQ, Zhang CQ, Yin JM. Dimethyloxaloylglycine increases bone repair capacity of adipose-derived stem cells in the treatment of osteonecrosis of the femoral head. Exp Ther Med 2016; 12:2843-2850. [PMID: 27882083 PMCID: PMC5103711 DOI: 10.3892/etm.2016.3698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells have been widely studied to promote local bone regeneration of osteonecrosis of the femoral head (ONFH). Previous studies observed that dimethyloxaloylglycine (DMOG) enhanced the angiogenic and osteogenic activity of mesenchymal stem cells by activating the expression of hypoxia inducible factor-1α (HIF-1α), thereby improving the bone repair capacity of mesenchymal stem cells. In the present study, it was investigated whether DMOG could increase the bone repair capacity of adipose-derived stem cells (ASCs) in the treatment of ONFH. Western blot analysis was performed to detect HIF-1α protein expression in ASCs treated with different concentrations of DMOG. The results showed DMOG enhanced HIF-1α expression in ASCs in a dose-dependent manner at least for 7 days. Furthermore, DMOG-treated ASCs were transplanted into the necrotic area of a rabbit model of ONFH to treat the disease. Four weeks later, micro-computed tomography (CT) quantitative analysis showed that 58.8±7.4% of the necrotic area was regenerated in the DMOG-treated ASCs transplantation group, 45.5±3.4% in normal ASCs transplantation group, 25.2±2.8% in only core decompression group and 10.6±2.6% in the untreated group. Histological analysis showed that transplantation of DMOG-treated ASCs clearly improved the bone regeneration of the necrotic area compared with the other three groups. Micro-CT and immunohistochemical analysis demonstrated the revasculation of the necrotic area were also increased significantly in the DMOG-treated ASC group compared with the control groups. Thus, it is hypothesized that DMOG could increase the bone repair capacity of ASCs through enhancing HIF-1α expression in the treatment of ONFH.
Collapse
Affiliation(s)
- Zhen-Hong Zhu
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Wen-Qi Song
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Ji-Min Yin
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
33
|
Ciapetti G, Granchi D, Fotia C, Savarino L, Dallari D, Del Piccolo N, Donati DM, Baldini N. Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head. Cytotherapy 2016; 18:1087-99. [PMID: 27421741 DOI: 10.1016/j.jcyt.2016.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AIMS Avascular necrosis of the femoral head (AVN) occurs as common result of various conditions or develops as a primary entity, with a high freqency in young adults. Because of its tendency toward osteoarthritis requiring total hip arthroplasty, alternative treatments are being advocated, including cell therapy with mesenchymal stromal cells (MSCs). Because osteonecrotic bone is a severely hypoxic tissue, with a 1-3% oxygen tension, the survival and function of multipotent cells is questionable. METHODS In this study, the proliferative, immunophenotypic and osteogenic properties of bone marrow (BM)-derived MSCs from a clinical series of patients with AVN were evaluated under in vitro conditions mimicking the hypoxic milieu of AVN to verify the rationale for cell therapy. MSCs retrieved from the iliac crest (BM-MSC) were isolated, expanded and induced to osteogenic differentiation under a 2% pO2 atmosphere (hypoxia) in comparison with the standard 21% pO2 (normoxia) that is routinely used in cell culture assays. RESULTS Both proliferation and colony-forming ability were significantly enhanced in hypoxia-exposed BM-MSCs compared with BM-MSCs under normoxia. The expression of bone-related genes, including alkaline phosphatase, Type I collagen, and osteocalcin was significantly increased under hypoxia. Moreover, mineral deposition after osteogenic induction was not hampered, but in some cases even enhanced under low oxygen tension. CONCLUSIONS These findings support autologous cell therapy as an effective treatment to stimulate bone healing in the hypoxic microenvironment of AVN.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Donatella Granchi
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Caterina Fotia
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Savarino
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dante Dallari
- Conservative Orthopaedic Surgery and Innovative Techniques, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Del Piccolo
- Conservative Orthopaedic Surgery and Innovative Techniques, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
34
|
Kawamura S, Yoshioka T, Mito N, Kishimoto N, Nakaoka M, Fantel AG. Mechanism of Developmental Effects in Rats Caused by an N-Phenylimide Herbicide: Transient Fetal Anemia and Sequelae during Mid-to-Late Gestation. ACTA ACUST UNITED AC 2016; 107:45-59. [PMID: 26865470 DOI: 10.1002/bdrb.21172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rat developmental toxicity including embryolethality and teratogenicity (mainly ventricular septal defects [VSDs] and wavy ribs) was produced by an N-phenylimide herbicide that inhibits protoporphyrinogen oxidase (PPO) common to chlorophyll and heme biosynthesis. Major characteristics of the developmental toxicity included species difference between rats and rabbits, compound-specific difference among structurally similar herbicides, and sensitive period. Protoporphyrin accumulation in treated fetuses closely correlated with the major characteristics. Iron deposits in erythroblastic mitochondria and degeneration of erythroblasts were observed in treated rat fetuses. In this study we investigated fetal anemia and subsequent developmental effects in rats, and inhibition of PPO in rats, rabbits, and humans by the herbicides in vitro. METHODS Fetuses were treated on gestational day (GD) 12 and removed on GDs 13 through 20. All litters were examined externally. One half of litters were examined for blood and skeletal development, and the other half for interventricular foramen closure. Effects on PPO were determined in mitochondria from embryos and adult livers. RESULTS Fetal anemia in rats was evident on GDs 13 through 16. Subsequently, enlarged heart, delayed closure of the foramen, reduced serum protein, and retarded rib ossification were observed. In vitro PPO inhibition exhibited species- and compound-specific differences corresponding to the developmental toxicity. CONCLUSION We propose that developmental toxicity results from PPO inhibition in primitive erythroblasts, causing transient fetal anemia followed by death. Compensatory enlargement of the fetal heart results in failure of interventricular foramen closure and VSD. Reduced serum protein leads to delayed ossification and wavy ribs.
Collapse
Affiliation(s)
- Satoshi Kawamura
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Takafumi Yoshioka
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Nobuaki Mito
- Intellectual Property Department, Sumitomo Chemical Co. Ltd, Chuo-ku, Tokyo, Japan
| | - Noriyuki Kishimoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Masanao Nakaoka
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Alan G Fantel
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|